ScalarReplAggregates.cpp revision e4d87aa2de6e52952dca73716386db09aad5a8fd
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/Pass.h"
28#include "llvm/Instructions.h"
29#include "llvm/Analysis/Dominators.h"
30#include "llvm/Target/TargetData.h"
31#include "llvm/Transforms/Utils/PromoteMemToReg.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/GetElementPtrTypeIterator.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/ADT/StringExtras.h"
38using namespace llvm;
39
40STATISTIC(NumReplaced,  "Number of allocas broken up");
41STATISTIC(NumPromoted,  "Number of allocas promoted");
42STATISTIC(NumConverted, "Number of aggregates converted to scalar");
43
44namespace {
45  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
46    bool runOnFunction(Function &F);
47
48    bool performScalarRepl(Function &F);
49    bool performPromotion(Function &F);
50
51    // getAnalysisUsage - This pass does not require any passes, but we know it
52    // will not alter the CFG, so say so.
53    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
54      AU.addRequired<DominatorTree>();
55      AU.addRequired<DominanceFrontier>();
56      AU.addRequired<TargetData>();
57      AU.setPreservesCFG();
58    }
59
60  private:
61    int isSafeElementUse(Value *Ptr);
62    int isSafeUseOfAllocation(Instruction *User);
63    int isSafeAllocaToScalarRepl(AllocationInst *AI);
64    void CanonicalizeAllocaUsers(AllocationInst *AI);
65    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
66
67    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
68    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
69    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
70  };
71
72  RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
73}
74
75// Public interface to the ScalarReplAggregates pass
76FunctionPass *llvm::createScalarReplAggregatesPass() { return new SROA(); }
77
78
79bool SROA::runOnFunction(Function &F) {
80  bool Changed = performPromotion(F);
81  while (1) {
82    bool LocalChange = performScalarRepl(F);
83    if (!LocalChange) break;   // No need to repromote if no scalarrepl
84    Changed = true;
85    LocalChange = performPromotion(F);
86    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
87  }
88
89  return Changed;
90}
91
92
93bool SROA::performPromotion(Function &F) {
94  std::vector<AllocaInst*> Allocas;
95  const TargetData &TD = getAnalysis<TargetData>();
96  DominatorTree     &DT = getAnalysis<DominatorTree>();
97  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
98
99  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
100
101  bool Changed = false;
102
103  while (1) {
104    Allocas.clear();
105
106    // Find allocas that are safe to promote, by looking at all instructions in
107    // the entry node
108    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
109      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
110        if (isAllocaPromotable(AI, TD))
111          Allocas.push_back(AI);
112
113    if (Allocas.empty()) break;
114
115    PromoteMemToReg(Allocas, DT, DF, TD);
116    NumPromoted += Allocas.size();
117    Changed = true;
118  }
119
120  return Changed;
121}
122
123// performScalarRepl - This algorithm is a simple worklist driven algorithm,
124// which runs on all of the malloc/alloca instructions in the function, removing
125// them if they are only used by getelementptr instructions.
126//
127bool SROA::performScalarRepl(Function &F) {
128  std::vector<AllocationInst*> WorkList;
129
130  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
131  BasicBlock &BB = F.getEntryBlock();
132  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
133    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
134      WorkList.push_back(A);
135
136  // Process the worklist
137  bool Changed = false;
138  while (!WorkList.empty()) {
139    AllocationInst *AI = WorkList.back();
140    WorkList.pop_back();
141
142    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
143    // with unused elements.
144    if (AI->use_empty()) {
145      AI->eraseFromParent();
146      continue;
147    }
148
149    // If we can turn this aggregate value (potentially with casts) into a
150    // simple scalar value that can be mem2reg'd into a register value.
151    bool IsNotTrivial = false;
152    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
153      if (IsNotTrivial && ActualType != Type::VoidTy) {
154        ConvertToScalar(AI, ActualType);
155        Changed = true;
156        continue;
157      }
158
159    // We cannot transform the allocation instruction if it is an array
160    // allocation (allocations OF arrays are ok though), and an allocation of a
161    // scalar value cannot be decomposed at all.
162    //
163    if (AI->isArrayAllocation() ||
164        (!isa<StructType>(AI->getAllocatedType()) &&
165         !isa<ArrayType>(AI->getAllocatedType()))) continue;
166
167    // Check that all of the users of the allocation are capable of being
168    // transformed.
169    switch (isSafeAllocaToScalarRepl(AI)) {
170    default: assert(0 && "Unexpected value!");
171    case 0:  // Not safe to scalar replace.
172      continue;
173    case 1:  // Safe, but requires cleanup/canonicalizations first
174      CanonicalizeAllocaUsers(AI);
175    case 3:  // Safe to scalar replace.
176      break;
177    }
178
179    DOUT << "Found inst to xform: " << *AI;
180    Changed = true;
181
182    std::vector<AllocaInst*> ElementAllocas;
183    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
184      ElementAllocas.reserve(ST->getNumContainedTypes());
185      for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
186        AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
187                                        AI->getAlignment(),
188                                        AI->getName() + "." + utostr(i), AI);
189        ElementAllocas.push_back(NA);
190        WorkList.push_back(NA);  // Add to worklist for recursive processing
191      }
192    } else {
193      const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
194      ElementAllocas.reserve(AT->getNumElements());
195      const Type *ElTy = AT->getElementType();
196      for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
197        AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
198                                        AI->getName() + "." + utostr(i), AI);
199        ElementAllocas.push_back(NA);
200        WorkList.push_back(NA);  // Add to worklist for recursive processing
201      }
202    }
203
204    // Now that we have created the alloca instructions that we want to use,
205    // expand the getelementptr instructions to use them.
206    //
207    while (!AI->use_empty()) {
208      Instruction *User = cast<Instruction>(AI->use_back());
209      GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
210      // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
211      unsigned Idx =
212         (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
213
214      assert(Idx < ElementAllocas.size() && "Index out of range?");
215      AllocaInst *AllocaToUse = ElementAllocas[Idx];
216
217      Value *RepValue;
218      if (GEPI->getNumOperands() == 3) {
219        // Do not insert a new getelementptr instruction with zero indices, only
220        // to have it optimized out later.
221        RepValue = AllocaToUse;
222      } else {
223        // We are indexing deeply into the structure, so we still need a
224        // getelement ptr instruction to finish the indexing.  This may be
225        // expanded itself once the worklist is rerun.
226        //
227        std::string OldName = GEPI->getName();  // Steal the old name.
228        std::vector<Value*> NewArgs;
229        NewArgs.push_back(Constant::getNullValue(Type::IntTy));
230        NewArgs.insert(NewArgs.end(), GEPI->op_begin()+3, GEPI->op_end());
231        GEPI->setName("");
232        RepValue = new GetElementPtrInst(AllocaToUse, NewArgs, OldName, GEPI);
233      }
234
235      // Move all of the users over to the new GEP.
236      GEPI->replaceAllUsesWith(RepValue);
237      // Delete the old GEP
238      GEPI->eraseFromParent();
239    }
240
241    // Finally, delete the Alloca instruction
242    AI->eraseFromParent();
243    NumReplaced++;
244  }
245
246  return Changed;
247}
248
249
250/// isSafeElementUse - Check to see if this use is an allowed use for a
251/// getelementptr instruction of an array aggregate allocation.
252///
253int SROA::isSafeElementUse(Value *Ptr) {
254  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
255       I != E; ++I) {
256    Instruction *User = cast<Instruction>(*I);
257    switch (User->getOpcode()) {
258    case Instruction::Load:  break;
259    case Instruction::Store:
260      // Store is ok if storing INTO the pointer, not storing the pointer
261      if (User->getOperand(0) == Ptr) return 0;
262      break;
263    case Instruction::GetElementPtr: {
264      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
265      if (GEP->getNumOperands() > 1) {
266        if (!isa<Constant>(GEP->getOperand(1)) ||
267            !cast<Constant>(GEP->getOperand(1))->isNullValue())
268          return 0;  // Using pointer arithmetic to navigate the array...
269      }
270      if (!isSafeElementUse(GEP)) return 0;
271      break;
272    }
273    default:
274      DOUT << "  Transformation preventing inst: " << *User;
275      return 0;
276    }
277  }
278  return 3;  // All users look ok :)
279}
280
281/// AllUsersAreLoads - Return true if all users of this value are loads.
282static bool AllUsersAreLoads(Value *Ptr) {
283  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
284       I != E; ++I)
285    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
286      return false;
287  return true;
288}
289
290/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
291/// aggregate allocation.
292///
293int SROA::isSafeUseOfAllocation(Instruction *User) {
294  if (!isa<GetElementPtrInst>(User)) return 0;
295
296  GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
297  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
298
299  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
300  if (I == E ||
301      I.getOperand() != Constant::getNullValue(I.getOperand()->getType()))
302    return 0;
303
304  ++I;
305  if (I == E) return 0;  // ran out of GEP indices??
306
307  // If this is a use of an array allocation, do a bit more checking for sanity.
308  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
309    uint64_t NumElements = AT->getNumElements();
310
311    if (isa<ConstantInt>(I.getOperand())) {
312      // Check to make sure that index falls within the array.  If not,
313      // something funny is going on, so we won't do the optimization.
314      //
315      if (cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue() >= NumElements)
316        return 0;
317
318      // We cannot scalar repl this level of the array unless any array
319      // sub-indices are in-range constants.  In particular, consider:
320      // A[0][i].  We cannot know that the user isn't doing invalid things like
321      // allowing i to index an out-of-range subscript that accesses A[1].
322      //
323      // Scalar replacing *just* the outer index of the array is probably not
324      // going to be a win anyway, so just give up.
325      for (++I; I != E && (isa<ArrayType>(*I) || isa<PackedType>(*I)); ++I) {
326        uint64_t NumElements;
327        if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I))
328          NumElements = SubArrayTy->getNumElements();
329        else
330          NumElements = cast<PackedType>(*I)->getNumElements();
331
332        if (!isa<ConstantInt>(I.getOperand())) return 0;
333        if (cast<ConstantInt>(I.getOperand())->getZExtValue() >= NumElements)
334          return 0;
335      }
336
337    } else {
338      // If this is an array index and the index is not constant, we cannot
339      // promote... that is unless the array has exactly one or two elements in
340      // it, in which case we CAN promote it, but we have to canonicalize this
341      // out if this is the only problem.
342      if ((NumElements == 1 || NumElements == 2) &&
343          AllUsersAreLoads(GEPI))
344        return 1;  // Canonicalization required!
345      return 0;
346    }
347  }
348
349  // If there are any non-simple uses of this getelementptr, make sure to reject
350  // them.
351  return isSafeElementUse(GEPI);
352}
353
354/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
355/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
356/// or 1 if safe after canonicalization has been performed.
357///
358int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
359  // Loop over the use list of the alloca.  We can only transform it if all of
360  // the users are safe to transform.
361  //
362  int isSafe = 3;
363  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
364       I != E; ++I) {
365    isSafe &= isSafeUseOfAllocation(cast<Instruction>(*I));
366    if (isSafe == 0) {
367      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
368      return 0;
369    }
370  }
371  // If we require cleanup, isSafe is now 1, otherwise it is 3.
372  return isSafe;
373}
374
375/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
376/// allocation, but only if cleaned up, perform the cleanups required.
377void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
378  // At this point, we know that the end result will be SROA'd and promoted, so
379  // we can insert ugly code if required so long as sroa+mem2reg will clean it
380  // up.
381  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
382       UI != E; ) {
383    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(*UI++);
384    gep_type_iterator I = gep_type_begin(GEPI);
385    ++I;
386
387    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
388      uint64_t NumElements = AT->getNumElements();
389
390      if (!isa<ConstantInt>(I.getOperand())) {
391        if (NumElements == 1) {
392          GEPI->setOperand(2, Constant::getNullValue(Type::IntTy));
393        } else {
394          assert(NumElements == 2 && "Unhandled case!");
395          // All users of the GEP must be loads.  At each use of the GEP, insert
396          // two loads of the appropriate indexed GEP and select between them.
397          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
398                              Constant::getNullValue(I.getOperand()->getType()),
399             "isone", GEPI);
400          // Insert the new GEP instructions, which are properly indexed.
401          std::vector<Value*> Indices(GEPI->op_begin()+1, GEPI->op_end());
402          Indices[1] = Constant::getNullValue(Type::IntTy);
403          Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
404                                                 GEPI->getName()+".0", GEPI);
405          Indices[1] = ConstantInt::get(Type::IntTy, 1);
406          Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
407                                                GEPI->getName()+".1", GEPI);
408          // Replace all loads of the variable index GEP with loads from both
409          // indexes and a select.
410          while (!GEPI->use_empty()) {
411            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
412            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
413            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
414            Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
415            LI->replaceAllUsesWith(R);
416            LI->eraseFromParent();
417          }
418          GEPI->eraseFromParent();
419        }
420      }
421    }
422  }
423}
424
425/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
426/// types are incompatible, return true, otherwise update Accum and return
427/// false.
428///
429/// There are three cases we handle here:
430///   1) An effectively-integer union, where the pieces are stored into as
431///      smaller integers (common with byte swap and other idioms).
432///   2) A union of vector types of the same size and potentially its elements.
433///      Here we turn element accesses into insert/extract element operations.
434///   3) A union of scalar types, such as int/float or int/pointer.  Here we
435///      merge together into integers, allowing the xform to work with #1 as
436///      well.
437static bool MergeInType(const Type *In, const Type *&Accum,
438                        const TargetData &TD) {
439  // If this is our first type, just use it.
440  const PackedType *PTy;
441  if (Accum == Type::VoidTy || In == Accum) {
442    Accum = In;
443  } else if (In == Type::VoidTy) {
444    // Noop.
445  } else if (In->isIntegral() && Accum->isIntegral()) {   // integer union.
446    // Otherwise pick whichever type is larger.
447    if (In->getTypeID() > Accum->getTypeID())
448      Accum = In;
449  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
450    // Pointer unions just stay as one of the pointers.
451  } else if (isa<PackedType>(In) || isa<PackedType>(Accum)) {
452    if ((PTy = dyn_cast<PackedType>(Accum)) &&
453        PTy->getElementType() == In) {
454      // Accum is a vector, and we are accessing an element: ok.
455    } else if ((PTy = dyn_cast<PackedType>(In)) &&
456               PTy->getElementType() == Accum) {
457      // In is a vector, and accum is an element: ok, remember In.
458      Accum = In;
459    } else if ((PTy = dyn_cast<PackedType>(In)) && isa<PackedType>(Accum) &&
460               PTy->getBitWidth() == cast<PackedType>(Accum)->getBitWidth()) {
461      // Two vectors of the same size: keep Accum.
462    } else {
463      // Cannot insert an short into a <4 x int> or handle
464      // <2 x int> -> <4 x int>
465      return true;
466    }
467  } else {
468    // Pointer/FP/Integer unions merge together as integers.
469    switch (Accum->getTypeID()) {
470    case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
471    case Type::FloatTyID:   Accum = Type::UIntTy; break;
472    case Type::DoubleTyID:  Accum = Type::ULongTy; break;
473    default:
474      assert(Accum->isIntegral() && "Unknown FP type!");
475      break;
476    }
477
478    switch (In->getTypeID()) {
479    case Type::PointerTyID: In = TD.getIntPtrType(); break;
480    case Type::FloatTyID:   In = Type::UIntTy; break;
481    case Type::DoubleTyID:  In = Type::ULongTy; break;
482    default:
483      assert(In->isIntegral() && "Unknown FP type!");
484      break;
485    }
486    return MergeInType(In, Accum, TD);
487  }
488  return false;
489}
490
491/// getUIntAtLeastAsBitAs - Return an unsigned integer type that is at least
492/// as big as the specified type.  If there is no suitable type, this returns
493/// null.
494const Type *getUIntAtLeastAsBitAs(unsigned NumBits) {
495  if (NumBits > 64) return 0;
496  if (NumBits > 32) return Type::ULongTy;
497  if (NumBits > 16) return Type::UIntTy;
498  if (NumBits > 8) return Type::UShortTy;
499  return Type::UByteTy;
500}
501
502/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
503/// single scalar integer type, return that type.  Further, if the use is not
504/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
505/// there are no uses of this pointer, return Type::VoidTy to differentiate from
506/// failure.
507///
508const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
509  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
510  const TargetData &TD = getAnalysis<TargetData>();
511  const PointerType *PTy = cast<PointerType>(V->getType());
512
513  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
514    Instruction *User = cast<Instruction>(*UI);
515
516    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
517      if (MergeInType(LI->getType(), UsedType, TD))
518        return 0;
519
520    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
521      // Storing the pointer, not the into the value?
522      if (SI->getOperand(0) == V) return 0;
523
524      // NOTE: We could handle storing of FP imms into integers here!
525
526      if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
527        return 0;
528    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
529      IsNotTrivial = true;
530      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
531      if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
532    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
533      // Check to see if this is stepping over an element: GEP Ptr, int C
534      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
535        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
536        unsigned ElSize = TD.getTypeSize(PTy->getElementType());
537        unsigned BitOffset = Idx*ElSize*8;
538        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
539
540        IsNotTrivial = true;
541        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
542        if (SubElt == 0) return 0;
543        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
544          const Type *NewTy =
545            getUIntAtLeastAsBitAs(TD.getTypeSize(SubElt)*8+BitOffset);
546          if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
547          continue;
548        }
549      } else if (GEP->getNumOperands() == 3 &&
550                 isa<ConstantInt>(GEP->getOperand(1)) &&
551                 isa<ConstantInt>(GEP->getOperand(2)) &&
552                 cast<Constant>(GEP->getOperand(1))->isNullValue()) {
553        // We are stepping into an element, e.g. a structure or an array:
554        // GEP Ptr, int 0, uint C
555        const Type *AggTy = PTy->getElementType();
556        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
557
558        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
559          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
560        } else if (const PackedType *PackedTy = dyn_cast<PackedType>(AggTy)) {
561          // Getting an element of the packed vector.
562          if (Idx >= PackedTy->getNumElements()) return 0;  // Out of range.
563
564          // Merge in the packed type.
565          if (MergeInType(PackedTy, UsedType, TD)) return 0;
566
567          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
568          if (SubTy == 0) return 0;
569
570          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
571            return 0;
572
573          // We'll need to change this to an insert/extract element operation.
574          IsNotTrivial = true;
575          continue;    // Everything looks ok
576
577        } else if (isa<StructType>(AggTy)) {
578          // Structs are always ok.
579        } else {
580          return 0;
581        }
582        const Type *NTy = getUIntAtLeastAsBitAs(TD.getTypeSize(AggTy)*8);
583        if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
584        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
585        if (SubTy == 0) return 0;
586        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
587          return 0;
588        continue;    // Everything looks ok
589      }
590      return 0;
591    } else {
592      // Cannot handle this!
593      return 0;
594    }
595  }
596
597  return UsedType;
598}
599
600/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
601/// predicate and is non-trivial.  Convert it to something that can be trivially
602/// promoted into a register by mem2reg.
603void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
604  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
605       << *ActualTy << "\n";
606  ++NumConverted;
607
608  BasicBlock *EntryBlock = AI->getParent();
609  assert(EntryBlock == &EntryBlock->getParent()->front() &&
610         "Not in the entry block!");
611  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
612
613  if (ActualTy->isInteger())
614    ActualTy = ActualTy->getUnsignedVersion();
615
616  // Create and insert the alloca.
617  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
618                                     EntryBlock->begin());
619  ConvertUsesToScalar(AI, NewAI, 0);
620  delete AI;
621}
622
623
624/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
625/// directly.  This happens when we are converting an "integer union" to a
626/// single integer scalar, or when we are converting a "vector union" to a
627/// vector with insert/extractelement instructions.
628///
629/// Offset is an offset from the original alloca, in bits that need to be
630/// shifted to the right.  By the end of this, there should be no uses of Ptr.
631void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
632  bool isVectorInsert = isa<PackedType>(NewAI->getType()->getElementType());
633  const TargetData &TD = getAnalysis<TargetData>();
634  while (!Ptr->use_empty()) {
635    Instruction *User = cast<Instruction>(Ptr->use_back());
636
637    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
638      // The load is a bit extract from NewAI shifted right by Offset bits.
639      Value *NV = new LoadInst(NewAI, LI->getName(), LI);
640      if (NV->getType() != LI->getType()) {
641        if (const PackedType *PTy = dyn_cast<PackedType>(NV->getType())) {
642          // If the result alloca is a packed type, this is either an element
643          // access or a bitcast to another packed type.
644          if (isa<PackedType>(LI->getType())) {
645            NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
646          } else {
647            // Must be an element access.
648            unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
649            NV = new ExtractElementInst(NV, ConstantInt::get(Type::UIntTy, Elt),
650                                        "tmp", LI);
651          }
652        } else if (isa<PointerType>(NV->getType())) {
653          assert(isa<PointerType>(LI->getType()));
654          // Must be ptr->ptr cast.  Anything else would result in NV being
655          // an integer.
656          NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
657        } else {
658          assert(NV->getType()->isInteger() && "Unknown promotion!");
659          if (Offset && Offset < TD.getTypeSize(NV->getType())*8) {
660            NV = new ShiftInst(Instruction::LShr, NV,
661                               ConstantInt::get(Type::UByteTy, Offset),
662                               LI->getName(), LI);
663          }
664
665          // If the result is an integer, this is a trunc or bitcast.
666          if (LI->getType()->isIntegral()) {
667            NV = CastInst::createTruncOrBitCast(NV, LI->getType(),
668                                                LI->getName(), LI);
669          } else if (LI->getType()->isFloatingPoint()) {
670            // If needed, truncate the integer to the appropriate size.
671            if (NV->getType()->getPrimitiveSize() >
672                LI->getType()->getPrimitiveSize()) {
673              switch (LI->getType()->getTypeID()) {
674              default: assert(0 && "Unknown FP type!");
675              case Type::FloatTyID:
676                NV = new TruncInst(NV, Type::UIntTy, LI->getName(), LI);
677                break;
678              case Type::DoubleTyID:
679                NV = new TruncInst(NV, Type::ULongTy, LI->getName(), LI);
680                break;
681              }
682            }
683
684            // Then do a bitcast.
685            NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
686          } else {
687            // Otherwise must be a pointer.
688            NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
689          }
690        }
691      }
692      LI->replaceAllUsesWith(NV);
693      LI->eraseFromParent();
694    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
695      assert(SI->getOperand(0) != Ptr && "Consistency error!");
696
697      // Convert the stored type to the actual type, shift it left to insert
698      // then 'or' into place.
699      Value *SV = SI->getOperand(0);
700      const Type *AllocaType = NewAI->getType()->getElementType();
701      if (SV->getType() != AllocaType) {
702        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
703
704        if (const PackedType *PTy = dyn_cast<PackedType>(AllocaType)) {
705          // If the result alloca is a packed type, this is either an element
706          // access or a bitcast to another packed type.
707          if (isa<PackedType>(SV->getType())) {
708            SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
709          } else {
710            // Must be an element insertion.
711            unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
712            SV = new InsertElementInst(Old, SV,
713                                       ConstantInt::get(Type::UIntTy, Elt),
714                                       "tmp", SI);
715          }
716        } else {
717          // If SV is a float, convert it to the appropriate integer type.
718          // If it is a pointer, do the same, and also handle ptr->ptr casts
719          // here.
720          switch (SV->getType()->getTypeID()) {
721          default:
722            assert(!SV->getType()->isFloatingPoint() && "Unknown FP type!");
723            break;
724          case Type::FloatTyID:
725            SV = new BitCastInst(SV, Type::UIntTy, SV->getName(), SI);
726            break;
727          case Type::DoubleTyID:
728            SV = new BitCastInst(SV, Type::ULongTy, SV->getName(), SI);
729            break;
730          case Type::PointerTyID:
731            if (isa<PointerType>(AllocaType))
732              SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
733            else
734              SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
735            break;
736          }
737
738          unsigned SrcSize = TD.getTypeSize(SV->getType())*8;
739
740          // Always zero extend the value if needed.
741          if (SV->getType() != AllocaType)
742            SV = CastInst::createZExtOrBitCast(SV, AllocaType,
743                                               SV->getName(), SI);
744          if (Offset && Offset < AllocaType->getPrimitiveSizeInBits())
745            SV = new ShiftInst(Instruction::Shl, SV,
746                               ConstantInt::get(Type::UByteTy, Offset),
747                               SV->getName()+".adj", SI);
748          // Mask out the bits we are about to insert from the old value.
749          unsigned TotalBits = TD.getTypeSize(SV->getType())*8;
750          if (TotalBits != SrcSize) {
751            assert(TotalBits > SrcSize);
752            uint64_t Mask = ~(((1ULL << SrcSize)-1) << Offset);
753            Mask = Mask & SV->getType()->getIntegralTypeMask();
754            Old = BinaryOperator::createAnd(Old,
755                                        ConstantInt::get(Old->getType(), Mask),
756                                            Old->getName()+".mask", SI);
757            SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
758          }
759        }
760      }
761      new StoreInst(SV, NewAI, SI);
762      SI->eraseFromParent();
763
764    } else if (CastInst *CI = dyn_cast<CastInst>(User)) {
765      unsigned NewOff = Offset;
766      const TargetData &TD = getAnalysis<TargetData>();
767      if (TD.isBigEndian() && !isVectorInsert) {
768        // Adjust the pointer.  For example, storing 16-bits into a 32-bit
769        // alloca with just a cast makes it modify the top 16-bits.
770        const Type *SrcTy = cast<PointerType>(Ptr->getType())->getElementType();
771        const Type *DstTy = cast<PointerType>(CI->getType())->getElementType();
772        int PtrDiffBits = TD.getTypeSize(SrcTy)*8-TD.getTypeSize(DstTy)*8;
773        NewOff += PtrDiffBits;
774      }
775      ConvertUsesToScalar(CI, NewAI, NewOff);
776      CI->eraseFromParent();
777    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
778      const PointerType *AggPtrTy =
779        cast<PointerType>(GEP->getOperand(0)->getType());
780      const TargetData &TD = getAnalysis<TargetData>();
781      unsigned AggSizeInBits = TD.getTypeSize(AggPtrTy->getElementType())*8;
782
783      // Check to see if this is stepping over an element: GEP Ptr, int C
784      unsigned NewOffset = Offset;
785      if (GEP->getNumOperands() == 2) {
786        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
787        unsigned BitOffset = Idx*AggSizeInBits;
788
789        if (TD.isLittleEndian() || isVectorInsert)
790          NewOffset += BitOffset;
791        else
792          NewOffset -= BitOffset;
793
794      } else if (GEP->getNumOperands() == 3) {
795        // We know that operand #2 is zero.
796        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
797        const Type *AggTy = AggPtrTy->getElementType();
798        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
799          unsigned ElSizeBits = TD.getTypeSize(SeqTy->getElementType())*8;
800
801          if (TD.isLittleEndian() || isVectorInsert)
802            NewOffset += ElSizeBits*Idx;
803          else
804            NewOffset += AggSizeInBits-ElSizeBits*(Idx+1);
805        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
806          unsigned EltBitOffset = TD.getStructLayout(STy)->MemberOffsets[Idx]*8;
807
808          if (TD.isLittleEndian() || isVectorInsert)
809            NewOffset += EltBitOffset;
810          else {
811            const PointerType *ElPtrTy = cast<PointerType>(GEP->getType());
812            unsigned ElSizeBits = TD.getTypeSize(ElPtrTy->getElementType())*8;
813            NewOffset += AggSizeInBits-(EltBitOffset+ElSizeBits);
814          }
815
816        } else {
817          assert(0 && "Unsupported operation!");
818          abort();
819        }
820      } else {
821        assert(0 && "Unsupported operation!");
822        abort();
823      }
824      ConvertUsesToScalar(GEP, NewAI, NewOffset);
825      GEP->eraseFromParent();
826    } else {
827      assert(0 && "Unsupported operation!");
828      abort();
829    }
830  }
831}
832