CloneFunction.cpp revision ed66bf5125ec47a338854d5e8a556f1686fd69bb
1//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CloneFunctionInto interface, which is used as the
11// low-level function cloner.  This is used by the CloneFunction and function
12// inliner to do the dirty work of copying the body of a function around.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/Cloning.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Function.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/Metadata.h"
25#include "llvm/Support/CFG.h"
26#include "ValueMapper.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/Analysis/DebugInfo.h"
29#include "llvm/ADT/SmallVector.h"
30#include <map>
31using namespace llvm;
32
33// CloneBasicBlock - See comments in Cloning.h
34BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
35                                  DenseMap<const Value*, Value*> &ValueMap,
36                                  const Twine &NameSuffix, Function *F,
37                                  ClonedCodeInfo *CodeInfo) {
38  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
39  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
40
41  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
42
43  // Loop over all instructions, and copy them over.
44  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
45       II != IE; ++II) {
46    Instruction *NewInst = II->clone();
47    if (II->hasName())
48      NewInst->setName(II->getName()+NameSuffix);
49    NewBB->getInstList().push_back(NewInst);
50    ValueMap[II] = NewInst;                // Add instruction map to value.
51
52    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
53    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
54      if (isa<ConstantInt>(AI->getArraySize()))
55        hasStaticAllocas = true;
56      else
57        hasDynamicAllocas = true;
58    }
59  }
60
61  if (CodeInfo) {
62    CodeInfo->ContainsCalls          |= hasCalls;
63    CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(BB->getTerminator());
64    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
65    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
66                                        BB != &BB->getParent()->getEntryBlock();
67  }
68  return NewBB;
69}
70
71// Clone OldFunc into NewFunc, transforming the old arguments into references to
72// ArgMap values.
73//
74void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
75                             DenseMap<const Value*, Value*> &ValueMap,
76                             SmallVectorImpl<ReturnInst*> &Returns,
77                             const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
78  assert(NameSuffix && "NameSuffix cannot be null!");
79
80#ifndef NDEBUG
81  for (Function::const_arg_iterator I = OldFunc->arg_begin(),
82       E = OldFunc->arg_end(); I != E; ++I)
83    assert(ValueMap.count(I) && "No mapping from source argument specified!");
84#endif
85
86  // Clone any attributes.
87  if (NewFunc->arg_size() == OldFunc->arg_size())
88    NewFunc->copyAttributesFrom(OldFunc);
89  else {
90    //Some arguments were deleted with the ValueMap. Copy arguments one by one
91    for (Function::const_arg_iterator I = OldFunc->arg_begin(),
92           E = OldFunc->arg_end(); I != E; ++I)
93      if (Argument* Anew = dyn_cast<Argument>(ValueMap[I]))
94        Anew->addAttr( OldFunc->getAttributes()
95                       .getParamAttributes(I->getArgNo() + 1));
96    NewFunc->setAttributes(NewFunc->getAttributes()
97                           .addAttr(0, OldFunc->getAttributes()
98                                     .getRetAttributes()));
99    NewFunc->setAttributes(NewFunc->getAttributes()
100                           .addAttr(~0, OldFunc->getAttributes()
101                                     .getFnAttributes()));
102
103  }
104
105  // Loop over all of the basic blocks in the function, cloning them as
106  // appropriate.  Note that we save BE this way in order to handle cloning of
107  // recursive functions into themselves.
108  //
109  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
110       BI != BE; ++BI) {
111    const BasicBlock &BB = *BI;
112
113    // Create a new basic block and copy instructions into it!
114    BasicBlock *CBB = CloneBasicBlock(&BB, ValueMap, NameSuffix, NewFunc,
115                                      CodeInfo);
116    ValueMap[&BB] = CBB;                       // Add basic block mapping.
117
118    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
119      Returns.push_back(RI);
120  }
121
122  // Loop over all of the instructions in the function, fixing up operand
123  // references as we go.  This uses ValueMap to do all the hard work.
124  //
125  for (Function::iterator BB = cast<BasicBlock>(ValueMap[OldFunc->begin()]),
126         BE = NewFunc->end(); BB != BE; ++BB)
127    // Loop over all instructions, fixing each one as we find it...
128    for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
129      RemapInstruction(II, ValueMap);
130}
131
132/// CloneFunction - Return a copy of the specified function, but without
133/// embedding the function into another module.  Also, any references specified
134/// in the ValueMap are changed to refer to their mapped value instead of the
135/// original one.  If any of the arguments to the function are in the ValueMap,
136/// the arguments are deleted from the resultant function.  The ValueMap is
137/// updated to include mappings from all of the instructions and basicblocks in
138/// the function from their old to new values.
139///
140Function *llvm::CloneFunction(const Function *F,
141                              DenseMap<const Value*, Value*> &ValueMap,
142                              ClonedCodeInfo *CodeInfo) {
143  std::vector<const Type*> ArgTypes;
144
145  // The user might be deleting arguments to the function by specifying them in
146  // the ValueMap.  If so, we need to not add the arguments to the arg ty vector
147  //
148  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
149       I != E; ++I)
150    if (ValueMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
151      ArgTypes.push_back(I->getType());
152
153  // Create a new function type...
154  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
155                                    ArgTypes, F->getFunctionType()->isVarArg());
156
157  // Create the new function...
158  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
159
160  // Loop over the arguments, copying the names of the mapped arguments over...
161  Function::arg_iterator DestI = NewF->arg_begin();
162  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
163       I != E; ++I)
164    if (ValueMap.count(I) == 0) {   // Is this argument preserved?
165      DestI->setName(I->getName()); // Copy the name over...
166      ValueMap[I] = DestI++;        // Add mapping to ValueMap
167    }
168
169  SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
170  CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo);
171  return NewF;
172}
173
174
175
176namespace {
177  /// PruningFunctionCloner - This class is a private class used to implement
178  /// the CloneAndPruneFunctionInto method.
179  struct PruningFunctionCloner {
180    Function *NewFunc;
181    const Function *OldFunc;
182    DenseMap<const Value*, Value*> &ValueMap;
183    SmallVectorImpl<ReturnInst*> &Returns;
184    const char *NameSuffix;
185    ClonedCodeInfo *CodeInfo;
186    const TargetData *TD;
187  public:
188    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
189                          DenseMap<const Value*, Value*> &valueMap,
190                          SmallVectorImpl<ReturnInst*> &returns,
191                          const char *nameSuffix,
192                          ClonedCodeInfo *codeInfo,
193                          const TargetData *td)
194    : NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns),
195      NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
196    }
197
198    /// CloneBlock - The specified block is found to be reachable, clone it and
199    /// anything that it can reach.
200    void CloneBlock(const BasicBlock *BB,
201                    std::vector<const BasicBlock*> &ToClone);
202
203  public:
204    /// ConstantFoldMappedInstruction - Constant fold the specified instruction,
205    /// mapping its operands through ValueMap if they are available.
206    Constant *ConstantFoldMappedInstruction(const Instruction *I);
207  };
208}
209
210/// CloneBlock - The specified block is found to be reachable, clone it and
211/// anything that it can reach.
212void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
213                                       std::vector<const BasicBlock*> &ToClone){
214  Value *&BBEntry = ValueMap[BB];
215
216  // Have we already cloned this block?
217  if (BBEntry) return;
218
219  // Nope, clone it now.
220  BasicBlock *NewBB;
221  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
222  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
223
224  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
225
226  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
227  // loop doesn't include the terminator.
228  for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
229       II != IE; ++II) {
230    // If this instruction constant folds, don't bother cloning the instruction,
231    // instead, just add the constant to the value map.
232    if (Constant *C = ConstantFoldMappedInstruction(II)) {
233      ValueMap[II] = C;
234      continue;
235    }
236
237    Instruction *NewInst = II->clone();
238    if (II->hasName())
239      NewInst->setName(II->getName()+NameSuffix);
240    NewBB->getInstList().push_back(NewInst);
241    ValueMap[II] = NewInst;                // Add instruction map to value.
242
243    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
244    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
245      if (isa<ConstantInt>(AI->getArraySize()))
246        hasStaticAllocas = true;
247      else
248        hasDynamicAllocas = true;
249    }
250  }
251
252  // Finally, clone over the terminator.
253  const TerminatorInst *OldTI = BB->getTerminator();
254  bool TerminatorDone = false;
255  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
256    if (BI->isConditional()) {
257      // If the condition was a known constant in the callee...
258      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
259      // Or is a known constant in the caller...
260      if (Cond == 0)
261        Cond = dyn_cast_or_null<ConstantInt>(ValueMap[BI->getCondition()]);
262
263      // Constant fold to uncond branch!
264      if (Cond) {
265        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
266        ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
267        ToClone.push_back(Dest);
268        TerminatorDone = true;
269      }
270    }
271  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
272    // If switching on a value known constant in the caller.
273    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
274    if (Cond == 0)  // Or known constant after constant prop in the callee...
275      Cond = dyn_cast_or_null<ConstantInt>(ValueMap[SI->getCondition()]);
276    if (Cond) {     // Constant fold to uncond branch!
277      BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
278      ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
279      ToClone.push_back(Dest);
280      TerminatorDone = true;
281    }
282  }
283
284  if (!TerminatorDone) {
285    Instruction *NewInst = OldTI->clone();
286    if (OldTI->hasName())
287      NewInst->setName(OldTI->getName()+NameSuffix);
288    NewBB->getInstList().push_back(NewInst);
289    ValueMap[OldTI] = NewInst;             // Add instruction map to value.
290
291    // Recursively clone any reachable successor blocks.
292    const TerminatorInst *TI = BB->getTerminator();
293    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
294      ToClone.push_back(TI->getSuccessor(i));
295  }
296
297  if (CodeInfo) {
298    CodeInfo->ContainsCalls          |= hasCalls;
299    CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(OldTI);
300    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
301    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
302      BB != &BB->getParent()->front();
303  }
304
305  if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator()))
306    Returns.push_back(RI);
307}
308
309/// ConstantFoldMappedInstruction - Constant fold the specified instruction,
310/// mapping its operands through ValueMap if they are available.
311Constant *PruningFunctionCloner::
312ConstantFoldMappedInstruction(const Instruction *I) {
313  SmallVector<Constant*, 8> Ops;
314  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
315    if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
316                                                           ValueMap)))
317      Ops.push_back(Op);
318    else
319      return 0;  // All operands not constant!
320
321  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
322    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
323                                           TD);
324
325  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
326    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
327      if (!LI->isVolatile() && CE->getOpcode() == Instruction::GetElementPtr)
328        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
329          if (GV->isConstant() && GV->hasDefinitiveInitializer())
330            return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(),
331                                                          CE);
332
333  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Ops[0],
334                                  Ops.size(), TD);
335}
336
337static MDNode *UpdateInlinedAtInfo(MDNode *InsnMD, MDNode *TheCallMD) {
338  DILocation ILoc(InsnMD);
339  if (!ILoc.Verify()) return InsnMD;
340
341  DILocation CallLoc(TheCallMD);
342  if (!CallLoc.Verify()) return InsnMD;
343
344  DILocation OrigLocation = ILoc.getOrigLocation();
345  MDNode *NewLoc = TheCallMD;
346  if (OrigLocation.Verify())
347    NewLoc = UpdateInlinedAtInfo(OrigLocation, TheCallMD);
348
349  Value *MDVs[] = {
350    InsnMD->getOperand(0), // Line
351    InsnMD->getOperand(1), // Col
352    InsnMD->getOperand(2), // Scope
353    NewLoc
354  };
355  return MDNode::get(InsnMD->getContext(), MDVs, 4);
356}
357
358/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
359/// except that it does some simple constant prop and DCE on the fly.  The
360/// effect of this is to copy significantly less code in cases where (for
361/// example) a function call with constant arguments is inlined, and those
362/// constant arguments cause a significant amount of code in the callee to be
363/// dead.  Since this doesn't produce an exact copy of the input, it can't be
364/// used for things like CloneFunction or CloneModule.
365void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
366                                     DenseMap<const Value*, Value*> &ValueMap,
367                                     SmallVectorImpl<ReturnInst*> &Returns,
368                                     const char *NameSuffix,
369                                     ClonedCodeInfo *CodeInfo,
370                                     const TargetData *TD,
371                                     Instruction *TheCall) {
372  assert(NameSuffix && "NameSuffix cannot be null!");
373
374#ifndef NDEBUG
375  for (Function::const_arg_iterator II = OldFunc->arg_begin(),
376       E = OldFunc->arg_end(); II != E; ++II)
377    assert(ValueMap.count(II) && "No mapping from source argument specified!");
378#endif
379
380  PruningFunctionCloner PFC(NewFunc, OldFunc, ValueMap, Returns,
381                            NameSuffix, CodeInfo, TD);
382
383  // Clone the entry block, and anything recursively reachable from it.
384  std::vector<const BasicBlock*> CloneWorklist;
385  CloneWorklist.push_back(&OldFunc->getEntryBlock());
386  while (!CloneWorklist.empty()) {
387    const BasicBlock *BB = CloneWorklist.back();
388    CloneWorklist.pop_back();
389    PFC.CloneBlock(BB, CloneWorklist);
390  }
391
392  // Loop over all of the basic blocks in the old function.  If the block was
393  // reachable, we have cloned it and the old block is now in the value map:
394  // insert it into the new function in the right order.  If not, ignore it.
395  //
396  // Defer PHI resolution until rest of function is resolved.
397  SmallVector<const PHINode*, 16> PHIToResolve;
398  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
399       BI != BE; ++BI) {
400    BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]);
401    if (NewBB == 0) continue;  // Dead block.
402
403    // Add the new block to the new function.
404    NewFunc->getBasicBlockList().push_back(NewBB);
405
406    // Loop over all of the instructions in the block, fixing up operand
407    // references as we go.  This uses ValueMap to do all the hard work.
408    //
409    BasicBlock::iterator I = NewBB->begin();
410
411    unsigned DbgKind = OldFunc->getContext().getMDKindID("dbg");
412    MDNode *TheCallMD = NULL;
413    if (TheCall && TheCall->hasMetadata())
414      TheCallMD = TheCall->getMetadata(DbgKind);
415
416    // Handle PHI nodes specially, as we have to remove references to dead
417    // blocks.
418    if (PHINode *PN = dyn_cast<PHINode>(I)) {
419      // Skip over all PHI nodes, remembering them for later.
420      BasicBlock::const_iterator OldI = BI->begin();
421      for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI) {
422        if (I->hasMetadata()) {
423          if (TheCallMD) {
424            if (MDNode *IMD = I->getMetadata(DbgKind)) {
425              MDNode *NewMD = UpdateInlinedAtInfo(IMD, TheCallMD);
426              I->setMetadata(DbgKind, NewMD);
427            }
428          } else {
429            // The cloned instruction has dbg info but the call instruction
430            // does not have dbg info. Remove dbg info from cloned instruction.
431            I->setMetadata(DbgKind, 0);
432          }
433        }
434        PHIToResolve.push_back(cast<PHINode>(OldI));
435      }
436    }
437
438    // FIXME:
439    // FIXME:
440    // FIXME: Unclone all this metadata stuff.
441    // FIXME:
442    // FIXME:
443
444    // Otherwise, remap the rest of the instructions normally.
445    for (; I != NewBB->end(); ++I) {
446      if (I->hasMetadata()) {
447        if (TheCallMD) {
448          if (MDNode *IMD = I->getMetadata(DbgKind)) {
449            MDNode *NewMD = UpdateInlinedAtInfo(IMD, TheCallMD);
450            I->setMetadata(DbgKind, NewMD);
451          }
452        } else {
453          // The cloned instruction has dbg info but the call instruction
454          // does not have dbg info. Remove dbg info from cloned instruction.
455          I->setMetadata(DbgKind, 0);
456        }
457      }
458      RemapInstruction(I, ValueMap);
459    }
460  }
461
462  // Defer PHI resolution until rest of function is resolved, PHI resolution
463  // requires the CFG to be up-to-date.
464  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
465    const PHINode *OPN = PHIToResolve[phino];
466    unsigned NumPreds = OPN->getNumIncomingValues();
467    const BasicBlock *OldBB = OPN->getParent();
468    BasicBlock *NewBB = cast<BasicBlock>(ValueMap[OldBB]);
469
470    // Map operands for blocks that are live and remove operands for blocks
471    // that are dead.
472    for (; phino != PHIToResolve.size() &&
473         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
474      OPN = PHIToResolve[phino];
475      PHINode *PN = cast<PHINode>(ValueMap[OPN]);
476      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
477        if (BasicBlock *MappedBlock =
478            cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) {
479          Value *InVal = MapValue(PN->getIncomingValue(pred),
480                                  ValueMap);
481          assert(InVal && "Unknown input value?");
482          PN->setIncomingValue(pred, InVal);
483          PN->setIncomingBlock(pred, MappedBlock);
484        } else {
485          PN->removeIncomingValue(pred, false);
486          --pred, --e;  // Revisit the next entry.
487        }
488      }
489    }
490
491    // The loop above has removed PHI entries for those blocks that are dead
492    // and has updated others.  However, if a block is live (i.e. copied over)
493    // but its terminator has been changed to not go to this block, then our
494    // phi nodes will have invalid entries.  Update the PHI nodes in this
495    // case.
496    PHINode *PN = cast<PHINode>(NewBB->begin());
497    NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
498    if (NumPreds != PN->getNumIncomingValues()) {
499      assert(NumPreds < PN->getNumIncomingValues());
500      // Count how many times each predecessor comes to this block.
501      std::map<BasicBlock*, unsigned> PredCount;
502      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
503           PI != E; ++PI)
504        --PredCount[*PI];
505
506      // Figure out how many entries to remove from each PHI.
507      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
508        ++PredCount[PN->getIncomingBlock(i)];
509
510      // At this point, the excess predecessor entries are positive in the
511      // map.  Loop over all of the PHIs and remove excess predecessor
512      // entries.
513      BasicBlock::iterator I = NewBB->begin();
514      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
515        for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
516             E = PredCount.end(); PCI != E; ++PCI) {
517          BasicBlock *Pred     = PCI->first;
518          for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
519            PN->removeIncomingValue(Pred, false);
520        }
521      }
522    }
523
524    // If the loops above have made these phi nodes have 0 or 1 operand,
525    // replace them with undef or the input value.  We must do this for
526    // correctness, because 0-operand phis are not valid.
527    PN = cast<PHINode>(NewBB->begin());
528    if (PN->getNumIncomingValues() == 0) {
529      BasicBlock::iterator I = NewBB->begin();
530      BasicBlock::const_iterator OldI = OldBB->begin();
531      while ((PN = dyn_cast<PHINode>(I++))) {
532        Value *NV = UndefValue::get(PN->getType());
533        PN->replaceAllUsesWith(NV);
534        assert(ValueMap[OldI] == PN && "ValueMap mismatch");
535        ValueMap[OldI] = NV;
536        PN->eraseFromParent();
537        ++OldI;
538      }
539    }
540    // NOTE: We cannot eliminate single entry phi nodes here, because of
541    // ValueMap.  Single entry phi nodes can have multiple ValueMap entries
542    // pointing at them.  Thus, deleting one would require scanning the ValueMap
543    // to update any entries in it that would require that.  This would be
544    // really slow.
545  }
546
547  // Now that the inlined function body has been fully constructed, go through
548  // and zap unconditional fall-through branches.  This happen all the time when
549  // specializing code: code specialization turns conditional branches into
550  // uncond branches, and this code folds them.
551  Function::iterator I = cast<BasicBlock>(ValueMap[&OldFunc->getEntryBlock()]);
552  while (I != NewFunc->end()) {
553    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
554    if (!BI || BI->isConditional()) { ++I; continue; }
555
556    // Note that we can't eliminate uncond branches if the destination has
557    // single-entry PHI nodes.  Eliminating the single-entry phi nodes would
558    // require scanning the ValueMap to update any entries that point to the phi
559    // node.
560    BasicBlock *Dest = BI->getSuccessor(0);
561    if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) {
562      ++I; continue;
563    }
564
565    // We know all single-entry PHI nodes in the inlined function have been
566    // removed, so we just need to splice the blocks.
567    BI->eraseFromParent();
568
569    // Move all the instructions in the succ to the pred.
570    I->getInstList().splice(I->end(), Dest->getInstList());
571
572    // Make all PHI nodes that referred to Dest now refer to I as their source.
573    Dest->replaceAllUsesWith(I);
574
575    // Remove the dest block.
576    Dest->eraseFromParent();
577
578    // Do not increment I, iteratively merge all things this block branches to.
579  }
580}
581