CloneFunction.cpp revision 0b8c9a80f20772c3793201ab5b251d3520b9cea3
1//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CloneFunctionInto interface, which is used as the
11// low-level function cloner.  This is used by the CloneFunction and function
12// inliner to do the dirty work of copying the body of a function around.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/Cloning.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/ConstantFolding.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/DebugInfo.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/DerivedTypes.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/GlobalVariable.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/IntrinsicInst.h"
27#include "llvm/IR/LLVMContext.h"
28#include "llvm/IR/Metadata.h"
29#include "llvm/Support/CFG.h"
30#include "llvm/Transforms/Utils/BasicBlockUtils.h"
31#include "llvm/Transforms/Utils/Local.h"
32#include "llvm/Transforms/Utils/ValueMapper.h"
33#include <map>
34using namespace llvm;
35
36// CloneBasicBlock - See comments in Cloning.h
37BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
38                                  ValueToValueMapTy &VMap,
39                                  const Twine &NameSuffix, Function *F,
40                                  ClonedCodeInfo *CodeInfo) {
41  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
42  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
43
44  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
45
46  // Loop over all instructions, and copy them over.
47  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
48       II != IE; ++II) {
49    Instruction *NewInst = II->clone();
50    if (II->hasName())
51      NewInst->setName(II->getName()+NameSuffix);
52    NewBB->getInstList().push_back(NewInst);
53    VMap[II] = NewInst;                // Add instruction map to value.
54
55    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
56    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
57      if (isa<ConstantInt>(AI->getArraySize()))
58        hasStaticAllocas = true;
59      else
60        hasDynamicAllocas = true;
61    }
62  }
63
64  if (CodeInfo) {
65    CodeInfo->ContainsCalls          |= hasCalls;
66    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
67    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
68                                        BB != &BB->getParent()->getEntryBlock();
69  }
70  return NewBB;
71}
72
73// Clone OldFunc into NewFunc, transforming the old arguments into references to
74// VMap values.
75//
76void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
77                             ValueToValueMapTy &VMap,
78                             bool ModuleLevelChanges,
79                             SmallVectorImpl<ReturnInst*> &Returns,
80                             const char *NameSuffix, ClonedCodeInfo *CodeInfo,
81                             ValueMapTypeRemapper *TypeMapper) {
82  assert(NameSuffix && "NameSuffix cannot be null!");
83
84#ifndef NDEBUG
85  for (Function::const_arg_iterator I = OldFunc->arg_begin(),
86       E = OldFunc->arg_end(); I != E; ++I)
87    assert(VMap.count(I) && "No mapping from source argument specified!");
88#endif
89
90  // Clone any attributes.
91  if (NewFunc->arg_size() == OldFunc->arg_size())
92    NewFunc->copyAttributesFrom(OldFunc);
93  else {
94    //Some arguments were deleted with the VMap. Copy arguments one by one
95    for (Function::const_arg_iterator I = OldFunc->arg_begin(),
96           E = OldFunc->arg_end(); I != E; ++I)
97      if (Argument* Anew = dyn_cast<Argument>(VMap[I]))
98        Anew->addAttr( OldFunc->getAttributes()
99                       .getParamAttributes(I->getArgNo() + 1));
100    NewFunc->setAttributes(NewFunc->getAttributes()
101                           .addAttr(NewFunc->getContext(),
102                                    AttributeSet::ReturnIndex,
103                                    OldFunc->getAttributes()
104                                     .getRetAttributes()));
105    NewFunc->setAttributes(NewFunc->getAttributes()
106                           .addAttr(NewFunc->getContext(),
107                                    AttributeSet::FunctionIndex,
108                                    OldFunc->getAttributes()
109                                     .getFnAttributes()));
110
111  }
112
113  // Loop over all of the basic blocks in the function, cloning them as
114  // appropriate.  Note that we save BE this way in order to handle cloning of
115  // recursive functions into themselves.
116  //
117  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
118       BI != BE; ++BI) {
119    const BasicBlock &BB = *BI;
120
121    // Create a new basic block and copy instructions into it!
122    BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
123
124    // Add basic block mapping.
125    VMap[&BB] = CBB;
126
127    // It is only legal to clone a function if a block address within that
128    // function is never referenced outside of the function.  Given that, we
129    // want to map block addresses from the old function to block addresses in
130    // the clone. (This is different from the generic ValueMapper
131    // implementation, which generates an invalid blockaddress when
132    // cloning a function.)
133    if (BB.hasAddressTaken()) {
134      Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
135                                              const_cast<BasicBlock*>(&BB));
136      VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
137    }
138
139    // Note return instructions for the caller.
140    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
141      Returns.push_back(RI);
142  }
143
144  // Loop over all of the instructions in the function, fixing up operand
145  // references as we go.  This uses VMap to do all the hard work.
146  for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
147         BE = NewFunc->end(); BB != BE; ++BB)
148    // Loop over all instructions, fixing each one as we find it...
149    for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
150      RemapInstruction(II, VMap,
151                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
152                       TypeMapper);
153}
154
155/// CloneFunction - Return a copy of the specified function, but without
156/// embedding the function into another module.  Also, any references specified
157/// in the VMap are changed to refer to their mapped value instead of the
158/// original one.  If any of the arguments to the function are in the VMap,
159/// the arguments are deleted from the resultant function.  The VMap is
160/// updated to include mappings from all of the instructions and basicblocks in
161/// the function from their old to new values.
162///
163Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
164                              bool ModuleLevelChanges,
165                              ClonedCodeInfo *CodeInfo) {
166  std::vector<Type*> ArgTypes;
167
168  // The user might be deleting arguments to the function by specifying them in
169  // the VMap.  If so, we need to not add the arguments to the arg ty vector
170  //
171  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
172       I != E; ++I)
173    if (VMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
174      ArgTypes.push_back(I->getType());
175
176  // Create a new function type...
177  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
178                                    ArgTypes, F->getFunctionType()->isVarArg());
179
180  // Create the new function...
181  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
182
183  // Loop over the arguments, copying the names of the mapped arguments over...
184  Function::arg_iterator DestI = NewF->arg_begin();
185  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
186       I != E; ++I)
187    if (VMap.count(I) == 0) {   // Is this argument preserved?
188      DestI->setName(I->getName()); // Copy the name over...
189      VMap[I] = DestI++;        // Add mapping to VMap
190    }
191
192  SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
193  CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
194  return NewF;
195}
196
197
198
199namespace {
200  /// PruningFunctionCloner - This class is a private class used to implement
201  /// the CloneAndPruneFunctionInto method.
202  struct PruningFunctionCloner {
203    Function *NewFunc;
204    const Function *OldFunc;
205    ValueToValueMapTy &VMap;
206    bool ModuleLevelChanges;
207    const char *NameSuffix;
208    ClonedCodeInfo *CodeInfo;
209    const DataLayout *TD;
210  public:
211    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
212                          ValueToValueMapTy &valueMap,
213                          bool moduleLevelChanges,
214                          const char *nameSuffix,
215                          ClonedCodeInfo *codeInfo,
216                          const DataLayout *td)
217    : NewFunc(newFunc), OldFunc(oldFunc),
218      VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
219      NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
220    }
221
222    /// CloneBlock - The specified block is found to be reachable, clone it and
223    /// anything that it can reach.
224    void CloneBlock(const BasicBlock *BB,
225                    std::vector<const BasicBlock*> &ToClone);
226  };
227}
228
229/// CloneBlock - The specified block is found to be reachable, clone it and
230/// anything that it can reach.
231void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
232                                       std::vector<const BasicBlock*> &ToClone){
233  WeakVH &BBEntry = VMap[BB];
234
235  // Have we already cloned this block?
236  if (BBEntry) return;
237
238  // Nope, clone it now.
239  BasicBlock *NewBB;
240  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
241  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
242
243  // It is only legal to clone a function if a block address within that
244  // function is never referenced outside of the function.  Given that, we
245  // want to map block addresses from the old function to block addresses in
246  // the clone. (This is different from the generic ValueMapper
247  // implementation, which generates an invalid blockaddress when
248  // cloning a function.)
249  //
250  // Note that we don't need to fix the mapping for unreachable blocks;
251  // the default mapping there is safe.
252  if (BB->hasAddressTaken()) {
253    Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
254                                            const_cast<BasicBlock*>(BB));
255    VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
256  }
257
258
259  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
260
261  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
262  // loop doesn't include the terminator.
263  for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
264       II != IE; ++II) {
265    Instruction *NewInst = II->clone();
266
267    // Eagerly remap operands to the newly cloned instruction, except for PHI
268    // nodes for which we defer processing until we update the CFG.
269    if (!isa<PHINode>(NewInst)) {
270      RemapInstruction(NewInst, VMap,
271                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
272
273      // If we can simplify this instruction to some other value, simply add
274      // a mapping to that value rather than inserting a new instruction into
275      // the basic block.
276      if (Value *V = SimplifyInstruction(NewInst, TD)) {
277        // On the off-chance that this simplifies to an instruction in the old
278        // function, map it back into the new function.
279        if (Value *MappedV = VMap.lookup(V))
280          V = MappedV;
281
282        VMap[II] = V;
283        delete NewInst;
284        continue;
285      }
286    }
287
288    if (II->hasName())
289      NewInst->setName(II->getName()+NameSuffix);
290    VMap[II] = NewInst;                // Add instruction map to value.
291    NewBB->getInstList().push_back(NewInst);
292    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
293    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
294      if (isa<ConstantInt>(AI->getArraySize()))
295        hasStaticAllocas = true;
296      else
297        hasDynamicAllocas = true;
298    }
299  }
300
301  // Finally, clone over the terminator.
302  const TerminatorInst *OldTI = BB->getTerminator();
303  bool TerminatorDone = false;
304  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
305    if (BI->isConditional()) {
306      // If the condition was a known constant in the callee...
307      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
308      // Or is a known constant in the caller...
309      if (Cond == 0) {
310        Value *V = VMap[BI->getCondition()];
311        Cond = dyn_cast_or_null<ConstantInt>(V);
312      }
313
314      // Constant fold to uncond branch!
315      if (Cond) {
316        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
317        VMap[OldTI] = BranchInst::Create(Dest, NewBB);
318        ToClone.push_back(Dest);
319        TerminatorDone = true;
320      }
321    }
322  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
323    // If switching on a value known constant in the caller.
324    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
325    if (Cond == 0) { // Or known constant after constant prop in the callee...
326      Value *V = VMap[SI->getCondition()];
327      Cond = dyn_cast_or_null<ConstantInt>(V);
328    }
329    if (Cond) {     // Constant fold to uncond branch!
330      SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
331      BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
332      VMap[OldTI] = BranchInst::Create(Dest, NewBB);
333      ToClone.push_back(Dest);
334      TerminatorDone = true;
335    }
336  }
337
338  if (!TerminatorDone) {
339    Instruction *NewInst = OldTI->clone();
340    if (OldTI->hasName())
341      NewInst->setName(OldTI->getName()+NameSuffix);
342    NewBB->getInstList().push_back(NewInst);
343    VMap[OldTI] = NewInst;             // Add instruction map to value.
344
345    // Recursively clone any reachable successor blocks.
346    const TerminatorInst *TI = BB->getTerminator();
347    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
348      ToClone.push_back(TI->getSuccessor(i));
349  }
350
351  if (CodeInfo) {
352    CodeInfo->ContainsCalls          |= hasCalls;
353    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
354    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
355      BB != &BB->getParent()->front();
356  }
357}
358
359/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
360/// except that it does some simple constant prop and DCE on the fly.  The
361/// effect of this is to copy significantly less code in cases where (for
362/// example) a function call with constant arguments is inlined, and those
363/// constant arguments cause a significant amount of code in the callee to be
364/// dead.  Since this doesn't produce an exact copy of the input, it can't be
365/// used for things like CloneFunction or CloneModule.
366void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
367                                     ValueToValueMapTy &VMap,
368                                     bool ModuleLevelChanges,
369                                     SmallVectorImpl<ReturnInst*> &Returns,
370                                     const char *NameSuffix,
371                                     ClonedCodeInfo *CodeInfo,
372                                     const DataLayout *TD,
373                                     Instruction *TheCall) {
374  assert(NameSuffix && "NameSuffix cannot be null!");
375
376#ifndef NDEBUG
377  for (Function::const_arg_iterator II = OldFunc->arg_begin(),
378       E = OldFunc->arg_end(); II != E; ++II)
379    assert(VMap.count(II) && "No mapping from source argument specified!");
380#endif
381
382  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
383                            NameSuffix, CodeInfo, TD);
384
385  // Clone the entry block, and anything recursively reachable from it.
386  std::vector<const BasicBlock*> CloneWorklist;
387  CloneWorklist.push_back(&OldFunc->getEntryBlock());
388  while (!CloneWorklist.empty()) {
389    const BasicBlock *BB = CloneWorklist.back();
390    CloneWorklist.pop_back();
391    PFC.CloneBlock(BB, CloneWorklist);
392  }
393
394  // Loop over all of the basic blocks in the old function.  If the block was
395  // reachable, we have cloned it and the old block is now in the value map:
396  // insert it into the new function in the right order.  If not, ignore it.
397  //
398  // Defer PHI resolution until rest of function is resolved.
399  SmallVector<const PHINode*, 16> PHIToResolve;
400  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
401       BI != BE; ++BI) {
402    Value *V = VMap[BI];
403    BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
404    if (NewBB == 0) continue;  // Dead block.
405
406    // Add the new block to the new function.
407    NewFunc->getBasicBlockList().push_back(NewBB);
408
409    // Handle PHI nodes specially, as we have to remove references to dead
410    // blocks.
411    for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I)
412      if (const PHINode *PN = dyn_cast<PHINode>(I))
413        PHIToResolve.push_back(PN);
414      else
415        break;
416
417    // Finally, remap the terminator instructions, as those can't be remapped
418    // until all BBs are mapped.
419    RemapInstruction(NewBB->getTerminator(), VMap,
420                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
421  }
422
423  // Defer PHI resolution until rest of function is resolved, PHI resolution
424  // requires the CFG to be up-to-date.
425  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
426    const PHINode *OPN = PHIToResolve[phino];
427    unsigned NumPreds = OPN->getNumIncomingValues();
428    const BasicBlock *OldBB = OPN->getParent();
429    BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
430
431    // Map operands for blocks that are live and remove operands for blocks
432    // that are dead.
433    for (; phino != PHIToResolve.size() &&
434         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
435      OPN = PHIToResolve[phino];
436      PHINode *PN = cast<PHINode>(VMap[OPN]);
437      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
438        Value *V = VMap[PN->getIncomingBlock(pred)];
439        if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
440          Value *InVal = MapValue(PN->getIncomingValue(pred),
441                                  VMap,
442                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
443          assert(InVal && "Unknown input value?");
444          PN->setIncomingValue(pred, InVal);
445          PN->setIncomingBlock(pred, MappedBlock);
446        } else {
447          PN->removeIncomingValue(pred, false);
448          --pred, --e;  // Revisit the next entry.
449        }
450      }
451    }
452
453    // The loop above has removed PHI entries for those blocks that are dead
454    // and has updated others.  However, if a block is live (i.e. copied over)
455    // but its terminator has been changed to not go to this block, then our
456    // phi nodes will have invalid entries.  Update the PHI nodes in this
457    // case.
458    PHINode *PN = cast<PHINode>(NewBB->begin());
459    NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
460    if (NumPreds != PN->getNumIncomingValues()) {
461      assert(NumPreds < PN->getNumIncomingValues());
462      // Count how many times each predecessor comes to this block.
463      std::map<BasicBlock*, unsigned> PredCount;
464      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
465           PI != E; ++PI)
466        --PredCount[*PI];
467
468      // Figure out how many entries to remove from each PHI.
469      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
470        ++PredCount[PN->getIncomingBlock(i)];
471
472      // At this point, the excess predecessor entries are positive in the
473      // map.  Loop over all of the PHIs and remove excess predecessor
474      // entries.
475      BasicBlock::iterator I = NewBB->begin();
476      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
477        for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
478             E = PredCount.end(); PCI != E; ++PCI) {
479          BasicBlock *Pred     = PCI->first;
480          for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
481            PN->removeIncomingValue(Pred, false);
482        }
483      }
484    }
485
486    // If the loops above have made these phi nodes have 0 or 1 operand,
487    // replace them with undef or the input value.  We must do this for
488    // correctness, because 0-operand phis are not valid.
489    PN = cast<PHINode>(NewBB->begin());
490    if (PN->getNumIncomingValues() == 0) {
491      BasicBlock::iterator I = NewBB->begin();
492      BasicBlock::const_iterator OldI = OldBB->begin();
493      while ((PN = dyn_cast<PHINode>(I++))) {
494        Value *NV = UndefValue::get(PN->getType());
495        PN->replaceAllUsesWith(NV);
496        assert(VMap[OldI] == PN && "VMap mismatch");
497        VMap[OldI] = NV;
498        PN->eraseFromParent();
499        ++OldI;
500      }
501    }
502  }
503
504  // Make a second pass over the PHINodes now that all of them have been
505  // remapped into the new function, simplifying the PHINode and performing any
506  // recursive simplifications exposed. This will transparently update the
507  // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
508  // two PHINodes, the iteration over the old PHIs remains valid, and the
509  // mapping will just map us to the new node (which may not even be a PHI
510  // node).
511  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
512    if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
513      recursivelySimplifyInstruction(PN, TD);
514
515  // Now that the inlined function body has been fully constructed, go through
516  // and zap unconditional fall-through branches.  This happen all the time when
517  // specializing code: code specialization turns conditional branches into
518  // uncond branches, and this code folds them.
519  Function::iterator Begin = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
520  Function::iterator I = Begin;
521  while (I != NewFunc->end()) {
522    // Check if this block has become dead during inlining or other
523    // simplifications. Note that the first block will appear dead, as it has
524    // not yet been wired up properly.
525    if (I != Begin && (pred_begin(I) == pred_end(I) ||
526                       I->getSinglePredecessor() == I)) {
527      BasicBlock *DeadBB = I++;
528      DeleteDeadBlock(DeadBB);
529      continue;
530    }
531
532    // We need to simplify conditional branches and switches with a constant
533    // operand. We try to prune these out when cloning, but if the
534    // simplification required looking through PHI nodes, those are only
535    // available after forming the full basic block. That may leave some here,
536    // and we still want to prune the dead code as early as possible.
537    ConstantFoldTerminator(I);
538
539    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
540    if (!BI || BI->isConditional()) { ++I; continue; }
541
542    BasicBlock *Dest = BI->getSuccessor(0);
543    if (!Dest->getSinglePredecessor()) {
544      ++I; continue;
545    }
546
547    // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
548    // above should have zapped all of them..
549    assert(!isa<PHINode>(Dest->begin()));
550
551    // We know all single-entry PHI nodes in the inlined function have been
552    // removed, so we just need to splice the blocks.
553    BI->eraseFromParent();
554
555    // Make all PHI nodes that referred to Dest now refer to I as their source.
556    Dest->replaceAllUsesWith(I);
557
558    // Move all the instructions in the succ to the pred.
559    I->getInstList().splice(I->end(), Dest->getInstList());
560
561    // Remove the dest block.
562    Dest->eraseFromParent();
563
564    // Do not increment I, iteratively merge all things this block branches to.
565  }
566
567  // Make a final pass over the basic blocks from theh old function to gather
568  // any return instructions which survived folding. We have to do this here
569  // because we can iteratively remove and merge returns above.
570  for (Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]),
571                          E = NewFunc->end();
572       I != E; ++I)
573    if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
574      Returns.push_back(RI);
575}
576