1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "BitReader_2_7.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/IR/AutoUpgrade.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/InlineAsm.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/IR/Module.h"
25#include "llvm/IR/OperandTraits.h"
26#include "llvm/IR/Operator.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/MemoryBuffer.h"
29
30using namespace llvm;
31using namespace llvm_2_7;
32
33#define METADATA_NODE_2_7             2
34#define METADATA_FN_NODE_2_7          3
35#define METADATA_NAMED_NODE_2_7       5
36#define METADATA_ATTACHMENT_2_7       7
37#define FUNC_CODE_INST_UNWIND_2_7     14
38#define FUNC_CODE_INST_MALLOC_2_7     17
39#define FUNC_CODE_INST_FREE_2_7       18
40#define FUNC_CODE_INST_STORE_2_7      21
41#define FUNC_CODE_INST_CALL_2_7       22
42#define FUNC_CODE_INST_GETRESULT_2_7  25
43#define FUNC_CODE_DEBUG_LOC_2_7       32
44
45#define TYPE_BLOCK_ID_OLD_3_0         10
46#define TYPE_SYMTAB_BLOCK_ID_OLD_3_0  13
47#define TYPE_CODE_STRUCT_OLD_3_0      10
48
49namespace {
50
51  void StripDebugInfoOfFunction(Module* M, const char* name) {
52    if (Function* FuncStart = M->getFunction(name)) {
53      while (!FuncStart->use_empty()) {
54        cast<CallInst>(*FuncStart->use_begin())->eraseFromParent();
55      }
56      FuncStart->eraseFromParent();
57    }
58  }
59
60  /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
61  /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
62  /// strips that use.
63  void CheckDebugInfoIntrinsics(Module *M) {
64    StripDebugInfoOfFunction(M, "llvm.dbg.func.start");
65    StripDebugInfoOfFunction(M, "llvm.dbg.stoppoint");
66    StripDebugInfoOfFunction(M, "llvm.dbg.region.start");
67    StripDebugInfoOfFunction(M, "llvm.dbg.region.end");
68
69    if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
70      if (!Declare->use_empty()) {
71        DbgDeclareInst *DDI = cast<DbgDeclareInst>(*Declare->use_begin());
72        if (!isa<MDNode>(DDI->getArgOperand(0)) ||
73            !isa<MDNode>(DDI->getArgOperand(1))) {
74          while (!Declare->use_empty()) {
75            CallInst *CI = cast<CallInst>(*Declare->use_begin());
76            CI->eraseFromParent();
77          }
78          Declare->eraseFromParent();
79        }
80      }
81    }
82  }
83} // end anonymous namespace
84
85void BitcodeReader::FreeState() {
86  if (BufferOwned)
87    delete Buffer;
88  Buffer = 0;
89  std::vector<Type*>().swap(TypeList);
90  ValueList.clear();
91  MDValueList.clear();
92
93  std::vector<AttributeSet>().swap(MAttributes);
94  std::vector<BasicBlock*>().swap(FunctionBBs);
95  std::vector<Function*>().swap(FunctionsWithBodies);
96  DeferredFunctionInfo.clear();
97  MDKindMap.clear();
98}
99
100//===----------------------------------------------------------------------===//
101//  Helper functions to implement forward reference resolution, etc.
102//===----------------------------------------------------------------------===//
103
104/// ConvertToString - Convert a string from a record into an std::string, return
105/// true on failure.
106template<typename StrTy>
107static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
108                            StrTy &Result) {
109  if (Idx > Record.size())
110    return true;
111
112  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
113    Result += (char)Record[i];
114  return false;
115}
116
117static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
118  switch (Val) {
119  default: // Map unknown/new linkages to external
120  case 0:  return GlobalValue::ExternalLinkage;
121  case 1:  return GlobalValue::WeakAnyLinkage;
122  case 2:  return GlobalValue::AppendingLinkage;
123  case 3:  return GlobalValue::InternalLinkage;
124  case 4:  return GlobalValue::LinkOnceAnyLinkage;
125  case 5:  return GlobalValue::ExternalLinkage; // Was DLLImportLinkage;
126  case 6:  return GlobalValue::ExternalLinkage; // Was DLLExportLinkage;
127  case 7:  return GlobalValue::ExternalWeakLinkage;
128  case 8:  return GlobalValue::CommonLinkage;
129  case 9:  return GlobalValue::PrivateLinkage;
130  case 10: return GlobalValue::WeakODRLinkage;
131  case 11: return GlobalValue::LinkOnceODRLinkage;
132  case 12: return GlobalValue::AvailableExternallyLinkage;
133  case 13: return GlobalValue::PrivateLinkage; // Was LinkerPrivateLinkage;
134  case 14: return GlobalValue::ExternalWeakLinkage; // Was LinkerPrivateWeakLinkage;
135  //ANDROID: convert LinkOnceODRAutoHideLinkage -> LinkOnceODRLinkage
136  case 15: return GlobalValue::LinkOnceODRLinkage;
137  }
138}
139
140static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
141  switch (Val) {
142  default: // Map unknown visibilities to default.
143  case 0: return GlobalValue::DefaultVisibility;
144  case 1: return GlobalValue::HiddenVisibility;
145  case 2: return GlobalValue::ProtectedVisibility;
146  }
147}
148
149static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
150  switch (Val) {
151    case 0: return GlobalVariable::NotThreadLocal;
152    default: // Map unknown non-zero value to general dynamic.
153    case 1: return GlobalVariable::GeneralDynamicTLSModel;
154    case 2: return GlobalVariable::LocalDynamicTLSModel;
155    case 3: return GlobalVariable::InitialExecTLSModel;
156    case 4: return GlobalVariable::LocalExecTLSModel;
157  }
158}
159
160static int GetDecodedCastOpcode(unsigned Val) {
161  switch (Val) {
162  default: return -1;
163  case bitc::CAST_TRUNC   : return Instruction::Trunc;
164  case bitc::CAST_ZEXT    : return Instruction::ZExt;
165  case bitc::CAST_SEXT    : return Instruction::SExt;
166  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
167  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
168  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
169  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
170  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
171  case bitc::CAST_FPEXT   : return Instruction::FPExt;
172  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
173  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
174  case bitc::CAST_BITCAST : return Instruction::BitCast;
175  }
176}
177static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
178  switch (Val) {
179  default: return -1;
180  case bitc::BINOP_ADD:
181    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
182  case bitc::BINOP_SUB:
183    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
184  case bitc::BINOP_MUL:
185    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
186  case bitc::BINOP_UDIV: return Instruction::UDiv;
187  case bitc::BINOP_SDIV:
188    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
189  case bitc::BINOP_UREM: return Instruction::URem;
190  case bitc::BINOP_SREM:
191    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
192  case bitc::BINOP_SHL:  return Instruction::Shl;
193  case bitc::BINOP_LSHR: return Instruction::LShr;
194  case bitc::BINOP_ASHR: return Instruction::AShr;
195  case bitc::BINOP_AND:  return Instruction::And;
196  case bitc::BINOP_OR:   return Instruction::Or;
197  case bitc::BINOP_XOR:  return Instruction::Xor;
198  }
199}
200
201namespace llvm {
202namespace {
203  /// @brief A class for maintaining the slot number definition
204  /// as a placeholder for the actual definition for forward constants defs.
205  class ConstantPlaceHolder : public ConstantExpr {
206    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
207  public:
208    // allocate space for exactly one operand
209    void *operator new(size_t s) {
210      return User::operator new(s, 1);
211    }
212    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
213      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
214      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
215    }
216
217    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
218    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
219    static bool classof(const Value *V) {
220      return isa<ConstantExpr>(V) &&
221             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
222    }
223
224
225    /// Provide fast operand accessors
226    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
227  };
228}
229
230// FIXME: can we inherit this from ConstantExpr?
231template <>
232struct OperandTraits<ConstantPlaceHolder> :
233  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
234};
235}
236
237
238void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
239  if (Idx == size()) {
240    push_back(V);
241    return;
242  }
243
244  if (Idx >= size())
245    resize(Idx+1);
246
247  WeakVH &OldV = ValuePtrs[Idx];
248  if (OldV == 0) {
249    OldV = V;
250    return;
251  }
252
253  // Handle constants and non-constants (e.g. instrs) differently for
254  // efficiency.
255  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
256    ResolveConstants.push_back(std::make_pair(PHC, Idx));
257    OldV = V;
258  } else {
259    // If there was a forward reference to this value, replace it.
260    Value *PrevVal = OldV;
261    OldV->replaceAllUsesWith(V);
262    delete PrevVal;
263  }
264}
265
266
267Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
268                                                    Type *Ty) {
269  if (Idx >= size())
270    resize(Idx + 1);
271
272  if (Value *V = ValuePtrs[Idx]) {
273    assert(Ty == V->getType() && "Type mismatch in constant table!");
274    return cast<Constant>(V);
275  }
276
277  // Create and return a placeholder, which will later be RAUW'd.
278  Constant *C = new ConstantPlaceHolder(Ty, Context);
279  ValuePtrs[Idx] = C;
280  return C;
281}
282
283Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
284  if (Idx >= size())
285    resize(Idx + 1);
286
287  if (Value *V = ValuePtrs[Idx]) {
288    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
289    return V;
290  }
291
292  // No type specified, must be invalid reference.
293  if (Ty == 0) return 0;
294
295  // Create and return a placeholder, which will later be RAUW'd.
296  Value *V = new Argument(Ty);
297  ValuePtrs[Idx] = V;
298  return V;
299}
300
301/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
302/// resolves any forward references.  The idea behind this is that we sometimes
303/// get constants (such as large arrays) which reference *many* forward ref
304/// constants.  Replacing each of these causes a lot of thrashing when
305/// building/reuniquing the constant.  Instead of doing this, we look at all the
306/// uses and rewrite all the place holders at once for any constant that uses
307/// a placeholder.
308void BitcodeReaderValueList::ResolveConstantForwardRefs() {
309  // Sort the values by-pointer so that they are efficient to look up with a
310  // binary search.
311  std::sort(ResolveConstants.begin(), ResolveConstants.end());
312
313  SmallVector<Constant*, 64> NewOps;
314
315  while (!ResolveConstants.empty()) {
316    Value *RealVal = operator[](ResolveConstants.back().second);
317    Constant *Placeholder = ResolveConstants.back().first;
318    ResolveConstants.pop_back();
319
320    // Loop over all users of the placeholder, updating them to reference the
321    // new value.  If they reference more than one placeholder, update them all
322    // at once.
323    while (!Placeholder->use_empty()) {
324      Value::use_iterator UI = Placeholder->use_begin();
325      Use &use = *UI;
326      User *U = use.getUser();
327
328      // If the using object isn't uniqued, just update the operands.  This
329      // handles instructions and initializers for global variables.
330      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
331        use.set(RealVal);
332        continue;
333      }
334
335      // Otherwise, we have a constant that uses the placeholder.  Replace that
336      // constant with a new constant that has *all* placeholder uses updated.
337      Constant *UserC = cast<Constant>(U);
338      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
339           I != E; ++I) {
340        Value *NewOp;
341        if (!isa<ConstantPlaceHolder>(*I)) {
342          // Not a placeholder reference.
343          NewOp = *I;
344        } else if (*I == Placeholder) {
345          // Common case is that it just references this one placeholder.
346          NewOp = RealVal;
347        } else {
348          // Otherwise, look up the placeholder in ResolveConstants.
349          ResolveConstantsTy::iterator It =
350            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
351                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
352                                                            0));
353          assert(It != ResolveConstants.end() && It->first == *I);
354          NewOp = operator[](It->second);
355        }
356
357        NewOps.push_back(cast<Constant>(NewOp));
358      }
359
360      // Make the new constant.
361      Constant *NewC;
362      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
363        NewC = ConstantArray::get(UserCA->getType(), NewOps);
364      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
365        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
366      } else if (isa<ConstantVector>(UserC)) {
367        NewC = ConstantVector::get(NewOps);
368      } else {
369        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
370        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
371      }
372
373      UserC->replaceAllUsesWith(NewC);
374      UserC->destroyConstant();
375      NewOps.clear();
376    }
377
378    // Update all ValueHandles, they should be the only users at this point.
379    Placeholder->replaceAllUsesWith(RealVal);
380    delete Placeholder;
381  }
382}
383
384void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
385  if (Idx == size()) {
386    push_back(V);
387    return;
388  }
389
390  if (Idx >= size())
391    resize(Idx+1);
392
393  WeakVH &OldV = MDValuePtrs[Idx];
394  if (OldV == 0) {
395    OldV = V;
396    return;
397  }
398
399  // If there was a forward reference to this value, replace it.
400  MDNode *PrevVal = cast<MDNode>(OldV);
401  OldV->replaceAllUsesWith(V);
402  MDNode::deleteTemporary(PrevVal);
403  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
404  // value for Idx.
405  MDValuePtrs[Idx] = V;
406}
407
408Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
409  if (Idx >= size())
410    resize(Idx + 1);
411
412  if (Value *V = MDValuePtrs[Idx]) {
413    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
414    return V;
415  }
416
417  // Create and return a placeholder, which will later be RAUW'd.
418  Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
419  MDValuePtrs[Idx] = V;
420  return V;
421}
422
423Type *BitcodeReader::getTypeByID(unsigned ID) {
424  // The type table size is always specified correctly.
425  if (ID >= TypeList.size())
426    return 0;
427
428  if (Type *Ty = TypeList[ID])
429    return Ty;
430
431  // If we have a forward reference, the only possible case is when it is to a
432  // named struct.  Just create a placeholder for now.
433  return TypeList[ID] = StructType::create(Context);
434}
435
436/// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
437Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
438  if (ID >= TypeList.size())
439    TypeList.resize(ID+1);
440
441  return TypeList[ID];
442}
443
444
445//===----------------------------------------------------------------------===//
446//  Functions for parsing blocks from the bitcode file
447//===----------------------------------------------------------------------===//
448
449
450/// \brief This fills an AttrBuilder object with the LLVM attributes that have
451/// been decoded from the given integer. This function must stay in sync with
452/// 'encodeLLVMAttributesForBitcode'.
453static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
454                                           uint64_t EncodedAttrs) {
455  // FIXME: Remove in 4.0.
456
457  // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
458  // the bits above 31 down by 11 bits.
459  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
460  assert((!Alignment || isPowerOf2_32(Alignment)) &&
461         "Alignment must be a power of two.");
462
463  if (Alignment)
464    B.addAlignmentAttr(Alignment);
465  B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
466                (EncodedAttrs & 0xffff));
467}
468
469std::error_code BitcodeReader::ParseAttributeBlock() {
470  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
471    return Error(InvalidRecord);
472
473  if (!MAttributes.empty())
474    return Error(InvalidMultipleBlocks);
475
476  SmallVector<uint64_t, 64> Record;
477
478  SmallVector<AttributeSet, 8> Attrs;
479
480  // Read all the records.
481  while (1) {
482    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
483
484    switch (Entry.Kind) {
485    case BitstreamEntry::SubBlock: // Handled for us already.
486    case BitstreamEntry::Error:
487      return Error(MalformedBlock);
488    case BitstreamEntry::EndBlock:
489      return std::error_code();
490    case BitstreamEntry::Record:
491      // The interesting case.
492      break;
493    }
494
495    // Read a record.
496    Record.clear();
497    switch (Stream.readRecord(Entry.ID, Record)) {
498    default:  // Default behavior: ignore.
499      break;
500    case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
501      if (Record.size() & 1)
502        return Error(InvalidRecord);
503
504      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
505        AttrBuilder B;
506        decodeLLVMAttributesForBitcode(B, Record[i+1]);
507        Attrs.push_back(AttributeSet::get(Context, Record[i], B));
508      }
509
510      MAttributes.push_back(AttributeSet::get(Context, Attrs));
511      Attrs.clear();
512      break;
513    }
514    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
515      for (unsigned i = 0, e = Record.size(); i != e; ++i)
516        Attrs.push_back(MAttributeGroups[Record[i]]);
517
518      MAttributes.push_back(AttributeSet::get(Context, Attrs));
519      Attrs.clear();
520      break;
521    }
522    }
523  }
524}
525
526
527std::error_code BitcodeReader::ParseTypeTable() {
528  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
529    return Error(InvalidRecord);
530
531  return ParseTypeTableBody();
532}
533
534std::error_code BitcodeReader::ParseTypeTableBody() {
535  if (!TypeList.empty())
536    return Error(InvalidMultipleBlocks);
537
538  SmallVector<uint64_t, 64> Record;
539  unsigned NumRecords = 0;
540
541  SmallString<64> TypeName;
542
543  // Read all the records for this type table.
544  while (1) {
545    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
546
547    switch (Entry.Kind) {
548    case BitstreamEntry::SubBlock: // Handled for us already.
549    case BitstreamEntry::Error:
550      return Error(MalformedBlock);
551    case BitstreamEntry::EndBlock:
552      if (NumRecords != TypeList.size())
553        return Error(MalformedBlock);
554      return std::error_code();
555    case BitstreamEntry::Record:
556      // The interesting case.
557      break;
558    }
559
560    // Read a record.
561    Record.clear();
562    Type *ResultTy = 0;
563    switch (Stream.readRecord(Entry.ID, Record)) {
564    default:
565      return Error(InvalidValue);
566    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
567      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
568      // type list.  This allows us to reserve space.
569      if (Record.size() < 1)
570        return Error(InvalidRecord);
571      TypeList.resize(Record[0]);
572      continue;
573    case bitc::TYPE_CODE_VOID:      // VOID
574      ResultTy = Type::getVoidTy(Context);
575      break;
576    case bitc::TYPE_CODE_HALF:     // HALF
577      ResultTy = Type::getHalfTy(Context);
578      break;
579    case bitc::TYPE_CODE_FLOAT:     // FLOAT
580      ResultTy = Type::getFloatTy(Context);
581      break;
582    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
583      ResultTy = Type::getDoubleTy(Context);
584      break;
585    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
586      ResultTy = Type::getX86_FP80Ty(Context);
587      break;
588    case bitc::TYPE_CODE_FP128:     // FP128
589      ResultTy = Type::getFP128Ty(Context);
590      break;
591    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
592      ResultTy = Type::getPPC_FP128Ty(Context);
593      break;
594    case bitc::TYPE_CODE_LABEL:     // LABEL
595      ResultTy = Type::getLabelTy(Context);
596      break;
597    case bitc::TYPE_CODE_METADATA:  // METADATA
598      ResultTy = Type::getMetadataTy(Context);
599      break;
600    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
601      ResultTy = Type::getX86_MMXTy(Context);
602      break;
603    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
604      if (Record.size() < 1)
605        return Error(InvalidRecord);
606
607      ResultTy = IntegerType::get(Context, Record[0]);
608      break;
609    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
610                                    //          [pointee type, address space]
611      if (Record.size() < 1)
612        return Error(InvalidRecord);
613      unsigned AddressSpace = 0;
614      if (Record.size() == 2)
615        AddressSpace = Record[1];
616      ResultTy = getTypeByID(Record[0]);
617      if (ResultTy == 0)
618        return Error(InvalidType);
619      ResultTy = PointerType::get(ResultTy, AddressSpace);
620      break;
621    }
622    case bitc::TYPE_CODE_FUNCTION_OLD: {
623      // FIXME: attrid is dead, remove it in LLVM 4.0
624      // FUNCTION: [vararg, attrid, retty, paramty x N]
625      if (Record.size() < 3)
626        return Error(InvalidRecord);
627      SmallVector<Type*, 8> ArgTys;
628      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
629        if (Type *T = getTypeByID(Record[i]))
630          ArgTys.push_back(T);
631        else
632          break;
633      }
634
635      ResultTy = getTypeByID(Record[2]);
636      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
637        return Error(InvalidType);
638
639      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
640      break;
641    }
642    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
643      if (Record.size() < 1)
644        return Error(InvalidRecord);
645      SmallVector<Type*, 8> EltTys;
646      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
647        if (Type *T = getTypeByID(Record[i]))
648          EltTys.push_back(T);
649        else
650          break;
651      }
652      if (EltTys.size() != Record.size()-1)
653        return Error(InvalidType);
654      ResultTy = StructType::get(Context, EltTys, Record[0]);
655      break;
656    }
657    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
658      if (ConvertToString(Record, 0, TypeName))
659        return Error(InvalidRecord);
660      continue;
661
662    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
663      if (Record.size() < 1)
664        return Error(InvalidRecord);
665
666      if (NumRecords >= TypeList.size())
667        return Error(InvalidTYPETable);
668
669      // Check to see if this was forward referenced, if so fill in the temp.
670      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
671      if (Res) {
672        Res->setName(TypeName);
673        TypeList[NumRecords] = 0;
674      } else  // Otherwise, create a new struct.
675        Res = StructType::create(Context, TypeName);
676      TypeName.clear();
677
678      SmallVector<Type*, 8> EltTys;
679      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
680        if (Type *T = getTypeByID(Record[i]))
681          EltTys.push_back(T);
682        else
683          break;
684      }
685      if (EltTys.size() != Record.size()-1)
686        return Error(InvalidRecord);
687      Res->setBody(EltTys, Record[0]);
688      ResultTy = Res;
689      break;
690    }
691    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
692      if (Record.size() != 1)
693        return Error(InvalidRecord);
694
695      if (NumRecords >= TypeList.size())
696        return Error(InvalidTYPETable);
697
698      // Check to see if this was forward referenced, if so fill in the temp.
699      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
700      if (Res) {
701        Res->setName(TypeName);
702        TypeList[NumRecords] = 0;
703      } else  // Otherwise, create a new struct with no body.
704        Res = StructType::create(Context, TypeName);
705      TypeName.clear();
706      ResultTy = Res;
707      break;
708    }
709    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
710      if (Record.size() < 2)
711        return Error(InvalidRecord);
712      if ((ResultTy = getTypeByID(Record[1])))
713        ResultTy = ArrayType::get(ResultTy, Record[0]);
714      else
715        return Error(InvalidType);
716      break;
717    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
718      if (Record.size() < 2)
719        return Error(InvalidRecord);
720      if ((ResultTy = getTypeByID(Record[1])))
721        ResultTy = VectorType::get(ResultTy, Record[0]);
722      else
723        return Error(InvalidType);
724      break;
725    }
726
727    if (NumRecords >= TypeList.size())
728      return Error(InvalidTYPETable);
729    assert(ResultTy && "Didn't read a type?");
730    assert(TypeList[NumRecords] == 0 && "Already read type?");
731    TypeList[NumRecords++] = ResultTy;
732  }
733}
734
735// FIXME: Remove in LLVM 3.1
736std::error_code BitcodeReader::ParseOldTypeTable() {
737  if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
738    return Error(MalformedBlock);
739
740  if (!TypeList.empty())
741    return Error(InvalidTYPETable);
742
743
744  // While horrible, we have no good ordering of types in the bc file.  Just
745  // iteratively parse types out of the bc file in multiple passes until we get
746  // them all.  Do this by saving a cursor for the start of the type block.
747  BitstreamCursor StartOfTypeBlockCursor(Stream);
748
749  unsigned NumTypesRead = 0;
750
751  SmallVector<uint64_t, 64> Record;
752RestartScan:
753  unsigned NextTypeID = 0;
754  bool ReadAnyTypes = false;
755
756  // Read all the records for this type table.
757  while (1) {
758    unsigned Code = Stream.ReadCode();
759    if (Code == bitc::END_BLOCK) {
760      if (NextTypeID != TypeList.size())
761        return Error(InvalidTYPETable);
762
763      // If we haven't read all of the types yet, iterate again.
764      if (NumTypesRead != TypeList.size()) {
765        // If we didn't successfully read any types in this pass, then we must
766        // have an unhandled forward reference.
767        if (!ReadAnyTypes)
768          return Error(InvalidTYPETable);
769
770        Stream = StartOfTypeBlockCursor;
771        goto RestartScan;
772      }
773
774      if (Stream.ReadBlockEnd())
775        return Error(InvalidTYPETable);
776      return std::error_code();
777    }
778
779    if (Code == bitc::ENTER_SUBBLOCK) {
780      // No known subblocks, always skip them.
781      Stream.ReadSubBlockID();
782      if (Stream.SkipBlock())
783        return Error(MalformedBlock);
784      continue;
785    }
786
787    if (Code == bitc::DEFINE_ABBREV) {
788      Stream.ReadAbbrevRecord();
789      continue;
790    }
791
792    // Read a record.
793    Record.clear();
794    Type *ResultTy = 0;
795    switch (Stream.readRecord(Code, Record)) {
796    default: return Error(InvalidTYPETable);
797    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
798      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
799      // type list.  This allows us to reserve space.
800      if (Record.size() < 1)
801        return Error(InvalidTYPETable);
802      TypeList.resize(Record[0]);
803      continue;
804    case bitc::TYPE_CODE_VOID:      // VOID
805      ResultTy = Type::getVoidTy(Context);
806      break;
807    case bitc::TYPE_CODE_FLOAT:     // FLOAT
808      ResultTy = Type::getFloatTy(Context);
809      break;
810    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
811      ResultTy = Type::getDoubleTy(Context);
812      break;
813    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
814      ResultTy = Type::getX86_FP80Ty(Context);
815      break;
816    case bitc::TYPE_CODE_FP128:     // FP128
817      ResultTy = Type::getFP128Ty(Context);
818      break;
819    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
820      ResultTy = Type::getPPC_FP128Ty(Context);
821      break;
822    case bitc::TYPE_CODE_LABEL:     // LABEL
823      ResultTy = Type::getLabelTy(Context);
824      break;
825    case bitc::TYPE_CODE_METADATA:  // METADATA
826      ResultTy = Type::getMetadataTy(Context);
827      break;
828    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
829      ResultTy = Type::getX86_MMXTy(Context);
830      break;
831    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
832      if (Record.size() < 1)
833        return Error(InvalidTYPETable);
834      ResultTy = IntegerType::get(Context, Record[0]);
835      break;
836    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
837      if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
838        ResultTy = StructType::create(Context, "");
839      break;
840    case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
841      if (NextTypeID >= TypeList.size()) break;
842      // If we already read it, don't reprocess.
843      if (TypeList[NextTypeID] &&
844          !cast<StructType>(TypeList[NextTypeID])->isOpaque())
845        break;
846
847      // Set a type.
848      if (TypeList[NextTypeID] == 0)
849        TypeList[NextTypeID] = StructType::create(Context, "");
850
851      std::vector<Type*> EltTys;
852      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
853        if (Type *Elt = getTypeByIDOrNull(Record[i]))
854          EltTys.push_back(Elt);
855        else
856          break;
857      }
858
859      if (EltTys.size() != Record.size()-1)
860        break;      // Not all elements are ready.
861
862      cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
863      ResultTy = TypeList[NextTypeID];
864      TypeList[NextTypeID] = 0;
865      break;
866    }
867    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
868      //          [pointee type, address space]
869      if (Record.size() < 1)
870        return Error(InvalidTYPETable);
871      unsigned AddressSpace = 0;
872      if (Record.size() == 2)
873        AddressSpace = Record[1];
874      if ((ResultTy = getTypeByIDOrNull(Record[0])))
875        ResultTy = PointerType::get(ResultTy, AddressSpace);
876      break;
877    }
878    case bitc::TYPE_CODE_FUNCTION_OLD: {
879      // FIXME: attrid is dead, remove it in LLVM 3.0
880      // FUNCTION: [vararg, attrid, retty, paramty x N]
881      if (Record.size() < 3)
882        return Error(InvalidTYPETable);
883      std::vector<Type*> ArgTys;
884      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
885        if (Type *Elt = getTypeByIDOrNull(Record[i]))
886          ArgTys.push_back(Elt);
887        else
888          break;
889      }
890      if (ArgTys.size()+3 != Record.size())
891        break;  // Something was null.
892      if ((ResultTy = getTypeByIDOrNull(Record[2])))
893        ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
894      break;
895    }
896    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
897      if (Record.size() < 2)
898        return Error(InvalidTYPETable);
899      if ((ResultTy = getTypeByIDOrNull(Record[1])))
900        ResultTy = ArrayType::get(ResultTy, Record[0]);
901      break;
902    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
903      if (Record.size() < 2)
904        return Error(InvalidTYPETable);
905      if ((ResultTy = getTypeByIDOrNull(Record[1])))
906        ResultTy = VectorType::get(ResultTy, Record[0]);
907      break;
908    }
909
910    if (NextTypeID >= TypeList.size())
911      return Error(InvalidTYPETable);
912
913    if (ResultTy && TypeList[NextTypeID] == 0) {
914      ++NumTypesRead;
915      ReadAnyTypes = true;
916
917      TypeList[NextTypeID] = ResultTy;
918    }
919
920    ++NextTypeID;
921  }
922}
923
924
925std::error_code BitcodeReader::ParseOldTypeSymbolTable() {
926  if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
927    return Error(MalformedBlock);
928
929  SmallVector<uint64_t, 64> Record;
930
931  // Read all the records for this type table.
932  std::string TypeName;
933  while (1) {
934    unsigned Code = Stream.ReadCode();
935    if (Code == bitc::END_BLOCK) {
936      if (Stream.ReadBlockEnd())
937        return Error(MalformedBlock);
938      return std::error_code();
939    }
940
941    if (Code == bitc::ENTER_SUBBLOCK) {
942      // No known subblocks, always skip them.
943      Stream.ReadSubBlockID();
944      if (Stream.SkipBlock())
945        return Error(MalformedBlock);
946      continue;
947    }
948
949    if (Code == bitc::DEFINE_ABBREV) {
950      Stream.ReadAbbrevRecord();
951      continue;
952    }
953
954    // Read a record.
955    Record.clear();
956    switch (Stream.readRecord(Code, Record)) {
957    default:  // Default behavior: unknown type.
958      break;
959    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
960      if (ConvertToString(Record, 1, TypeName))
961        return Error(InvalidRecord);
962      unsigned TypeID = Record[0];
963      if (TypeID >= TypeList.size())
964        return Error(InvalidRecord);
965
966      // Only apply the type name to a struct type with no name.
967      if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
968        if (!STy->isLiteral() && !STy->hasName())
969          STy->setName(TypeName);
970      TypeName.clear();
971      break;
972    }
973  }
974}
975
976std::error_code BitcodeReader::ParseValueSymbolTable() {
977  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
978    return Error(InvalidRecord);
979
980  SmallVector<uint64_t, 64> Record;
981
982  // Read all the records for this value table.
983  SmallString<128> ValueName;
984  while (1) {
985    unsigned Code = Stream.ReadCode();
986    if (Code == bitc::END_BLOCK) {
987      if (Stream.ReadBlockEnd())
988        return Error(MalformedBlock);
989      return std::error_code();
990    }
991    if (Code == bitc::ENTER_SUBBLOCK) {
992      // No known subblocks, always skip them.
993      Stream.ReadSubBlockID();
994      if (Stream.SkipBlock())
995        return Error(MalformedBlock);
996      continue;
997    }
998
999    if (Code == bitc::DEFINE_ABBREV) {
1000      Stream.ReadAbbrevRecord();
1001      continue;
1002    }
1003
1004    // Read a record.
1005    Record.clear();
1006    switch (Stream.readRecord(Code, Record)) {
1007    default:  // Default behavior: unknown type.
1008      break;
1009    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1010      if (ConvertToString(Record, 1, ValueName))
1011        return Error(InvalidRecord);
1012      unsigned ValueID = Record[0];
1013      if (ValueID >= ValueList.size())
1014        return Error(InvalidRecord);
1015      Value *V = ValueList[ValueID];
1016
1017      V->setName(StringRef(ValueName.data(), ValueName.size()));
1018      ValueName.clear();
1019      break;
1020    }
1021    case bitc::VST_CODE_BBENTRY: {
1022      if (ConvertToString(Record, 1, ValueName))
1023        return Error(InvalidRecord);
1024      BasicBlock *BB = getBasicBlock(Record[0]);
1025      if (BB == 0)
1026        return Error(InvalidRecord);
1027
1028      BB->setName(StringRef(ValueName.data(), ValueName.size()));
1029      ValueName.clear();
1030      break;
1031    }
1032    }
1033  }
1034}
1035
1036std::error_code BitcodeReader::ParseMetadata() {
1037  unsigned NextMDValueNo = MDValueList.size();
1038
1039  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1040    return Error(InvalidRecord);
1041
1042  SmallVector<uint64_t, 64> Record;
1043
1044  // Read all the records.
1045  while (1) {
1046    unsigned Code = Stream.ReadCode();
1047    if (Code == bitc::END_BLOCK) {
1048      if (Stream.ReadBlockEnd())
1049        return Error(MalformedBlock);
1050      return std::error_code();
1051    }
1052
1053    if (Code == bitc::ENTER_SUBBLOCK) {
1054      // No known subblocks, always skip them.
1055      Stream.ReadSubBlockID();
1056      if (Stream.SkipBlock())
1057        return Error(MalformedBlock);
1058      continue;
1059    }
1060
1061    if (Code == bitc::DEFINE_ABBREV) {
1062      Stream.ReadAbbrevRecord();
1063      continue;
1064    }
1065
1066    bool IsFunctionLocal = false;
1067    // Read a record.
1068    Record.clear();
1069    Code = Stream.readRecord(Code, Record);
1070    switch (Code) {
1071    default:  // Default behavior: ignore.
1072      break;
1073    case bitc::METADATA_NAME: {
1074      // Read named of the named metadata.
1075      unsigned NameLength = Record.size();
1076      SmallString<8> Name;
1077      Name.resize(NameLength);
1078      for (unsigned i = 0; i != NameLength; ++i)
1079        Name[i] = Record[i];
1080      Record.clear();
1081      Code = Stream.ReadCode();
1082
1083      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1084      unsigned NextBitCode = Stream.readRecord(Code, Record);
1085      if (NextBitCode == METADATA_NAMED_NODE_2_7) {
1086        LLVM2_7MetadataDetected = true;
1087      } else if (NextBitCode != bitc::METADATA_NAMED_NODE) {
1088        assert(!"Invalid Named Metadata record.");  (void)NextBitCode;
1089      }
1090
1091      // Read named metadata elements.
1092      unsigned Size = Record.size();
1093      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1094      for (unsigned i = 0; i != Size; ++i) {
1095        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1096        if (MD == 0)
1097          return Error(InvalidRecord);
1098        NMD->addOperand(MD);
1099      }
1100
1101      if (LLVM2_7MetadataDetected) {
1102        MDValueList.AssignValue(0, NextMDValueNo++);
1103      }
1104      break;
1105    }
1106    case METADATA_FN_NODE_2_7:
1107    case bitc::METADATA_FN_NODE:
1108      IsFunctionLocal = true;
1109      // fall-through
1110    case METADATA_NODE_2_7:
1111    case bitc::METADATA_NODE: {
1112      if (Code == METADATA_FN_NODE_2_7 ||
1113          Code == METADATA_NODE_2_7) {
1114        LLVM2_7MetadataDetected = true;
1115      }
1116
1117      if (Record.size() % 2 == 1)
1118        return Error(InvalidRecord);
1119
1120      unsigned Size = Record.size();
1121      SmallVector<Value*, 8> Elts;
1122      for (unsigned i = 0; i != Size; i += 2) {
1123        Type *Ty = getTypeByID(Record[i]);
1124        if (!Ty)
1125          return Error(InvalidRecord);
1126        if (Ty->isMetadataTy())
1127          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1128        else if (!Ty->isVoidTy())
1129          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1130        else
1131          Elts.push_back(NULL);
1132      }
1133      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1134      IsFunctionLocal = false;
1135      MDValueList.AssignValue(V, NextMDValueNo++);
1136      break;
1137    }
1138    case bitc::METADATA_STRING: {
1139      unsigned MDStringLength = Record.size();
1140      SmallString<8> String;
1141      String.resize(MDStringLength);
1142      for (unsigned i = 0; i != MDStringLength; ++i)
1143        String[i] = Record[i];
1144      Value *V = MDString::get(Context,
1145                               StringRef(String.data(), String.size()));
1146      MDValueList.AssignValue(V, NextMDValueNo++);
1147      break;
1148    }
1149    case bitc::METADATA_KIND: {
1150      unsigned RecordLength = Record.size();
1151      if (Record.empty() || RecordLength < 2)
1152        return Error(InvalidRecord);
1153      SmallString<8> Name;
1154      Name.resize(RecordLength-1);
1155      unsigned Kind = Record[0];
1156      for (unsigned i = 1; i != RecordLength; ++i)
1157        Name[i-1] = Record[i];
1158
1159      unsigned NewKind = TheModule->getMDKindID(Name.str());
1160      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1161        return Error(ConflictingMETADATA_KINDRecords);
1162      break;
1163    }
1164    }
1165  }
1166}
1167
1168/// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1169/// the LSB for dense VBR encoding.
1170uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1171  if ((V & 1) == 0)
1172    return V >> 1;
1173  if (V != 1)
1174    return -(V >> 1);
1175  // There is no such thing as -0 with integers.  "-0" really means MININT.
1176  return 1ULL << 63;
1177}
1178
1179// FIXME: Delete this in LLVM 4.0 and just assert that the aliasee is a
1180// GlobalObject.
1181static GlobalObject &
1182getGlobalObjectInExpr(const DenseMap<GlobalAlias *, Constant *> &Map,
1183                      Constant &C) {
1184  auto *GO = dyn_cast<GlobalObject>(&C);
1185  if (GO)
1186    return *GO;
1187
1188  auto *GA = dyn_cast<GlobalAlias>(&C);
1189  if (GA)
1190    return getGlobalObjectInExpr(Map, *Map.find(GA)->second);
1191
1192  auto &CE = cast<ConstantExpr>(C);
1193  assert(CE.getOpcode() == Instruction::BitCast ||
1194         CE.getOpcode() == Instruction::GetElementPtr ||
1195         CE.getOpcode() == Instruction::AddrSpaceCast);
1196  if (CE.getOpcode() == Instruction::GetElementPtr)
1197    assert(cast<GEPOperator>(CE).hasAllZeroIndices());
1198  return getGlobalObjectInExpr(Map, *CE.getOperand(0));
1199}
1200
1201/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1202/// values and aliases that we can.
1203std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
1204  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1205  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1206
1207  GlobalInitWorklist.swap(GlobalInits);
1208  AliasInitWorklist.swap(AliasInits);
1209
1210  while (!GlobalInitWorklist.empty()) {
1211    unsigned ValID = GlobalInitWorklist.back().second;
1212    if (ValID >= ValueList.size()) {
1213      // Not ready to resolve this yet, it requires something later in the file.
1214      GlobalInits.push_back(GlobalInitWorklist.back());
1215    } else {
1216      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1217        GlobalInitWorklist.back().first->setInitializer(C);
1218      else
1219        return Error(ExpectedConstant);
1220    }
1221    GlobalInitWorklist.pop_back();
1222  }
1223
1224  // FIXME: Delete this in LLVM 4.0
1225  // Older versions of llvm could write an alias pointing to another. We cannot
1226  // construct those aliases, so we first collect an alias to aliasee expression
1227  // and then compute the actual aliasee.
1228  DenseMap<GlobalAlias *, Constant *> AliasInit;
1229
1230  while (!AliasInitWorklist.empty()) {
1231    unsigned ValID = AliasInitWorklist.back().second;
1232    if (ValID >= ValueList.size()) {
1233      AliasInits.push_back(AliasInitWorklist.back());
1234    } else {
1235      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1236        AliasInit.insert(std::make_pair(AliasInitWorklist.back().first, C));
1237      else
1238        return Error(ExpectedConstant);
1239    }
1240    AliasInitWorklist.pop_back();
1241  }
1242
1243  for (auto &Pair : AliasInit) {
1244    auto &GO = getGlobalObjectInExpr(AliasInit, *Pair.second);
1245    Pair.first->setAliasee(&GO);
1246  }
1247
1248  return std::error_code();
1249}
1250
1251static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1252  SmallVector<uint64_t, 8> Words(Vals.size());
1253  std::transform(Vals.begin(), Vals.end(), Words.begin(),
1254                 BitcodeReader::decodeSignRotatedValue);
1255
1256  return APInt(TypeBits, Words);
1257}
1258
1259std::error_code BitcodeReader::ParseConstants() {
1260  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1261    return Error(InvalidRecord);
1262
1263  SmallVector<uint64_t, 64> Record;
1264
1265  // Read all the records for this value table.
1266  Type *CurTy = Type::getInt32Ty(Context);
1267  unsigned NextCstNo = ValueList.size();
1268  while (1) {
1269    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1270
1271    switch (Entry.Kind) {
1272    case BitstreamEntry::SubBlock: // Handled for us already.
1273    case BitstreamEntry::Error:
1274      return Error(MalformedBlock);
1275    case BitstreamEntry::EndBlock:
1276      if (NextCstNo != ValueList.size())
1277        return Error(InvalidConstantReference);
1278
1279      // Once all the constants have been read, go through and resolve forward
1280      // references.
1281      ValueList.ResolveConstantForwardRefs();
1282      return std::error_code();
1283    case BitstreamEntry::Record:
1284      // The interesting case.
1285      break;
1286    }
1287
1288    // Read a record.
1289    Record.clear();
1290    Value *V = 0;
1291    unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1292    switch (BitCode) {
1293    default:  // Default behavior: unknown constant
1294    case bitc::CST_CODE_UNDEF:     // UNDEF
1295      V = UndefValue::get(CurTy);
1296      break;
1297    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1298      if (Record.empty())
1299        return Error(InvalidRecord);
1300      if (Record[0] >= TypeList.size())
1301        return Error(InvalidRecord);
1302      CurTy = TypeList[Record[0]];
1303      continue;  // Skip the ValueList manipulation.
1304    case bitc::CST_CODE_NULL:      // NULL
1305      V = Constant::getNullValue(CurTy);
1306      break;
1307    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1308      if (!CurTy->isIntegerTy() || Record.empty())
1309        return Error(InvalidRecord);
1310      V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1311      break;
1312    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1313      if (!CurTy->isIntegerTy() || Record.empty())
1314        return Error(InvalidRecord);
1315
1316      APInt VInt = ReadWideAPInt(Record,
1317                                 cast<IntegerType>(CurTy)->getBitWidth());
1318      V = ConstantInt::get(Context, VInt);
1319
1320      break;
1321    }
1322    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1323      if (Record.empty())
1324        return Error(InvalidRecord);
1325      if (CurTy->isHalfTy())
1326        V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1327                                             APInt(16, (uint16_t)Record[0])));
1328      else if (CurTy->isFloatTy())
1329        V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1330                                             APInt(32, (uint32_t)Record[0])));
1331      else if (CurTy->isDoubleTy())
1332        V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1333                                             APInt(64, Record[0])));
1334      else if (CurTy->isX86_FP80Ty()) {
1335        // Bits are not stored the same way as a normal i80 APInt, compensate.
1336        uint64_t Rearrange[2];
1337        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1338        Rearrange[1] = Record[0] >> 48;
1339        V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1340                                             APInt(80, Rearrange)));
1341      } else if (CurTy->isFP128Ty())
1342        V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1343                                             APInt(128, Record)));
1344      else if (CurTy->isPPC_FP128Ty())
1345        V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1346                                             APInt(128, Record)));
1347      else
1348        V = UndefValue::get(CurTy);
1349      break;
1350    }
1351
1352    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1353      if (Record.empty())
1354        return Error(InvalidRecord);
1355
1356      unsigned Size = Record.size();
1357      SmallVector<Constant*, 16> Elts;
1358
1359      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1360        for (unsigned i = 0; i != Size; ++i)
1361          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1362                                                     STy->getElementType(i)));
1363        V = ConstantStruct::get(STy, Elts);
1364      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1365        Type *EltTy = ATy->getElementType();
1366        for (unsigned i = 0; i != Size; ++i)
1367          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1368        V = ConstantArray::get(ATy, Elts);
1369      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1370        Type *EltTy = VTy->getElementType();
1371        for (unsigned i = 0; i != Size; ++i)
1372          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1373        V = ConstantVector::get(Elts);
1374      } else {
1375        V = UndefValue::get(CurTy);
1376      }
1377      break;
1378    }
1379    case bitc::CST_CODE_STRING: { // STRING: [values]
1380      if (Record.empty())
1381        return Error(InvalidRecord);
1382
1383      ArrayType *ATy = cast<ArrayType>(CurTy);
1384      Type *EltTy = ATy->getElementType();
1385
1386      unsigned Size = Record.size();
1387      std::vector<Constant*> Elts;
1388      for (unsigned i = 0; i != Size; ++i)
1389        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1390      V = ConstantArray::get(ATy, Elts);
1391      break;
1392    }
1393    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1394      if (Record.empty())
1395        return Error(InvalidRecord);
1396
1397      ArrayType *ATy = cast<ArrayType>(CurTy);
1398      Type *EltTy = ATy->getElementType();
1399
1400      unsigned Size = Record.size();
1401      std::vector<Constant*> Elts;
1402      for (unsigned i = 0; i != Size; ++i)
1403        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1404      Elts.push_back(Constant::getNullValue(EltTy));
1405      V = ConstantArray::get(ATy, Elts);
1406      break;
1407    }
1408    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1409      if (Record.size() < 3)
1410        return Error(InvalidRecord);
1411      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1412      if (Opc < 0) {
1413        V = UndefValue::get(CurTy);  // Unknown binop.
1414      } else {
1415        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1416        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1417        unsigned Flags = 0;
1418        if (Record.size() >= 4) {
1419          if (Opc == Instruction::Add ||
1420              Opc == Instruction::Sub ||
1421              Opc == Instruction::Mul ||
1422              Opc == Instruction::Shl) {
1423            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1424              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1425            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1426              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1427          } else if (Opc == Instruction::SDiv ||
1428                     Opc == Instruction::UDiv ||
1429                     Opc == Instruction::LShr ||
1430                     Opc == Instruction::AShr) {
1431            if (Record[3] & (1 << bitc::PEO_EXACT))
1432              Flags |= SDivOperator::IsExact;
1433          }
1434        }
1435        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1436      }
1437      break;
1438    }
1439    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1440      if (Record.size() < 3)
1441        return Error(InvalidRecord);
1442      int Opc = GetDecodedCastOpcode(Record[0]);
1443      if (Opc < 0) {
1444        V = UndefValue::get(CurTy);  // Unknown cast.
1445      } else {
1446        Type *OpTy = getTypeByID(Record[1]);
1447        if (!OpTy)
1448          return Error(InvalidRecord);
1449        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1450        V = ConstantExpr::getCast(Opc, Op, CurTy);
1451      }
1452      break;
1453    }
1454    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1455    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1456      if (Record.size() & 1)
1457        return Error(InvalidRecord);
1458      SmallVector<Constant*, 16> Elts;
1459      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1460        Type *ElTy = getTypeByID(Record[i]);
1461        if (!ElTy)
1462          return Error(InvalidRecord);
1463        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1464      }
1465      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1466        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0],
1467          llvm::ArrayRef<llvm::Constant*>(&Elts[1], Elts.size() - 1));
1468      else
1469        V = ConstantExpr::getGetElementPtr(Elts[0],
1470          llvm::ArrayRef<llvm::Constant*>(&Elts[1], Elts.size() - 1));
1471      break;
1472    }
1473    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1474      if (Record.size() < 3)
1475        return Error(InvalidRecord);
1476      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1477                                                              Type::getInt1Ty(Context)),
1478                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1479                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1480      break;
1481    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1482      if (Record.size() < 3)
1483        return Error(InvalidRecord);
1484      VectorType *OpTy =
1485        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1486      if (OpTy == 0)
1487        return Error(InvalidRecord);
1488      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1489      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1490      V = ConstantExpr::getExtractElement(Op0, Op1);
1491      break;
1492    }
1493    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1494      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1495      if (Record.size() < 3 || OpTy == 0)
1496        return Error(InvalidRecord);
1497      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1498      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1499                                                  OpTy->getElementType());
1500      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1501      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1502      break;
1503    }
1504    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1505      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1506      if (Record.size() < 3 || OpTy == 0)
1507        return Error(InvalidRecord);
1508      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1509      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1510      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1511                                                 OpTy->getNumElements());
1512      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1513      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1514      break;
1515    }
1516    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1517      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1518      VectorType *OpTy =
1519        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1520      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1521        return Error(InvalidRecord);
1522      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1523      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1524      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1525                                                 RTy->getNumElements());
1526      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1527      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1528      break;
1529    }
1530    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1531      if (Record.size() < 4)
1532        return Error(InvalidRecord);
1533      Type *OpTy = getTypeByID(Record[0]);
1534      if (OpTy == 0)
1535        return Error(InvalidRecord);
1536      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1537      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1538
1539      if (OpTy->isFPOrFPVectorTy())
1540        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1541      else
1542        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1543      break;
1544    }
1545    case bitc::CST_CODE_INLINEASM: {
1546      if (Record.size() < 2)
1547        return Error(InvalidRecord);
1548      std::string AsmStr, ConstrStr;
1549      bool HasSideEffects = Record[0] & 1;
1550      bool IsAlignStack = Record[0] >> 1;
1551      unsigned AsmStrSize = Record[1];
1552      if (2+AsmStrSize >= Record.size())
1553        return Error(InvalidRecord);
1554      unsigned ConstStrSize = Record[2+AsmStrSize];
1555      if (3+AsmStrSize+ConstStrSize > Record.size())
1556        return Error(InvalidRecord);
1557
1558      for (unsigned i = 0; i != AsmStrSize; ++i)
1559        AsmStr += (char)Record[2+i];
1560      for (unsigned i = 0; i != ConstStrSize; ++i)
1561        ConstrStr += (char)Record[3+AsmStrSize+i];
1562      PointerType *PTy = cast<PointerType>(CurTy);
1563      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1564                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1565      break;
1566    }
1567    case bitc::CST_CODE_BLOCKADDRESS:{
1568      if (Record.size() < 3)
1569        return Error(InvalidRecord);
1570      Type *FnTy = getTypeByID(Record[0]);
1571      if (FnTy == 0)
1572        return Error(InvalidRecord);
1573      Function *Fn =
1574        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1575      if (Fn == 0)
1576        return Error(InvalidRecord);
1577
1578      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1579                                                  Type::getInt8Ty(Context),
1580                                            false, GlobalValue::InternalLinkage,
1581                                                  0, "");
1582      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1583      V = FwdRef;
1584      break;
1585    }
1586    }
1587
1588    ValueList.AssignValue(V, NextCstNo);
1589    ++NextCstNo;
1590  }
1591
1592  if (NextCstNo != ValueList.size())
1593    return Error(InvalidConstantReference);
1594
1595  if (Stream.ReadBlockEnd())
1596    return Error(ExpectedConstant);
1597
1598  // Once all the constants have been read, go through and resolve forward
1599  // references.
1600  ValueList.ResolveConstantForwardRefs();
1601  return std::error_code();
1602}
1603
1604/// RememberAndSkipFunctionBody - When we see the block for a function body,
1605/// remember where it is and then skip it.  This lets us lazily deserialize the
1606/// functions.
1607std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
1608  // Get the function we are talking about.
1609  if (FunctionsWithBodies.empty())
1610    return Error(InsufficientFunctionProtos);
1611
1612  Function *Fn = FunctionsWithBodies.back();
1613  FunctionsWithBodies.pop_back();
1614
1615  // Save the current stream state.
1616  uint64_t CurBit = Stream.GetCurrentBitNo();
1617  DeferredFunctionInfo[Fn] = CurBit;
1618
1619  // Skip over the function block for now.
1620  if (Stream.SkipBlock())
1621    return Error(InvalidRecord);
1622  return std::error_code();
1623}
1624
1625std::error_code BitcodeReader::GlobalCleanup() {
1626  // Patch the initializers for globals and aliases up.
1627  ResolveGlobalAndAliasInits();
1628  if (!GlobalInits.empty() || !AliasInits.empty())
1629    return Error(MalformedGlobalInitializerSet);
1630
1631  // Look for intrinsic functions which need to be upgraded at some point
1632  for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1633       FI != FE; ++FI) {
1634    Function *NewFn;
1635    if (UpgradeIntrinsicFunction(FI, NewFn))
1636      UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1637  }
1638
1639  // Look for global variables which need to be renamed.
1640  for (Module::global_iterator
1641         GI = TheModule->global_begin(), GE = TheModule->global_end();
1642       GI != GE; ++GI)
1643    UpgradeGlobalVariable(GI);
1644  // Force deallocation of memory for these vectors to favor the client that
1645  // want lazy deserialization.
1646  std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1647  std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1648  return std::error_code();
1649}
1650
1651std::error_code BitcodeReader::ParseModule(bool Resume) {
1652  if (Resume)
1653    Stream.JumpToBit(NextUnreadBit);
1654  else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1655    return Error(InvalidRecord);
1656
1657  SmallVector<uint64_t, 64> Record;
1658  std::vector<std::string> SectionTable;
1659  std::vector<std::string> GCTable;
1660
1661  // Read all the records for this module.
1662  while (!Stream.AtEndOfStream()) {
1663    unsigned Code = Stream.ReadCode();
1664    if (Code == bitc::END_BLOCK) {
1665      if (Stream.ReadBlockEnd())
1666        return Error(MalformedBlock);
1667
1668      // Patch the initializers for globals and aliases up.
1669      ResolveGlobalAndAliasInits();
1670      if (!GlobalInits.empty() || !AliasInits.empty())
1671        return Error(MalformedGlobalInitializerSet);
1672      if (!FunctionsWithBodies.empty())
1673        return Error(InsufficientFunctionProtos);
1674
1675      // Look for intrinsic functions which need to be upgraded at some point
1676      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1677           FI != FE; ++FI) {
1678        Function* NewFn;
1679        if (UpgradeIntrinsicFunction(FI, NewFn))
1680          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1681      }
1682
1683      // Look for global variables which need to be renamed.
1684      for (Module::global_iterator
1685             GI = TheModule->global_begin(), GE = TheModule->global_end();
1686           GI != GE; ++GI)
1687        UpgradeGlobalVariable(GI);
1688
1689      // Force deallocation of memory for these vectors to favor the client that
1690      // want lazy deserialization.
1691      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1692      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1693      std::vector<Function*>().swap(FunctionsWithBodies);
1694      return std::error_code();
1695    }
1696
1697    if (Code == bitc::ENTER_SUBBLOCK) {
1698      switch (Stream.ReadSubBlockID()) {
1699      default:  // Skip unknown content.
1700        if (Stream.SkipBlock())
1701          return Error(InvalidRecord);
1702        break;
1703      case bitc::BLOCKINFO_BLOCK_ID:
1704        if (Stream.ReadBlockInfoBlock())
1705          return Error(MalformedBlock);
1706        break;
1707      case bitc::PARAMATTR_BLOCK_ID:
1708        if (std::error_code EC = ParseAttributeBlock())
1709          return EC;
1710        break;
1711      case bitc::TYPE_BLOCK_ID_NEW:
1712        if (std::error_code EC = ParseTypeTable())
1713          return EC;
1714        break;
1715      case TYPE_BLOCK_ID_OLD_3_0:
1716        if (std::error_code EC = ParseOldTypeTable())
1717          return EC;
1718        break;
1719      case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
1720        if (std::error_code EC = ParseOldTypeSymbolTable())
1721          return EC;
1722        break;
1723      case bitc::VALUE_SYMTAB_BLOCK_ID:
1724        if (std::error_code EC = ParseValueSymbolTable())
1725          return EC;
1726        SeenValueSymbolTable = true;
1727        break;
1728      case bitc::CONSTANTS_BLOCK_ID:
1729        if (std::error_code EC = ParseConstants())
1730          return EC;
1731        if (std::error_code EC = ResolveGlobalAndAliasInits())
1732          return EC;
1733        break;
1734      case bitc::METADATA_BLOCK_ID:
1735        if (std::error_code EC = ParseMetadata())
1736          return EC;
1737        break;
1738      case bitc::FUNCTION_BLOCK_ID:
1739        // If this is the first function body we've seen, reverse the
1740        // FunctionsWithBodies list.
1741        if (!SeenFirstFunctionBody) {
1742          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1743          if (std::error_code EC = GlobalCleanup())
1744            return EC;
1745          SeenFirstFunctionBody = true;
1746        }
1747
1748        if (std::error_code EC = RememberAndSkipFunctionBody())
1749          return EC;
1750        // For streaming bitcode, suspend parsing when we reach the function
1751        // bodies. Subsequent materialization calls will resume it when
1752        // necessary. For streaming, the function bodies must be at the end of
1753        // the bitcode. If the bitcode file is old, the symbol table will be
1754        // at the end instead and will not have been seen yet. In this case,
1755        // just finish the parse now.
1756        if (LazyStreamer && SeenValueSymbolTable) {
1757          NextUnreadBit = Stream.GetCurrentBitNo();
1758          return std::error_code();
1759        }
1760        break;
1761        break;
1762      }
1763      continue;
1764    }
1765
1766    if (Code == bitc::DEFINE_ABBREV) {
1767      Stream.ReadAbbrevRecord();
1768      continue;
1769    }
1770
1771    // Read a record.
1772    switch (Stream.readRecord(Code, Record)) {
1773    default: break;  // Default behavior, ignore unknown content.
1774    case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
1775      if (Record.size() < 1)
1776        return Error(InvalidRecord);
1777      // Only version #0 is supported so far.
1778      if (Record[0] != 0)
1779        return Error(InvalidValue);
1780      break;
1781    }
1782    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1783      std::string S;
1784      if (ConvertToString(Record, 0, S))
1785        return Error(InvalidRecord);
1786      TheModule->setTargetTriple(S);
1787      break;
1788    }
1789    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1790      std::string S;
1791      if (ConvertToString(Record, 0, S))
1792        return Error(InvalidRecord);
1793      TheModule->setDataLayout(S);
1794      break;
1795    }
1796    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1797      std::string S;
1798      if (ConvertToString(Record, 0, S))
1799        return Error(InvalidRecord);
1800      TheModule->setModuleInlineAsm(S);
1801      break;
1802    }
1803    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1804      std::string S;
1805      if (ConvertToString(Record, 0, S))
1806        return Error(InvalidRecord);
1807      // ANDROID: Ignore value, since we never used it anyways.
1808      // TheModule->addLibrary(S);
1809      break;
1810    }
1811    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1812      std::string S;
1813      if (ConvertToString(Record, 0, S))
1814        return Error(InvalidRecord);
1815      SectionTable.push_back(S);
1816      break;
1817    }
1818    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1819      std::string S;
1820      if (ConvertToString(Record, 0, S))
1821        return Error(InvalidRecord);
1822      GCTable.push_back(S);
1823      break;
1824    }
1825    // GLOBALVAR: [pointer type, isconst, initid,
1826    //             linkage, alignment, section, visibility, threadlocal,
1827    //             unnamed_addr]
1828    case bitc::MODULE_CODE_GLOBALVAR: {
1829      if (Record.size() < 6)
1830        return Error(InvalidRecord);
1831      Type *Ty = getTypeByID(Record[0]);
1832      if (!Ty)
1833        return Error(InvalidRecord);
1834      if (!Ty->isPointerTy())
1835        return Error(InvalidTypeForValue);
1836      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1837      Ty = cast<PointerType>(Ty)->getElementType();
1838
1839      bool isConstant = Record[1];
1840      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1841      unsigned Alignment = (1 << Record[4]) >> 1;
1842      std::string Section;
1843      if (Record[5]) {
1844        if (Record[5]-1 >= SectionTable.size())
1845          return Error(InvalidID);
1846        Section = SectionTable[Record[5]-1];
1847      }
1848      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1849      if (Record.size() > 6)
1850        Visibility = GetDecodedVisibility(Record[6]);
1851
1852      GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
1853      if (Record.size() > 7)
1854        TLM = GetDecodedThreadLocalMode(Record[7]);
1855
1856      bool UnnamedAddr = false;
1857      if (Record.size() > 8)
1858        UnnamedAddr = Record[8];
1859
1860      GlobalVariable *NewGV =
1861        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1862                           TLM, AddressSpace);
1863      NewGV->setAlignment(Alignment);
1864      if (!Section.empty())
1865        NewGV->setSection(Section);
1866      NewGV->setVisibility(Visibility);
1867      NewGV->setUnnamedAddr(UnnamedAddr);
1868
1869      ValueList.push_back(NewGV);
1870
1871      // Remember which value to use for the global initializer.
1872      if (unsigned InitID = Record[2])
1873        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1874      break;
1875    }
1876    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1877    //             alignment, section, visibility, gc, unnamed_addr]
1878    case bitc::MODULE_CODE_FUNCTION: {
1879      if (Record.size() < 8)
1880        return Error(InvalidRecord);
1881      Type *Ty = getTypeByID(Record[0]);
1882      if (!Ty)
1883        return Error(InvalidRecord);
1884      if (!Ty->isPointerTy())
1885        return Error(InvalidTypeForValue);
1886      FunctionType *FTy =
1887        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1888      if (!FTy)
1889        return Error(InvalidTypeForValue);
1890
1891      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1892                                        "", TheModule);
1893
1894      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1895      bool isProto = Record[2];
1896      Func->setLinkage(GetDecodedLinkage(Record[3]));
1897      Func->setAttributes(getAttributes(Record[4]));
1898
1899      Func->setAlignment((1 << Record[5]) >> 1);
1900      if (Record[6]) {
1901        if (Record[6]-1 >= SectionTable.size())
1902          return Error(InvalidID);
1903        Func->setSection(SectionTable[Record[6]-1]);
1904      }
1905      Func->setVisibility(GetDecodedVisibility(Record[7]));
1906      if (Record.size() > 8 && Record[8]) {
1907        if (Record[8]-1 > GCTable.size())
1908          return Error(InvalidID);
1909        Func->setGC(GCTable[Record[8]-1].c_str());
1910      }
1911      bool UnnamedAddr = false;
1912      if (Record.size() > 9)
1913        UnnamedAddr = Record[9];
1914      Func->setUnnamedAddr(UnnamedAddr);
1915      ValueList.push_back(Func);
1916
1917      // If this is a function with a body, remember the prototype we are
1918      // creating now, so that we can match up the body with them later.
1919      if (!isProto) {
1920        FunctionsWithBodies.push_back(Func);
1921        if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
1922      }
1923      break;
1924    }
1925    // ALIAS: [alias type, aliasee val#, linkage]
1926    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1927    case bitc::MODULE_CODE_ALIAS: {
1928      if (Record.size() < 3)
1929        return Error(InvalidRecord);
1930      Type *Ty = getTypeByID(Record[0]);
1931      if (!Ty)
1932        return Error(InvalidRecord);
1933      auto *PTy = dyn_cast<PointerType>(Ty);
1934      if (!PTy)
1935        return Error(InvalidTypeForValue);
1936
1937      GlobalAlias *NewGA =
1938          GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
1939                              GetDecodedLinkage(Record[2]), "", 0, TheModule);
1940      // Old bitcode files didn't have visibility field.
1941      if (Record.size() > 3)
1942        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1943      ValueList.push_back(NewGA);
1944      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1945      break;
1946    }
1947    /// MODULE_CODE_PURGEVALS: [numvals]
1948    case bitc::MODULE_CODE_PURGEVALS:
1949      // Trim down the value list to the specified size.
1950      if (Record.size() < 1 || Record[0] > ValueList.size())
1951        return Error(InvalidRecord);
1952      ValueList.shrinkTo(Record[0]);
1953      break;
1954    }
1955    Record.clear();
1956  }
1957
1958  return Error(BitcodeStreamInvalidSize);
1959}
1960
1961std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
1962  TheModule = 0;
1963
1964  if (std::error_code EC = InitStream())
1965    return EC;
1966
1967  // Sniff for the signature.
1968  if (Stream.Read(8) != 'B' ||
1969      Stream.Read(8) != 'C' ||
1970      Stream.Read(4) != 0x0 ||
1971      Stream.Read(4) != 0xC ||
1972      Stream.Read(4) != 0xE ||
1973      Stream.Read(4) != 0xD)
1974    return Error(InvalidBitcodeSignature);
1975
1976  // We expect a number of well-defined blocks, though we don't necessarily
1977  // need to understand them all.
1978  while (1) {
1979    if (Stream.AtEndOfStream())
1980      return std::error_code();
1981
1982    BitstreamEntry Entry =
1983      Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
1984
1985    switch (Entry.Kind) {
1986    case BitstreamEntry::Error:
1987      return Error(MalformedBlock);
1988    case BitstreamEntry::EndBlock:
1989      return std::error_code();
1990
1991    case BitstreamEntry::SubBlock:
1992      switch (Entry.ID) {
1993      case bitc::BLOCKINFO_BLOCK_ID:
1994        if (Stream.ReadBlockInfoBlock())
1995          return Error(MalformedBlock);
1996        break;
1997      case bitc::MODULE_BLOCK_ID:
1998        // Reject multiple MODULE_BLOCK's in a single bitstream.
1999        if (TheModule)
2000          return Error(InvalidMultipleBlocks);
2001        TheModule = M;
2002        if (std::error_code EC = ParseModule(false))
2003          return EC;
2004        if (LazyStreamer)
2005          return std::error_code();
2006        break;
2007      default:
2008        if (Stream.SkipBlock())
2009          return Error(InvalidRecord);
2010        break;
2011      }
2012      continue;
2013    case BitstreamEntry::Record:
2014      // There should be no records in the top-level of blocks.
2015
2016      // The ranlib in Xcode 4 will align archive members by appending newlines
2017      // to the end of them. If this file size is a multiple of 4 but not 8, we
2018      // have to read and ignore these final 4 bytes :-(
2019      if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
2020          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
2021          Stream.AtEndOfStream())
2022        return std::error_code();
2023
2024      return Error(InvalidRecord);
2025    }
2026  }
2027}
2028
2029std::error_code BitcodeReader::ParseModuleTriple(std::string &Triple) {
2030  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2031    return Error(InvalidRecord);
2032
2033  SmallVector<uint64_t, 64> Record;
2034
2035  // Read all the records for this module.
2036  while (1) {
2037    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2038
2039    switch (Entry.Kind) {
2040    case BitstreamEntry::SubBlock: // Handled for us already.
2041    case BitstreamEntry::Error:
2042      return Error(MalformedBlock);
2043    case BitstreamEntry::EndBlock:
2044      return std::error_code();
2045    case BitstreamEntry::Record:
2046      // The interesting case.
2047      break;
2048    }
2049
2050    // Read a record.
2051    switch (Stream.readRecord(Entry.ID, Record)) {
2052    default: break;  // Default behavior, ignore unknown content.
2053    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
2054      if (Record.size() < 1)
2055        return Error(InvalidRecord);
2056      // Only version #0 is supported so far.
2057      if (Record[0] != 0)
2058        return Error(InvalidRecord);
2059      break;
2060    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2061      std::string S;
2062      if (ConvertToString(Record, 0, S))
2063        return Error(InvalidRecord);
2064      Triple = S;
2065      break;
2066    }
2067    }
2068    Record.clear();
2069  }
2070
2071  return Error(BitcodeStreamInvalidSize);
2072}
2073
2074std::error_code BitcodeReader::ParseTriple(std::string &Triple) {
2075  if (std::error_code EC = InitStream())
2076    return EC;
2077
2078  // Sniff for the signature.
2079  if (Stream.Read(8) != 'B' ||
2080      Stream.Read(8) != 'C' ||
2081      Stream.Read(4) != 0x0 ||
2082      Stream.Read(4) != 0xC ||
2083      Stream.Read(4) != 0xE ||
2084      Stream.Read(4) != 0xD)
2085    return Error(InvalidBitcodeSignature);
2086
2087  // We expect a number of well-defined blocks, though we don't necessarily
2088  // need to understand them all.
2089  while (1) {
2090    BitstreamEntry Entry = Stream.advance();
2091
2092    switch (Entry.Kind) {
2093    case BitstreamEntry::Error:
2094      return Error(MalformedBlock);
2095    case BitstreamEntry::EndBlock:
2096      return std::error_code();
2097
2098    case BitstreamEntry::SubBlock:
2099      if (Entry.ID == bitc::MODULE_BLOCK_ID)
2100        return ParseModuleTriple(Triple);
2101
2102      // Ignore other sub-blocks.
2103      if (Stream.SkipBlock())
2104        return Error(MalformedBlock);
2105      continue;
2106
2107    case BitstreamEntry::Record:
2108      Stream.skipRecord(Entry.ID);
2109      continue;
2110    }
2111  }
2112}
2113
2114/// ParseMetadataAttachment - Parse metadata attachments.
2115std::error_code BitcodeReader::ParseMetadataAttachment() {
2116  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2117    return Error(InvalidRecord);
2118
2119  SmallVector<uint64_t, 64> Record;
2120  while (1) {
2121    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2122
2123    switch (Entry.Kind) {
2124    case BitstreamEntry::SubBlock: // Handled for us already.
2125    case BitstreamEntry::Error:
2126      return Error(MalformedBlock);
2127    case BitstreamEntry::EndBlock:
2128      return std::error_code();
2129    case BitstreamEntry::Record:
2130      // The interesting case.
2131      break;
2132    }
2133
2134    // Read a metadata attachment record.
2135    Record.clear();
2136    switch (Stream.readRecord(Entry.ID, Record)) {
2137    default:  // Default behavior: ignore.
2138      break;
2139    case METADATA_ATTACHMENT_2_7:
2140      LLVM2_7MetadataDetected = true;
2141    case bitc::METADATA_ATTACHMENT: {
2142      unsigned RecordLength = Record.size();
2143      if (Record.empty() || (RecordLength - 1) % 2 == 1)
2144        return Error(InvalidRecord);
2145      Instruction *Inst = InstructionList[Record[0]];
2146      for (unsigned i = 1; i != RecordLength; i = i+2) {
2147        unsigned Kind = Record[i];
2148        DenseMap<unsigned, unsigned>::iterator I =
2149          MDKindMap.find(Kind);
2150        if (I == MDKindMap.end())
2151          return Error(InvalidID);
2152        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2153        Inst->setMetadata(I->second, cast<MDNode>(Node));
2154      }
2155      break;
2156    }
2157    }
2158  }
2159}
2160
2161/// ParseFunctionBody - Lazily parse the specified function body block.
2162std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
2163  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2164    return Error(InvalidRecord);
2165
2166  InstructionList.clear();
2167  unsigned ModuleValueListSize = ValueList.size();
2168  unsigned ModuleMDValueListSize = MDValueList.size();
2169
2170  // Add all the function arguments to the value table.
2171  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2172    ValueList.push_back(I);
2173
2174  unsigned NextValueNo = ValueList.size();
2175  BasicBlock *CurBB = 0;
2176  unsigned CurBBNo = 0;
2177
2178  DebugLoc LastLoc;
2179
2180  // Read all the records.
2181  SmallVector<uint64_t, 64> Record;
2182  while (1) {
2183    unsigned Code = Stream.ReadCode();
2184    if (Code == bitc::END_BLOCK) {
2185      if (Stream.ReadBlockEnd())
2186        return Error(MalformedBlock);
2187      break;
2188    }
2189
2190    if (Code == bitc::ENTER_SUBBLOCK) {
2191      switch (Stream.ReadSubBlockID()) {
2192      default:  // Skip unknown content.
2193        if (Stream.SkipBlock())
2194          return Error(InvalidRecord);
2195        break;
2196      case bitc::CONSTANTS_BLOCK_ID:
2197        if (std::error_code EC = ParseConstants())
2198          return EC;
2199        NextValueNo = ValueList.size();
2200        break;
2201      case bitc::VALUE_SYMTAB_BLOCK_ID:
2202        if (std::error_code EC = ParseValueSymbolTable())
2203          return EC;
2204        break;
2205      case bitc::METADATA_ATTACHMENT_ID:
2206        if (std::error_code EC = ParseMetadataAttachment())
2207          return EC;
2208        break;
2209      case bitc::METADATA_BLOCK_ID:
2210        if (std::error_code EC = ParseMetadata())
2211          return EC;
2212        break;
2213      }
2214      continue;
2215    }
2216
2217    if (Code == bitc::DEFINE_ABBREV) {
2218      Stream.ReadAbbrevRecord();
2219      continue;
2220    }
2221
2222    // Read a record.
2223    Record.clear();
2224    Instruction *I = 0;
2225    unsigned BitCode = Stream.readRecord(Code, Record);
2226    switch (BitCode) {
2227    default: // Default behavior: reject
2228      return Error(InvalidValue);
2229    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2230      if (Record.size() < 1 || Record[0] == 0)
2231        return Error(InvalidRecord);
2232      // Create all the basic blocks for the function.
2233      FunctionBBs.resize(Record[0]);
2234      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2235        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2236      CurBB = FunctionBBs[0];
2237      continue;
2238
2239    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2240      // This record indicates that the last instruction is at the same
2241      // location as the previous instruction with a location.
2242      I = 0;
2243
2244      // Get the last instruction emitted.
2245      if (CurBB && !CurBB->empty())
2246        I = &CurBB->back();
2247      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2248               !FunctionBBs[CurBBNo-1]->empty())
2249        I = &FunctionBBs[CurBBNo-1]->back();
2250
2251      if (I == 0)
2252        return Error(InvalidRecord);
2253      I->setDebugLoc(LastLoc);
2254      I = 0;
2255      continue;
2256
2257    case FUNC_CODE_DEBUG_LOC_2_7:
2258      LLVM2_7MetadataDetected = true;
2259    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2260      I = 0;     // Get the last instruction emitted.
2261      if (CurBB && !CurBB->empty())
2262        I = &CurBB->back();
2263      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2264               !FunctionBBs[CurBBNo-1]->empty())
2265        I = &FunctionBBs[CurBBNo-1]->back();
2266      if (I == 0 || Record.size() < 4)
2267        return Error(InvalidRecord);
2268
2269      unsigned Line = Record[0], Col = Record[1];
2270      unsigned ScopeID = Record[2], IAID = Record[3];
2271
2272      MDNode *Scope = 0, *IA = 0;
2273      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2274      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2275      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2276      I->setDebugLoc(LastLoc);
2277      I = 0;
2278      continue;
2279    }
2280
2281    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2282      unsigned OpNum = 0;
2283      Value *LHS, *RHS;
2284      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2285          getValue(Record, OpNum, LHS->getType(), RHS) ||
2286          OpNum+1 > Record.size())
2287        return Error(InvalidRecord);
2288
2289      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2290      if (Opc == -1)
2291        return Error(InvalidRecord);
2292      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2293      InstructionList.push_back(I);
2294      if (OpNum < Record.size()) {
2295        if (Opc == Instruction::Add ||
2296            Opc == Instruction::Sub ||
2297            Opc == Instruction::Mul ||
2298            Opc == Instruction::Shl) {
2299          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2300            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2301          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2302            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2303        } else if (Opc == Instruction::SDiv ||
2304                   Opc == Instruction::UDiv ||
2305                   Opc == Instruction::LShr ||
2306                   Opc == Instruction::AShr) {
2307          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2308            cast<BinaryOperator>(I)->setIsExact(true);
2309        }
2310      }
2311      break;
2312    }
2313    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2314      unsigned OpNum = 0;
2315      Value *Op;
2316      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2317          OpNum+2 != Record.size())
2318        return Error(InvalidRecord);
2319
2320      Type *ResTy = getTypeByID(Record[OpNum]);
2321      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2322      if (Opc == -1 || ResTy == 0)
2323        return Error(InvalidRecord);
2324      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2325      InstructionList.push_back(I);
2326      break;
2327    }
2328    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2329    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2330      unsigned OpNum = 0;
2331      Value *BasePtr;
2332      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2333        return Error(InvalidRecord);
2334
2335      SmallVector<Value*, 16> GEPIdx;
2336      while (OpNum != Record.size()) {
2337        Value *Op;
2338        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2339          return Error(InvalidRecord);
2340        GEPIdx.push_back(Op);
2341      }
2342
2343      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2344      InstructionList.push_back(I);
2345      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2346        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2347      break;
2348    }
2349
2350    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2351                                       // EXTRACTVAL: [opty, opval, n x indices]
2352      unsigned OpNum = 0;
2353      Value *Agg;
2354      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2355        return Error(InvalidRecord);
2356
2357      SmallVector<unsigned, 4> EXTRACTVALIdx;
2358      for (unsigned RecSize = Record.size();
2359           OpNum != RecSize; ++OpNum) {
2360        uint64_t Index = Record[OpNum];
2361        if ((unsigned)Index != Index)
2362          return Error(InvalidValue);
2363        EXTRACTVALIdx.push_back((unsigned)Index);
2364      }
2365
2366      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2367      InstructionList.push_back(I);
2368      break;
2369    }
2370
2371    case bitc::FUNC_CODE_INST_INSERTVAL: {
2372                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2373      unsigned OpNum = 0;
2374      Value *Agg;
2375      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2376        return Error(InvalidRecord);
2377      Value *Val;
2378      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2379        return Error(InvalidRecord);
2380
2381      SmallVector<unsigned, 4> INSERTVALIdx;
2382      for (unsigned RecSize = Record.size();
2383           OpNum != RecSize; ++OpNum) {
2384        uint64_t Index = Record[OpNum];
2385        if ((unsigned)Index != Index)
2386          return Error(InvalidValue);
2387        INSERTVALIdx.push_back((unsigned)Index);
2388      }
2389
2390      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2391      InstructionList.push_back(I);
2392      break;
2393    }
2394
2395    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2396      // obsolete form of select
2397      // handles select i1 ... in old bitcode
2398      unsigned OpNum = 0;
2399      Value *TrueVal, *FalseVal, *Cond;
2400      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2401          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2402          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2403        return Error(InvalidRecord);
2404
2405      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2406      InstructionList.push_back(I);
2407      break;
2408    }
2409
2410    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2411      // new form of select
2412      // handles select i1 or select [N x i1]
2413      unsigned OpNum = 0;
2414      Value *TrueVal, *FalseVal, *Cond;
2415      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2416          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2417          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2418        return Error(InvalidRecord);
2419
2420      // select condition can be either i1 or [N x i1]
2421      if (VectorType* vector_type =
2422          dyn_cast<VectorType>(Cond->getType())) {
2423        // expect <n x i1>
2424        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2425          return Error(InvalidTypeForValue);
2426      } else {
2427        // expect i1
2428        if (Cond->getType() != Type::getInt1Ty(Context))
2429          return Error(InvalidTypeForValue);
2430      }
2431
2432      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2433      InstructionList.push_back(I);
2434      break;
2435    }
2436
2437    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2438      unsigned OpNum = 0;
2439      Value *Vec, *Idx;
2440      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2441          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2442        return Error(InvalidRecord);
2443      I = ExtractElementInst::Create(Vec, Idx);
2444      InstructionList.push_back(I);
2445      break;
2446    }
2447
2448    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2449      unsigned OpNum = 0;
2450      Value *Vec, *Elt, *Idx;
2451      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2452          getValue(Record, OpNum,
2453                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2454          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2455        return Error(InvalidRecord);
2456      I = InsertElementInst::Create(Vec, Elt, Idx);
2457      InstructionList.push_back(I);
2458      break;
2459    }
2460
2461    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2462      unsigned OpNum = 0;
2463      Value *Vec1, *Vec2, *Mask;
2464      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2465          getValue(Record, OpNum, Vec1->getType(), Vec2))
2466        return Error(InvalidRecord);
2467
2468      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2469        return Error(InvalidRecord);
2470      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2471      InstructionList.push_back(I);
2472      break;
2473    }
2474
2475    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2476      // Old form of ICmp/FCmp returning bool
2477      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2478      // both legal on vectors but had different behaviour.
2479    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2480      // FCmp/ICmp returning bool or vector of bool
2481
2482      unsigned OpNum = 0;
2483      Value *LHS, *RHS;
2484      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2485          getValue(Record, OpNum, LHS->getType(), RHS) ||
2486          OpNum+1 != Record.size())
2487        return Error(InvalidRecord);
2488
2489      if (LHS->getType()->isFPOrFPVectorTy())
2490        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2491      else
2492        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2493      InstructionList.push_back(I);
2494      break;
2495    }
2496
2497    case FUNC_CODE_INST_GETRESULT_2_7: {
2498      if (Record.size() != 2) {
2499        return Error(InvalidRecord);
2500      }
2501      unsigned OpNum = 0;
2502      Value *Op;
2503      getValueTypePair(Record, OpNum, NextValueNo, Op);
2504      unsigned Index = Record[1];
2505      I = ExtractValueInst::Create(Op, Index);
2506      InstructionList.push_back(I);
2507      break;
2508    }
2509
2510    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2511      {
2512        unsigned Size = Record.size();
2513        if (Size == 0) {
2514          I = ReturnInst::Create(Context);
2515          InstructionList.push_back(I);
2516          break;
2517        }
2518
2519        unsigned OpNum = 0;
2520        Value *Op = NULL;
2521        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2522          return Error(InvalidRecord);
2523        if (OpNum != Record.size())
2524          return Error(InvalidRecord);
2525
2526        I = ReturnInst::Create(Context, Op);
2527        InstructionList.push_back(I);
2528        break;
2529      }
2530    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2531      if (Record.size() != 1 && Record.size() != 3)
2532        return Error(InvalidRecord);
2533      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2534      if (TrueDest == 0)
2535        return Error(InvalidRecord);
2536
2537      if (Record.size() == 1) {
2538        I = BranchInst::Create(TrueDest);
2539        InstructionList.push_back(I);
2540      }
2541      else {
2542        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2543        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2544        if (FalseDest == 0 || Cond == 0)
2545          return Error(InvalidRecord);
2546        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2547        InstructionList.push_back(I);
2548      }
2549      break;
2550    }
2551    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2552      if (Record.size() < 3 || (Record.size() & 1) == 0)
2553        return Error(InvalidRecord);
2554      Type *OpTy = getTypeByID(Record[0]);
2555      Value *Cond = getFnValueByID(Record[1], OpTy);
2556      BasicBlock *Default = getBasicBlock(Record[2]);
2557      if (OpTy == 0 || Cond == 0 || Default == 0)
2558        return Error(InvalidRecord);
2559      unsigned NumCases = (Record.size()-3)/2;
2560      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2561      InstructionList.push_back(SI);
2562      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2563        ConstantInt *CaseVal =
2564          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2565        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2566        if (CaseVal == 0 || DestBB == 0) {
2567          delete SI;
2568          return Error(InvalidRecord);
2569        }
2570        SI->addCase(CaseVal, DestBB);
2571      }
2572      I = SI;
2573      break;
2574    }
2575    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2576      if (Record.size() < 2)
2577        return Error(InvalidRecord);
2578      Type *OpTy = getTypeByID(Record[0]);
2579      Value *Address = getFnValueByID(Record[1], OpTy);
2580      if (OpTy == 0 || Address == 0)
2581        return Error(InvalidRecord);
2582      unsigned NumDests = Record.size()-2;
2583      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2584      InstructionList.push_back(IBI);
2585      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2586        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2587          IBI->addDestination(DestBB);
2588        } else {
2589          delete IBI;
2590          return Error(InvalidRecord);
2591        }
2592      }
2593      I = IBI;
2594      break;
2595    }
2596
2597    case bitc::FUNC_CODE_INST_INVOKE: {
2598      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2599      if (Record.size() < 4)
2600        return Error(InvalidRecord);
2601      AttributeSet PAL = getAttributes(Record[0]);
2602      unsigned CCInfo = Record[1];
2603      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2604      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2605
2606      unsigned OpNum = 4;
2607      Value *Callee;
2608      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2609        return Error(InvalidRecord);
2610
2611      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2612      FunctionType *FTy = !CalleeTy ? 0 :
2613        dyn_cast<FunctionType>(CalleeTy->getElementType());
2614
2615      // Check that the right number of fixed parameters are here.
2616      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2617          Record.size() < OpNum+FTy->getNumParams())
2618        return Error(InvalidRecord);
2619
2620      SmallVector<Value*, 16> Ops;
2621      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2622        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2623        if (Ops.back() == 0)
2624          return Error(InvalidRecord);
2625      }
2626
2627      if (!FTy->isVarArg()) {
2628        if (Record.size() != OpNum)
2629          return Error(InvalidRecord);
2630      } else {
2631        // Read type/value pairs for varargs params.
2632        while (OpNum != Record.size()) {
2633          Value *Op;
2634          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2635            return Error(InvalidRecord);
2636          Ops.push_back(Op);
2637        }
2638      }
2639
2640      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2641      InstructionList.push_back(I);
2642      cast<InvokeInst>(I)->setCallingConv(
2643        static_cast<CallingConv::ID>(CCInfo));
2644      cast<InvokeInst>(I)->setAttributes(PAL);
2645      break;
2646    }
2647    case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
2648      // 'unwind' instruction has been removed in LLVM 3.1
2649      // Replace 'unwind' with 'landingpad' and 'resume'.
2650      Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
2651                                    Type::getInt32Ty(Context), NULL);
2652      Constant *PersFn =
2653        F->getParent()->
2654        getOrInsertFunction("__gcc_personality_v0",
2655                          FunctionType::get(Type::getInt32Ty(Context), true));
2656
2657      LandingPadInst *LP = LandingPadInst::Create(ExnTy, PersFn, 1);
2658      LP->setCleanup(true);
2659
2660      CurBB->getInstList().push_back(LP);
2661      I = ResumeInst::Create(LP);
2662      InstructionList.push_back(I);
2663      break;
2664    }
2665    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2666      I = new UnreachableInst(Context);
2667      InstructionList.push_back(I);
2668      break;
2669    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2670      if (Record.size() < 1 || ((Record.size()-1)&1))
2671        return Error(InvalidRecord);
2672      Type *Ty = getTypeByID(Record[0]);
2673      if (!Ty)
2674        return Error(InvalidRecord);
2675
2676      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2677      InstructionList.push_back(PN);
2678
2679      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2680        Value *V = getFnValueByID(Record[1+i], Ty);
2681        BasicBlock *BB = getBasicBlock(Record[2+i]);
2682        if (!V || !BB)
2683          return Error(InvalidRecord);
2684        PN->addIncoming(V, BB);
2685      }
2686      I = PN;
2687      break;
2688    }
2689
2690    case FUNC_CODE_INST_MALLOC_2_7: { // MALLOC: [instty, op, align]
2691      // Autoupgrade malloc instruction to malloc call.
2692      // FIXME: Remove in LLVM 3.0.
2693      if (Record.size() < 3) {
2694        return Error(InvalidRecord);
2695      }
2696      PointerType *Ty =
2697          dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2698      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2699      if (!Ty || !Size)
2700        return Error(InvalidRecord);
2701      if (!CurBB)
2702        return Error(InvalidInstructionWithNoBB);
2703      Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2704      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2705      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2706      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2707                                 AllocSize, Size, NULL);
2708      InstructionList.push_back(I);
2709      break;
2710    }
2711    case FUNC_CODE_INST_FREE_2_7: { // FREE: [op, opty]
2712      unsigned OpNum = 0;
2713      Value *Op;
2714      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2715          OpNum != Record.size()) {
2716        return Error(InvalidRecord);
2717      }
2718      if (!CurBB)
2719        return Error(InvalidInstructionWithNoBB);
2720      I = CallInst::CreateFree(Op, CurBB);
2721      InstructionList.push_back(I);
2722      break;
2723    }
2724
2725    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2726      // For backward compatibility, tolerate a lack of an opty, and use i32.
2727      // Remove this in LLVM 3.0.
2728      if (Record.size() < 3 || Record.size() > 4) {
2729        return Error(InvalidRecord);
2730      }
2731      unsigned OpNum = 0;
2732      PointerType *Ty =
2733        dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2734      Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2735                                              Type::getInt32Ty(Context);
2736      Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2737      unsigned Align = Record[OpNum++];
2738      if (!Ty || !Size)
2739        return Error(InvalidRecord);
2740      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2741      InstructionList.push_back(I);
2742      break;
2743    }
2744    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2745      unsigned OpNum = 0;
2746      Value *Op;
2747      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2748          OpNum+2 != Record.size())
2749        return Error(InvalidRecord);
2750
2751      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2752      InstructionList.push_back(I);
2753      break;
2754    }
2755    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2756      unsigned OpNum = 0;
2757      Value *Val, *Ptr;
2758      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2759          getValue(Record, OpNum,
2760                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2761          OpNum+2 != Record.size())
2762        return Error(InvalidRecord);
2763
2764      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2765      InstructionList.push_back(I);
2766      break;
2767    }
2768    case FUNC_CODE_INST_STORE_2_7: {
2769      unsigned OpNum = 0;
2770      Value *Val, *Ptr;
2771      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2772          getValue(Record, OpNum,
2773                   PointerType::getUnqual(Val->getType()), Ptr)||
2774          OpNum+2 != Record.size()) {
2775        return Error(InvalidRecord);
2776      }
2777      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2778      InstructionList.push_back(I);
2779      break;
2780    }
2781    case FUNC_CODE_INST_CALL_2_7:
2782      LLVM2_7MetadataDetected = true;
2783    case bitc::FUNC_CODE_INST_CALL: {
2784      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2785      if (Record.size() < 3)
2786        return Error(InvalidRecord);
2787
2788      AttributeSet PAL = getAttributes(Record[0]);
2789      unsigned CCInfo = Record[1];
2790
2791      unsigned OpNum = 2;
2792      Value *Callee;
2793      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2794        return Error(InvalidRecord);
2795
2796      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2797      FunctionType *FTy = 0;
2798      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2799      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2800        return Error(InvalidRecord);
2801
2802      SmallVector<Value*, 16> Args;
2803      // Read the fixed params.
2804      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2805        if (FTy->getParamType(i)->isLabelTy())
2806          Args.push_back(getBasicBlock(Record[OpNum]));
2807        else
2808          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2809        if (Args.back() == 0)
2810          return Error(InvalidRecord);
2811      }
2812
2813      // Read type/value pairs for varargs params.
2814      if (!FTy->isVarArg()) {
2815        if (OpNum != Record.size())
2816          return Error(InvalidRecord);
2817      } else {
2818        while (OpNum != Record.size()) {
2819          Value *Op;
2820          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2821            return Error(InvalidRecord);
2822          Args.push_back(Op);
2823        }
2824      }
2825
2826      I = CallInst::Create(Callee, Args);
2827      InstructionList.push_back(I);
2828      cast<CallInst>(I)->setCallingConv(
2829        static_cast<CallingConv::ID>(CCInfo>>1));
2830      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2831      cast<CallInst>(I)->setAttributes(PAL);
2832      break;
2833    }
2834    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2835      if (Record.size() < 3)
2836        return Error(InvalidRecord);
2837      Type *OpTy = getTypeByID(Record[0]);
2838      Value *Op = getFnValueByID(Record[1], OpTy);
2839      Type *ResTy = getTypeByID(Record[2]);
2840      if (!OpTy || !Op || !ResTy)
2841        return Error(InvalidRecord);
2842      I = new VAArgInst(Op, ResTy);
2843      InstructionList.push_back(I);
2844      break;
2845    }
2846    }
2847
2848    // Add instruction to end of current BB.  If there is no current BB, reject
2849    // this file.
2850    if (CurBB == 0) {
2851      delete I;
2852      return Error(InvalidInstructionWithNoBB);
2853    }
2854    CurBB->getInstList().push_back(I);
2855
2856    // If this was a terminator instruction, move to the next block.
2857    if (isa<TerminatorInst>(I)) {
2858      ++CurBBNo;
2859      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2860    }
2861
2862    // Non-void values get registered in the value table for future use.
2863    if (I && !I->getType()->isVoidTy())
2864      ValueList.AssignValue(I, NextValueNo++);
2865  }
2866
2867  // Check the function list for unresolved values.
2868  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2869    if (A->getParent() == 0) {
2870      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2871      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2872        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2873          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2874          delete A;
2875        }
2876      }
2877      return Error(NeverResolvedValueFoundInFunction);
2878    }
2879  }
2880
2881  // FIXME: Check for unresolved forward-declared metadata references
2882  // and clean up leaks.
2883
2884  // See if anything took the address of blocks in this function.  If so,
2885  // resolve them now.
2886  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2887    BlockAddrFwdRefs.find(F);
2888  if (BAFRI != BlockAddrFwdRefs.end()) {
2889    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2890    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2891      unsigned BlockIdx = RefList[i].first;
2892      if (BlockIdx >= FunctionBBs.size())
2893        return Error(InvalidID);
2894
2895      GlobalVariable *FwdRef = RefList[i].second;
2896      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2897      FwdRef->eraseFromParent();
2898    }
2899
2900    BlockAddrFwdRefs.erase(BAFRI);
2901  }
2902
2903  unsigned NewMDValueListSize = MDValueList.size();
2904  // Trim the value list down to the size it was before we parsed this function.
2905  ValueList.shrinkTo(ModuleValueListSize);
2906  MDValueList.shrinkTo(ModuleMDValueListSize);
2907
2908  if (LLVM2_7MetadataDetected) {
2909    MDValueList.resize(NewMDValueListSize);
2910  }
2911
2912  std::vector<BasicBlock*>().swap(FunctionBBs);
2913  return std::error_code();
2914}
2915
2916//===----------------------------------------------------------------------===//
2917// GVMaterializer implementation
2918//===----------------------------------------------------------------------===//
2919
2920
2921bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2922  if (const Function *F = dyn_cast<Function>(GV)) {
2923    return F->isDeclaration() &&
2924      DeferredFunctionInfo.count(const_cast<Function*>(F));
2925  }
2926  return false;
2927}
2928
2929std::error_code BitcodeReader::Materialize(GlobalValue *GV) {
2930  Function *F = dyn_cast<Function>(GV);
2931  // If it's not a function or is already material, ignore the request.
2932  if (!F || !F->isMaterializable())
2933    return std::error_code();
2934
2935  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2936  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2937
2938  // Move the bit stream to the saved position of the deferred function body.
2939  Stream.JumpToBit(DFII->second);
2940
2941  if (std::error_code EC = ParseFunctionBody(F))
2942    return EC;
2943
2944  // Upgrade any old intrinsic calls in the function.
2945  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2946       E = UpgradedIntrinsics.end(); I != E; ++I) {
2947    if (I->first != I->second) {
2948      for (Value::use_iterator UI = I->first->use_begin(),
2949           UE = I->first->use_end(); UI != UE; ) {
2950        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2951          UpgradeIntrinsicCall(CI, I->second);
2952      }
2953    }
2954  }
2955
2956  return std::error_code();
2957}
2958
2959bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2960  const Function *F = dyn_cast<Function>(GV);
2961  if (!F || F->isDeclaration())
2962    return false;
2963  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2964}
2965
2966void BitcodeReader::Dematerialize(GlobalValue *GV) {
2967  Function *F = dyn_cast<Function>(GV);
2968  // If this function isn't dematerializable, this is a noop.
2969  if (!F || !isDematerializable(F))
2970    return;
2971
2972  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2973
2974  // Just forget the function body, we can remat it later.
2975  F->deleteBody();
2976}
2977
2978
2979std::error_code BitcodeReader::MaterializeModule(Module *M) {
2980  assert(M == TheModule &&
2981         "Can only Materialize the Module this BitcodeReader is attached to.");
2982  // Iterate over the module, deserializing any functions that are still on
2983  // disk.
2984  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2985       F != E; ++F) {
2986    if (F->isMaterializable()) {
2987      if (std::error_code EC = Materialize(F))
2988        return EC;
2989    }
2990  }
2991
2992  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2993  // delete the old functions to clean up. We can't do this unless the entire
2994  // module is materialized because there could always be another function body
2995  // with calls to the old function.
2996  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2997       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2998    if (I->first != I->second) {
2999      for (Value::use_iterator UI = I->first->use_begin(),
3000           UE = I->first->use_end(); UI != UE; ) {
3001        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3002          UpgradeIntrinsicCall(CI, I->second);
3003      }
3004      if (!I->first->use_empty())
3005        I->first->replaceAllUsesWith(I->second);
3006      I->first->eraseFromParent();
3007    }
3008  }
3009  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3010
3011  // Check debug info intrinsics.
3012  CheckDebugInfoIntrinsics(TheModule);
3013
3014  return std::error_code();
3015}
3016
3017std::error_code BitcodeReader::InitStream() {
3018  if (LazyStreamer)
3019    return InitLazyStream();
3020  return InitStreamFromBuffer();
3021}
3022
3023std::error_code BitcodeReader::InitStreamFromBuffer() {
3024  const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3025  const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3026
3027  if (Buffer->getBufferSize() & 3) {
3028    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
3029      return Error(InvalidBitcodeSignature);
3030    else
3031      return Error(BitcodeStreamInvalidSize);
3032  }
3033
3034  // If we have a wrapper header, parse it and ignore the non-bc file contents.
3035  // The magic number is 0x0B17C0DE stored in little endian.
3036  if (isBitcodeWrapper(BufPtr, BufEnd))
3037    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3038      return Error(InvalidBitcodeWrapperHeader);
3039
3040  StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3041  Stream.init(*StreamFile);
3042
3043  return std::error_code();
3044}
3045
3046std::error_code BitcodeReader::InitLazyStream() {
3047  // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3048  // see it.
3049  StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
3050  StreamFile.reset(new BitstreamReader(Bytes));
3051  Stream.init(*StreamFile);
3052
3053  unsigned char buf[16];
3054  if (Bytes->readBytes(0, 16, buf) == -1)
3055    return Error(BitcodeStreamInvalidSize);
3056
3057  if (!isBitcode(buf, buf + 16))
3058    return Error(InvalidBitcodeSignature);
3059
3060  if (isBitcodeWrapper(buf, buf + 4)) {
3061    const unsigned char *bitcodeStart = buf;
3062    const unsigned char *bitcodeEnd = buf + 16;
3063    SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3064    Bytes->dropLeadingBytes(bitcodeStart - buf);
3065    Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
3066  }
3067  return std::error_code();
3068}
3069
3070namespace {
3071class BitcodeErrorCategoryType : public std::error_category {
3072  const char *name() const LLVM_NOEXCEPT override {
3073    return "llvm.bitcode";
3074  }
3075  std::string message(int IE) const override {
3076    BitcodeReader::ErrorType E = static_cast<BitcodeReader::ErrorType>(IE);
3077    switch (E) {
3078    case BitcodeReader::BitcodeStreamInvalidSize:
3079      return "Bitcode stream length should be >= 16 bytes and a multiple of 4";
3080    case BitcodeReader::ConflictingMETADATA_KINDRecords:
3081      return "Conflicting METADATA_KIND records";
3082    case BitcodeReader::CouldNotFindFunctionInStream:
3083      return "Could not find function in stream";
3084    case BitcodeReader::ExpectedConstant:
3085      return "Expected a constant";
3086    case BitcodeReader::InsufficientFunctionProtos:
3087      return "Insufficient function protos";
3088    case BitcodeReader::InvalidBitcodeSignature:
3089      return "Invalid bitcode signature";
3090    case BitcodeReader::InvalidBitcodeWrapperHeader:
3091      return "Invalid bitcode wrapper header";
3092    case BitcodeReader::InvalidConstantReference:
3093      return "Invalid ronstant reference";
3094    case BitcodeReader::InvalidID:
3095      return "Invalid ID";
3096    case BitcodeReader::InvalidInstructionWithNoBB:
3097      return "Invalid instruction with no BB";
3098    case BitcodeReader::InvalidRecord:
3099      return "Invalid record";
3100    case BitcodeReader::InvalidTypeForValue:
3101      return "Invalid type for value";
3102    case BitcodeReader::InvalidTYPETable:
3103      return "Invalid TYPE table";
3104    case BitcodeReader::InvalidType:
3105      return "Invalid type";
3106    case BitcodeReader::MalformedBlock:
3107      return "Malformed block";
3108    case BitcodeReader::MalformedGlobalInitializerSet:
3109      return "Malformed global initializer set";
3110    case BitcodeReader::InvalidMultipleBlocks:
3111      return "Invalid multiple blocks";
3112    case BitcodeReader::NeverResolvedValueFoundInFunction:
3113      return "Never resolved value found in function";
3114    case BitcodeReader::InvalidValue:
3115      return "Invalid value";
3116    }
3117    llvm_unreachable("Unknown error type!");
3118  }
3119};
3120}
3121
3122const std::error_category &BitcodeReader::BitcodeErrorCategory() {
3123  static BitcodeErrorCategoryType O;
3124  return O;
3125}
3126
3127//===----------------------------------------------------------------------===//
3128// External interface
3129//===----------------------------------------------------------------------===//
3130
3131/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3132///
3133Module *llvm_2_7::getLazyBitcodeModule(MemoryBuffer *Buffer,
3134                                       LLVMContext& Context,
3135                                       std::string *ErrMsg) {
3136  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3137  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3138  M->setMaterializer(R);
3139  if (std::error_code EC = R->ParseBitcodeInto(M)) {
3140    if (ErrMsg)
3141      *ErrMsg = EC.message();
3142
3143    delete M;  // Also deletes R.
3144    return 0;
3145  }
3146  // Have the BitcodeReader dtor delete 'Buffer'.
3147  R->setBufferOwned(true);
3148  return M;
3149}
3150
3151/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3152/// If an error occurs, return null and fill in *ErrMsg if non-null.
3153Module *llvm_2_7::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
3154                                   std::string *ErrMsg){
3155  Module *M = llvm_2_7::getLazyBitcodeModule(Buffer, Context, ErrMsg);
3156  if (!M) return 0;
3157
3158  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
3159  // there was an error.
3160  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
3161
3162  // Read in the entire module, and destroy the BitcodeReader.
3163  if (std::error_code ec = M->materializeAllPermanently()) {
3164    *ErrMsg = ec.message();
3165    delete M;
3166    return 0;
3167  }
3168
3169  return M;
3170}
3171
3172std::string llvm_2_7::getBitcodeTargetTriple(MemoryBuffer *Buffer,
3173                                             LLVMContext& Context,
3174                                             std::string *ErrMsg) {
3175  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3176  // Don't let the BitcodeReader dtor delete 'Buffer'.
3177  R->setBufferOwned(false);
3178
3179  std::string Triple("");
3180  if (std::error_code EC = R->ParseTriple(Triple))
3181    if (ErrMsg)
3182      *ErrMsg = EC.message();
3183
3184  delete R;
3185  return Triple;
3186}
3187