AudioResampler.cpp revision c1dc1cb1d1eaf84e88669f1a5f22579a0d9237c2
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "AudioResampler"
18//#define LOG_NDEBUG 0
19
20#include <stdint.h>
21#include <stdlib.h>
22#include <sys/types.h>
23#include <cutils/log.h>
24#include <cutils/properties.h>
25#include "AudioResampler.h"
26#include "AudioResamplerSinc.h"
27#include "AudioResamplerCubic.h"
28
29#ifdef __arm__
30#include <machine/cpu-features.h>
31#endif
32
33namespace android {
34
35#ifdef __ARM_HAVE_HALFWORD_MULTIPLY // optimized asm option
36    #define ASM_ARM_RESAMP1 // enable asm optimisation for ResamplerOrder1
37#endif // __ARM_HAVE_HALFWORD_MULTIPLY
38// ----------------------------------------------------------------------------
39
40class AudioResamplerOrder1 : public AudioResampler {
41public:
42    AudioResamplerOrder1(int bitDepth, int inChannelCount, int32_t sampleRate) :
43        AudioResampler(bitDepth, inChannelCount, sampleRate), mX0L(0), mX0R(0) {
44    }
45    virtual void resample(int32_t* out, size_t outFrameCount,
46            AudioBufferProvider* provider);
47private:
48    // number of bits used in interpolation multiply - 15 bits avoids overflow
49    static const int kNumInterpBits = 15;
50
51    // bits to shift the phase fraction down to avoid overflow
52    static const int kPreInterpShift = kNumPhaseBits - kNumInterpBits;
53
54    void init() {}
55    void resampleMono16(int32_t* out, size_t outFrameCount,
56            AudioBufferProvider* provider);
57    void resampleStereo16(int32_t* out, size_t outFrameCount,
58            AudioBufferProvider* provider);
59#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
60    void AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
61            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
62            uint32_t &phaseFraction, uint32_t phaseIncrement);
63    void AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
64            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
65            uint32_t &phaseFraction, uint32_t phaseIncrement);
66#endif  // ASM_ARM_RESAMP1
67
68    static inline int32_t Interp(int32_t x0, int32_t x1, uint32_t f) {
69        return x0 + (((x1 - x0) * (int32_t)(f >> kPreInterpShift)) >> kNumInterpBits);
70    }
71    static inline void Advance(size_t* index, uint32_t* frac, uint32_t inc) {
72        *frac += inc;
73        *index += (size_t)(*frac >> kNumPhaseBits);
74        *frac &= kPhaseMask;
75    }
76    int mX0L;
77    int mX0R;
78};
79
80// ----------------------------------------------------------------------------
81AudioResampler* AudioResampler::create(int bitDepth, int inChannelCount,
82        int32_t sampleRate, int quality) {
83
84    // can only create low quality resample now
85    AudioResampler* resampler;
86
87    char value[PROPERTY_VALUE_MAX];
88    if (property_get("af.resampler.quality", value, 0)) {
89        quality = atoi(value);
90        ALOGD("forcing AudioResampler quality to %d", quality);
91    }
92
93    if (quality == DEFAULT)
94        quality = LOW_QUALITY;
95
96    switch (quality) {
97    default:
98    case LOW_QUALITY:
99        ALOGV("Create linear Resampler");
100        resampler = new AudioResamplerOrder1(bitDepth, inChannelCount, sampleRate);
101        break;
102    case MED_QUALITY:
103        ALOGV("Create cubic Resampler");
104        resampler = new AudioResamplerCubic(bitDepth, inChannelCount, sampleRate);
105        break;
106    case HIGH_QUALITY:
107        ALOGV("Create sinc Resampler");
108        resampler = new AudioResamplerSinc(bitDepth, inChannelCount, sampleRate);
109        break;
110    }
111
112    // initialize resampler
113    resampler->init();
114    return resampler;
115}
116
117AudioResampler::AudioResampler(int bitDepth, int inChannelCount,
118        int32_t sampleRate) :
119    mBitDepth(bitDepth), mChannelCount(inChannelCount),
120            mSampleRate(sampleRate), mInSampleRate(sampleRate), mInputIndex(0),
121            mPhaseFraction(0) {
122    // sanity check on format
123    if ((bitDepth != 16) ||(inChannelCount < 1) || (inChannelCount > 2)) {
124        ALOGE("Unsupported sample format, %d bits, %d channels", bitDepth,
125                inChannelCount);
126        // ALOG_ASSERT(0);
127    }
128
129    // initialize common members
130    mVolume[0] = mVolume[1] = 0;
131    mBuffer.frameCount = 0;
132
133    // save format for quick lookup
134    if (inChannelCount == 1) {
135        mFormat = MONO_16_BIT;
136    } else {
137        mFormat = STEREO_16_BIT;
138    }
139}
140
141AudioResampler::~AudioResampler() {
142}
143
144void AudioResampler::setSampleRate(int32_t inSampleRate) {
145    mInSampleRate = inSampleRate;
146    mPhaseIncrement = (uint32_t)((kPhaseMultiplier * inSampleRate) / mSampleRate);
147}
148
149void AudioResampler::setVolume(int16_t left, int16_t right) {
150    // TODO: Implement anti-zipper filter
151    mVolume[0] = left;
152    mVolume[1] = right;
153}
154
155void AudioResampler::reset() {
156    mInputIndex = 0;
157    mPhaseFraction = 0;
158    mBuffer.frameCount = 0;
159}
160
161// ----------------------------------------------------------------------------
162
163void AudioResamplerOrder1::resample(int32_t* out, size_t outFrameCount,
164        AudioBufferProvider* provider) {
165
166    // should never happen, but we overflow if it does
167    // ALOG_ASSERT(outFrameCount < 32767);
168
169    // select the appropriate resampler
170    switch (mChannelCount) {
171    case 1:
172        resampleMono16(out, outFrameCount, provider);
173        break;
174    case 2:
175        resampleStereo16(out, outFrameCount, provider);
176        break;
177    }
178}
179
180void AudioResamplerOrder1::resampleStereo16(int32_t* out, size_t outFrameCount,
181        AudioBufferProvider* provider) {
182
183    int32_t vl = mVolume[0];
184    int32_t vr = mVolume[1];
185
186    size_t inputIndex = mInputIndex;
187    uint32_t phaseFraction = mPhaseFraction;
188    uint32_t phaseIncrement = mPhaseIncrement;
189    size_t outputIndex = 0;
190    size_t outputSampleCount = outFrameCount * 2;
191    size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate;
192
193    // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d\n",
194    //      outFrameCount, inputIndex, phaseFraction, phaseIncrement);
195
196    while (outputIndex < outputSampleCount) {
197
198        // buffer is empty, fetch a new one
199        while (mBuffer.frameCount == 0) {
200            mBuffer.frameCount = inFrameCount;
201            provider->getNextBuffer(&mBuffer);
202            if (mBuffer.raw == NULL) {
203                goto resampleStereo16_exit;
204            }
205
206            // ALOGE("New buffer fetched: %d frames\n", mBuffer.frameCount);
207            if (mBuffer.frameCount > inputIndex) break;
208
209            inputIndex -= mBuffer.frameCount;
210            mX0L = mBuffer.i16[mBuffer.frameCount*2-2];
211            mX0R = mBuffer.i16[mBuffer.frameCount*2-1];
212            provider->releaseBuffer(&mBuffer);
213             // mBuffer.frameCount == 0 now so we reload a new buffer
214        }
215
216        int16_t *in = mBuffer.i16;
217
218        // handle boundary case
219        while (inputIndex == 0) {
220            // ALOGE("boundary case\n");
221            out[outputIndex++] += vl * Interp(mX0L, in[0], phaseFraction);
222            out[outputIndex++] += vr * Interp(mX0R, in[1], phaseFraction);
223            Advance(&inputIndex, &phaseFraction, phaseIncrement);
224            if (outputIndex == outputSampleCount)
225                break;
226        }
227
228        // process input samples
229        // ALOGE("general case\n");
230
231#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
232        if (inputIndex + 2 < mBuffer.frameCount) {
233            int32_t* maxOutPt;
234            int32_t maxInIdx;
235
236            maxOutPt = out + (outputSampleCount - 2);   // 2 because 2 frames per loop
237            maxInIdx = mBuffer.frameCount - 2;
238            AsmStereo16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr,
239                    phaseFraction, phaseIncrement);
240        }
241#endif  // ASM_ARM_RESAMP1
242
243        while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) {
244            out[outputIndex++] += vl * Interp(in[inputIndex*2-2],
245                    in[inputIndex*2], phaseFraction);
246            out[outputIndex++] += vr * Interp(in[inputIndex*2-1],
247                    in[inputIndex*2+1], phaseFraction);
248            Advance(&inputIndex, &phaseFraction, phaseIncrement);
249        }
250
251        // ALOGE("loop done - outputIndex=%d, inputIndex=%d\n", outputIndex, inputIndex);
252
253        // if done with buffer, save samples
254        if (inputIndex >= mBuffer.frameCount) {
255            inputIndex -= mBuffer.frameCount;
256
257            // ALOGE("buffer done, new input index %d", inputIndex);
258
259            mX0L = mBuffer.i16[mBuffer.frameCount*2-2];
260            mX0R = mBuffer.i16[mBuffer.frameCount*2-1];
261            provider->releaseBuffer(&mBuffer);
262
263            // verify that the releaseBuffer resets the buffer frameCount
264            // ALOG_ASSERT(mBuffer.frameCount == 0);
265        }
266    }
267
268    // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d\n", outputIndex, inputIndex);
269
270resampleStereo16_exit:
271    // save state
272    mInputIndex = inputIndex;
273    mPhaseFraction = phaseFraction;
274}
275
276void AudioResamplerOrder1::resampleMono16(int32_t* out, size_t outFrameCount,
277        AudioBufferProvider* provider) {
278
279    int32_t vl = mVolume[0];
280    int32_t vr = mVolume[1];
281
282    size_t inputIndex = mInputIndex;
283    uint32_t phaseFraction = mPhaseFraction;
284    uint32_t phaseIncrement = mPhaseIncrement;
285    size_t outputIndex = 0;
286    size_t outputSampleCount = outFrameCount * 2;
287    size_t inFrameCount = (outFrameCount*mInSampleRate)/mSampleRate;
288
289    // ALOGE("starting resample %d frames, inputIndex=%d, phaseFraction=%d, phaseIncrement=%d\n",
290    //      outFrameCount, inputIndex, phaseFraction, phaseIncrement);
291    while (outputIndex < outputSampleCount) {
292        // buffer is empty, fetch a new one
293        while (mBuffer.frameCount == 0) {
294            mBuffer.frameCount = inFrameCount;
295            provider->getNextBuffer(&mBuffer);
296            if (mBuffer.raw == NULL) {
297                mInputIndex = inputIndex;
298                mPhaseFraction = phaseFraction;
299                goto resampleMono16_exit;
300            }
301            // ALOGE("New buffer fetched: %d frames\n", mBuffer.frameCount);
302            if (mBuffer.frameCount >  inputIndex) break;
303
304            inputIndex -= mBuffer.frameCount;
305            mX0L = mBuffer.i16[mBuffer.frameCount-1];
306            provider->releaseBuffer(&mBuffer);
307            // mBuffer.frameCount == 0 now so we reload a new buffer
308        }
309        int16_t *in = mBuffer.i16;
310
311        // handle boundary case
312        while (inputIndex == 0) {
313            // ALOGE("boundary case\n");
314            int32_t sample = Interp(mX0L, in[0], phaseFraction);
315            out[outputIndex++] += vl * sample;
316            out[outputIndex++] += vr * sample;
317            Advance(&inputIndex, &phaseFraction, phaseIncrement);
318            if (outputIndex == outputSampleCount)
319                break;
320        }
321
322        // process input samples
323        // ALOGE("general case\n");
324
325#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
326        if (inputIndex + 2 < mBuffer.frameCount) {
327            int32_t* maxOutPt;
328            int32_t maxInIdx;
329
330            maxOutPt = out + (outputSampleCount - 2);
331            maxInIdx = (int32_t)mBuffer.frameCount - 2;
332                AsmMono16Loop(in, maxOutPt, maxInIdx, outputIndex, out, inputIndex, vl, vr,
333                        phaseFraction, phaseIncrement);
334        }
335#endif  // ASM_ARM_RESAMP1
336
337        while (outputIndex < outputSampleCount && inputIndex < mBuffer.frameCount) {
338            int32_t sample = Interp(in[inputIndex-1], in[inputIndex],
339                    phaseFraction);
340            out[outputIndex++] += vl * sample;
341            out[outputIndex++] += vr * sample;
342            Advance(&inputIndex, &phaseFraction, phaseIncrement);
343        }
344
345
346        // ALOGE("loop done - outputIndex=%d, inputIndex=%d\n", outputIndex, inputIndex);
347
348        // if done with buffer, save samples
349        if (inputIndex >= mBuffer.frameCount) {
350            inputIndex -= mBuffer.frameCount;
351
352            // ALOGE("buffer done, new input index %d", inputIndex);
353
354            mX0L = mBuffer.i16[mBuffer.frameCount-1];
355            provider->releaseBuffer(&mBuffer);
356
357            // verify that the releaseBuffer resets the buffer frameCount
358            // ALOG_ASSERT(mBuffer.frameCount == 0);
359        }
360    }
361
362    // ALOGE("output buffer full - outputIndex=%d, inputIndex=%d\n", outputIndex, inputIndex);
363
364resampleMono16_exit:
365    // save state
366    mInputIndex = inputIndex;
367    mPhaseFraction = phaseFraction;
368}
369
370#ifdef ASM_ARM_RESAMP1  // asm optimisation for ResamplerOrder1
371
372/*******************************************************************
373*
374*   AsmMono16Loop
375*   asm optimized monotonic loop version; one loop is 2 frames
376*   Input:
377*       in : pointer on input samples
378*       maxOutPt : pointer on first not filled
379*       maxInIdx : index on first not used
380*       outputIndex : pointer on current output index
381*       out : pointer on output buffer
382*       inputIndex : pointer on current input index
383*       vl, vr : left and right gain
384*       phaseFraction : pointer on current phase fraction
385*       phaseIncrement
386*   Ouput:
387*       outputIndex :
388*       out : updated buffer
389*       inputIndex : index of next to use
390*       phaseFraction : phase fraction for next interpolation
391*
392*******************************************************************/
393__attribute__((noinline))
394void AudioResamplerOrder1::AsmMono16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
395            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
396            uint32_t &phaseFraction, uint32_t phaseIncrement)
397{
398#define MO_PARAM5   "36"        // offset of parameter 5 (outputIndex)
399
400    asm(
401        "stmfd  sp!, {r4, r5, r6, r7, r8, r9, r10, r11, lr}\n"
402        // get parameters
403        "   ldr r6, [sp, #" MO_PARAM5 " + 20]\n"    // &phaseFraction
404        "   ldr r6, [r6]\n"                         // phaseFraction
405        "   ldr r7, [sp, #" MO_PARAM5 " + 8]\n"     // &inputIndex
406        "   ldr r7, [r7]\n"                         // inputIndex
407        "   ldr r8, [sp, #" MO_PARAM5 " + 4]\n"     // out
408        "   ldr r0, [sp, #" MO_PARAM5 " + 0]\n"     // &outputIndex
409        "   ldr r0, [r0]\n"                         // outputIndex
410        "   add r8, r0, asl #2\n"                   // curOut
411        "   ldr r9, [sp, #" MO_PARAM5 " + 24]\n"    // phaseIncrement
412        "   ldr r10, [sp, #" MO_PARAM5 " + 12]\n"   // vl
413        "   ldr r11, [sp, #" MO_PARAM5 " + 16]\n"   // vr
414
415        // r0 pin, x0, Samp
416
417        // r1 in
418        // r2 maxOutPt
419        // r3 maxInIdx
420
421        // r4 x1, i1, i3, Out1
422        // r5 out0
423
424        // r6 frac
425        // r7 inputIndex
426        // r8 curOut
427
428        // r9 inc
429        // r10 vl
430        // r11 vr
431
432        // r12
433        // r13 sp
434        // r14
435
436        // the following loop works on 2 frames
437
438        "1:\n"
439        "   cmp r8, r2\n"                   // curOut - maxCurOut
440        "   bcs 2f\n"
441
442#define MO_ONE_FRAME \
443    "   add r0, r1, r7, asl #1\n"       /* in + inputIndex */\
444    "   ldrsh r4, [r0]\n"               /* in[inputIndex] */\
445    "   ldr r5, [r8]\n"                 /* out[outputIndex] */\
446    "   ldrsh r0, [r0, #-2]\n"          /* in[inputIndex-1] */\
447    "   bic r6, r6, #0xC0000000\n"      /* phaseFraction & ... */\
448    "   sub r4, r4, r0\n"               /* in[inputIndex] - in[inputIndex-1] */\
449    "   mov r4, r4, lsl #2\n"           /* <<2 */\
450    "   smulwt r4, r4, r6\n"            /* (x1-x0)*.. */\
451    "   add r6, r6, r9\n"               /* phaseFraction + phaseIncrement */\
452    "   add r0, r0, r4\n"               /* x0 - (..) */\
453    "   mla r5, r0, r10, r5\n"          /* vl*interp + out[] */\
454    "   ldr r4, [r8, #4]\n"             /* out[outputIndex+1] */\
455    "   str r5, [r8], #4\n"             /* out[outputIndex++] = ... */\
456    "   mla r4, r0, r11, r4\n"          /* vr*interp + out[] */\
457    "   add r7, r7, r6, lsr #30\n"      /* inputIndex + phaseFraction>>30 */\
458    "   str r4, [r8], #4\n"             /* out[outputIndex++] = ... */
459
460        MO_ONE_FRAME    // frame 1
461        MO_ONE_FRAME    // frame 2
462
463        "   cmp r7, r3\n"                   // inputIndex - maxInIdx
464        "   bcc 1b\n"
465        "2:\n"
466
467        "   bic r6, r6, #0xC0000000\n"             // phaseFraction & ...
468        // save modified values
469        "   ldr r0, [sp, #" MO_PARAM5 " + 20]\n"    // &phaseFraction
470        "   str r6, [r0]\n"                         // phaseFraction
471        "   ldr r0, [sp, #" MO_PARAM5 " + 8]\n"     // &inputIndex
472        "   str r7, [r0]\n"                         // inputIndex
473        "   ldr r0, [sp, #" MO_PARAM5 " + 4]\n"     // out
474        "   sub r8, r0\n"                           // curOut - out
475        "   asr r8, #2\n"                           // new outputIndex
476        "   ldr r0, [sp, #" MO_PARAM5 " + 0]\n"     // &outputIndex
477        "   str r8, [r0]\n"                         // save outputIndex
478
479        "   ldmfd   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}\n"
480    );
481}
482
483/*******************************************************************
484*
485*   AsmStereo16Loop
486*   asm optimized stereo loop version; one loop is 2 frames
487*   Input:
488*       in : pointer on input samples
489*       maxOutPt : pointer on first not filled
490*       maxInIdx : index on first not used
491*       outputIndex : pointer on current output index
492*       out : pointer on output buffer
493*       inputIndex : pointer on current input index
494*       vl, vr : left and right gain
495*       phaseFraction : pointer on current phase fraction
496*       phaseIncrement
497*   Ouput:
498*       outputIndex :
499*       out : updated buffer
500*       inputIndex : index of next to use
501*       phaseFraction : phase fraction for next interpolation
502*
503*******************************************************************/
504__attribute__((noinline))
505void AudioResamplerOrder1::AsmStereo16Loop(int16_t *in, int32_t* maxOutPt, int32_t maxInIdx,
506            size_t &outputIndex, int32_t* out, size_t &inputIndex, int32_t vl, int32_t vr,
507            uint32_t &phaseFraction, uint32_t phaseIncrement)
508{
509#define ST_PARAM5    "40"     // offset of parameter 5 (outputIndex)
510    asm(
511        "stmfd  sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, lr}\n"
512        // get parameters
513        "   ldr r6, [sp, #" ST_PARAM5 " + 20]\n"    // &phaseFraction
514        "   ldr r6, [r6]\n"                         // phaseFraction
515        "   ldr r7, [sp, #" ST_PARAM5 " + 8]\n"     // &inputIndex
516        "   ldr r7, [r7]\n"                         // inputIndex
517        "   ldr r8, [sp, #" ST_PARAM5 " + 4]\n"     // out
518        "   ldr r0, [sp, #" ST_PARAM5 " + 0]\n"     // &outputIndex
519        "   ldr r0, [r0]\n"                         // outputIndex
520        "   add r8, r0, asl #2\n"                   // curOut
521        "   ldr r9, [sp, #" ST_PARAM5 " + 24]\n"    // phaseIncrement
522        "   ldr r10, [sp, #" ST_PARAM5 " + 12]\n"   // vl
523        "   ldr r11, [sp, #" ST_PARAM5 " + 16]\n"   // vr
524
525        // r0 pin, x0, Samp
526
527        // r1 in
528        // r2 maxOutPt
529        // r3 maxInIdx
530
531        // r4 x1, i1, i3, out1
532        // r5 out0
533
534        // r6 frac
535        // r7 inputIndex
536        // r8 curOut
537
538        // r9 inc
539        // r10 vl
540        // r11 vr
541
542        // r12 temporary
543        // r13 sp
544        // r14
545
546        "3:\n"
547        "   cmp r8, r2\n"                   // curOut - maxCurOut
548        "   bcs 4f\n"
549
550#define ST_ONE_FRAME \
551    "   bic r6, r6, #0xC0000000\n"      /* phaseFraction & ... */\
552\
553    "   add r0, r1, r7, asl #2\n"       /* in + 2*inputIndex */\
554\
555    "   ldrsh r4, [r0]\n"               /* in[2*inputIndex] */\
556    "   ldr r5, [r8]\n"                 /* out[outputIndex] */\
557    "   ldrsh r12, [r0, #-4]\n"         /* in[2*inputIndex-2] */\
558    "   sub r4, r4, r12\n"              /* in[2*InputIndex] - in[2*InputIndex-2] */\
559    "   mov r4, r4, lsl #2\n"           /* <<2 */\
560    "   smulwt r4, r4, r6\n"            /* (x1-x0)*.. */\
561    "   add r12, r12, r4\n"             /* x0 - (..) */\
562    "   mla r5, r12, r10, r5\n"         /* vl*interp + out[] */\
563    "   ldr r4, [r8, #4]\n"             /* out[outputIndex+1] */\
564    "   str r5, [r8], #4\n"             /* out[outputIndex++] = ... */\
565\
566    "   ldrsh r12, [r0, #+2]\n"         /* in[2*inputIndex+1] */\
567    "   ldrsh r0, [r0, #-2]\n"          /* in[2*inputIndex-1] */\
568    "   sub r12, r12, r0\n"             /* in[2*InputIndex] - in[2*InputIndex-2] */\
569    "   mov r12, r12, lsl #2\n"         /* <<2 */\
570    "   smulwt r12, r12, r6\n"          /* (x1-x0)*.. */\
571    "   add r12, r0, r12\n"             /* x0 - (..) */\
572    "   mla r4, r12, r11, r4\n"         /* vr*interp + out[] */\
573    "   str r4, [r8], #4\n"             /* out[outputIndex++] = ... */\
574\
575    "   add r6, r6, r9\n"               /* phaseFraction + phaseIncrement */\
576    "   add r7, r7, r6, lsr #30\n"      /* inputIndex + phaseFraction>>30 */
577
578    ST_ONE_FRAME    // frame 1
579    ST_ONE_FRAME    // frame 1
580
581        "   cmp r7, r3\n"                       // inputIndex - maxInIdx
582        "   bcc 3b\n"
583        "4:\n"
584
585        "   bic r6, r6, #0xC0000000\n"              // phaseFraction & ...
586        // save modified values
587        "   ldr r0, [sp, #" ST_PARAM5 " + 20]\n"    // &phaseFraction
588        "   str r6, [r0]\n"                         // phaseFraction
589        "   ldr r0, [sp, #" ST_PARAM5 " + 8]\n"     // &inputIndex
590        "   str r7, [r0]\n"                         // inputIndex
591        "   ldr r0, [sp, #" ST_PARAM5 " + 4]\n"     // out
592        "   sub r8, r0\n"                           // curOut - out
593        "   asr r8, #2\n"                           // new outputIndex
594        "   ldr r0, [sp, #" ST_PARAM5 " + 0]\n"     // &outputIndex
595        "   str r8, [r0]\n"                         // save outputIndex
596
597        "   ldmfd   sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, pc}\n"
598    );
599}
600
601#endif  // ASM_ARM_RESAMP1
602
603
604// ----------------------------------------------------------------------------
605
606} // namespace android
607