ScalarReplAggregates.cpp revision ebed6de7b10d20721f5bd30ed3730cadefed7963
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DominanceFrontier.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Transforms/Utils/PromoteMemToReg.h"
37#include "llvm/Transforms/Utils/Local.h"
38#include "llvm/Transforms/Utils/SSAUpdater.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Support/IRBuilder.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/ADT/SmallVector.h"
47#include "llvm/ADT/Statistic.h"
48using namespace llvm;
49
50STATISTIC(NumReplaced,  "Number of allocas broken up");
51STATISTIC(NumPromoted,  "Number of allocas promoted");
52STATISTIC(NumConverted, "Number of aggregates converted to scalar");
53STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
54
55namespace {
56  struct SROA : public FunctionPass {
57    SROA(int T, bool hasDF, char &ID)
58      : FunctionPass(ID), HasDomFrontiers(hasDF) {
59      if (T == -1)
60        SRThreshold = 128;
61      else
62        SRThreshold = T;
63    }
64
65    bool runOnFunction(Function &F);
66
67    bool performScalarRepl(Function &F);
68    bool performPromotion(Function &F);
69
70  private:
71    bool HasDomFrontiers;
72    TargetData *TD;
73
74    /// DeadInsts - Keep track of instructions we have made dead, so that
75    /// we can remove them after we are done working.
76    SmallVector<Value*, 32> DeadInsts;
77
78    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
79    /// information about the uses.  All these fields are initialized to false
80    /// and set to true when something is learned.
81    struct AllocaInfo {
82      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
83      bool isUnsafe : 1;
84
85      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
86      bool isMemCpySrc : 1;
87
88      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
89      bool isMemCpyDst : 1;
90
91      /// hasSubelementAccess - This is true if a subelement of the alloca is
92      /// ever accessed, or false if the alloca is only accessed with mem
93      /// intrinsics or load/store that only access the entire alloca at once.
94      bool hasSubelementAccess : 1;
95
96      /// hasALoadOrStore - This is true if there are any loads or stores to it.
97      /// The alloca may just be accessed with memcpy, for example, which would
98      /// not set this.
99      bool hasALoadOrStore : 1;
100
101      AllocaInfo()
102        : isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
103          hasSubelementAccess(false), hasALoadOrStore(false) {}
104    };
105
106    unsigned SRThreshold;
107
108    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
109
110    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
111
112    void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
113                             AllocaInfo &Info);
114    void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
115                   AllocaInfo &Info);
116    void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
117                         const Type *MemOpType, bool isStore, AllocaInfo &Info);
118    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
119    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
120                                  const Type *&IdxTy);
121
122    void DoScalarReplacement(AllocaInst *AI,
123                             std::vector<AllocaInst*> &WorkList);
124    void DeleteDeadInstructions();
125
126    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
127                              SmallVector<AllocaInst*, 32> &NewElts);
128    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
129                        SmallVector<AllocaInst*, 32> &NewElts);
130    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
131                    SmallVector<AllocaInst*, 32> &NewElts);
132    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
133                                      AllocaInst *AI,
134                                      SmallVector<AllocaInst*, 32> &NewElts);
135    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
136                                       SmallVector<AllocaInst*, 32> &NewElts);
137    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
138                                      SmallVector<AllocaInst*, 32> &NewElts);
139
140    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
141  };
142
143  // SROA_DF - SROA that uses DominanceFrontier.
144  struct SROA_DF : public SROA {
145    static char ID;
146  public:
147    SROA_DF(int T = -1) : SROA(T, true, ID) {
148      initializeSROA_DFPass(*PassRegistry::getPassRegistry());
149    }
150
151    // getAnalysisUsage - This pass does not require any passes, but we know it
152    // will not alter the CFG, so say so.
153    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
154      AU.addRequired<DominatorTree>();
155      AU.setPreservesCFG();
156    }
157  };
158
159  // SROA_SSAUp - SROA that uses SSAUpdater.
160  struct SROA_SSAUp : public SROA {
161    static char ID;
162  public:
163    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
164      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
165    }
166
167    // getAnalysisUsage - This pass does not require any passes, but we know it
168    // will not alter the CFG, so say so.
169    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
170      AU.setPreservesCFG();
171    }
172  };
173
174}
175
176char SROA_DF::ID = 0;
177char SROA_SSAUp::ID = 0;
178
179INITIALIZE_PASS_BEGIN(SROA_DF, "scalarrepl",
180                "Scalar Replacement of Aggregates (DF)", false, false)
181INITIALIZE_PASS_DEPENDENCY(DominatorTree)
182INITIALIZE_PASS_END(SROA_DF, "scalarrepl",
183                "Scalar Replacement of Aggregates (DF)", false, false)
184
185INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
186                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
187INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
188                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
189
190// Public interface to the ScalarReplAggregates pass
191FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
192                                                   bool UseDomFrontier) {
193  if (UseDomFrontier)
194    return new SROA_DF(Threshold);
195  return new SROA_SSAUp(Threshold);
196}
197
198
199//===----------------------------------------------------------------------===//
200// Convert To Scalar Optimization.
201//===----------------------------------------------------------------------===//
202
203namespace {
204/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
205/// optimization, which scans the uses of an alloca and determines if it can
206/// rewrite it in terms of a single new alloca that can be mem2reg'd.
207class ConvertToScalarInfo {
208  /// AllocaSize - The size of the alloca being considered.
209  unsigned AllocaSize;
210  const TargetData &TD;
211
212  /// IsNotTrivial - This is set to true if there is some access to the object
213  /// which means that mem2reg can't promote it.
214  bool IsNotTrivial;
215
216  /// VectorTy - This tracks the type that we should promote the vector to if
217  /// it is possible to turn it into a vector.  This starts out null, and if it
218  /// isn't possible to turn into a vector type, it gets set to VoidTy.
219  const Type *VectorTy;
220
221  /// HadAVector - True if there is at least one vector access to the alloca.
222  /// We don't want to turn random arrays into vectors and use vector element
223  /// insert/extract, but if there are element accesses to something that is
224  /// also declared as a vector, we do want to promote to a vector.
225  bool HadAVector;
226
227public:
228  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
229    : AllocaSize(Size), TD(td) {
230    IsNotTrivial = false;
231    VectorTy = 0;
232    HadAVector = false;
233  }
234
235  AllocaInst *TryConvert(AllocaInst *AI);
236
237private:
238  bool CanConvertToScalar(Value *V, uint64_t Offset);
239  void MergeInType(const Type *In, uint64_t Offset);
240  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
241
242  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
243                                    uint64_t Offset, IRBuilder<> &Builder);
244  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
245                                   uint64_t Offset, IRBuilder<> &Builder);
246};
247} // end anonymous namespace.
248
249
250/// IsVerbotenVectorType - Return true if this is a vector type ScalarRepl isn't
251/// allowed to form.  We do this to avoid MMX types, which is a complete hack,
252/// but is required until the backend is fixed.
253static bool IsVerbotenVectorType(const VectorType *VTy, const Instruction *I) {
254  StringRef Triple(I->getParent()->getParent()->getParent()->getTargetTriple());
255  if (!Triple.startswith("i386") &&
256      !Triple.startswith("x86_64"))
257    return false;
258
259  // Reject all the MMX vector types.
260  switch (VTy->getNumElements()) {
261  default: return false;
262  case 1: return VTy->getElementType()->isIntegerTy(64);
263  case 2: return VTy->getElementType()->isIntegerTy(32);
264  case 4: return VTy->getElementType()->isIntegerTy(16);
265  case 8: return VTy->getElementType()->isIntegerTy(8);
266  }
267}
268
269
270/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
271/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
272/// alloca if possible or null if not.
273AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
274  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
275  // out.
276  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
277    return 0;
278
279  // If we were able to find a vector type that can handle this with
280  // insert/extract elements, and if there was at least one use that had
281  // a vector type, promote this to a vector.  We don't want to promote
282  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
283  // we just get a lot of insert/extracts.  If at least one vector is
284  // involved, then we probably really do have a union of vector/array.
285  const Type *NewTy;
286  if (VectorTy && VectorTy->isVectorTy() && HadAVector &&
287      !IsVerbotenVectorType(cast<VectorType>(VectorTy), AI)) {
288    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
289          << *VectorTy << '\n');
290    NewTy = VectorTy;  // Use the vector type.
291  } else {
292    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
293    // Create and insert the integer alloca.
294    NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
295  }
296  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
297  ConvertUsesToScalar(AI, NewAI, 0);
298  return NewAI;
299}
300
301/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
302/// so far at the offset specified by Offset (which is specified in bytes).
303///
304/// There are two cases we handle here:
305///   1) A union of vector types of the same size and potentially its elements.
306///      Here we turn element accesses into insert/extract element operations.
307///      This promotes a <4 x float> with a store of float to the third element
308///      into a <4 x float> that uses insert element.
309///   2) A fully general blob of memory, which we turn into some (potentially
310///      large) integer type with extract and insert operations where the loads
311///      and stores would mutate the memory.  We mark this by setting VectorTy
312///      to VoidTy.
313void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
314  // If we already decided to turn this into a blob of integer memory, there is
315  // nothing to be done.
316  if (VectorTy && VectorTy->isVoidTy())
317    return;
318
319  // If this could be contributing to a vector, analyze it.
320
321  // If the In type is a vector that is the same size as the alloca, see if it
322  // matches the existing VecTy.
323  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
324    // Remember if we saw a vector type.
325    HadAVector = true;
326
327    if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
328      // If we're storing/loading a vector of the right size, allow it as a
329      // vector.  If this the first vector we see, remember the type so that
330      // we know the element size.  If this is a subsequent access, ignore it
331      // even if it is a differing type but the same size.  Worst case we can
332      // bitcast the resultant vectors.
333      if (VectorTy == 0)
334        VectorTy = VInTy;
335      return;
336    }
337  } else if (In->isFloatTy() || In->isDoubleTy() ||
338             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
339              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
340    // If we're accessing something that could be an element of a vector, see
341    // if the implied vector agrees with what we already have and if Offset is
342    // compatible with it.
343    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
344    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
345        (VectorTy == 0 ||
346         cast<VectorType>(VectorTy)->getElementType()
347               ->getPrimitiveSizeInBits()/8 == EltSize)) {
348      if (VectorTy == 0)
349        VectorTy = VectorType::get(In, AllocaSize/EltSize);
350      return;
351    }
352  }
353
354  // Otherwise, we have a case that we can't handle with an optimized vector
355  // form.  We can still turn this into a large integer.
356  VectorTy = Type::getVoidTy(In->getContext());
357}
358
359/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
360/// its accesses to a single vector type, return true and set VecTy to
361/// the new type.  If we could convert the alloca into a single promotable
362/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
363/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
364/// is the current offset from the base of the alloca being analyzed.
365///
366/// If we see at least one access to the value that is as a vector type, set the
367/// SawVec flag.
368bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
369  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
370    Instruction *User = cast<Instruction>(*UI);
371
372    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
373      // Don't break volatile loads.
374      if (LI->isVolatile())
375        return false;
376      // Don't touch MMX operations.
377      if (LI->getType()->isX86_MMXTy())
378        return false;
379      MergeInType(LI->getType(), Offset);
380      continue;
381    }
382
383    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
384      // Storing the pointer, not into the value?
385      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
386      // Don't touch MMX operations.
387      if (SI->getOperand(0)->getType()->isX86_MMXTy())
388        return false;
389      MergeInType(SI->getOperand(0)->getType(), Offset);
390      continue;
391    }
392
393    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
394      IsNotTrivial = true;  // Can't be mem2reg'd.
395      if (!CanConvertToScalar(BCI, Offset))
396        return false;
397      continue;
398    }
399
400    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
401      // If this is a GEP with a variable indices, we can't handle it.
402      if (!GEP->hasAllConstantIndices())
403        return false;
404
405      // Compute the offset that this GEP adds to the pointer.
406      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
407      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
408                                               &Indices[0], Indices.size());
409      // See if all uses can be converted.
410      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
411        return false;
412      IsNotTrivial = true;  // Can't be mem2reg'd.
413      continue;
414    }
415
416    // If this is a constant sized memset of a constant value (e.g. 0) we can
417    // handle it.
418    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
419      // Store of constant value and constant size.
420      if (!isa<ConstantInt>(MSI->getValue()) ||
421          !isa<ConstantInt>(MSI->getLength()))
422        return false;
423      IsNotTrivial = true;  // Can't be mem2reg'd.
424      continue;
425    }
426
427    // If this is a memcpy or memmove into or out of the whole allocation, we
428    // can handle it like a load or store of the scalar type.
429    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
430      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
431      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
432        return false;
433
434      IsNotTrivial = true;  // Can't be mem2reg'd.
435      continue;
436    }
437
438    // Otherwise, we cannot handle this!
439    return false;
440  }
441
442  return true;
443}
444
445/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
446/// directly.  This happens when we are converting an "integer union" to a
447/// single integer scalar, or when we are converting a "vector union" to a
448/// vector with insert/extractelement instructions.
449///
450/// Offset is an offset from the original alloca, in bits that need to be
451/// shifted to the right.  By the end of this, there should be no uses of Ptr.
452void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
453                                              uint64_t Offset) {
454  while (!Ptr->use_empty()) {
455    Instruction *User = cast<Instruction>(Ptr->use_back());
456
457    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
458      ConvertUsesToScalar(CI, NewAI, Offset);
459      CI->eraseFromParent();
460      continue;
461    }
462
463    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
464      // Compute the offset that this GEP adds to the pointer.
465      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
466      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
467                                               &Indices[0], Indices.size());
468      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
469      GEP->eraseFromParent();
470      continue;
471    }
472
473    IRBuilder<> Builder(User);
474
475    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
476      // The load is a bit extract from NewAI shifted right by Offset bits.
477      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
478      Value *NewLoadVal
479        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
480      LI->replaceAllUsesWith(NewLoadVal);
481      LI->eraseFromParent();
482      continue;
483    }
484
485    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
486      assert(SI->getOperand(0) != Ptr && "Consistency error!");
487      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
488      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
489                                             Builder);
490      Builder.CreateStore(New, NewAI);
491      SI->eraseFromParent();
492
493      // If the load we just inserted is now dead, then the inserted store
494      // overwrote the entire thing.
495      if (Old->use_empty())
496        Old->eraseFromParent();
497      continue;
498    }
499
500    // If this is a constant sized memset of a constant value (e.g. 0) we can
501    // transform it into a store of the expanded constant value.
502    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
503      assert(MSI->getRawDest() == Ptr && "Consistency error!");
504      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
505      if (NumBytes != 0) {
506        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
507
508        // Compute the value replicated the right number of times.
509        APInt APVal(NumBytes*8, Val);
510
511        // Splat the value if non-zero.
512        if (Val)
513          for (unsigned i = 1; i != NumBytes; ++i)
514            APVal |= APVal << 8;
515
516        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
517        Value *New = ConvertScalar_InsertValue(
518                                    ConstantInt::get(User->getContext(), APVal),
519                                               Old, Offset, Builder);
520        Builder.CreateStore(New, NewAI);
521
522        // If the load we just inserted is now dead, then the memset overwrote
523        // the entire thing.
524        if (Old->use_empty())
525          Old->eraseFromParent();
526      }
527      MSI->eraseFromParent();
528      continue;
529    }
530
531    // If this is a memcpy or memmove into or out of the whole allocation, we
532    // can handle it like a load or store of the scalar type.
533    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
534      assert(Offset == 0 && "must be store to start of alloca");
535
536      // If the source and destination are both to the same alloca, then this is
537      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
538      // as appropriate.
539      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, 0));
540
541      if (GetUnderlyingObject(MTI->getSource(), 0) != OrigAI) {
542        // Dest must be OrigAI, change this to be a load from the original
543        // pointer (bitcasted), then a store to our new alloca.
544        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
545        Value *SrcPtr = MTI->getSource();
546        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
547        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
548        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
549          AIPTy = PointerType::get(AIPTy->getElementType(),
550                                   SPTy->getAddressSpace());
551        }
552        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
553
554        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
555        SrcVal->setAlignment(MTI->getAlignment());
556        Builder.CreateStore(SrcVal, NewAI);
557      } else if (GetUnderlyingObject(MTI->getDest(), 0) != OrigAI) {
558        // Src must be OrigAI, change this to be a load from NewAI then a store
559        // through the original dest pointer (bitcasted).
560        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
561        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
562
563        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
564        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
565        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
566          AIPTy = PointerType::get(AIPTy->getElementType(),
567                                   DPTy->getAddressSpace());
568        }
569        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
570
571        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
572        NewStore->setAlignment(MTI->getAlignment());
573      } else {
574        // Noop transfer. Src == Dst
575      }
576
577      MTI->eraseFromParent();
578      continue;
579    }
580
581    llvm_unreachable("Unsupported operation!");
582  }
583}
584
585/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
586/// or vector value FromVal, extracting the bits from the offset specified by
587/// Offset.  This returns the value, which is of type ToType.
588///
589/// This happens when we are converting an "integer union" to a single
590/// integer scalar, or when we are converting a "vector union" to a vector with
591/// insert/extractelement instructions.
592///
593/// Offset is an offset from the original alloca, in bits that need to be
594/// shifted to the right.
595Value *ConvertToScalarInfo::
596ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
597                           uint64_t Offset, IRBuilder<> &Builder) {
598  // If the load is of the whole new alloca, no conversion is needed.
599  if (FromVal->getType() == ToType && Offset == 0)
600    return FromVal;
601
602  // If the result alloca is a vector type, this is either an element
603  // access or a bitcast to another vector type of the same size.
604  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
605    if (ToType->isVectorTy())
606      return Builder.CreateBitCast(FromVal, ToType, "tmp");
607
608    // Otherwise it must be an element access.
609    unsigned Elt = 0;
610    if (Offset) {
611      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
612      Elt = Offset/EltSize;
613      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
614    }
615    // Return the element extracted out of it.
616    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
617                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
618    if (V->getType() != ToType)
619      V = Builder.CreateBitCast(V, ToType, "tmp");
620    return V;
621  }
622
623  // If ToType is a first class aggregate, extract out each of the pieces and
624  // use insertvalue's to form the FCA.
625  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
626    const StructLayout &Layout = *TD.getStructLayout(ST);
627    Value *Res = UndefValue::get(ST);
628    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
629      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
630                                        Offset+Layout.getElementOffsetInBits(i),
631                                              Builder);
632      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
633    }
634    return Res;
635  }
636
637  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
638    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
639    Value *Res = UndefValue::get(AT);
640    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
641      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
642                                              Offset+i*EltSize, Builder);
643      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
644    }
645    return Res;
646  }
647
648  // Otherwise, this must be a union that was converted to an integer value.
649  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
650
651  // If this is a big-endian system and the load is narrower than the
652  // full alloca type, we need to do a shift to get the right bits.
653  int ShAmt = 0;
654  if (TD.isBigEndian()) {
655    // On big-endian machines, the lowest bit is stored at the bit offset
656    // from the pointer given by getTypeStoreSizeInBits.  This matters for
657    // integers with a bitwidth that is not a multiple of 8.
658    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
659            TD.getTypeStoreSizeInBits(ToType) - Offset;
660  } else {
661    ShAmt = Offset;
662  }
663
664  // Note: we support negative bitwidths (with shl) which are not defined.
665  // We do this to support (f.e.) loads off the end of a structure where
666  // only some bits are used.
667  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
668    FromVal = Builder.CreateLShr(FromVal,
669                                 ConstantInt::get(FromVal->getType(),
670                                                           ShAmt), "tmp");
671  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
672    FromVal = Builder.CreateShl(FromVal,
673                                ConstantInt::get(FromVal->getType(),
674                                                          -ShAmt), "tmp");
675
676  // Finally, unconditionally truncate the integer to the right width.
677  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
678  if (LIBitWidth < NTy->getBitWidth())
679    FromVal =
680      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
681                                                    LIBitWidth), "tmp");
682  else if (LIBitWidth > NTy->getBitWidth())
683    FromVal =
684       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
685                                                    LIBitWidth), "tmp");
686
687  // If the result is an integer, this is a trunc or bitcast.
688  if (ToType->isIntegerTy()) {
689    // Should be done.
690  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
691    // Just do a bitcast, we know the sizes match up.
692    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
693  } else {
694    // Otherwise must be a pointer.
695    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
696  }
697  assert(FromVal->getType() == ToType && "Didn't convert right?");
698  return FromVal;
699}
700
701/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
702/// or vector value "Old" at the offset specified by Offset.
703///
704/// This happens when we are converting an "integer union" to a
705/// single integer scalar, or when we are converting a "vector union" to a
706/// vector with insert/extractelement instructions.
707///
708/// Offset is an offset from the original alloca, in bits that need to be
709/// shifted to the right.
710Value *ConvertToScalarInfo::
711ConvertScalar_InsertValue(Value *SV, Value *Old,
712                          uint64_t Offset, IRBuilder<> &Builder) {
713  // Convert the stored type to the actual type, shift it left to insert
714  // then 'or' into place.
715  const Type *AllocaType = Old->getType();
716  LLVMContext &Context = Old->getContext();
717
718  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
719    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
720    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
721
722    // Changing the whole vector with memset or with an access of a different
723    // vector type?
724    if (ValSize == VecSize)
725      return Builder.CreateBitCast(SV, AllocaType, "tmp");
726
727    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
728
729    // Must be an element insertion.
730    unsigned Elt = Offset/EltSize;
731
732    if (SV->getType() != VTy->getElementType())
733      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
734
735    SV = Builder.CreateInsertElement(Old, SV,
736                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
737                                     "tmp");
738    return SV;
739  }
740
741  // If SV is a first-class aggregate value, insert each value recursively.
742  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
743    const StructLayout &Layout = *TD.getStructLayout(ST);
744    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
745      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
746      Old = ConvertScalar_InsertValue(Elt, Old,
747                                      Offset+Layout.getElementOffsetInBits(i),
748                                      Builder);
749    }
750    return Old;
751  }
752
753  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
754    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
755    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
756      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
757      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
758    }
759    return Old;
760  }
761
762  // If SV is a float, convert it to the appropriate integer type.
763  // If it is a pointer, do the same.
764  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
765  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
766  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
767  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
768  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
769    SV = Builder.CreateBitCast(SV,
770                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
771  else if (SV->getType()->isPointerTy())
772    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
773
774  // Zero extend or truncate the value if needed.
775  if (SV->getType() != AllocaType) {
776    if (SV->getType()->getPrimitiveSizeInBits() <
777             AllocaType->getPrimitiveSizeInBits())
778      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
779    else {
780      // Truncation may be needed if storing more than the alloca can hold
781      // (undefined behavior).
782      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
783      SrcWidth = DestWidth;
784      SrcStoreWidth = DestStoreWidth;
785    }
786  }
787
788  // If this is a big-endian system and the store is narrower than the
789  // full alloca type, we need to do a shift to get the right bits.
790  int ShAmt = 0;
791  if (TD.isBigEndian()) {
792    // On big-endian machines, the lowest bit is stored at the bit offset
793    // from the pointer given by getTypeStoreSizeInBits.  This matters for
794    // integers with a bitwidth that is not a multiple of 8.
795    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
796  } else {
797    ShAmt = Offset;
798  }
799
800  // Note: we support negative bitwidths (with shr) which are not defined.
801  // We do this to support (f.e.) stores off the end of a structure where
802  // only some bits in the structure are set.
803  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
804  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
805    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
806                           ShAmt), "tmp");
807    Mask <<= ShAmt;
808  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
809    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
810                            -ShAmt), "tmp");
811    Mask = Mask.lshr(-ShAmt);
812  }
813
814  // Mask out the bits we are about to insert from the old value, and or
815  // in the new bits.
816  if (SrcWidth != DestWidth) {
817    assert(DestWidth > SrcWidth);
818    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
819    SV = Builder.CreateOr(Old, SV, "ins");
820  }
821  return SV;
822}
823
824
825//===----------------------------------------------------------------------===//
826// SRoA Driver
827//===----------------------------------------------------------------------===//
828
829
830bool SROA::runOnFunction(Function &F) {
831  TD = getAnalysisIfAvailable<TargetData>();
832
833  bool Changed = performPromotion(F);
834
835  // FIXME: ScalarRepl currently depends on TargetData more than it
836  // theoretically needs to. It should be refactored in order to support
837  // target-independent IR. Until this is done, just skip the actual
838  // scalar-replacement portion of this pass.
839  if (!TD) return Changed;
840
841  while (1) {
842    bool LocalChange = performScalarRepl(F);
843    if (!LocalChange) break;   // No need to repromote if no scalarrepl
844    Changed = true;
845    LocalChange = performPromotion(F);
846    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
847  }
848
849  return Changed;
850}
851
852namespace {
853class AllocaPromoter : public LoadAndStorePromoter {
854  AllocaInst *AI;
855public:
856  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S)
857    : LoadAndStorePromoter(Insts, S), AI(0) {}
858
859  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
860    // Remember which alloca we're promoting (for isInstInList).
861    this->AI = AI;
862    LoadAndStorePromoter::run(Insts);
863    AI->eraseFromParent();
864  }
865
866  virtual bool isInstInList(Instruction *I,
867                            const SmallVectorImpl<Instruction*> &Insts) const {
868    if (LoadInst *LI = dyn_cast<LoadInst>(I))
869      return LI->getOperand(0) == AI;
870    return cast<StoreInst>(I)->getPointerOperand() == AI;
871  }
872};
873} // end anon namespace
874
875bool SROA::performPromotion(Function &F) {
876  std::vector<AllocaInst*> Allocas;
877  DominatorTree *DT = 0;
878  if (HasDomFrontiers)
879    DT = &getAnalysis<DominatorTree>();
880
881  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
882
883  bool Changed = false;
884  SmallVector<Instruction*, 64> Insts;
885  while (1) {
886    Allocas.clear();
887
888    // Find allocas that are safe to promote, by looking at all instructions in
889    // the entry node
890    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
891      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
892        if (isAllocaPromotable(AI))
893          Allocas.push_back(AI);
894
895    if (Allocas.empty()) break;
896
897    if (HasDomFrontiers)
898      PromoteMemToReg(Allocas, *DT);
899    else {
900      SSAUpdater SSA;
901      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
902        AllocaInst *AI = Allocas[i];
903
904        // Build list of instructions to promote.
905        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
906             UI != E; ++UI)
907          Insts.push_back(cast<Instruction>(*UI));
908
909        AllocaPromoter(Insts, SSA).run(AI, Insts);
910        Insts.clear();
911      }
912    }
913    NumPromoted += Allocas.size();
914    Changed = true;
915  }
916
917  return Changed;
918}
919
920
921/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
922/// SROA.  It must be a struct or array type with a small number of elements.
923static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
924  const Type *T = AI->getAllocatedType();
925  // Do not promote any struct into more than 32 separate vars.
926  if (const StructType *ST = dyn_cast<StructType>(T))
927    return ST->getNumElements() <= 32;
928  // Arrays are much less likely to be safe for SROA; only consider
929  // them if they are very small.
930  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
931    return AT->getNumElements() <= 8;
932  return false;
933}
934
935
936// performScalarRepl - This algorithm is a simple worklist driven algorithm,
937// which runs on all of the malloc/alloca instructions in the function, removing
938// them if they are only used by getelementptr instructions.
939//
940bool SROA::performScalarRepl(Function &F) {
941  std::vector<AllocaInst*> WorkList;
942
943  // Scan the entry basic block, adding allocas to the worklist.
944  BasicBlock &BB = F.getEntryBlock();
945  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
946    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
947      WorkList.push_back(A);
948
949  // Process the worklist
950  bool Changed = false;
951  while (!WorkList.empty()) {
952    AllocaInst *AI = WorkList.back();
953    WorkList.pop_back();
954
955    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
956    // with unused elements.
957    if (AI->use_empty()) {
958      AI->eraseFromParent();
959      Changed = true;
960      continue;
961    }
962
963    // If this alloca is impossible for us to promote, reject it early.
964    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
965      continue;
966
967    // Check to see if this allocation is only modified by a memcpy/memmove from
968    // a constant global.  If this is the case, we can change all users to use
969    // the constant global instead.  This is commonly produced by the CFE by
970    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
971    // is only subsequently read.
972    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
973      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
974      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
975      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
976      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
977      TheCopy->eraseFromParent();  // Don't mutate the global.
978      AI->eraseFromParent();
979      ++NumGlobals;
980      Changed = true;
981      continue;
982    }
983
984    // Check to see if we can perform the core SROA transformation.  We cannot
985    // transform the allocation instruction if it is an array allocation
986    // (allocations OF arrays are ok though), and an allocation of a scalar
987    // value cannot be decomposed at all.
988    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
989
990    // Do not promote [0 x %struct].
991    if (AllocaSize == 0) continue;
992
993    // Do not promote any struct whose size is too big.
994    if (AllocaSize > SRThreshold) continue;
995
996    // If the alloca looks like a good candidate for scalar replacement, and if
997    // all its users can be transformed, then split up the aggregate into its
998    // separate elements.
999    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1000      DoScalarReplacement(AI, WorkList);
1001      Changed = true;
1002      continue;
1003    }
1004
1005    // If we can turn this aggregate value (potentially with casts) into a
1006    // simple scalar value that can be mem2reg'd into a register value.
1007    // IsNotTrivial tracks whether this is something that mem2reg could have
1008    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1009    // that we can't just check based on the type: the alloca may be of an i32
1010    // but that has pointer arithmetic to set byte 3 of it or something.
1011    if (AllocaInst *NewAI =
1012          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1013      NewAI->takeName(AI);
1014      AI->eraseFromParent();
1015      ++NumConverted;
1016      Changed = true;
1017      continue;
1018    }
1019
1020    // Otherwise, couldn't process this alloca.
1021  }
1022
1023  return Changed;
1024}
1025
1026/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1027/// predicate, do SROA now.
1028void SROA::DoScalarReplacement(AllocaInst *AI,
1029                               std::vector<AllocaInst*> &WorkList) {
1030  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1031  SmallVector<AllocaInst*, 32> ElementAllocas;
1032  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1033    ElementAllocas.reserve(ST->getNumContainedTypes());
1034    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1035      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1036                                      AI->getAlignment(),
1037                                      AI->getName() + "." + Twine(i), AI);
1038      ElementAllocas.push_back(NA);
1039      WorkList.push_back(NA);  // Add to worklist for recursive processing
1040    }
1041  } else {
1042    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1043    ElementAllocas.reserve(AT->getNumElements());
1044    const Type *ElTy = AT->getElementType();
1045    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1046      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1047                                      AI->getName() + "." + Twine(i), AI);
1048      ElementAllocas.push_back(NA);
1049      WorkList.push_back(NA);  // Add to worklist for recursive processing
1050    }
1051  }
1052
1053  // Now that we have created the new alloca instructions, rewrite all the
1054  // uses of the old alloca.
1055  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1056
1057  // Now erase any instructions that were made dead while rewriting the alloca.
1058  DeleteDeadInstructions();
1059  AI->eraseFromParent();
1060
1061  ++NumReplaced;
1062}
1063
1064/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1065/// recursively including all their operands that become trivially dead.
1066void SROA::DeleteDeadInstructions() {
1067  while (!DeadInsts.empty()) {
1068    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1069
1070    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1071      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1072        // Zero out the operand and see if it becomes trivially dead.
1073        // (But, don't add allocas to the dead instruction list -- they are
1074        // already on the worklist and will be deleted separately.)
1075        *OI = 0;
1076        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1077          DeadInsts.push_back(U);
1078      }
1079
1080    I->eraseFromParent();
1081  }
1082}
1083
1084/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1085/// performing scalar replacement of alloca AI.  The results are flagged in
1086/// the Info parameter.  Offset indicates the position within AI that is
1087/// referenced by this instruction.
1088void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1089                               AllocaInfo &Info) {
1090  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1091    Instruction *User = cast<Instruction>(*UI);
1092
1093    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1094      isSafeForScalarRepl(BC, AI, Offset, Info);
1095    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1096      uint64_t GEPOffset = Offset;
1097      isSafeGEP(GEPI, AI, GEPOffset, Info);
1098      if (!Info.isUnsafe)
1099        isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
1100    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1101      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1102      if (Length)
1103        isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
1104                        UI.getOperandNo() == 0, Info);
1105      else
1106        MarkUnsafe(Info);
1107    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1108      if (!LI->isVolatile()) {
1109        const Type *LIType = LI->getType();
1110        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
1111                        LIType, false, Info);
1112        Info.hasALoadOrStore = true;
1113      } else
1114        MarkUnsafe(Info);
1115    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1116      // Store is ok if storing INTO the pointer, not storing the pointer
1117      if (!SI->isVolatile() && SI->getOperand(0) != I) {
1118        const Type *SIType = SI->getOperand(0)->getType();
1119        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
1120                        SIType, true, Info);
1121        Info.hasALoadOrStore = true;
1122      } else
1123        MarkUnsafe(Info);
1124    } else {
1125      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
1126      MarkUnsafe(Info);
1127    }
1128    if (Info.isUnsafe) return;
1129  }
1130}
1131
1132/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1133/// replacement.  It is safe when all the indices are constant, in-bounds
1134/// references, and when the resulting offset corresponds to an element within
1135/// the alloca type.  The results are flagged in the Info parameter.  Upon
1136/// return, Offset is adjusted as specified by the GEP indices.
1137void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
1138                     uint64_t &Offset, AllocaInfo &Info) {
1139  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1140  if (GEPIt == E)
1141    return;
1142
1143  // Walk through the GEP type indices, checking the types that this indexes
1144  // into.
1145  for (; GEPIt != E; ++GEPIt) {
1146    // Ignore struct elements, no extra checking needed for these.
1147    if ((*GEPIt)->isStructTy())
1148      continue;
1149
1150    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1151    if (!IdxVal)
1152      return MarkUnsafe(Info);
1153  }
1154
1155  // Compute the offset due to this GEP and check if the alloca has a
1156  // component element at that offset.
1157  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1158  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1159                                 &Indices[0], Indices.size());
1160  if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
1161    MarkUnsafe(Info);
1162}
1163
1164/// isHomogeneousAggregate - Check if type T is a struct or array containing
1165/// elements of the same type (which is always true for arrays).  If so,
1166/// return true with NumElts and EltTy set to the number of elements and the
1167/// element type, respectively.
1168static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1169                                   const Type *&EltTy) {
1170  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1171    NumElts = AT->getNumElements();
1172    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1173    return true;
1174  }
1175  if (const StructType *ST = dyn_cast<StructType>(T)) {
1176    NumElts = ST->getNumContainedTypes();
1177    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1178    for (unsigned n = 1; n < NumElts; ++n) {
1179      if (ST->getContainedType(n) != EltTy)
1180        return false;
1181    }
1182    return true;
1183  }
1184  return false;
1185}
1186
1187/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1188/// "homogeneous" aggregates with the same element type and number of elements.
1189static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1190  if (T1 == T2)
1191    return true;
1192
1193  unsigned NumElts1, NumElts2;
1194  const Type *EltTy1, *EltTy2;
1195  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1196      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1197      NumElts1 == NumElts2 &&
1198      EltTy1 == EltTy2)
1199    return true;
1200
1201  return false;
1202}
1203
1204/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1205/// alloca or has an offset and size that corresponds to a component element
1206/// within it.  The offset checked here may have been formed from a GEP with a
1207/// pointer bitcasted to a different type.
1208void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
1209                           const Type *MemOpType, bool isStore,
1210                           AllocaInfo &Info) {
1211  // Check if this is a load/store of the entire alloca.
1212  if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
1213    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1214    // loads/stores (which are essentially the same as the MemIntrinsics with
1215    // regard to copying padding between elements).  But, if an alloca is
1216    // flagged as both a source and destination of such operations, we'll need
1217    // to check later for padding between elements.
1218    if (!MemOpType || MemOpType->isIntegerTy()) {
1219      if (isStore)
1220        Info.isMemCpyDst = true;
1221      else
1222        Info.isMemCpySrc = true;
1223      return;
1224    }
1225    // This is also safe for references using a type that is compatible with
1226    // the type of the alloca, so that loads/stores can be rewritten using
1227    // insertvalue/extractvalue.
1228    if (isCompatibleAggregate(MemOpType, AI->getAllocatedType())) {
1229      Info.hasSubelementAccess = true;
1230      return;
1231    }
1232  }
1233  // Check if the offset/size correspond to a component within the alloca type.
1234  const Type *T = AI->getAllocatedType();
1235  if (TypeHasComponent(T, Offset, MemSize)) {
1236    Info.hasSubelementAccess = true;
1237    return;
1238  }
1239
1240  return MarkUnsafe(Info);
1241}
1242
1243/// TypeHasComponent - Return true if T has a component type with the
1244/// specified offset and size.  If Size is zero, do not check the size.
1245bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1246  const Type *EltTy;
1247  uint64_t EltSize;
1248  if (const StructType *ST = dyn_cast<StructType>(T)) {
1249    const StructLayout *Layout = TD->getStructLayout(ST);
1250    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1251    EltTy = ST->getContainedType(EltIdx);
1252    EltSize = TD->getTypeAllocSize(EltTy);
1253    Offset -= Layout->getElementOffset(EltIdx);
1254  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1255    EltTy = AT->getElementType();
1256    EltSize = TD->getTypeAllocSize(EltTy);
1257    if (Offset >= AT->getNumElements() * EltSize)
1258      return false;
1259    Offset %= EltSize;
1260  } else {
1261    return false;
1262  }
1263  if (Offset == 0 && (Size == 0 || EltSize == Size))
1264    return true;
1265  // Check if the component spans multiple elements.
1266  if (Offset + Size > EltSize)
1267    return false;
1268  return TypeHasComponent(EltTy, Offset, Size);
1269}
1270
1271/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1272/// the instruction I, which references it, to use the separate elements.
1273/// Offset indicates the position within AI that is referenced by this
1274/// instruction.
1275void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1276                                SmallVector<AllocaInst*, 32> &NewElts) {
1277  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1278    Instruction *User = cast<Instruction>(*UI);
1279
1280    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1281      RewriteBitCast(BC, AI, Offset, NewElts);
1282    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1283      RewriteGEP(GEPI, AI, Offset, NewElts);
1284    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1285      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1286      uint64_t MemSize = Length->getZExtValue();
1287      if (Offset == 0 &&
1288          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1289        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1290      // Otherwise the intrinsic can only touch a single element and the
1291      // address operand will be updated, so nothing else needs to be done.
1292    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1293      const Type *LIType = LI->getType();
1294
1295      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1296        // Replace:
1297        //   %res = load { i32, i32 }* %alloc
1298        // with:
1299        //   %load.0 = load i32* %alloc.0
1300        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1301        //   %load.1 = load i32* %alloc.1
1302        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1303        // (Also works for arrays instead of structs)
1304        Value *Insert = UndefValue::get(LIType);
1305        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1306          Value *Load = new LoadInst(NewElts[i], "load", LI);
1307          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1308        }
1309        LI->replaceAllUsesWith(Insert);
1310        DeadInsts.push_back(LI);
1311      } else if (LIType->isIntegerTy() &&
1312                 TD->getTypeAllocSize(LIType) ==
1313                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1314        // If this is a load of the entire alloca to an integer, rewrite it.
1315        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1316      }
1317    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1318      Value *Val = SI->getOperand(0);
1319      const Type *SIType = Val->getType();
1320      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1321        // Replace:
1322        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1323        // with:
1324        //   %val.0 = extractvalue { i32, i32 } %val, 0
1325        //   store i32 %val.0, i32* %alloc.0
1326        //   %val.1 = extractvalue { i32, i32 } %val, 1
1327        //   store i32 %val.1, i32* %alloc.1
1328        // (Also works for arrays instead of structs)
1329        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1330          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1331          new StoreInst(Extract, NewElts[i], SI);
1332        }
1333        DeadInsts.push_back(SI);
1334      } else if (SIType->isIntegerTy() &&
1335                 TD->getTypeAllocSize(SIType) ==
1336                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1337        // If this is a store of the entire alloca from an integer, rewrite it.
1338        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1339      }
1340    }
1341  }
1342}
1343
1344/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1345/// and recursively continue updating all of its uses.
1346void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1347                          SmallVector<AllocaInst*, 32> &NewElts) {
1348  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1349  if (BC->getOperand(0) != AI)
1350    return;
1351
1352  // The bitcast references the original alloca.  Replace its uses with
1353  // references to the first new element alloca.
1354  Instruction *Val = NewElts[0];
1355  if (Val->getType() != BC->getDestTy()) {
1356    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1357    Val->takeName(BC);
1358  }
1359  BC->replaceAllUsesWith(Val);
1360  DeadInsts.push_back(BC);
1361}
1362
1363/// FindElementAndOffset - Return the index of the element containing Offset
1364/// within the specified type, which must be either a struct or an array.
1365/// Sets T to the type of the element and Offset to the offset within that
1366/// element.  IdxTy is set to the type of the index result to be used in a
1367/// GEP instruction.
1368uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1369                                    const Type *&IdxTy) {
1370  uint64_t Idx = 0;
1371  if (const StructType *ST = dyn_cast<StructType>(T)) {
1372    const StructLayout *Layout = TD->getStructLayout(ST);
1373    Idx = Layout->getElementContainingOffset(Offset);
1374    T = ST->getContainedType(Idx);
1375    Offset -= Layout->getElementOffset(Idx);
1376    IdxTy = Type::getInt32Ty(T->getContext());
1377    return Idx;
1378  }
1379  const ArrayType *AT = cast<ArrayType>(T);
1380  T = AT->getElementType();
1381  uint64_t EltSize = TD->getTypeAllocSize(T);
1382  Idx = Offset / EltSize;
1383  Offset -= Idx * EltSize;
1384  IdxTy = Type::getInt64Ty(T->getContext());
1385  return Idx;
1386}
1387
1388/// RewriteGEP - Check if this GEP instruction moves the pointer across
1389/// elements of the alloca that are being split apart, and if so, rewrite
1390/// the GEP to be relative to the new element.
1391void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1392                      SmallVector<AllocaInst*, 32> &NewElts) {
1393  uint64_t OldOffset = Offset;
1394  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1395  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1396                                 &Indices[0], Indices.size());
1397
1398  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1399
1400  const Type *T = AI->getAllocatedType();
1401  const Type *IdxTy;
1402  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1403  if (GEPI->getOperand(0) == AI)
1404    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1405
1406  T = AI->getAllocatedType();
1407  uint64_t EltOffset = Offset;
1408  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1409
1410  // If this GEP does not move the pointer across elements of the alloca
1411  // being split, then it does not needs to be rewritten.
1412  if (Idx == OldIdx)
1413    return;
1414
1415  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1416  SmallVector<Value*, 8> NewArgs;
1417  NewArgs.push_back(Constant::getNullValue(i32Ty));
1418  while (EltOffset != 0) {
1419    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1420    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1421  }
1422  Instruction *Val = NewElts[Idx];
1423  if (NewArgs.size() > 1) {
1424    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1425                                            NewArgs.end(), "", GEPI);
1426    Val->takeName(GEPI);
1427  }
1428  if (Val->getType() != GEPI->getType())
1429    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1430  GEPI->replaceAllUsesWith(Val);
1431  DeadInsts.push_back(GEPI);
1432}
1433
1434/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1435/// Rewrite it to copy or set the elements of the scalarized memory.
1436void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1437                                        AllocaInst *AI,
1438                                        SmallVector<AllocaInst*, 32> &NewElts) {
1439  // If this is a memcpy/memmove, construct the other pointer as the
1440  // appropriate type.  The "Other" pointer is the pointer that goes to memory
1441  // that doesn't have anything to do with the alloca that we are promoting. For
1442  // memset, this Value* stays null.
1443  Value *OtherPtr = 0;
1444  unsigned MemAlignment = MI->getAlignment();
1445  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1446    if (Inst == MTI->getRawDest())
1447      OtherPtr = MTI->getRawSource();
1448    else {
1449      assert(Inst == MTI->getRawSource());
1450      OtherPtr = MTI->getRawDest();
1451    }
1452  }
1453
1454  // If there is an other pointer, we want to convert it to the same pointer
1455  // type as AI has, so we can GEP through it safely.
1456  if (OtherPtr) {
1457    unsigned AddrSpace =
1458      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
1459
1460    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
1461    // optimization, but it's also required to detect the corner case where
1462    // both pointer operands are referencing the same memory, and where
1463    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
1464    // function is only called for mem intrinsics that access the whole
1465    // aggregate, so non-zero GEPs are not an issue here.)
1466    OtherPtr = OtherPtr->stripPointerCasts();
1467
1468    // Copying the alloca to itself is a no-op: just delete it.
1469    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1470      // This code will run twice for a no-op memcpy -- once for each operand.
1471      // Put only one reference to MI on the DeadInsts list.
1472      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1473             E = DeadInsts.end(); I != E; ++I)
1474        if (*I == MI) return;
1475      DeadInsts.push_back(MI);
1476      return;
1477    }
1478
1479    // If the pointer is not the right type, insert a bitcast to the right
1480    // type.
1481    const Type *NewTy =
1482      PointerType::get(AI->getType()->getElementType(), AddrSpace);
1483
1484    if (OtherPtr->getType() != NewTy)
1485      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
1486  }
1487
1488  // Process each element of the aggregate.
1489  bool SROADest = MI->getRawDest() == Inst;
1490
1491  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
1492
1493  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1494    // If this is a memcpy/memmove, emit a GEP of the other element address.
1495    Value *OtherElt = 0;
1496    unsigned OtherEltAlign = MemAlignment;
1497
1498    if (OtherPtr) {
1499      Value *Idx[2] = { Zero,
1500                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
1501      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
1502                                              OtherPtr->getName()+"."+Twine(i),
1503                                                   MI);
1504      uint64_t EltOffset;
1505      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
1506      const Type *OtherTy = OtherPtrTy->getElementType();
1507      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
1508        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
1509      } else {
1510        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
1511        EltOffset = TD->getTypeAllocSize(EltTy)*i;
1512      }
1513
1514      // The alignment of the other pointer is the guaranteed alignment of the
1515      // element, which is affected by both the known alignment of the whole
1516      // mem intrinsic and the alignment of the element.  If the alignment of
1517      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
1518      // known alignment is just 4 bytes.
1519      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
1520    }
1521
1522    Value *EltPtr = NewElts[i];
1523    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
1524
1525    // If we got down to a scalar, insert a load or store as appropriate.
1526    if (EltTy->isSingleValueType()) {
1527      if (isa<MemTransferInst>(MI)) {
1528        if (SROADest) {
1529          // From Other to Alloca.
1530          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
1531          new StoreInst(Elt, EltPtr, MI);
1532        } else {
1533          // From Alloca to Other.
1534          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
1535          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
1536        }
1537        continue;
1538      }
1539      assert(isa<MemSetInst>(MI));
1540
1541      // If the stored element is zero (common case), just store a null
1542      // constant.
1543      Constant *StoreVal;
1544      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
1545        if (CI->isZero()) {
1546          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
1547        } else {
1548          // If EltTy is a vector type, get the element type.
1549          const Type *ValTy = EltTy->getScalarType();
1550
1551          // Construct an integer with the right value.
1552          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
1553          APInt OneVal(EltSize, CI->getZExtValue());
1554          APInt TotalVal(OneVal);
1555          // Set each byte.
1556          for (unsigned i = 0; 8*i < EltSize; ++i) {
1557            TotalVal = TotalVal.shl(8);
1558            TotalVal |= OneVal;
1559          }
1560
1561          // Convert the integer value to the appropriate type.
1562          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
1563          if (ValTy->isPointerTy())
1564            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
1565          else if (ValTy->isFloatingPointTy())
1566            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
1567          assert(StoreVal->getType() == ValTy && "Type mismatch!");
1568
1569          // If the requested value was a vector constant, create it.
1570          if (EltTy != ValTy) {
1571            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
1572            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
1573            StoreVal = ConstantVector::get(&Elts[0], NumElts);
1574          }
1575        }
1576        new StoreInst(StoreVal, EltPtr, MI);
1577        continue;
1578      }
1579      // Otherwise, if we're storing a byte variable, use a memset call for
1580      // this element.
1581    }
1582
1583    unsigned EltSize = TD->getTypeAllocSize(EltTy);
1584
1585    IRBuilder<> Builder(MI);
1586
1587    // Finally, insert the meminst for this element.
1588    if (isa<MemSetInst>(MI)) {
1589      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
1590                           MI->isVolatile());
1591    } else {
1592      assert(isa<MemTransferInst>(MI));
1593      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
1594      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
1595
1596      if (isa<MemCpyInst>(MI))
1597        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
1598      else
1599        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
1600    }
1601  }
1602  DeadInsts.push_back(MI);
1603}
1604
1605/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
1606/// overwrites the entire allocation.  Extract out the pieces of the stored
1607/// integer and store them individually.
1608void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
1609                                         SmallVector<AllocaInst*, 32> &NewElts){
1610  // Extract each element out of the integer according to its structure offset
1611  // and store the element value to the individual alloca.
1612  Value *SrcVal = SI->getOperand(0);
1613  const Type *AllocaEltTy = AI->getAllocatedType();
1614  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1615
1616  IRBuilder<> Builder(SI);
1617
1618  // Handle tail padding by extending the operand
1619  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
1620    SrcVal = Builder.CreateZExt(SrcVal,
1621                            IntegerType::get(SI->getContext(), AllocaSizeBits));
1622
1623  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
1624               << '\n');
1625
1626  // There are two forms here: AI could be an array or struct.  Both cases
1627  // have different ways to compute the element offset.
1628  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1629    const StructLayout *Layout = TD->getStructLayout(EltSTy);
1630
1631    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1632      // Get the number of bits to shift SrcVal to get the value.
1633      const Type *FieldTy = EltSTy->getElementType(i);
1634      uint64_t Shift = Layout->getElementOffsetInBits(i);
1635
1636      if (TD->isBigEndian())
1637        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
1638
1639      Value *EltVal = SrcVal;
1640      if (Shift) {
1641        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1642        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
1643      }
1644
1645      // Truncate down to an integer of the right size.
1646      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1647
1648      // Ignore zero sized fields like {}, they obviously contain no data.
1649      if (FieldSizeBits == 0) continue;
1650
1651      if (FieldSizeBits != AllocaSizeBits)
1652        EltVal = Builder.CreateTrunc(EltVal,
1653                             IntegerType::get(SI->getContext(), FieldSizeBits));
1654      Value *DestField = NewElts[i];
1655      if (EltVal->getType() == FieldTy) {
1656        // Storing to an integer field of this size, just do it.
1657      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
1658        // Bitcast to the right element type (for fp/vector values).
1659        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
1660      } else {
1661        // Otherwise, bitcast the dest pointer (for aggregates).
1662        DestField = Builder.CreateBitCast(DestField,
1663                                     PointerType::getUnqual(EltVal->getType()));
1664      }
1665      new StoreInst(EltVal, DestField, SI);
1666    }
1667
1668  } else {
1669    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
1670    const Type *ArrayEltTy = ATy->getElementType();
1671    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1672    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
1673
1674    uint64_t Shift;
1675
1676    if (TD->isBigEndian())
1677      Shift = AllocaSizeBits-ElementOffset;
1678    else
1679      Shift = 0;
1680
1681    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1682      // Ignore zero sized fields like {}, they obviously contain no data.
1683      if (ElementSizeBits == 0) continue;
1684
1685      Value *EltVal = SrcVal;
1686      if (Shift) {
1687        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1688        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
1689      }
1690
1691      // Truncate down to an integer of the right size.
1692      if (ElementSizeBits != AllocaSizeBits)
1693        EltVal = Builder.CreateTrunc(EltVal,
1694                                     IntegerType::get(SI->getContext(),
1695                                                      ElementSizeBits));
1696      Value *DestField = NewElts[i];
1697      if (EltVal->getType() == ArrayEltTy) {
1698        // Storing to an integer field of this size, just do it.
1699      } else if (ArrayEltTy->isFloatingPointTy() ||
1700                 ArrayEltTy->isVectorTy()) {
1701        // Bitcast to the right element type (for fp/vector values).
1702        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
1703      } else {
1704        // Otherwise, bitcast the dest pointer (for aggregates).
1705        DestField = Builder.CreateBitCast(DestField,
1706                                     PointerType::getUnqual(EltVal->getType()));
1707      }
1708      new StoreInst(EltVal, DestField, SI);
1709
1710      if (TD->isBigEndian())
1711        Shift -= ElementOffset;
1712      else
1713        Shift += ElementOffset;
1714    }
1715  }
1716
1717  DeadInsts.push_back(SI);
1718}
1719
1720/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
1721/// an integer.  Load the individual pieces to form the aggregate value.
1722void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1723                                        SmallVector<AllocaInst*, 32> &NewElts) {
1724  // Extract each element out of the NewElts according to its structure offset
1725  // and form the result value.
1726  const Type *AllocaEltTy = AI->getAllocatedType();
1727  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1728
1729  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1730               << '\n');
1731
1732  // There are two forms here: AI could be an array or struct.  Both cases
1733  // have different ways to compute the element offset.
1734  const StructLayout *Layout = 0;
1735  uint64_t ArrayEltBitOffset = 0;
1736  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1737    Layout = TD->getStructLayout(EltSTy);
1738  } else {
1739    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1740    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1741  }
1742
1743  Value *ResultVal =
1744    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1745
1746  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1747    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1748    // the pointer to an integer of the same size before doing the load.
1749    Value *SrcField = NewElts[i];
1750    const Type *FieldTy =
1751      cast<PointerType>(SrcField->getType())->getElementType();
1752    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1753
1754    // Ignore zero sized fields like {}, they obviously contain no data.
1755    if (FieldSizeBits == 0) continue;
1756
1757    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1758                                                     FieldSizeBits);
1759    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
1760        !FieldTy->isVectorTy())
1761      SrcField = new BitCastInst(SrcField,
1762                                 PointerType::getUnqual(FieldIntTy),
1763                                 "", LI);
1764    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1765
1766    // If SrcField is a fp or vector of the right size but that isn't an
1767    // integer type, bitcast to an integer so we can shift it.
1768    if (SrcField->getType() != FieldIntTy)
1769      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1770
1771    // Zero extend the field to be the same size as the final alloca so that
1772    // we can shift and insert it.
1773    if (SrcField->getType() != ResultVal->getType())
1774      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1775
1776    // Determine the number of bits to shift SrcField.
1777    uint64_t Shift;
1778    if (Layout) // Struct case.
1779      Shift = Layout->getElementOffsetInBits(i);
1780    else  // Array case.
1781      Shift = i*ArrayEltBitOffset;
1782
1783    if (TD->isBigEndian())
1784      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1785
1786    if (Shift) {
1787      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1788      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1789    }
1790
1791    // Don't create an 'or x, 0' on the first iteration.
1792    if (!isa<Constant>(ResultVal) ||
1793        !cast<Constant>(ResultVal)->isNullValue())
1794      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1795    else
1796      ResultVal = SrcField;
1797  }
1798
1799  // Handle tail padding by truncating the result
1800  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1801    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1802
1803  LI->replaceAllUsesWith(ResultVal);
1804  DeadInsts.push_back(LI);
1805}
1806
1807/// HasPadding - Return true if the specified type has any structure or
1808/// alignment padding in between the elements that would be split apart
1809/// by SROA; return false otherwise.
1810static bool HasPadding(const Type *Ty, const TargetData &TD) {
1811  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1812    Ty = ATy->getElementType();
1813    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1814  }
1815
1816  // SROA currently handles only Arrays and Structs.
1817  const StructType *STy = cast<StructType>(Ty);
1818  const StructLayout *SL = TD.getStructLayout(STy);
1819  unsigned PrevFieldBitOffset = 0;
1820  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1821    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1822
1823    // Check to see if there is any padding between this element and the
1824    // previous one.
1825    if (i) {
1826      unsigned PrevFieldEnd =
1827        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1828      if (PrevFieldEnd < FieldBitOffset)
1829        return true;
1830    }
1831    PrevFieldBitOffset = FieldBitOffset;
1832  }
1833  // Check for tail padding.
1834  if (unsigned EltCount = STy->getNumElements()) {
1835    unsigned PrevFieldEnd = PrevFieldBitOffset +
1836      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1837    if (PrevFieldEnd < SL->getSizeInBits())
1838      return true;
1839  }
1840  return false;
1841}
1842
1843/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1844/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1845/// or 1 if safe after canonicalization has been performed.
1846bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
1847  // Loop over the use list of the alloca.  We can only transform it if all of
1848  // the users are safe to transform.
1849  AllocaInfo Info;
1850
1851  isSafeForScalarRepl(AI, AI, 0, Info);
1852  if (Info.isUnsafe) {
1853    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
1854    return false;
1855  }
1856
1857  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1858  // source and destination, we have to be careful.  In particular, the memcpy
1859  // could be moving around elements that live in structure padding of the LLVM
1860  // types, but may actually be used.  In these cases, we refuse to promote the
1861  // struct.
1862  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1863      HasPadding(AI->getAllocatedType(), *TD))
1864    return false;
1865
1866  // If the alloca never has an access to just *part* of it, but is accessed
1867  // via loads and stores, then we should use ConvertToScalarInfo to promote
1868  // the alloca instead of promoting each piece at a time and inserting fission
1869  // and fusion code.
1870  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
1871    // If the struct/array just has one element, use basic SRoA.
1872    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1873      if (ST->getNumElements() > 1) return false;
1874    } else {
1875      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
1876        return false;
1877    }
1878  }
1879  return true;
1880}
1881
1882
1883
1884/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1885/// some part of a constant global variable.  This intentionally only accepts
1886/// constant expressions because we don't can't rewrite arbitrary instructions.
1887static bool PointsToConstantGlobal(Value *V) {
1888  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1889    return GV->isConstant();
1890  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1891    if (CE->getOpcode() == Instruction::BitCast ||
1892        CE->getOpcode() == Instruction::GetElementPtr)
1893      return PointsToConstantGlobal(CE->getOperand(0));
1894  return false;
1895}
1896
1897/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1898/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1899/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1900/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1901/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1902/// the alloca, and if the source pointer is a pointer to a constant global, we
1903/// can optimize this.
1904static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
1905                                           bool isOffset) {
1906  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1907    User *U = cast<Instruction>(*UI);
1908
1909    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1910      // Ignore non-volatile loads, they are always ok.
1911      if (LI->isVolatile()) return false;
1912      continue;
1913    }
1914
1915    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1916      // If uses of the bitcast are ok, we are ok.
1917      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1918        return false;
1919      continue;
1920    }
1921    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
1922      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1923      // doesn't, it does.
1924      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1925                                         isOffset || !GEP->hasAllZeroIndices()))
1926        return false;
1927      continue;
1928    }
1929
1930    if (CallSite CS = U) {
1931      // If this is a readonly/readnone call site, then we know it is just a
1932      // load and we can ignore it.
1933      if (CS.onlyReadsMemory())
1934        continue;
1935
1936      // If this is the function being called then we treat it like a load and
1937      // ignore it.
1938      if (CS.isCallee(UI))
1939        continue;
1940
1941      // If this is being passed as a byval argument, the caller is making a
1942      // copy, so it is only a read of the alloca.
1943      unsigned ArgNo = CS.getArgumentNo(UI);
1944      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
1945        continue;
1946    }
1947
1948    // If this is isn't our memcpy/memmove, reject it as something we can't
1949    // handle.
1950    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
1951    if (MI == 0)
1952      return false;
1953
1954    // If the transfer is using the alloca as a source of the transfer, then
1955    // ignore it since it is a load (unless the transfer is volatile).
1956    if (UI.getOperandNo() == 1) {
1957      if (MI->isVolatile()) return false;
1958      continue;
1959    }
1960
1961    // If we already have seen a copy, reject the second one.
1962    if (TheCopy) return false;
1963
1964    // If the pointer has been offset from the start of the alloca, we can't
1965    // safely handle this.
1966    if (isOffset) return false;
1967
1968    // If the memintrinsic isn't using the alloca as the dest, reject it.
1969    if (UI.getOperandNo() != 0) return false;
1970
1971    // If the source of the memcpy/move is not a constant global, reject it.
1972    if (!PointsToConstantGlobal(MI->getSource()))
1973      return false;
1974
1975    // Otherwise, the transform is safe.  Remember the copy instruction.
1976    TheCopy = MI;
1977  }
1978  return true;
1979}
1980
1981/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1982/// modified by a copy from a constant global.  If we can prove this, we can
1983/// replace any uses of the alloca with uses of the global directly.
1984MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
1985  MemTransferInst *TheCopy = 0;
1986  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1987    return TheCopy;
1988  return 0;
1989}
1990