CloneFunction.cpp revision 9133fe28954d498fc4de13064c7d65bd811de02c
1//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CloneFunctionInto interface, which is used as the
11// low-level function cloner.  This is used by the CloneFunction and function
12// inliner to do the dirty work of copying the body of a function around.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/Cloning.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Function.h"
21#include "llvm/Support/CFG.h"
22#include "llvm/Support/Compiler.h"
23#include "ValueMapper.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/ADT/SmallVector.h"
26#include <map>
27using namespace llvm;
28
29// CloneBasicBlock - See comments in Cloning.h
30BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
31                                  DenseMap<const Value*, Value*> &ValueMap,
32                                  const char *NameSuffix, Function *F,
33                                  ClonedCodeInfo *CodeInfo) {
34  BasicBlock *NewBB = new BasicBlock("", F);
35  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
36
37  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
38
39  // Loop over all instructions, and copy them over.
40  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
41       II != IE; ++II) {
42    Instruction *NewInst = II->clone();
43    if (II->hasName())
44      NewInst->setName(II->getName()+NameSuffix);
45    NewBB->getInstList().push_back(NewInst);
46    ValueMap[II] = NewInst;                // Add instruction map to value.
47
48    hasCalls |= isa<CallInst>(II);
49    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
50      if (isa<ConstantInt>(AI->getArraySize()))
51        hasStaticAllocas = true;
52      else
53        hasDynamicAllocas = true;
54    }
55  }
56
57  if (CodeInfo) {
58    CodeInfo->ContainsCalls          |= hasCalls;
59    CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(BB->getTerminator());
60    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
61    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
62                                        BB != &BB->getParent()->front();
63  }
64  return NewBB;
65}
66
67// Clone OldFunc into NewFunc, transforming the old arguments into references to
68// ArgMap values.
69//
70void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
71                             DenseMap<const Value*, Value*> &ValueMap,
72                             std::vector<ReturnInst*> &Returns,
73                             const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
74  assert(NameSuffix && "NameSuffix cannot be null!");
75
76#ifndef NDEBUG
77  for (Function::const_arg_iterator I = OldFunc->arg_begin(),
78       E = OldFunc->arg_end(); I != E; ++I)
79    assert(ValueMap.count(I) && "No mapping from source argument specified!");
80#endif
81
82  // Loop over all of the basic blocks in the function, cloning them as
83  // appropriate.  Note that we save BE this way in order to handle cloning of
84  // recursive functions into themselves.
85  //
86  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
87       BI != BE; ++BI) {
88    const BasicBlock &BB = *BI;
89
90    // Create a new basic block and copy instructions into it!
91    BasicBlock *CBB = CloneBasicBlock(&BB, ValueMap, NameSuffix, NewFunc,
92                                      CodeInfo);
93    ValueMap[&BB] = CBB;                       // Add basic block mapping.
94
95    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
96      Returns.push_back(RI);
97  }
98
99  // Loop over all of the instructions in the function, fixing up operand
100  // references as we go.  This uses ValueMap to do all the hard work.
101  //
102  for (Function::iterator BB = cast<BasicBlock>(ValueMap[OldFunc->begin()]),
103         BE = NewFunc->end(); BB != BE; ++BB)
104    // Loop over all instructions, fixing each one as we find it...
105    for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
106      RemapInstruction(II, ValueMap);
107}
108
109/// CloneFunction - Return a copy of the specified function, but without
110/// embedding the function into another module.  Also, any references specified
111/// in the ValueMap are changed to refer to their mapped value instead of the
112/// original one.  If any of the arguments to the function are in the ValueMap,
113/// the arguments are deleted from the resultant function.  The ValueMap is
114/// updated to include mappings from all of the instructions and basicblocks in
115/// the function from their old to new values.
116///
117Function *llvm::CloneFunction(const Function *F,
118                              DenseMap<const Value*, Value*> &ValueMap,
119                              ClonedCodeInfo *CodeInfo) {
120  std::vector<const Type*> ArgTypes;
121
122  // The user might be deleting arguments to the function by specifying them in
123  // the ValueMap.  If so, we need to not add the arguments to the arg ty vector
124  //
125  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
126       I != E; ++I)
127    if (ValueMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
128      ArgTypes.push_back(I->getType());
129
130  // Create a new function type...
131  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
132                                    ArgTypes, F->getFunctionType()->isVarArg());
133
134  // Create the new function...
135  Function *NewF = new Function(FTy, F->getLinkage(), F->getName());
136
137  // Loop over the arguments, copying the names of the mapped arguments over...
138  Function::arg_iterator DestI = NewF->arg_begin();
139  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
140       I != E; ++I)
141    if (ValueMap.count(I) == 0) {   // Is this argument preserved?
142      DestI->setName(I->getName()); // Copy the name over...
143      ValueMap[I] = DestI++;        // Add mapping to ValueMap
144    }
145
146  std::vector<ReturnInst*> Returns;  // Ignore returns cloned...
147  CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo);
148  return NewF;
149}
150
151
152
153namespace {
154  /// PruningFunctionCloner - This class is a private class used to implement
155  /// the CloneAndPruneFunctionInto method.
156  struct VISIBILITY_HIDDEN PruningFunctionCloner {
157    Function *NewFunc;
158    const Function *OldFunc;
159    DenseMap<const Value*, Value*> &ValueMap;
160    std::vector<ReturnInst*> &Returns;
161    const char *NameSuffix;
162    ClonedCodeInfo *CodeInfo;
163    const TargetData *TD;
164
165  public:
166    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
167                          DenseMap<const Value*, Value*> &valueMap,
168                          std::vector<ReturnInst*> &returns,
169                          const char *nameSuffix,
170                          ClonedCodeInfo *codeInfo,
171                          const TargetData *td)
172    : NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns),
173      NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
174    }
175
176    /// CloneBlock - The specified block is found to be reachable, clone it and
177    /// anything that it can reach.
178    void CloneBlock(const BasicBlock *BB);
179
180  public:
181    /// ConstantFoldMappedInstruction - Constant fold the specified instruction,
182    /// mapping its operands through ValueMap if they are available.
183    Constant *ConstantFoldMappedInstruction(const Instruction *I);
184  };
185}
186
187/// CloneBlock - The specified block is found to be reachable, clone it and
188/// anything that it can reach.
189void PruningFunctionCloner::CloneBlock(const BasicBlock *BB) {
190  Value *&BBEntry = ValueMap[BB];
191
192  // Have we already cloned this block?
193  if (BBEntry) return;
194
195  // Nope, clone it now.
196  BasicBlock *NewBB;
197  BBEntry = NewBB = new BasicBlock();
198  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
199
200  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
201
202  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
203  // loop doesn't include the terminator.
204  for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
205       II != IE; ++II) {
206    // If this instruction constant folds, don't bother cloning the instruction,
207    // instead, just add the constant to the value map.
208    if (Constant *C = ConstantFoldMappedInstruction(II)) {
209      ValueMap[II] = C;
210      continue;
211    }
212
213    Instruction *NewInst = II->clone();
214    if (II->hasName())
215      NewInst->setName(II->getName()+NameSuffix);
216    NewBB->getInstList().push_back(NewInst);
217    ValueMap[II] = NewInst;                // Add instruction map to value.
218
219    hasCalls |= isa<CallInst>(II);
220    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
221      if (isa<ConstantInt>(AI->getArraySize()))
222        hasStaticAllocas = true;
223      else
224        hasDynamicAllocas = true;
225    }
226  }
227
228  // Finally, clone over the terminator.
229  const TerminatorInst *OldTI = BB->getTerminator();
230  bool TerminatorDone = false;
231  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
232    if (BI->isConditional()) {
233      // If the condition was a known constant in the callee...
234      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
235      // Or is a known constant in the caller...
236      if (Cond == 0)
237        Cond = dyn_cast_or_null<ConstantInt>(ValueMap[BI->getCondition()]);
238
239      // Constant fold to uncond branch!
240      if (Cond) {
241        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
242        ValueMap[OldTI] = new BranchInst(Dest, NewBB);
243        CloneBlock(Dest);
244        TerminatorDone = true;
245      }
246    }
247  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
248    // If switching on a value known constant in the caller.
249    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
250    if (Cond == 0)  // Or known constant after constant prop in the callee...
251      Cond = dyn_cast_or_null<ConstantInt>(ValueMap[SI->getCondition()]);
252    if (Cond) {     // Constant fold to uncond branch!
253      BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
254      ValueMap[OldTI] = new BranchInst(Dest, NewBB);
255      CloneBlock(Dest);
256      TerminatorDone = true;
257    }
258  }
259
260  if (!TerminatorDone) {
261    Instruction *NewInst = OldTI->clone();
262    if (OldTI->hasName())
263      NewInst->setName(OldTI->getName()+NameSuffix);
264    NewBB->getInstList().push_back(NewInst);
265    ValueMap[OldTI] = NewInst;             // Add instruction map to value.
266
267    // Recursively clone any reachable successor blocks.
268    const TerminatorInst *TI = BB->getTerminator();
269    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
270      CloneBlock(TI->getSuccessor(i));
271  }
272
273  if (CodeInfo) {
274    CodeInfo->ContainsCalls          |= hasCalls;
275    CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(OldTI);
276    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
277    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
278      BB != &BB->getParent()->front();
279  }
280
281  if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator()))
282    Returns.push_back(RI);
283}
284
285/// ConstantFoldMappedInstruction - Constant fold the specified instruction,
286/// mapping its operands through ValueMap if they are available.
287Constant *PruningFunctionCloner::
288ConstantFoldMappedInstruction(const Instruction *I) {
289  SmallVector<Constant*, 8> Ops;
290  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
291    if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
292                                                           ValueMap)))
293      Ops.push_back(Op);
294    else
295      return 0;  // All operands not constant!
296
297  return ConstantFoldInstOperands(I, &Ops[0], Ops.size(), TD);
298}
299
300/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
301/// except that it does some simple constant prop and DCE on the fly.  The
302/// effect of this is to copy significantly less code in cases where (for
303/// example) a function call with constant arguments is inlined, and those
304/// constant arguments cause a significant amount of code in the callee to be
305/// dead.  Since this doesn't produce an exactly copy of the input, it can't be
306/// used for things like CloneFunction or CloneModule.
307void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
308                                     DenseMap<const Value*, Value*> &ValueMap,
309                                     std::vector<ReturnInst*> &Returns,
310                                     const char *NameSuffix,
311                                     ClonedCodeInfo *CodeInfo,
312                                     const TargetData *TD) {
313  assert(NameSuffix && "NameSuffix cannot be null!");
314
315#ifndef NDEBUG
316  for (Function::const_arg_iterator II = OldFunc->arg_begin(),
317       E = OldFunc->arg_end(); II != E; ++II)
318    assert(ValueMap.count(II) && "No mapping from source argument specified!");
319#endif
320
321  PruningFunctionCloner PFC(NewFunc, OldFunc, ValueMap, Returns,
322                            NameSuffix, CodeInfo, TD);
323
324  // Clone the entry block, and anything recursively reachable from it.
325  PFC.CloneBlock(&OldFunc->getEntryBlock());
326
327  // Loop over all of the basic blocks in the old function.  If the block was
328  // reachable, we have cloned it and the old block is now in the value map:
329  // insert it into the new function in the right order.  If not, ignore it.
330  //
331  // Defer PHI resolution until rest of function is resolved.
332  std::vector<const PHINode*> PHIToResolve;
333  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
334       BI != BE; ++BI) {
335    BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]);
336    if (NewBB == 0) continue;  // Dead block.
337
338    // Add the new block to the new function.
339    NewFunc->getBasicBlockList().push_back(NewBB);
340
341    // Loop over all of the instructions in the block, fixing up operand
342    // references as we go.  This uses ValueMap to do all the hard work.
343    //
344    BasicBlock::iterator I = NewBB->begin();
345
346    // Handle PHI nodes specially, as we have to remove references to dead
347    // blocks.
348    if (PHINode *PN = dyn_cast<PHINode>(I)) {
349      // Skip over all PHI nodes, remembering them for later.
350      BasicBlock::const_iterator OldI = BI->begin();
351      for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI)
352        PHIToResolve.push_back(cast<PHINode>(OldI));
353    }
354
355    // Otherwise, remap the rest of the instructions normally.
356    for (; I != NewBB->end(); ++I)
357      RemapInstruction(I, ValueMap);
358  }
359
360  // Defer PHI resolution until rest of function is resolved, PHI resolution
361  // requires the CFG to be up-to-date.
362  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
363    const PHINode *OPN = PHIToResolve[phino];
364    unsigned NumPreds = OPN->getNumIncomingValues();
365    const BasicBlock *OldBB = OPN->getParent();
366    BasicBlock *NewBB = cast<BasicBlock>(ValueMap[OldBB]);
367
368    // Map operands for blocks that are live and remove operands for blocks
369    // that are dead.
370    for (; phino != PHIToResolve.size() &&
371         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
372      OPN = PHIToResolve[phino];
373      PHINode *PN = cast<PHINode>(ValueMap[OPN]);
374      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
375        if (BasicBlock *MappedBlock =
376            cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) {
377          Value *InVal = MapValue(PN->getIncomingValue(pred), ValueMap);
378          assert(InVal && "Unknown input value?");
379          PN->setIncomingValue(pred, InVal);
380          PN->setIncomingBlock(pred, MappedBlock);
381        } else {
382          PN->removeIncomingValue(pred, false);
383          --pred, --e;  // Revisit the next entry.
384        }
385      }
386    }
387
388    // The loop above has removed PHI entries for those blocks that are dead
389    // and has updated others.  However, if a block is live (i.e. copied over)
390    // but its terminator has been changed to not go to this block, then our
391    // phi nodes will have invalid entries.  Update the PHI nodes in this
392    // case.
393    PHINode *PN = cast<PHINode>(NewBB->begin());
394    NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
395    if (NumPreds != PN->getNumIncomingValues()) {
396      assert(NumPreds < PN->getNumIncomingValues());
397      // Count how many times each predecessor comes to this block.
398      std::map<BasicBlock*, unsigned> PredCount;
399      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
400           PI != E; ++PI)
401        --PredCount[*PI];
402
403      // Figure out how many entries to remove from each PHI.
404      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
405        ++PredCount[PN->getIncomingBlock(i)];
406
407      // At this point, the excess predecessor entries are positive in the
408      // map.  Loop over all of the PHIs and remove excess predecessor
409      // entries.
410      BasicBlock::iterator I = NewBB->begin();
411      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
412        for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
413             E = PredCount.end(); PCI != E; ++PCI) {
414          BasicBlock *Pred     = PCI->first;
415          for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
416            PN->removeIncomingValue(Pred, false);
417        }
418      }
419    }
420
421    // If the loops above have made these phi nodes have 0 or 1 operand,
422    // replace them with undef or the input value.  We must do this for
423    // correctness, because 0-operand phis are not valid.
424    PN = cast<PHINode>(NewBB->begin());
425    if (PN->getNumIncomingValues() == 0) {
426      BasicBlock::iterator I = NewBB->begin();
427      BasicBlock::const_iterator OldI = OldBB->begin();
428      while ((PN = dyn_cast<PHINode>(I++))) {
429        Value *NV = UndefValue::get(PN->getType());
430        PN->replaceAllUsesWith(NV);
431        assert(ValueMap[OldI] == PN && "ValueMap mismatch");
432        ValueMap[OldI] = NV;
433        PN->eraseFromParent();
434        ++OldI;
435      }
436    }
437    // NOTE: We cannot eliminate single entry phi nodes here, because of
438    // ValueMap.  Single entry phi nodes can have multiple ValueMap entries
439    // pointing at them.  Thus, deleting one would require scanning the ValueMap
440    // to update any entries in it that would require that.  This would be
441    // really slow.
442  }
443
444  // Now that the inlined function body has been fully constructed, go through
445  // and zap unconditional fall-through branches.  This happen all the time when
446  // specializing code: code specialization turns conditional branches into
447  // uncond branches, and this code folds them.
448  Function::iterator I = cast<BasicBlock>(ValueMap[&OldFunc->getEntryBlock()]);
449  while (I != NewFunc->end()) {
450    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
451    if (!BI || BI->isConditional()) { ++I; continue; }
452
453    // Note that we can't eliminate uncond branches if the destination has
454    // single-entry PHI nodes.  Eliminating the single-entry phi nodes would
455    // require scanning the ValueMap to update any entries that point to the phi
456    // node.
457    BasicBlock *Dest = BI->getSuccessor(0);
458    if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) {
459      ++I; continue;
460    }
461
462    // We know all single-entry PHI nodes in the inlined function have been
463    // removed, so we just need to splice the blocks.
464    BI->eraseFromParent();
465
466    // Move all the instructions in the succ to the pred.
467    I->getInstList().splice(I->end(), Dest->getInstList());
468
469    // Make all PHI nodes that referred to Dest now refer to I as their source.
470    Dest->replaceAllUsesWith(I);
471
472    // Remove the dest block.
473    Dest->eraseFromParent();
474
475    // Do not increment I, iteratively merge all things this block branches to.
476  }
477}
478