BitcodeReader.cpp revision 3bdc2a8fde18e9e82a1e6ccef1c7379ef57bca35
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  if (BufferOwned)
32    delete Buffer;
33  Buffer = 0;
34  std::vector<Type*>().swap(TypeList);
35  ValueList.clear();
36  MDValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42  MDKindMap.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81  }
82}
83
84static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85  switch (Val) {
86  default: // Map unknown visibilities to default.
87  case 0: return GlobalValue::DefaultVisibility;
88  case 1: return GlobalValue::HiddenVisibility;
89  case 2: return GlobalValue::ProtectedVisibility;
90  }
91}
92
93static int GetDecodedCastOpcode(unsigned Val) {
94  switch (Val) {
95  default: return -1;
96  case bitc::CAST_TRUNC   : return Instruction::Trunc;
97  case bitc::CAST_ZEXT    : return Instruction::ZExt;
98  case bitc::CAST_SEXT    : return Instruction::SExt;
99  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104  case bitc::CAST_FPEXT   : return Instruction::FPExt;
105  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107  case bitc::CAST_BITCAST : return Instruction::BitCast;
108  }
109}
110static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
111  switch (Val) {
112  default: return -1;
113  case bitc::BINOP_ADD:
114    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115  case bitc::BINOP_SUB:
116    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117  case bitc::BINOP_MUL:
118    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119  case bitc::BINOP_UDIV: return Instruction::UDiv;
120  case bitc::BINOP_SDIV:
121    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122  case bitc::BINOP_UREM: return Instruction::URem;
123  case bitc::BINOP_SREM:
124    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125  case bitc::BINOP_SHL:  return Instruction::Shl;
126  case bitc::BINOP_LSHR: return Instruction::LShr;
127  case bitc::BINOP_ASHR: return Instruction::AShr;
128  case bitc::BINOP_AND:  return Instruction::And;
129  case bitc::BINOP_OR:   return Instruction::Or;
130  case bitc::BINOP_XOR:  return Instruction::Xor;
131  }
132}
133
134static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
135  switch (Val) {
136  default: return AtomicRMWInst::BAD_BINOP;
137  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
138  case bitc::RMW_ADD: return AtomicRMWInst::Add;
139  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
140  case bitc::RMW_AND: return AtomicRMWInst::And;
141  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
142  case bitc::RMW_OR: return AtomicRMWInst::Or;
143  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
144  case bitc::RMW_MAX: return AtomicRMWInst::Max;
145  case bitc::RMW_MIN: return AtomicRMWInst::Min;
146  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
147  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
148  }
149}
150
151static AtomicOrdering GetDecodedOrdering(unsigned Val) {
152  switch (Val) {
153  case bitc::ORDERING_NOTATOMIC: return NotAtomic;
154  case bitc::ORDERING_UNORDERED: return Unordered;
155  case bitc::ORDERING_MONOTONIC: return Monotonic;
156  case bitc::ORDERING_ACQUIRE: return Acquire;
157  case bitc::ORDERING_RELEASE: return Release;
158  case bitc::ORDERING_ACQREL: return AcquireRelease;
159  default: // Map unknown orderings to sequentially-consistent.
160  case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
161  }
162}
163
164static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
165  switch (Val) {
166  case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
167  default: // Map unknown scopes to cross-thread.
168  case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
169  }
170}
171
172namespace llvm {
173namespace {
174  /// @brief A class for maintaining the slot number definition
175  /// as a placeholder for the actual definition for forward constants defs.
176  class ConstantPlaceHolder : public ConstantExpr {
177    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
178  public:
179    // allocate space for exactly one operand
180    void *operator new(size_t s) {
181      return User::operator new(s, 1);
182    }
183    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
184      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
185      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
186    }
187
188    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
189    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
190    static bool classof(const Value *V) {
191      return isa<ConstantExpr>(V) &&
192             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
193    }
194
195
196    /// Provide fast operand accessors
197    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
198  };
199}
200
201// FIXME: can we inherit this from ConstantExpr?
202template <>
203struct OperandTraits<ConstantPlaceHolder> :
204  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
205};
206}
207
208
209void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
210  if (Idx == size()) {
211    push_back(V);
212    return;
213  }
214
215  if (Idx >= size())
216    resize(Idx+1);
217
218  WeakVH &OldV = ValuePtrs[Idx];
219  if (OldV == 0) {
220    OldV = V;
221    return;
222  }
223
224  // Handle constants and non-constants (e.g. instrs) differently for
225  // efficiency.
226  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
227    ResolveConstants.push_back(std::make_pair(PHC, Idx));
228    OldV = V;
229  } else {
230    // If there was a forward reference to this value, replace it.
231    Value *PrevVal = OldV;
232    OldV->replaceAllUsesWith(V);
233    delete PrevVal;
234  }
235}
236
237
238Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
239                                                    Type *Ty) {
240  if (Idx >= size())
241    resize(Idx + 1);
242
243  if (Value *V = ValuePtrs[Idx]) {
244    assert(Ty == V->getType() && "Type mismatch in constant table!");
245    return cast<Constant>(V);
246  }
247
248  // Create and return a placeholder, which will later be RAUW'd.
249  Constant *C = new ConstantPlaceHolder(Ty, Context);
250  ValuePtrs[Idx] = C;
251  return C;
252}
253
254Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
255  if (Idx >= size())
256    resize(Idx + 1);
257
258  if (Value *V = ValuePtrs[Idx]) {
259    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
260    return V;
261  }
262
263  // No type specified, must be invalid reference.
264  if (Ty == 0) return 0;
265
266  // Create and return a placeholder, which will later be RAUW'd.
267  Value *V = new Argument(Ty);
268  ValuePtrs[Idx] = V;
269  return V;
270}
271
272/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
273/// resolves any forward references.  The idea behind this is that we sometimes
274/// get constants (such as large arrays) which reference *many* forward ref
275/// constants.  Replacing each of these causes a lot of thrashing when
276/// building/reuniquing the constant.  Instead of doing this, we look at all the
277/// uses and rewrite all the place holders at once for any constant that uses
278/// a placeholder.
279void BitcodeReaderValueList::ResolveConstantForwardRefs() {
280  // Sort the values by-pointer so that they are efficient to look up with a
281  // binary search.
282  std::sort(ResolveConstants.begin(), ResolveConstants.end());
283
284  SmallVector<Constant*, 64> NewOps;
285
286  while (!ResolveConstants.empty()) {
287    Value *RealVal = operator[](ResolveConstants.back().second);
288    Constant *Placeholder = ResolveConstants.back().first;
289    ResolveConstants.pop_back();
290
291    // Loop over all users of the placeholder, updating them to reference the
292    // new value.  If they reference more than one placeholder, update them all
293    // at once.
294    while (!Placeholder->use_empty()) {
295      Value::use_iterator UI = Placeholder->use_begin();
296      User *U = *UI;
297
298      // If the using object isn't uniqued, just update the operands.  This
299      // handles instructions and initializers for global variables.
300      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
301        UI.getUse().set(RealVal);
302        continue;
303      }
304
305      // Otherwise, we have a constant that uses the placeholder.  Replace that
306      // constant with a new constant that has *all* placeholder uses updated.
307      Constant *UserC = cast<Constant>(U);
308      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
309           I != E; ++I) {
310        Value *NewOp;
311        if (!isa<ConstantPlaceHolder>(*I)) {
312          // Not a placeholder reference.
313          NewOp = *I;
314        } else if (*I == Placeholder) {
315          // Common case is that it just references this one placeholder.
316          NewOp = RealVal;
317        } else {
318          // Otherwise, look up the placeholder in ResolveConstants.
319          ResolveConstantsTy::iterator It =
320            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
321                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
322                                                            0));
323          assert(It != ResolveConstants.end() && It->first == *I);
324          NewOp = operator[](It->second);
325        }
326
327        NewOps.push_back(cast<Constant>(NewOp));
328      }
329
330      // Make the new constant.
331      Constant *NewC;
332      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
333        NewC = ConstantArray::get(UserCA->getType(), NewOps);
334      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
335        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
336      } else if (isa<ConstantVector>(UserC)) {
337        NewC = ConstantVector::get(NewOps);
338      } else {
339        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
340        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
341      }
342
343      UserC->replaceAllUsesWith(NewC);
344      UserC->destroyConstant();
345      NewOps.clear();
346    }
347
348    // Update all ValueHandles, they should be the only users at this point.
349    Placeholder->replaceAllUsesWith(RealVal);
350    delete Placeholder;
351  }
352}
353
354void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
355  if (Idx == size()) {
356    push_back(V);
357    return;
358  }
359
360  if (Idx >= size())
361    resize(Idx+1);
362
363  WeakVH &OldV = MDValuePtrs[Idx];
364  if (OldV == 0) {
365    OldV = V;
366    return;
367  }
368
369  // If there was a forward reference to this value, replace it.
370  MDNode *PrevVal = cast<MDNode>(OldV);
371  OldV->replaceAllUsesWith(V);
372  MDNode::deleteTemporary(PrevVal);
373  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
374  // value for Idx.
375  MDValuePtrs[Idx] = V;
376}
377
378Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
379  if (Idx >= size())
380    resize(Idx + 1);
381
382  if (Value *V = MDValuePtrs[Idx]) {
383    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
384    return V;
385  }
386
387  // Create and return a placeholder, which will later be RAUW'd.
388  Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
389  MDValuePtrs[Idx] = V;
390  return V;
391}
392
393Type *BitcodeReader::getTypeByID(unsigned ID) {
394  // The type table size is always specified correctly.
395  if (ID >= TypeList.size())
396    return 0;
397
398  if (Type *Ty = TypeList[ID])
399    return Ty;
400
401  // If we have a forward reference, the only possible case is when it is to a
402  // named struct.  Just create a placeholder for now.
403  return TypeList[ID] = StructType::create(Context);
404}
405
406/// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
407Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
408  if (ID >= TypeList.size())
409    TypeList.resize(ID+1);
410
411  return TypeList[ID];
412}
413
414
415//===----------------------------------------------------------------------===//
416//  Functions for parsing blocks from the bitcode file
417//===----------------------------------------------------------------------===//
418
419bool BitcodeReader::ParseAttributeBlock() {
420  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
421    return Error("Malformed block record");
422
423  if (!MAttributes.empty())
424    return Error("Multiple PARAMATTR blocks found!");
425
426  SmallVector<uint64_t, 64> Record;
427
428  SmallVector<AttributeWithIndex, 8> Attrs;
429
430  // Read all the records.
431  while (1) {
432    unsigned Code = Stream.ReadCode();
433    if (Code == bitc::END_BLOCK) {
434      if (Stream.ReadBlockEnd())
435        return Error("Error at end of PARAMATTR block");
436      return false;
437    }
438
439    if (Code == bitc::ENTER_SUBBLOCK) {
440      // No known subblocks, always skip them.
441      Stream.ReadSubBlockID();
442      if (Stream.SkipBlock())
443        return Error("Malformed block record");
444      continue;
445    }
446
447    if (Code == bitc::DEFINE_ABBREV) {
448      Stream.ReadAbbrevRecord();
449      continue;
450    }
451
452    // Read a record.
453    Record.clear();
454    switch (Stream.ReadRecord(Code, Record)) {
455    default:  // Default behavior: ignore.
456      break;
457    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
458      if (Record.size() & 1)
459        return Error("Invalid ENTRY record");
460
461      // FIXME : Remove this autoupgrade code in LLVM 3.0.
462      // If Function attributes are using index 0 then transfer them
463      // to index ~0. Index 0 is used for return value attributes but used to be
464      // used for function attributes.
465      Attributes RetAttribute = Attribute::None;
466      Attributes FnAttribute = Attribute::None;
467      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
468        // FIXME: remove in LLVM 3.0
469        // The alignment is stored as a 16-bit raw value from bits 31--16.
470        // We shift the bits above 31 down by 11 bits.
471
472        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
473        if (Alignment && !isPowerOf2_32(Alignment))
474          return Error("Alignment is not a power of two.");
475
476        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
477        if (Alignment)
478          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
479        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
480        Record[i+1] = ReconstitutedAttr;
481
482        if (Record[i] == 0)
483          RetAttribute = Record[i+1];
484        else if (Record[i] == ~0U)
485          FnAttribute = Record[i+1];
486      }
487
488      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
489                              Attribute::ReadOnly|Attribute::ReadNone);
490
491      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
492          (RetAttribute & OldRetAttrs) != 0) {
493        if (FnAttribute == Attribute::None) { // add a slot so they get added.
494          Record.push_back(~0U);
495          Record.push_back(0);
496        }
497
498        FnAttribute  |= RetAttribute & OldRetAttrs;
499        RetAttribute &= ~OldRetAttrs;
500      }
501
502      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
503        if (Record[i] == 0) {
504          if (RetAttribute != Attribute::None)
505            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
506        } else if (Record[i] == ~0U) {
507          if (FnAttribute != Attribute::None)
508            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
509        } else if (Record[i+1] != Attribute::None)
510          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
511      }
512
513      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
514      Attrs.clear();
515      break;
516    }
517    }
518  }
519}
520
521bool BitcodeReader::ParseTypeTable() {
522  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
523    return Error("Malformed block record");
524
525  return ParseTypeTableBody();
526}
527
528bool BitcodeReader::ParseTypeTableBody() {
529  if (!TypeList.empty())
530    return Error("Multiple TYPE_BLOCKs found!");
531
532  SmallVector<uint64_t, 64> Record;
533  unsigned NumRecords = 0;
534
535  SmallString<64> TypeName;
536
537  // Read all the records for this type table.
538  while (1) {
539    unsigned Code = Stream.ReadCode();
540    if (Code == bitc::END_BLOCK) {
541      if (NumRecords != TypeList.size())
542        return Error("Invalid type forward reference in TYPE_BLOCK");
543      if (Stream.ReadBlockEnd())
544        return Error("Error at end of type table block");
545      return false;
546    }
547
548    if (Code == bitc::ENTER_SUBBLOCK) {
549      // No known subblocks, always skip them.
550      Stream.ReadSubBlockID();
551      if (Stream.SkipBlock())
552        return Error("Malformed block record");
553      continue;
554    }
555
556    if (Code == bitc::DEFINE_ABBREV) {
557      Stream.ReadAbbrevRecord();
558      continue;
559    }
560
561    // Read a record.
562    Record.clear();
563    Type *ResultTy = 0;
564    switch (Stream.ReadRecord(Code, Record)) {
565    default: return Error("unknown type in type table");
566    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
567      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
568      // type list.  This allows us to reserve space.
569      if (Record.size() < 1)
570        return Error("Invalid TYPE_CODE_NUMENTRY record");
571      TypeList.resize(Record[0]);
572      continue;
573    case bitc::TYPE_CODE_VOID:      // VOID
574      ResultTy = Type::getVoidTy(Context);
575      break;
576    case bitc::TYPE_CODE_FLOAT:     // FLOAT
577      ResultTy = Type::getFloatTy(Context);
578      break;
579    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
580      ResultTy = Type::getDoubleTy(Context);
581      break;
582    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
583      ResultTy = Type::getX86_FP80Ty(Context);
584      break;
585    case bitc::TYPE_CODE_FP128:     // FP128
586      ResultTy = Type::getFP128Ty(Context);
587      break;
588    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
589      ResultTy = Type::getPPC_FP128Ty(Context);
590      break;
591    case bitc::TYPE_CODE_LABEL:     // LABEL
592      ResultTy = Type::getLabelTy(Context);
593      break;
594    case bitc::TYPE_CODE_METADATA:  // METADATA
595      ResultTy = Type::getMetadataTy(Context);
596      break;
597    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
598      ResultTy = Type::getX86_MMXTy(Context);
599      break;
600    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
601      if (Record.size() < 1)
602        return Error("Invalid Integer type record");
603
604      ResultTy = IntegerType::get(Context, Record[0]);
605      break;
606    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
607                                    //          [pointee type, address space]
608      if (Record.size() < 1)
609        return Error("Invalid POINTER type record");
610      unsigned AddressSpace = 0;
611      if (Record.size() == 2)
612        AddressSpace = Record[1];
613      ResultTy = getTypeByID(Record[0]);
614      if (ResultTy == 0) return Error("invalid element type in pointer type");
615      ResultTy = PointerType::get(ResultTy, AddressSpace);
616      break;
617    }
618    case bitc::TYPE_CODE_FUNCTION_OLD: {
619      // FIXME: attrid is dead, remove it in LLVM 3.0
620      // FUNCTION: [vararg, attrid, retty, paramty x N]
621      if (Record.size() < 3)
622        return Error("Invalid FUNCTION type record");
623      std::vector<Type*> ArgTys;
624      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
625        if (Type *T = getTypeByID(Record[i]))
626          ArgTys.push_back(T);
627        else
628          break;
629      }
630
631      ResultTy = getTypeByID(Record[2]);
632      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
633        return Error("invalid type in function type");
634
635      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
636      break;
637    }
638    case bitc::TYPE_CODE_FUNCTION: {
639      // FUNCTION: [vararg, retty, paramty x N]
640      if (Record.size() < 2)
641        return Error("Invalid FUNCTION type record");
642      std::vector<Type*> ArgTys;
643      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
644        if (Type *T = getTypeByID(Record[i]))
645          ArgTys.push_back(T);
646        else
647          break;
648      }
649
650      ResultTy = getTypeByID(Record[1]);
651      if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
652        return Error("invalid type in function type");
653
654      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
655      break;
656    }
657    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
658      if (Record.size() < 1)
659        return Error("Invalid STRUCT type record");
660      std::vector<Type*> EltTys;
661      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
662        if (Type *T = getTypeByID(Record[i]))
663          EltTys.push_back(T);
664        else
665          break;
666      }
667      if (EltTys.size() != Record.size()-1)
668        return Error("invalid type in struct type");
669      ResultTy = StructType::get(Context, EltTys, Record[0]);
670      break;
671    }
672    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
673      if (ConvertToString(Record, 0, TypeName))
674        return Error("Invalid STRUCT_NAME record");
675      continue;
676
677    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
678      if (Record.size() < 1)
679        return Error("Invalid STRUCT type record");
680
681      if (NumRecords >= TypeList.size())
682        return Error("invalid TYPE table");
683
684      // Check to see if this was forward referenced, if so fill in the temp.
685      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
686      if (Res) {
687        Res->setName(TypeName);
688        TypeList[NumRecords] = 0;
689      } else  // Otherwise, create a new struct.
690        Res = StructType::create(Context, TypeName);
691      TypeName.clear();
692
693      SmallVector<Type*, 8> EltTys;
694      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
695        if (Type *T = getTypeByID(Record[i]))
696          EltTys.push_back(T);
697        else
698          break;
699      }
700      if (EltTys.size() != Record.size()-1)
701        return Error("invalid STRUCT type record");
702      Res->setBody(EltTys, Record[0]);
703      ResultTy = Res;
704      break;
705    }
706    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
707      if (Record.size() != 1)
708        return Error("Invalid OPAQUE type record");
709
710      if (NumRecords >= TypeList.size())
711        return Error("invalid TYPE table");
712
713      // Check to see if this was forward referenced, if so fill in the temp.
714      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
715      if (Res) {
716        Res->setName(TypeName);
717        TypeList[NumRecords] = 0;
718      } else  // Otherwise, create a new struct with no body.
719        Res = StructType::create(Context, TypeName);
720      TypeName.clear();
721      ResultTy = Res;
722      break;
723    }
724    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
725      if (Record.size() < 2)
726        return Error("Invalid ARRAY type record");
727      if ((ResultTy = getTypeByID(Record[1])))
728        ResultTy = ArrayType::get(ResultTy, Record[0]);
729      else
730        return Error("Invalid ARRAY type element");
731      break;
732    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
733      if (Record.size() < 2)
734        return Error("Invalid VECTOR type record");
735      if ((ResultTy = getTypeByID(Record[1])))
736        ResultTy = VectorType::get(ResultTy, Record[0]);
737      else
738        return Error("Invalid ARRAY type element");
739      break;
740    }
741
742    if (NumRecords >= TypeList.size())
743      return Error("invalid TYPE table");
744    assert(ResultTy && "Didn't read a type?");
745    assert(TypeList[NumRecords] == 0 && "Already read type?");
746    TypeList[NumRecords++] = ResultTy;
747  }
748}
749
750// FIXME: Remove in LLVM 3.1
751bool BitcodeReader::ParseOldTypeTable() {
752  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_OLD))
753    return Error("Malformed block record");
754
755  if (!TypeList.empty())
756    return Error("Multiple TYPE_BLOCKs found!");
757
758
759  // While horrible, we have no good ordering of types in the bc file.  Just
760  // iteratively parse types out of the bc file in multiple passes until we get
761  // them all.  Do this by saving a cursor for the start of the type block.
762  BitstreamCursor StartOfTypeBlockCursor(Stream);
763
764  unsigned NumTypesRead = 0;
765
766  SmallVector<uint64_t, 64> Record;
767RestartScan:
768  unsigned NextTypeID = 0;
769  bool ReadAnyTypes = false;
770
771  // Read all the records for this type table.
772  while (1) {
773    unsigned Code = Stream.ReadCode();
774    if (Code == bitc::END_BLOCK) {
775      if (NextTypeID != TypeList.size())
776        return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
777
778      // If we haven't read all of the types yet, iterate again.
779      if (NumTypesRead != TypeList.size()) {
780        // If we didn't successfully read any types in this pass, then we must
781        // have an unhandled forward reference.
782        if (!ReadAnyTypes)
783          return Error("Obsolete bitcode contains unhandled recursive type");
784
785        Stream = StartOfTypeBlockCursor;
786        goto RestartScan;
787      }
788
789      if (Stream.ReadBlockEnd())
790        return Error("Error at end of type table block");
791      return false;
792    }
793
794    if (Code == bitc::ENTER_SUBBLOCK) {
795      // No known subblocks, always skip them.
796      Stream.ReadSubBlockID();
797      if (Stream.SkipBlock())
798        return Error("Malformed block record");
799      continue;
800    }
801
802    if (Code == bitc::DEFINE_ABBREV) {
803      Stream.ReadAbbrevRecord();
804      continue;
805    }
806
807    // Read a record.
808    Record.clear();
809    Type *ResultTy = 0;
810    switch (Stream.ReadRecord(Code, Record)) {
811    default: return Error("unknown type in type table");
812    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
813      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
814      // type list.  This allows us to reserve space.
815      if (Record.size() < 1)
816        return Error("Invalid TYPE_CODE_NUMENTRY record");
817      TypeList.resize(Record[0]);
818      continue;
819    case bitc::TYPE_CODE_VOID:      // VOID
820      ResultTy = Type::getVoidTy(Context);
821      break;
822    case bitc::TYPE_CODE_FLOAT:     // FLOAT
823      ResultTy = Type::getFloatTy(Context);
824      break;
825    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
826      ResultTy = Type::getDoubleTy(Context);
827      break;
828    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
829      ResultTy = Type::getX86_FP80Ty(Context);
830      break;
831    case bitc::TYPE_CODE_FP128:     // FP128
832      ResultTy = Type::getFP128Ty(Context);
833      break;
834    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
835      ResultTy = Type::getPPC_FP128Ty(Context);
836      break;
837    case bitc::TYPE_CODE_LABEL:     // LABEL
838      ResultTy = Type::getLabelTy(Context);
839      break;
840    case bitc::TYPE_CODE_METADATA:  // METADATA
841      ResultTy = Type::getMetadataTy(Context);
842      break;
843    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
844      ResultTy = Type::getX86_MMXTy(Context);
845      break;
846    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
847      if (Record.size() < 1)
848        return Error("Invalid Integer type record");
849      ResultTy = IntegerType::get(Context, Record[0]);
850      break;
851    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
852      if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
853        ResultTy = StructType::create(Context);
854      break;
855    case bitc::TYPE_CODE_STRUCT_OLD: {// STRUCT_OLD
856      if (NextTypeID >= TypeList.size()) break;
857      // If we already read it, don't reprocess.
858      if (TypeList[NextTypeID] &&
859          !cast<StructType>(TypeList[NextTypeID])->isOpaque())
860        break;
861
862      // Set a type.
863      if (TypeList[NextTypeID] == 0)
864        TypeList[NextTypeID] = StructType::create(Context);
865
866      std::vector<Type*> EltTys;
867      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
868        if (Type *Elt = getTypeByIDOrNull(Record[i]))
869          EltTys.push_back(Elt);
870        else
871          break;
872      }
873
874      if (EltTys.size() != Record.size()-1)
875        break;      // Not all elements are ready.
876
877      cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
878      ResultTy = TypeList[NextTypeID];
879      TypeList[NextTypeID] = 0;
880      break;
881    }
882    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
883      //          [pointee type, address space]
884      if (Record.size() < 1)
885        return Error("Invalid POINTER type record");
886      unsigned AddressSpace = 0;
887      if (Record.size() == 2)
888        AddressSpace = Record[1];
889      if ((ResultTy = getTypeByIDOrNull(Record[0])))
890        ResultTy = PointerType::get(ResultTy, AddressSpace);
891      break;
892    }
893    case bitc::TYPE_CODE_FUNCTION_OLD: {
894      // FIXME: attrid is dead, remove it in LLVM 3.0
895      // FUNCTION: [vararg, attrid, retty, paramty x N]
896      if (Record.size() < 3)
897        return Error("Invalid FUNCTION type record");
898      std::vector<Type*> ArgTys;
899      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
900        if (Type *Elt = getTypeByIDOrNull(Record[i]))
901          ArgTys.push_back(Elt);
902        else
903          break;
904      }
905      if (ArgTys.size()+3 != Record.size())
906        break;  // Something was null.
907      if ((ResultTy = getTypeByIDOrNull(Record[2])))
908        ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
909      break;
910    }
911    case bitc::TYPE_CODE_FUNCTION: {
912      // FUNCTION: [vararg, retty, paramty x N]
913      if (Record.size() < 2)
914        return Error("Invalid FUNCTION type record");
915      std::vector<Type*> ArgTys;
916      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
917        if (Type *Elt = getTypeByIDOrNull(Record[i]))
918          ArgTys.push_back(Elt);
919        else
920          break;
921      }
922      if (ArgTys.size()+2 != Record.size())
923        break;  // Something was null.
924      if ((ResultTy = getTypeByIDOrNull(Record[1])))
925        ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
926      break;
927    }
928    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
929      if (Record.size() < 2)
930        return Error("Invalid ARRAY type record");
931      if ((ResultTy = getTypeByIDOrNull(Record[1])))
932        ResultTy = ArrayType::get(ResultTy, Record[0]);
933      break;
934    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
935      if (Record.size() < 2)
936        return Error("Invalid VECTOR type record");
937      if ((ResultTy = getTypeByIDOrNull(Record[1])))
938        ResultTy = VectorType::get(ResultTy, Record[0]);
939      break;
940    }
941
942    if (NextTypeID >= TypeList.size())
943      return Error("invalid TYPE table");
944
945    if (ResultTy && TypeList[NextTypeID] == 0) {
946      ++NumTypesRead;
947      ReadAnyTypes = true;
948
949      TypeList[NextTypeID] = ResultTy;
950    }
951
952    ++NextTypeID;
953  }
954}
955
956
957bool BitcodeReader::ParseOldTypeSymbolTable() {
958  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID_OLD))
959    return Error("Malformed block record");
960
961  SmallVector<uint64_t, 64> Record;
962
963  // Read all the records for this type table.
964  std::string TypeName;
965  while (1) {
966    unsigned Code = Stream.ReadCode();
967    if (Code == bitc::END_BLOCK) {
968      if (Stream.ReadBlockEnd())
969        return Error("Error at end of type symbol table block");
970      return false;
971    }
972
973    if (Code == bitc::ENTER_SUBBLOCK) {
974      // No known subblocks, always skip them.
975      Stream.ReadSubBlockID();
976      if (Stream.SkipBlock())
977        return Error("Malformed block record");
978      continue;
979    }
980
981    if (Code == bitc::DEFINE_ABBREV) {
982      Stream.ReadAbbrevRecord();
983      continue;
984    }
985
986    // Read a record.
987    Record.clear();
988    switch (Stream.ReadRecord(Code, Record)) {
989    default:  // Default behavior: unknown type.
990      break;
991    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
992      if (ConvertToString(Record, 1, TypeName))
993        return Error("Invalid TST_ENTRY record");
994      unsigned TypeID = Record[0];
995      if (TypeID >= TypeList.size())
996        return Error("Invalid Type ID in TST_ENTRY record");
997
998      // Only apply the type name to a struct type with no name.
999      if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
1000        if (!STy->isLiteral() && !STy->hasName())
1001          STy->setName(TypeName);
1002      TypeName.clear();
1003      break;
1004    }
1005  }
1006}
1007
1008bool BitcodeReader::ParseValueSymbolTable() {
1009  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1010    return Error("Malformed block record");
1011
1012  SmallVector<uint64_t, 64> Record;
1013
1014  // Read all the records for this value table.
1015  SmallString<128> ValueName;
1016  while (1) {
1017    unsigned Code = Stream.ReadCode();
1018    if (Code == bitc::END_BLOCK) {
1019      if (Stream.ReadBlockEnd())
1020        return Error("Error at end of value symbol table block");
1021      return false;
1022    }
1023    if (Code == bitc::ENTER_SUBBLOCK) {
1024      // No known subblocks, always skip them.
1025      Stream.ReadSubBlockID();
1026      if (Stream.SkipBlock())
1027        return Error("Malformed block record");
1028      continue;
1029    }
1030
1031    if (Code == bitc::DEFINE_ABBREV) {
1032      Stream.ReadAbbrevRecord();
1033      continue;
1034    }
1035
1036    // Read a record.
1037    Record.clear();
1038    switch (Stream.ReadRecord(Code, Record)) {
1039    default:  // Default behavior: unknown type.
1040      break;
1041    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1042      if (ConvertToString(Record, 1, ValueName))
1043        return Error("Invalid VST_ENTRY record");
1044      unsigned ValueID = Record[0];
1045      if (ValueID >= ValueList.size())
1046        return Error("Invalid Value ID in VST_ENTRY record");
1047      Value *V = ValueList[ValueID];
1048
1049      V->setName(StringRef(ValueName.data(), ValueName.size()));
1050      ValueName.clear();
1051      break;
1052    }
1053    case bitc::VST_CODE_BBENTRY: {
1054      if (ConvertToString(Record, 1, ValueName))
1055        return Error("Invalid VST_BBENTRY record");
1056      BasicBlock *BB = getBasicBlock(Record[0]);
1057      if (BB == 0)
1058        return Error("Invalid BB ID in VST_BBENTRY record");
1059
1060      BB->setName(StringRef(ValueName.data(), ValueName.size()));
1061      ValueName.clear();
1062      break;
1063    }
1064    }
1065  }
1066}
1067
1068bool BitcodeReader::ParseMetadata() {
1069  unsigned NextMDValueNo = MDValueList.size();
1070
1071  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1072    return Error("Malformed block record");
1073
1074  SmallVector<uint64_t, 64> Record;
1075
1076  // Read all the records.
1077  while (1) {
1078    unsigned Code = Stream.ReadCode();
1079    if (Code == bitc::END_BLOCK) {
1080      if (Stream.ReadBlockEnd())
1081        return Error("Error at end of PARAMATTR block");
1082      return false;
1083    }
1084
1085    if (Code == bitc::ENTER_SUBBLOCK) {
1086      // No known subblocks, always skip them.
1087      Stream.ReadSubBlockID();
1088      if (Stream.SkipBlock())
1089        return Error("Malformed block record");
1090      continue;
1091    }
1092
1093    if (Code == bitc::DEFINE_ABBREV) {
1094      Stream.ReadAbbrevRecord();
1095      continue;
1096    }
1097
1098    bool IsFunctionLocal = false;
1099    // Read a record.
1100    Record.clear();
1101    Code = Stream.ReadRecord(Code, Record);
1102    switch (Code) {
1103    default:  // Default behavior: ignore.
1104      break;
1105    case bitc::METADATA_NAME: {
1106      // Read named of the named metadata.
1107      unsigned NameLength = Record.size();
1108      SmallString<8> Name;
1109      Name.resize(NameLength);
1110      for (unsigned i = 0; i != NameLength; ++i)
1111        Name[i] = Record[i];
1112      Record.clear();
1113      Code = Stream.ReadCode();
1114
1115      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1116      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
1117      assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1118
1119      // Read named metadata elements.
1120      unsigned Size = Record.size();
1121      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1122      for (unsigned i = 0; i != Size; ++i) {
1123        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1124        if (MD == 0)
1125          return Error("Malformed metadata record");
1126        NMD->addOperand(MD);
1127      }
1128      break;
1129    }
1130    case bitc::METADATA_FN_NODE:
1131      IsFunctionLocal = true;
1132      // fall-through
1133    case bitc::METADATA_NODE: {
1134      if (Record.size() % 2 == 1)
1135        return Error("Invalid METADATA_NODE record");
1136
1137      unsigned Size = Record.size();
1138      SmallVector<Value*, 8> Elts;
1139      for (unsigned i = 0; i != Size; i += 2) {
1140        Type *Ty = getTypeByID(Record[i]);
1141        if (!Ty) return Error("Invalid METADATA_NODE record");
1142        if (Ty->isMetadataTy())
1143          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1144        else if (!Ty->isVoidTy())
1145          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1146        else
1147          Elts.push_back(NULL);
1148      }
1149      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1150      IsFunctionLocal = false;
1151      MDValueList.AssignValue(V, NextMDValueNo++);
1152      break;
1153    }
1154    case bitc::METADATA_STRING: {
1155      unsigned MDStringLength = Record.size();
1156      SmallString<8> String;
1157      String.resize(MDStringLength);
1158      for (unsigned i = 0; i != MDStringLength; ++i)
1159        String[i] = Record[i];
1160      Value *V = MDString::get(Context,
1161                               StringRef(String.data(), String.size()));
1162      MDValueList.AssignValue(V, NextMDValueNo++);
1163      break;
1164    }
1165    case bitc::METADATA_KIND: {
1166      unsigned RecordLength = Record.size();
1167      if (Record.empty() || RecordLength < 2)
1168        return Error("Invalid METADATA_KIND record");
1169      SmallString<8> Name;
1170      Name.resize(RecordLength-1);
1171      unsigned Kind = Record[0];
1172      for (unsigned i = 1; i != RecordLength; ++i)
1173        Name[i-1] = Record[i];
1174
1175      unsigned NewKind = TheModule->getMDKindID(Name.str());
1176      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1177        return Error("Conflicting METADATA_KIND records");
1178      break;
1179    }
1180    }
1181  }
1182}
1183
1184/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
1185/// the LSB for dense VBR encoding.
1186static uint64_t DecodeSignRotatedValue(uint64_t V) {
1187  if ((V & 1) == 0)
1188    return V >> 1;
1189  if (V != 1)
1190    return -(V >> 1);
1191  // There is no such thing as -0 with integers.  "-0" really means MININT.
1192  return 1ULL << 63;
1193}
1194
1195/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1196/// values and aliases that we can.
1197bool BitcodeReader::ResolveGlobalAndAliasInits() {
1198  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1199  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1200
1201  GlobalInitWorklist.swap(GlobalInits);
1202  AliasInitWorklist.swap(AliasInits);
1203
1204  while (!GlobalInitWorklist.empty()) {
1205    unsigned ValID = GlobalInitWorklist.back().second;
1206    if (ValID >= ValueList.size()) {
1207      // Not ready to resolve this yet, it requires something later in the file.
1208      GlobalInits.push_back(GlobalInitWorklist.back());
1209    } else {
1210      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1211        GlobalInitWorklist.back().first->setInitializer(C);
1212      else
1213        return Error("Global variable initializer is not a constant!");
1214    }
1215    GlobalInitWorklist.pop_back();
1216  }
1217
1218  while (!AliasInitWorklist.empty()) {
1219    unsigned ValID = AliasInitWorklist.back().second;
1220    if (ValID >= ValueList.size()) {
1221      AliasInits.push_back(AliasInitWorklist.back());
1222    } else {
1223      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1224        AliasInitWorklist.back().first->setAliasee(C);
1225      else
1226        return Error("Alias initializer is not a constant!");
1227    }
1228    AliasInitWorklist.pop_back();
1229  }
1230  return false;
1231}
1232
1233bool BitcodeReader::ParseConstants() {
1234  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1235    return Error("Malformed block record");
1236
1237  SmallVector<uint64_t, 64> Record;
1238
1239  // Read all the records for this value table.
1240  Type *CurTy = Type::getInt32Ty(Context);
1241  unsigned NextCstNo = ValueList.size();
1242  while (1) {
1243    unsigned Code = Stream.ReadCode();
1244    if (Code == bitc::END_BLOCK)
1245      break;
1246
1247    if (Code == bitc::ENTER_SUBBLOCK) {
1248      // No known subblocks, always skip them.
1249      Stream.ReadSubBlockID();
1250      if (Stream.SkipBlock())
1251        return Error("Malformed block record");
1252      continue;
1253    }
1254
1255    if (Code == bitc::DEFINE_ABBREV) {
1256      Stream.ReadAbbrevRecord();
1257      continue;
1258    }
1259
1260    // Read a record.
1261    Record.clear();
1262    Value *V = 0;
1263    unsigned BitCode = Stream.ReadRecord(Code, Record);
1264    switch (BitCode) {
1265    default:  // Default behavior: unknown constant
1266    case bitc::CST_CODE_UNDEF:     // UNDEF
1267      V = UndefValue::get(CurTy);
1268      break;
1269    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1270      if (Record.empty())
1271        return Error("Malformed CST_SETTYPE record");
1272      if (Record[0] >= TypeList.size())
1273        return Error("Invalid Type ID in CST_SETTYPE record");
1274      CurTy = TypeList[Record[0]];
1275      continue;  // Skip the ValueList manipulation.
1276    case bitc::CST_CODE_NULL:      // NULL
1277      V = Constant::getNullValue(CurTy);
1278      break;
1279    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1280      if (!CurTy->isIntegerTy() || Record.empty())
1281        return Error("Invalid CST_INTEGER record");
1282      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
1283      break;
1284    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1285      if (!CurTy->isIntegerTy() || Record.empty())
1286        return Error("Invalid WIDE_INTEGER record");
1287
1288      unsigned NumWords = Record.size();
1289      SmallVector<uint64_t, 8> Words;
1290      Words.resize(NumWords);
1291      for (unsigned i = 0; i != NumWords; ++i)
1292        Words[i] = DecodeSignRotatedValue(Record[i]);
1293      V = ConstantInt::get(Context,
1294                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
1295                                 Words));
1296      break;
1297    }
1298    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1299      if (Record.empty())
1300        return Error("Invalid FLOAT record");
1301      if (CurTy->isFloatTy())
1302        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1303      else if (CurTy->isDoubleTy())
1304        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1305      else if (CurTy->isX86_FP80Ty()) {
1306        // Bits are not stored the same way as a normal i80 APInt, compensate.
1307        uint64_t Rearrange[2];
1308        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1309        Rearrange[1] = Record[0] >> 48;
1310        V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1311      } else if (CurTy->isFP128Ty())
1312        V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1313      else if (CurTy->isPPC_FP128Ty())
1314        V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1315      else
1316        V = UndefValue::get(CurTy);
1317      break;
1318    }
1319
1320    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1321      if (Record.empty())
1322        return Error("Invalid CST_AGGREGATE record");
1323
1324      unsigned Size = Record.size();
1325      std::vector<Constant*> Elts;
1326
1327      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1328        for (unsigned i = 0; i != Size; ++i)
1329          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1330                                                     STy->getElementType(i)));
1331        V = ConstantStruct::get(STy, Elts);
1332      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1333        Type *EltTy = ATy->getElementType();
1334        for (unsigned i = 0; i != Size; ++i)
1335          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1336        V = ConstantArray::get(ATy, Elts);
1337      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1338        Type *EltTy = VTy->getElementType();
1339        for (unsigned i = 0; i != Size; ++i)
1340          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1341        V = ConstantVector::get(Elts);
1342      } else {
1343        V = UndefValue::get(CurTy);
1344      }
1345      break;
1346    }
1347    case bitc::CST_CODE_STRING: { // STRING: [values]
1348      if (Record.empty())
1349        return Error("Invalid CST_AGGREGATE record");
1350
1351      ArrayType *ATy = cast<ArrayType>(CurTy);
1352      Type *EltTy = ATy->getElementType();
1353
1354      unsigned Size = Record.size();
1355      std::vector<Constant*> Elts;
1356      for (unsigned i = 0; i != Size; ++i)
1357        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1358      V = ConstantArray::get(ATy, Elts);
1359      break;
1360    }
1361    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1362      if (Record.empty())
1363        return Error("Invalid CST_AGGREGATE record");
1364
1365      ArrayType *ATy = cast<ArrayType>(CurTy);
1366      Type *EltTy = ATy->getElementType();
1367
1368      unsigned Size = Record.size();
1369      std::vector<Constant*> Elts;
1370      for (unsigned i = 0; i != Size; ++i)
1371        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1372      Elts.push_back(Constant::getNullValue(EltTy));
1373      V = ConstantArray::get(ATy, Elts);
1374      break;
1375    }
1376    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1377      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1378      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1379      if (Opc < 0) {
1380        V = UndefValue::get(CurTy);  // Unknown binop.
1381      } else {
1382        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1383        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1384        unsigned Flags = 0;
1385        if (Record.size() >= 4) {
1386          if (Opc == Instruction::Add ||
1387              Opc == Instruction::Sub ||
1388              Opc == Instruction::Mul ||
1389              Opc == Instruction::Shl) {
1390            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1391              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1392            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1393              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1394          } else if (Opc == Instruction::SDiv ||
1395                     Opc == Instruction::UDiv ||
1396                     Opc == Instruction::LShr ||
1397                     Opc == Instruction::AShr) {
1398            if (Record[3] & (1 << bitc::PEO_EXACT))
1399              Flags |= SDivOperator::IsExact;
1400          }
1401        }
1402        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1403      }
1404      break;
1405    }
1406    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1407      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1408      int Opc = GetDecodedCastOpcode(Record[0]);
1409      if (Opc < 0) {
1410        V = UndefValue::get(CurTy);  // Unknown cast.
1411      } else {
1412        Type *OpTy = getTypeByID(Record[1]);
1413        if (!OpTy) return Error("Invalid CE_CAST record");
1414        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1415        V = ConstantExpr::getCast(Opc, Op, CurTy);
1416      }
1417      break;
1418    }
1419    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1420    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1421      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1422      SmallVector<Constant*, 16> Elts;
1423      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1424        Type *ElTy = getTypeByID(Record[i]);
1425        if (!ElTy) return Error("Invalid CE_GEP record");
1426        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1427      }
1428      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1429      V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1430                                         BitCode ==
1431                                           bitc::CST_CODE_CE_INBOUNDS_GEP);
1432      break;
1433    }
1434    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1435      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1436      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1437                                                              Type::getInt1Ty(Context)),
1438                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1439                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1440      break;
1441    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1442      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1443      VectorType *OpTy =
1444        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1445      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1446      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1447      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1448      V = ConstantExpr::getExtractElement(Op0, Op1);
1449      break;
1450    }
1451    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1452      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1453      if (Record.size() < 3 || OpTy == 0)
1454        return Error("Invalid CE_INSERTELT record");
1455      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1456      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1457                                                  OpTy->getElementType());
1458      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1459      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1460      break;
1461    }
1462    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1463      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1464      if (Record.size() < 3 || OpTy == 0)
1465        return Error("Invalid CE_SHUFFLEVEC record");
1466      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1467      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1468      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1469                                                 OpTy->getNumElements());
1470      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1471      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1472      break;
1473    }
1474    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1475      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1476      VectorType *OpTy =
1477        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1478      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1479        return Error("Invalid CE_SHUFVEC_EX record");
1480      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1481      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1482      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1483                                                 RTy->getNumElements());
1484      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1485      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1486      break;
1487    }
1488    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1489      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1490      Type *OpTy = getTypeByID(Record[0]);
1491      if (OpTy == 0) return Error("Invalid CE_CMP record");
1492      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1493      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1494
1495      if (OpTy->isFPOrFPVectorTy())
1496        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1497      else
1498        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1499      break;
1500    }
1501    case bitc::CST_CODE_INLINEASM: {
1502      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1503      std::string AsmStr, ConstrStr;
1504      bool HasSideEffects = Record[0] & 1;
1505      bool IsAlignStack = Record[0] >> 1;
1506      unsigned AsmStrSize = Record[1];
1507      if (2+AsmStrSize >= Record.size())
1508        return Error("Invalid INLINEASM record");
1509      unsigned ConstStrSize = Record[2+AsmStrSize];
1510      if (3+AsmStrSize+ConstStrSize > Record.size())
1511        return Error("Invalid INLINEASM record");
1512
1513      for (unsigned i = 0; i != AsmStrSize; ++i)
1514        AsmStr += (char)Record[2+i];
1515      for (unsigned i = 0; i != ConstStrSize; ++i)
1516        ConstrStr += (char)Record[3+AsmStrSize+i];
1517      PointerType *PTy = cast<PointerType>(CurTy);
1518      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1519                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1520      break;
1521    }
1522    case bitc::CST_CODE_BLOCKADDRESS:{
1523      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1524      Type *FnTy = getTypeByID(Record[0]);
1525      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1526      Function *Fn =
1527        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1528      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1529
1530      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1531                                                  Type::getInt8Ty(Context),
1532                                            false, GlobalValue::InternalLinkage,
1533                                                  0, "");
1534      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1535      V = FwdRef;
1536      break;
1537    }
1538    }
1539
1540    ValueList.AssignValue(V, NextCstNo);
1541    ++NextCstNo;
1542  }
1543
1544  if (NextCstNo != ValueList.size())
1545    return Error("Invalid constant reference!");
1546
1547  if (Stream.ReadBlockEnd())
1548    return Error("Error at end of constants block");
1549
1550  // Once all the constants have been read, go through and resolve forward
1551  // references.
1552  ValueList.ResolveConstantForwardRefs();
1553  return false;
1554}
1555
1556/// RememberAndSkipFunctionBody - When we see the block for a function body,
1557/// remember where it is and then skip it.  This lets us lazily deserialize the
1558/// functions.
1559bool BitcodeReader::RememberAndSkipFunctionBody() {
1560  // Get the function we are talking about.
1561  if (FunctionsWithBodies.empty())
1562    return Error("Insufficient function protos");
1563
1564  Function *Fn = FunctionsWithBodies.back();
1565  FunctionsWithBodies.pop_back();
1566
1567  // Save the current stream state.
1568  uint64_t CurBit = Stream.GetCurrentBitNo();
1569  DeferredFunctionInfo[Fn] = CurBit;
1570
1571  // Skip over the function block for now.
1572  if (Stream.SkipBlock())
1573    return Error("Malformed block record");
1574  return false;
1575}
1576
1577bool BitcodeReader::ParseModule() {
1578  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1579    return Error("Malformed block record");
1580
1581  SmallVector<uint64_t, 64> Record;
1582  std::vector<std::string> SectionTable;
1583  std::vector<std::string> GCTable;
1584
1585  // Read all the records for this module.
1586  while (!Stream.AtEndOfStream()) {
1587    unsigned Code = Stream.ReadCode();
1588    if (Code == bitc::END_BLOCK) {
1589      if (Stream.ReadBlockEnd())
1590        return Error("Error at end of module block");
1591
1592      // Patch the initializers for globals and aliases up.
1593      ResolveGlobalAndAliasInits();
1594      if (!GlobalInits.empty() || !AliasInits.empty())
1595        return Error("Malformed global initializer set");
1596      if (!FunctionsWithBodies.empty())
1597        return Error("Too few function bodies found");
1598
1599      // Look for intrinsic functions which need to be upgraded at some point
1600      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1601           FI != FE; ++FI) {
1602        Function* NewFn;
1603        if (UpgradeIntrinsicFunction(FI, NewFn))
1604          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1605      }
1606
1607      // Look for global variables which need to be renamed.
1608      for (Module::global_iterator
1609             GI = TheModule->global_begin(), GE = TheModule->global_end();
1610           GI != GE; ++GI)
1611        UpgradeGlobalVariable(GI);
1612
1613      // Force deallocation of memory for these vectors to favor the client that
1614      // want lazy deserialization.
1615      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1616      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1617      std::vector<Function*>().swap(FunctionsWithBodies);
1618      return false;
1619    }
1620
1621    if (Code == bitc::ENTER_SUBBLOCK) {
1622      switch (Stream.ReadSubBlockID()) {
1623      default:  // Skip unknown content.
1624        if (Stream.SkipBlock())
1625          return Error("Malformed block record");
1626        break;
1627      case bitc::BLOCKINFO_BLOCK_ID:
1628        if (Stream.ReadBlockInfoBlock())
1629          return Error("Malformed BlockInfoBlock");
1630        break;
1631      case bitc::PARAMATTR_BLOCK_ID:
1632        if (ParseAttributeBlock())
1633          return true;
1634        break;
1635      case bitc::TYPE_BLOCK_ID_NEW:
1636        if (ParseTypeTable())
1637          return true;
1638        break;
1639      case bitc::TYPE_BLOCK_ID_OLD:
1640        if (ParseOldTypeTable())
1641          return true;
1642        break;
1643      case bitc::TYPE_SYMTAB_BLOCK_ID_OLD:
1644        if (ParseOldTypeSymbolTable())
1645          return true;
1646        break;
1647      case bitc::VALUE_SYMTAB_BLOCK_ID:
1648        if (ParseValueSymbolTable())
1649          return true;
1650        break;
1651      case bitc::CONSTANTS_BLOCK_ID:
1652        if (ParseConstants() || ResolveGlobalAndAliasInits())
1653          return true;
1654        break;
1655      case bitc::METADATA_BLOCK_ID:
1656        if (ParseMetadata())
1657          return true;
1658        break;
1659      case bitc::FUNCTION_BLOCK_ID:
1660        // If this is the first function body we've seen, reverse the
1661        // FunctionsWithBodies list.
1662        if (!HasReversedFunctionsWithBodies) {
1663          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1664          HasReversedFunctionsWithBodies = true;
1665        }
1666
1667        if (RememberAndSkipFunctionBody())
1668          return true;
1669        break;
1670      }
1671      continue;
1672    }
1673
1674    if (Code == bitc::DEFINE_ABBREV) {
1675      Stream.ReadAbbrevRecord();
1676      continue;
1677    }
1678
1679    // Read a record.
1680    switch (Stream.ReadRecord(Code, Record)) {
1681    default: break;  // Default behavior, ignore unknown content.
1682    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1683      if (Record.size() < 1)
1684        return Error("Malformed MODULE_CODE_VERSION");
1685      // Only version #0 is supported so far.
1686      if (Record[0] != 0)
1687        return Error("Unknown bitstream version!");
1688      break;
1689    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1690      std::string S;
1691      if (ConvertToString(Record, 0, S))
1692        return Error("Invalid MODULE_CODE_TRIPLE record");
1693      TheModule->setTargetTriple(S);
1694      break;
1695    }
1696    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1697      std::string S;
1698      if (ConvertToString(Record, 0, S))
1699        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1700      TheModule->setDataLayout(S);
1701      break;
1702    }
1703    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1704      std::string S;
1705      if (ConvertToString(Record, 0, S))
1706        return Error("Invalid MODULE_CODE_ASM record");
1707      TheModule->setModuleInlineAsm(S);
1708      break;
1709    }
1710    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1711      std::string S;
1712      if (ConvertToString(Record, 0, S))
1713        return Error("Invalid MODULE_CODE_DEPLIB record");
1714      TheModule->addLibrary(S);
1715      break;
1716    }
1717    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1718      std::string S;
1719      if (ConvertToString(Record, 0, S))
1720        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1721      SectionTable.push_back(S);
1722      break;
1723    }
1724    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1725      std::string S;
1726      if (ConvertToString(Record, 0, S))
1727        return Error("Invalid MODULE_CODE_GCNAME record");
1728      GCTable.push_back(S);
1729      break;
1730    }
1731    // GLOBALVAR: [pointer type, isconst, initid,
1732    //             linkage, alignment, section, visibility, threadlocal,
1733    //             unnamed_addr]
1734    case bitc::MODULE_CODE_GLOBALVAR: {
1735      if (Record.size() < 6)
1736        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1737      Type *Ty = getTypeByID(Record[0]);
1738      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1739      if (!Ty->isPointerTy())
1740        return Error("Global not a pointer type!");
1741      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1742      Ty = cast<PointerType>(Ty)->getElementType();
1743
1744      bool isConstant = Record[1];
1745      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1746      unsigned Alignment = (1 << Record[4]) >> 1;
1747      std::string Section;
1748      if (Record[5]) {
1749        if (Record[5]-1 >= SectionTable.size())
1750          return Error("Invalid section ID");
1751        Section = SectionTable[Record[5]-1];
1752      }
1753      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1754      if (Record.size() > 6)
1755        Visibility = GetDecodedVisibility(Record[6]);
1756      bool isThreadLocal = false;
1757      if (Record.size() > 7)
1758        isThreadLocal = Record[7];
1759
1760      bool UnnamedAddr = false;
1761      if (Record.size() > 8)
1762        UnnamedAddr = Record[8];
1763
1764      GlobalVariable *NewGV =
1765        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1766                           isThreadLocal, AddressSpace);
1767      NewGV->setAlignment(Alignment);
1768      if (!Section.empty())
1769        NewGV->setSection(Section);
1770      NewGV->setVisibility(Visibility);
1771      NewGV->setThreadLocal(isThreadLocal);
1772      NewGV->setUnnamedAddr(UnnamedAddr);
1773
1774      ValueList.push_back(NewGV);
1775
1776      // Remember which value to use for the global initializer.
1777      if (unsigned InitID = Record[2])
1778        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1779      break;
1780    }
1781    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1782    //             alignment, section, visibility, gc, unnamed_addr]
1783    case bitc::MODULE_CODE_FUNCTION: {
1784      if (Record.size() < 8)
1785        return Error("Invalid MODULE_CODE_FUNCTION record");
1786      Type *Ty = getTypeByID(Record[0]);
1787      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1788      if (!Ty->isPointerTy())
1789        return Error("Function not a pointer type!");
1790      FunctionType *FTy =
1791        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1792      if (!FTy)
1793        return Error("Function not a pointer to function type!");
1794
1795      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1796                                        "", TheModule);
1797
1798      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1799      bool isProto = Record[2];
1800      Func->setLinkage(GetDecodedLinkage(Record[3]));
1801      Func->setAttributes(getAttributes(Record[4]));
1802
1803      Func->setAlignment((1 << Record[5]) >> 1);
1804      if (Record[6]) {
1805        if (Record[6]-1 >= SectionTable.size())
1806          return Error("Invalid section ID");
1807        Func->setSection(SectionTable[Record[6]-1]);
1808      }
1809      Func->setVisibility(GetDecodedVisibility(Record[7]));
1810      if (Record.size() > 8 && Record[8]) {
1811        if (Record[8]-1 > GCTable.size())
1812          return Error("Invalid GC ID");
1813        Func->setGC(GCTable[Record[8]-1].c_str());
1814      }
1815      bool UnnamedAddr = false;
1816      if (Record.size() > 9)
1817        UnnamedAddr = Record[9];
1818      Func->setUnnamedAddr(UnnamedAddr);
1819      ValueList.push_back(Func);
1820
1821      // If this is a function with a body, remember the prototype we are
1822      // creating now, so that we can match up the body with them later.
1823      if (!isProto)
1824        FunctionsWithBodies.push_back(Func);
1825      break;
1826    }
1827    // ALIAS: [alias type, aliasee val#, linkage]
1828    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1829    case bitc::MODULE_CODE_ALIAS: {
1830      if (Record.size() < 3)
1831        return Error("Invalid MODULE_ALIAS record");
1832      Type *Ty = getTypeByID(Record[0]);
1833      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1834      if (!Ty->isPointerTy())
1835        return Error("Function not a pointer type!");
1836
1837      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1838                                           "", 0, TheModule);
1839      // Old bitcode files didn't have visibility field.
1840      if (Record.size() > 3)
1841        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1842      ValueList.push_back(NewGA);
1843      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1844      break;
1845    }
1846    /// MODULE_CODE_PURGEVALS: [numvals]
1847    case bitc::MODULE_CODE_PURGEVALS:
1848      // Trim down the value list to the specified size.
1849      if (Record.size() < 1 || Record[0] > ValueList.size())
1850        return Error("Invalid MODULE_PURGEVALS record");
1851      ValueList.shrinkTo(Record[0]);
1852      break;
1853    }
1854    Record.clear();
1855  }
1856
1857  return Error("Premature end of bitstream");
1858}
1859
1860bool BitcodeReader::ParseBitcodeInto(Module *M) {
1861  TheModule = 0;
1862
1863  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1864  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1865
1866  if (Buffer->getBufferSize() & 3) {
1867    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1868      return Error("Invalid bitcode signature");
1869    else
1870      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1871  }
1872
1873  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1874  // The magic number is 0x0B17C0DE stored in little endian.
1875  if (isBitcodeWrapper(BufPtr, BufEnd))
1876    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1877      return Error("Invalid bitcode wrapper header");
1878
1879  StreamFile.init(BufPtr, BufEnd);
1880  Stream.init(StreamFile);
1881
1882  // Sniff for the signature.
1883  if (Stream.Read(8) != 'B' ||
1884      Stream.Read(8) != 'C' ||
1885      Stream.Read(4) != 0x0 ||
1886      Stream.Read(4) != 0xC ||
1887      Stream.Read(4) != 0xE ||
1888      Stream.Read(4) != 0xD)
1889    return Error("Invalid bitcode signature");
1890
1891  // We expect a number of well-defined blocks, though we don't necessarily
1892  // need to understand them all.
1893  while (!Stream.AtEndOfStream()) {
1894    unsigned Code = Stream.ReadCode();
1895
1896    if (Code != bitc::ENTER_SUBBLOCK) {
1897
1898      // The ranlib in xcode 4 will align archive members by appending newlines
1899      // to the end of them. If this file size is a multiple of 4 but not 8, we
1900      // have to read and ignore these final 4 bytes :-(
1901      if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1902          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1903	  Stream.AtEndOfStream())
1904        return false;
1905
1906      return Error("Invalid record at top-level");
1907    }
1908
1909    unsigned BlockID = Stream.ReadSubBlockID();
1910
1911    // We only know the MODULE subblock ID.
1912    switch (BlockID) {
1913    case bitc::BLOCKINFO_BLOCK_ID:
1914      if (Stream.ReadBlockInfoBlock())
1915        return Error("Malformed BlockInfoBlock");
1916      break;
1917    case bitc::MODULE_BLOCK_ID:
1918      // Reject multiple MODULE_BLOCK's in a single bitstream.
1919      if (TheModule)
1920        return Error("Multiple MODULE_BLOCKs in same stream");
1921      TheModule = M;
1922      if (ParseModule())
1923        return true;
1924      break;
1925    default:
1926      if (Stream.SkipBlock())
1927        return Error("Malformed block record");
1928      break;
1929    }
1930  }
1931
1932  return false;
1933}
1934
1935bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1936  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1937    return Error("Malformed block record");
1938
1939  SmallVector<uint64_t, 64> Record;
1940
1941  // Read all the records for this module.
1942  while (!Stream.AtEndOfStream()) {
1943    unsigned Code = Stream.ReadCode();
1944    if (Code == bitc::END_BLOCK) {
1945      if (Stream.ReadBlockEnd())
1946        return Error("Error at end of module block");
1947
1948      return false;
1949    }
1950
1951    if (Code == bitc::ENTER_SUBBLOCK) {
1952      switch (Stream.ReadSubBlockID()) {
1953      default:  // Skip unknown content.
1954        if (Stream.SkipBlock())
1955          return Error("Malformed block record");
1956        break;
1957      }
1958      continue;
1959    }
1960
1961    if (Code == bitc::DEFINE_ABBREV) {
1962      Stream.ReadAbbrevRecord();
1963      continue;
1964    }
1965
1966    // Read a record.
1967    switch (Stream.ReadRecord(Code, Record)) {
1968    default: break;  // Default behavior, ignore unknown content.
1969    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1970      if (Record.size() < 1)
1971        return Error("Malformed MODULE_CODE_VERSION");
1972      // Only version #0 is supported so far.
1973      if (Record[0] != 0)
1974        return Error("Unknown bitstream version!");
1975      break;
1976    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1977      std::string S;
1978      if (ConvertToString(Record, 0, S))
1979        return Error("Invalid MODULE_CODE_TRIPLE record");
1980      Triple = S;
1981      break;
1982    }
1983    }
1984    Record.clear();
1985  }
1986
1987  return Error("Premature end of bitstream");
1988}
1989
1990bool BitcodeReader::ParseTriple(std::string &Triple) {
1991  if (Buffer->getBufferSize() & 3)
1992    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1993
1994  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1995  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1996
1997  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1998  // The magic number is 0x0B17C0DE stored in little endian.
1999  if (isBitcodeWrapper(BufPtr, BufEnd))
2000    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
2001      return Error("Invalid bitcode wrapper header");
2002
2003  StreamFile.init(BufPtr, BufEnd);
2004  Stream.init(StreamFile);
2005
2006  // Sniff for the signature.
2007  if (Stream.Read(8) != 'B' ||
2008      Stream.Read(8) != 'C' ||
2009      Stream.Read(4) != 0x0 ||
2010      Stream.Read(4) != 0xC ||
2011      Stream.Read(4) != 0xE ||
2012      Stream.Read(4) != 0xD)
2013    return Error("Invalid bitcode signature");
2014
2015  // We expect a number of well-defined blocks, though we don't necessarily
2016  // need to understand them all.
2017  while (!Stream.AtEndOfStream()) {
2018    unsigned Code = Stream.ReadCode();
2019
2020    if (Code != bitc::ENTER_SUBBLOCK)
2021      return Error("Invalid record at top-level");
2022
2023    unsigned BlockID = Stream.ReadSubBlockID();
2024
2025    // We only know the MODULE subblock ID.
2026    switch (BlockID) {
2027    case bitc::MODULE_BLOCK_ID:
2028      if (ParseModuleTriple(Triple))
2029        return true;
2030      break;
2031    default:
2032      if (Stream.SkipBlock())
2033        return Error("Malformed block record");
2034      break;
2035    }
2036  }
2037
2038  return false;
2039}
2040
2041/// ParseMetadataAttachment - Parse metadata attachments.
2042bool BitcodeReader::ParseMetadataAttachment() {
2043  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2044    return Error("Malformed block record");
2045
2046  SmallVector<uint64_t, 64> Record;
2047  while(1) {
2048    unsigned Code = Stream.ReadCode();
2049    if (Code == bitc::END_BLOCK) {
2050      if (Stream.ReadBlockEnd())
2051        return Error("Error at end of PARAMATTR block");
2052      break;
2053    }
2054    if (Code == bitc::DEFINE_ABBREV) {
2055      Stream.ReadAbbrevRecord();
2056      continue;
2057    }
2058    // Read a metadata attachment record.
2059    Record.clear();
2060    switch (Stream.ReadRecord(Code, Record)) {
2061    default:  // Default behavior: ignore.
2062      break;
2063    case bitc::METADATA_ATTACHMENT: {
2064      unsigned RecordLength = Record.size();
2065      if (Record.empty() || (RecordLength - 1) % 2 == 1)
2066        return Error ("Invalid METADATA_ATTACHMENT reader!");
2067      Instruction *Inst = InstructionList[Record[0]];
2068      for (unsigned i = 1; i != RecordLength; i = i+2) {
2069        unsigned Kind = Record[i];
2070        DenseMap<unsigned, unsigned>::iterator I =
2071          MDKindMap.find(Kind);
2072        if (I == MDKindMap.end())
2073          return Error("Invalid metadata kind ID");
2074        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2075        Inst->setMetadata(I->second, cast<MDNode>(Node));
2076      }
2077      break;
2078    }
2079    }
2080  }
2081  return false;
2082}
2083
2084/// ParseFunctionBody - Lazily parse the specified function body block.
2085bool BitcodeReader::ParseFunctionBody(Function *F) {
2086  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2087    return Error("Malformed block record");
2088
2089  InstructionList.clear();
2090  unsigned ModuleValueListSize = ValueList.size();
2091  unsigned ModuleMDValueListSize = MDValueList.size();
2092
2093  // Add all the function arguments to the value table.
2094  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2095    ValueList.push_back(I);
2096
2097  unsigned NextValueNo = ValueList.size();
2098  BasicBlock *CurBB = 0;
2099  unsigned CurBBNo = 0;
2100
2101  DebugLoc LastLoc;
2102
2103  // Read all the records.
2104  SmallVector<uint64_t, 64> Record;
2105  while (1) {
2106    unsigned Code = Stream.ReadCode();
2107    if (Code == bitc::END_BLOCK) {
2108      if (Stream.ReadBlockEnd())
2109        return Error("Error at end of function block");
2110      break;
2111    }
2112
2113    if (Code == bitc::ENTER_SUBBLOCK) {
2114      switch (Stream.ReadSubBlockID()) {
2115      default:  // Skip unknown content.
2116        if (Stream.SkipBlock())
2117          return Error("Malformed block record");
2118        break;
2119      case bitc::CONSTANTS_BLOCK_ID:
2120        if (ParseConstants()) return true;
2121        NextValueNo = ValueList.size();
2122        break;
2123      case bitc::VALUE_SYMTAB_BLOCK_ID:
2124        if (ParseValueSymbolTable()) return true;
2125        break;
2126      case bitc::METADATA_ATTACHMENT_ID:
2127        if (ParseMetadataAttachment()) return true;
2128        break;
2129      case bitc::METADATA_BLOCK_ID:
2130        if (ParseMetadata()) return true;
2131        break;
2132      }
2133      continue;
2134    }
2135
2136    if (Code == bitc::DEFINE_ABBREV) {
2137      Stream.ReadAbbrevRecord();
2138      continue;
2139    }
2140
2141    // Read a record.
2142    Record.clear();
2143    Instruction *I = 0;
2144    unsigned BitCode = Stream.ReadRecord(Code, Record);
2145    switch (BitCode) {
2146    default: // Default behavior: reject
2147      return Error("Unknown instruction");
2148    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2149      if (Record.size() < 1 || Record[0] == 0)
2150        return Error("Invalid DECLAREBLOCKS record");
2151      // Create all the basic blocks for the function.
2152      FunctionBBs.resize(Record[0]);
2153      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2154        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2155      CurBB = FunctionBBs[0];
2156      continue;
2157
2158    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2159      // This record indicates that the last instruction is at the same
2160      // location as the previous instruction with a location.
2161      I = 0;
2162
2163      // Get the last instruction emitted.
2164      if (CurBB && !CurBB->empty())
2165        I = &CurBB->back();
2166      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2167               !FunctionBBs[CurBBNo-1]->empty())
2168        I = &FunctionBBs[CurBBNo-1]->back();
2169
2170      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2171      I->setDebugLoc(LastLoc);
2172      I = 0;
2173      continue;
2174
2175    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2176      I = 0;     // Get the last instruction emitted.
2177      if (CurBB && !CurBB->empty())
2178        I = &CurBB->back();
2179      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2180               !FunctionBBs[CurBBNo-1]->empty())
2181        I = &FunctionBBs[CurBBNo-1]->back();
2182      if (I == 0 || Record.size() < 4)
2183        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2184
2185      unsigned Line = Record[0], Col = Record[1];
2186      unsigned ScopeID = Record[2], IAID = Record[3];
2187
2188      MDNode *Scope = 0, *IA = 0;
2189      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2190      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2191      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2192      I->setDebugLoc(LastLoc);
2193      I = 0;
2194      continue;
2195    }
2196
2197    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2198      unsigned OpNum = 0;
2199      Value *LHS, *RHS;
2200      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2201          getValue(Record, OpNum, LHS->getType(), RHS) ||
2202          OpNum+1 > Record.size())
2203        return Error("Invalid BINOP record");
2204
2205      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2206      if (Opc == -1) return Error("Invalid BINOP record");
2207      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2208      InstructionList.push_back(I);
2209      if (OpNum < Record.size()) {
2210        if (Opc == Instruction::Add ||
2211            Opc == Instruction::Sub ||
2212            Opc == Instruction::Mul ||
2213            Opc == Instruction::Shl) {
2214          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2215            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2216          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2217            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2218        } else if (Opc == Instruction::SDiv ||
2219                   Opc == Instruction::UDiv ||
2220                   Opc == Instruction::LShr ||
2221                   Opc == Instruction::AShr) {
2222          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2223            cast<BinaryOperator>(I)->setIsExact(true);
2224        }
2225      }
2226      break;
2227    }
2228    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2229      unsigned OpNum = 0;
2230      Value *Op;
2231      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2232          OpNum+2 != Record.size())
2233        return Error("Invalid CAST record");
2234
2235      Type *ResTy = getTypeByID(Record[OpNum]);
2236      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2237      if (Opc == -1 || ResTy == 0)
2238        return Error("Invalid CAST record");
2239      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2240      InstructionList.push_back(I);
2241      break;
2242    }
2243    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2244    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2245      unsigned OpNum = 0;
2246      Value *BasePtr;
2247      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2248        return Error("Invalid GEP record");
2249
2250      SmallVector<Value*, 16> GEPIdx;
2251      while (OpNum != Record.size()) {
2252        Value *Op;
2253        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2254          return Error("Invalid GEP record");
2255        GEPIdx.push_back(Op);
2256      }
2257
2258      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2259      InstructionList.push_back(I);
2260      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2261        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2262      break;
2263    }
2264
2265    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2266                                       // EXTRACTVAL: [opty, opval, n x indices]
2267      unsigned OpNum = 0;
2268      Value *Agg;
2269      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2270        return Error("Invalid EXTRACTVAL record");
2271
2272      SmallVector<unsigned, 4> EXTRACTVALIdx;
2273      for (unsigned RecSize = Record.size();
2274           OpNum != RecSize; ++OpNum) {
2275        uint64_t Index = Record[OpNum];
2276        if ((unsigned)Index != Index)
2277          return Error("Invalid EXTRACTVAL index");
2278        EXTRACTVALIdx.push_back((unsigned)Index);
2279      }
2280
2281      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2282      InstructionList.push_back(I);
2283      break;
2284    }
2285
2286    case bitc::FUNC_CODE_INST_INSERTVAL: {
2287                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2288      unsigned OpNum = 0;
2289      Value *Agg;
2290      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2291        return Error("Invalid INSERTVAL record");
2292      Value *Val;
2293      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2294        return Error("Invalid INSERTVAL record");
2295
2296      SmallVector<unsigned, 4> INSERTVALIdx;
2297      for (unsigned RecSize = Record.size();
2298           OpNum != RecSize; ++OpNum) {
2299        uint64_t Index = Record[OpNum];
2300        if ((unsigned)Index != Index)
2301          return Error("Invalid INSERTVAL index");
2302        INSERTVALIdx.push_back((unsigned)Index);
2303      }
2304
2305      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2306      InstructionList.push_back(I);
2307      break;
2308    }
2309
2310    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2311      // obsolete form of select
2312      // handles select i1 ... in old bitcode
2313      unsigned OpNum = 0;
2314      Value *TrueVal, *FalseVal, *Cond;
2315      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2316          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2317          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2318        return Error("Invalid SELECT record");
2319
2320      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2321      InstructionList.push_back(I);
2322      break;
2323    }
2324
2325    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2326      // new form of select
2327      // handles select i1 or select [N x i1]
2328      unsigned OpNum = 0;
2329      Value *TrueVal, *FalseVal, *Cond;
2330      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2331          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2332          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2333        return Error("Invalid SELECT record");
2334
2335      // select condition can be either i1 or [N x i1]
2336      if (VectorType* vector_type =
2337          dyn_cast<VectorType>(Cond->getType())) {
2338        // expect <n x i1>
2339        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2340          return Error("Invalid SELECT condition type");
2341      } else {
2342        // expect i1
2343        if (Cond->getType() != Type::getInt1Ty(Context))
2344          return Error("Invalid SELECT condition type");
2345      }
2346
2347      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2348      InstructionList.push_back(I);
2349      break;
2350    }
2351
2352    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2353      unsigned OpNum = 0;
2354      Value *Vec, *Idx;
2355      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2356          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2357        return Error("Invalid EXTRACTELT record");
2358      I = ExtractElementInst::Create(Vec, Idx);
2359      InstructionList.push_back(I);
2360      break;
2361    }
2362
2363    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2364      unsigned OpNum = 0;
2365      Value *Vec, *Elt, *Idx;
2366      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2367          getValue(Record, OpNum,
2368                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2369          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2370        return Error("Invalid INSERTELT record");
2371      I = InsertElementInst::Create(Vec, Elt, Idx);
2372      InstructionList.push_back(I);
2373      break;
2374    }
2375
2376    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2377      unsigned OpNum = 0;
2378      Value *Vec1, *Vec2, *Mask;
2379      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2380          getValue(Record, OpNum, Vec1->getType(), Vec2))
2381        return Error("Invalid SHUFFLEVEC record");
2382
2383      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2384        return Error("Invalid SHUFFLEVEC record");
2385      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2386      InstructionList.push_back(I);
2387      break;
2388    }
2389
2390    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2391      // Old form of ICmp/FCmp returning bool
2392      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2393      // both legal on vectors but had different behaviour.
2394    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2395      // FCmp/ICmp returning bool or vector of bool
2396
2397      unsigned OpNum = 0;
2398      Value *LHS, *RHS;
2399      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2400          getValue(Record, OpNum, LHS->getType(), RHS) ||
2401          OpNum+1 != Record.size())
2402        return Error("Invalid CMP record");
2403
2404      if (LHS->getType()->isFPOrFPVectorTy())
2405        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2406      else
2407        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2408      InstructionList.push_back(I);
2409      break;
2410    }
2411
2412    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2413      {
2414        unsigned Size = Record.size();
2415        if (Size == 0) {
2416          I = ReturnInst::Create(Context);
2417          InstructionList.push_back(I);
2418          break;
2419        }
2420
2421        unsigned OpNum = 0;
2422        Value *Op = NULL;
2423        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2424          return Error("Invalid RET record");
2425        if (OpNum != Record.size())
2426          return Error("Invalid RET record");
2427
2428        I = ReturnInst::Create(Context, Op);
2429        InstructionList.push_back(I);
2430        break;
2431      }
2432    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2433      if (Record.size() != 1 && Record.size() != 3)
2434        return Error("Invalid BR record");
2435      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2436      if (TrueDest == 0)
2437        return Error("Invalid BR record");
2438
2439      if (Record.size() == 1) {
2440        I = BranchInst::Create(TrueDest);
2441        InstructionList.push_back(I);
2442      }
2443      else {
2444        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2445        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2446        if (FalseDest == 0 || Cond == 0)
2447          return Error("Invalid BR record");
2448        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2449        InstructionList.push_back(I);
2450      }
2451      break;
2452    }
2453    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2454      if (Record.size() < 3 || (Record.size() & 1) == 0)
2455        return Error("Invalid SWITCH record");
2456      Type *OpTy = getTypeByID(Record[0]);
2457      Value *Cond = getFnValueByID(Record[1], OpTy);
2458      BasicBlock *Default = getBasicBlock(Record[2]);
2459      if (OpTy == 0 || Cond == 0 || Default == 0)
2460        return Error("Invalid SWITCH record");
2461      unsigned NumCases = (Record.size()-3)/2;
2462      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2463      InstructionList.push_back(SI);
2464      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2465        ConstantInt *CaseVal =
2466          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2467        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2468        if (CaseVal == 0 || DestBB == 0) {
2469          delete SI;
2470          return Error("Invalid SWITCH record!");
2471        }
2472        SI->addCase(CaseVal, DestBB);
2473      }
2474      I = SI;
2475      break;
2476    }
2477    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2478      if (Record.size() < 2)
2479        return Error("Invalid INDIRECTBR record");
2480      Type *OpTy = getTypeByID(Record[0]);
2481      Value *Address = getFnValueByID(Record[1], OpTy);
2482      if (OpTy == 0 || Address == 0)
2483        return Error("Invalid INDIRECTBR record");
2484      unsigned NumDests = Record.size()-2;
2485      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2486      InstructionList.push_back(IBI);
2487      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2488        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2489          IBI->addDestination(DestBB);
2490        } else {
2491          delete IBI;
2492          return Error("Invalid INDIRECTBR record!");
2493        }
2494      }
2495      I = IBI;
2496      break;
2497    }
2498
2499    case bitc::FUNC_CODE_INST_INVOKE: {
2500      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2501      if (Record.size() < 4) return Error("Invalid INVOKE record");
2502      AttrListPtr PAL = getAttributes(Record[0]);
2503      unsigned CCInfo = Record[1];
2504      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2505      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2506
2507      unsigned OpNum = 4;
2508      Value *Callee;
2509      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2510        return Error("Invalid INVOKE record");
2511
2512      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2513      FunctionType *FTy = !CalleeTy ? 0 :
2514        dyn_cast<FunctionType>(CalleeTy->getElementType());
2515
2516      // Check that the right number of fixed parameters are here.
2517      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2518          Record.size() < OpNum+FTy->getNumParams())
2519        return Error("Invalid INVOKE record");
2520
2521      SmallVector<Value*, 16> Ops;
2522      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2523        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2524        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2525      }
2526
2527      if (!FTy->isVarArg()) {
2528        if (Record.size() != OpNum)
2529          return Error("Invalid INVOKE record");
2530      } else {
2531        // Read type/value pairs for varargs params.
2532        while (OpNum != Record.size()) {
2533          Value *Op;
2534          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2535            return Error("Invalid INVOKE record");
2536          Ops.push_back(Op);
2537        }
2538      }
2539
2540      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2541      InstructionList.push_back(I);
2542      cast<InvokeInst>(I)->setCallingConv(
2543        static_cast<CallingConv::ID>(CCInfo));
2544      cast<InvokeInst>(I)->setAttributes(PAL);
2545      break;
2546    }
2547    case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2548      unsigned Idx = 0;
2549      Value *Val = 0;
2550      if (getValueTypePair(Record, Idx, NextValueNo, Val))
2551        return Error("Invalid RESUME record");
2552      I = ResumeInst::Create(Val);
2553      InstructionList.push_back(I);
2554      break;
2555    }
2556    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2557      I = new UnwindInst(Context);
2558      InstructionList.push_back(I);
2559      break;
2560    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2561      I = new UnreachableInst(Context);
2562      InstructionList.push_back(I);
2563      break;
2564    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2565      if (Record.size() < 1 || ((Record.size()-1)&1))
2566        return Error("Invalid PHI record");
2567      Type *Ty = getTypeByID(Record[0]);
2568      if (!Ty) return Error("Invalid PHI record");
2569
2570      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2571      InstructionList.push_back(PN);
2572
2573      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2574        Value *V = getFnValueByID(Record[1+i], Ty);
2575        BasicBlock *BB = getBasicBlock(Record[2+i]);
2576        if (!V || !BB) return Error("Invalid PHI record");
2577        PN->addIncoming(V, BB);
2578      }
2579      I = PN;
2580      break;
2581    }
2582
2583    case bitc::FUNC_CODE_INST_LANDINGPAD: {
2584      // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2585      unsigned Idx = 0;
2586      if (Record.size() < 4)
2587        return Error("Invalid LANDINGPAD record");
2588      Type *Ty = getTypeByID(Record[Idx++]);
2589      if (!Ty) return Error("Invalid LANDINGPAD record");
2590      Value *PersFn = 0;
2591      if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2592        return Error("Invalid LANDINGPAD record");
2593
2594      bool IsCleanup = !!Record[Idx++];
2595      unsigned NumClauses = Record[Idx++];
2596      LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
2597      LP->setCleanup(IsCleanup);
2598      for (unsigned J = 0; J != NumClauses; ++J) {
2599        LandingPadInst::ClauseType CT =
2600          LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
2601        Value *Val;
2602
2603        if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2604          delete LP;
2605          return Error("Invalid LANDINGPAD record");
2606        }
2607
2608        assert((CT != LandingPadInst::Catch ||
2609                !isa<ArrayType>(Val->getType())) &&
2610               "Catch clause has a invalid type!");
2611        assert((CT != LandingPadInst::Filter ||
2612                isa<ArrayType>(Val->getType())) &&
2613               "Filter clause has invalid type!");
2614        LP->addClause(Val);
2615      }
2616
2617      I = LP;
2618      InstructionList.push_back(I);
2619      break;
2620    }
2621
2622    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2623      if (Record.size() != 4)
2624        return Error("Invalid ALLOCA record");
2625      PointerType *Ty =
2626        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2627      Type *OpTy = getTypeByID(Record[1]);
2628      Value *Size = getFnValueByID(Record[2], OpTy);
2629      unsigned Align = Record[3];
2630      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2631      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2632      InstructionList.push_back(I);
2633      break;
2634    }
2635    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2636      unsigned OpNum = 0;
2637      Value *Op;
2638      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2639          OpNum+2 != Record.size())
2640        return Error("Invalid LOAD record");
2641
2642      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2643      InstructionList.push_back(I);
2644      break;
2645    }
2646    case bitc::FUNC_CODE_INST_LOADATOMIC: {
2647       // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
2648      unsigned OpNum = 0;
2649      Value *Op;
2650      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2651          OpNum+4 != Record.size())
2652        return Error("Invalid LOADATOMIC record");
2653
2654
2655      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2656      if (Ordering == NotAtomic || Ordering == Release ||
2657          Ordering == AcquireRelease)
2658        return Error("Invalid LOADATOMIC record");
2659      if (Ordering != NotAtomic && Record[OpNum] == 0)
2660        return Error("Invalid LOADATOMIC record");
2661      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2662
2663      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2664                       Ordering, SynchScope);
2665      InstructionList.push_back(I);
2666      break;
2667    }
2668    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2669      unsigned OpNum = 0;
2670      Value *Val, *Ptr;
2671      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2672          getValue(Record, OpNum,
2673                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2674          OpNum+2 != Record.size())
2675        return Error("Invalid STORE record");
2676
2677      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2678      InstructionList.push_back(I);
2679      break;
2680    }
2681    case bitc::FUNC_CODE_INST_STOREATOMIC: {
2682      // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
2683      unsigned OpNum = 0;
2684      Value *Val, *Ptr;
2685      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2686          getValue(Record, OpNum,
2687                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2688          OpNum+4 != Record.size())
2689        return Error("Invalid STOREATOMIC record");
2690
2691      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2692      if (Ordering == NotAtomic || Ordering == Acquire ||
2693          Ordering == AcquireRelease)
2694        return Error("Invalid STOREATOMIC record");
2695      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2696      if (Ordering != NotAtomic && Record[OpNum] == 0)
2697        return Error("Invalid STOREATOMIC record");
2698
2699      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2700                        Ordering, SynchScope);
2701      InstructionList.push_back(I);
2702      break;
2703    }
2704    case bitc::FUNC_CODE_INST_CMPXCHG: {
2705      // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
2706      unsigned OpNum = 0;
2707      Value *Ptr, *Cmp, *New;
2708      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2709          getValue(Record, OpNum,
2710                    cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
2711          getValue(Record, OpNum,
2712                    cast<PointerType>(Ptr->getType())->getElementType(), New) ||
2713          OpNum+3 != Record.size())
2714        return Error("Invalid CMPXCHG record");
2715      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
2716      if (Ordering == NotAtomic || Ordering == Unordered)
2717        return Error("Invalid CMPXCHG record");
2718      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
2719      I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
2720      cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
2721      InstructionList.push_back(I);
2722      break;
2723    }
2724    case bitc::FUNC_CODE_INST_ATOMICRMW: {
2725      // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
2726      unsigned OpNum = 0;
2727      Value *Ptr, *Val;
2728      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2729          getValue(Record, OpNum,
2730                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2731          OpNum+4 != Record.size())
2732        return Error("Invalid ATOMICRMW record");
2733      AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
2734      if (Operation < AtomicRMWInst::FIRST_BINOP ||
2735          Operation > AtomicRMWInst::LAST_BINOP)
2736        return Error("Invalid ATOMICRMW record");
2737      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2738      if (Ordering == NotAtomic || Ordering == Unordered)
2739        return Error("Invalid ATOMICRMW record");
2740      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2741      I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
2742      cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
2743      InstructionList.push_back(I);
2744      break;
2745    }
2746    case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2747      if (2 != Record.size())
2748        return Error("Invalid FENCE record");
2749      AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2750      if (Ordering == NotAtomic || Ordering == Unordered ||
2751          Ordering == Monotonic)
2752        return Error("Invalid FENCE record");
2753      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2754      I = new FenceInst(Context, Ordering, SynchScope);
2755      InstructionList.push_back(I);
2756      break;
2757    }
2758    case bitc::FUNC_CODE_INST_CALL: {
2759      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2760      if (Record.size() < 3)
2761        return Error("Invalid CALL record");
2762
2763      AttrListPtr PAL = getAttributes(Record[0]);
2764      unsigned CCInfo = Record[1];
2765
2766      unsigned OpNum = 2;
2767      Value *Callee;
2768      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2769        return Error("Invalid CALL record");
2770
2771      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2772      FunctionType *FTy = 0;
2773      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2774      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2775        return Error("Invalid CALL record");
2776
2777      SmallVector<Value*, 16> Args;
2778      // Read the fixed params.
2779      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2780        if (FTy->getParamType(i)->isLabelTy())
2781          Args.push_back(getBasicBlock(Record[OpNum]));
2782        else
2783          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2784        if (Args.back() == 0) return Error("Invalid CALL record");
2785      }
2786
2787      // Read type/value pairs for varargs params.
2788      if (!FTy->isVarArg()) {
2789        if (OpNum != Record.size())
2790          return Error("Invalid CALL record");
2791      } else {
2792        while (OpNum != Record.size()) {
2793          Value *Op;
2794          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2795            return Error("Invalid CALL record");
2796          Args.push_back(Op);
2797        }
2798      }
2799
2800      I = CallInst::Create(Callee, Args);
2801      InstructionList.push_back(I);
2802      cast<CallInst>(I)->setCallingConv(
2803        static_cast<CallingConv::ID>(CCInfo>>1));
2804      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2805      cast<CallInst>(I)->setAttributes(PAL);
2806      break;
2807    }
2808    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2809      if (Record.size() < 3)
2810        return Error("Invalid VAARG record");
2811      Type *OpTy = getTypeByID(Record[0]);
2812      Value *Op = getFnValueByID(Record[1], OpTy);
2813      Type *ResTy = getTypeByID(Record[2]);
2814      if (!OpTy || !Op || !ResTy)
2815        return Error("Invalid VAARG record");
2816      I = new VAArgInst(Op, ResTy);
2817      InstructionList.push_back(I);
2818      break;
2819    }
2820    }
2821
2822    // Add instruction to end of current BB.  If there is no current BB, reject
2823    // this file.
2824    if (CurBB == 0) {
2825      delete I;
2826      return Error("Invalid instruction with no BB");
2827    }
2828    CurBB->getInstList().push_back(I);
2829
2830    // If this was a terminator instruction, move to the next block.
2831    if (isa<TerminatorInst>(I)) {
2832      ++CurBBNo;
2833      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2834    }
2835
2836    // Non-void values get registered in the value table for future use.
2837    if (I && !I->getType()->isVoidTy())
2838      ValueList.AssignValue(I, NextValueNo++);
2839  }
2840
2841  // Check the function list for unresolved values.
2842  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2843    if (A->getParent() == 0) {
2844      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2845      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2846        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2847          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2848          delete A;
2849        }
2850      }
2851      return Error("Never resolved value found in function!");
2852    }
2853  }
2854
2855  // FIXME: Check for unresolved forward-declared metadata references
2856  // and clean up leaks.
2857
2858  // See if anything took the address of blocks in this function.  If so,
2859  // resolve them now.
2860  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2861    BlockAddrFwdRefs.find(F);
2862  if (BAFRI != BlockAddrFwdRefs.end()) {
2863    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2864    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2865      unsigned BlockIdx = RefList[i].first;
2866      if (BlockIdx >= FunctionBBs.size())
2867        return Error("Invalid blockaddress block #");
2868
2869      GlobalVariable *FwdRef = RefList[i].second;
2870      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2871      FwdRef->eraseFromParent();
2872    }
2873
2874    BlockAddrFwdRefs.erase(BAFRI);
2875  }
2876
2877  // Trim the value list down to the size it was before we parsed this function.
2878  ValueList.shrinkTo(ModuleValueListSize);
2879  MDValueList.shrinkTo(ModuleMDValueListSize);
2880  std::vector<BasicBlock*>().swap(FunctionBBs);
2881  return false;
2882}
2883
2884//===----------------------------------------------------------------------===//
2885// GVMaterializer implementation
2886//===----------------------------------------------------------------------===//
2887
2888
2889bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2890  if (const Function *F = dyn_cast<Function>(GV)) {
2891    return F->isDeclaration() &&
2892      DeferredFunctionInfo.count(const_cast<Function*>(F));
2893  }
2894  return false;
2895}
2896
2897bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2898  Function *F = dyn_cast<Function>(GV);
2899  // If it's not a function or is already material, ignore the request.
2900  if (!F || !F->isMaterializable()) return false;
2901
2902  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2903  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2904
2905  // Move the bit stream to the saved position of the deferred function body.
2906  Stream.JumpToBit(DFII->second);
2907
2908  if (ParseFunctionBody(F)) {
2909    if (ErrInfo) *ErrInfo = ErrorString;
2910    return true;
2911  }
2912
2913  // Upgrade any old intrinsic calls in the function.
2914  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2915       E = UpgradedIntrinsics.end(); I != E; ++I) {
2916    if (I->first != I->second) {
2917      for (Value::use_iterator UI = I->first->use_begin(),
2918           UE = I->first->use_end(); UI != UE; ) {
2919        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2920          UpgradeIntrinsicCall(CI, I->second);
2921      }
2922    }
2923  }
2924
2925  return false;
2926}
2927
2928bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2929  const Function *F = dyn_cast<Function>(GV);
2930  if (!F || F->isDeclaration())
2931    return false;
2932  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2933}
2934
2935void BitcodeReader::Dematerialize(GlobalValue *GV) {
2936  Function *F = dyn_cast<Function>(GV);
2937  // If this function isn't dematerializable, this is a noop.
2938  if (!F || !isDematerializable(F))
2939    return;
2940
2941  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2942
2943  // Just forget the function body, we can remat it later.
2944  F->deleteBody();
2945}
2946
2947
2948bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2949  assert(M == TheModule &&
2950         "Can only Materialize the Module this BitcodeReader is attached to.");
2951  // Iterate over the module, deserializing any functions that are still on
2952  // disk.
2953  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2954       F != E; ++F)
2955    if (F->isMaterializable() &&
2956        Materialize(F, ErrInfo))
2957      return true;
2958
2959  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2960  // delete the old functions to clean up. We can't do this unless the entire
2961  // module is materialized because there could always be another function body
2962  // with calls to the old function.
2963  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2964       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2965    if (I->first != I->second) {
2966      for (Value::use_iterator UI = I->first->use_begin(),
2967           UE = I->first->use_end(); UI != UE; ) {
2968        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2969          UpgradeIntrinsicCall(CI, I->second);
2970      }
2971      if (!I->first->use_empty())
2972        I->first->replaceAllUsesWith(I->second);
2973      I->first->eraseFromParent();
2974    }
2975  }
2976  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2977
2978  // Upgrade to new EH scheme. N.B. This will go away in 3.1.
2979  UpgradeExceptionHandling(M);
2980
2981  // Check debug info intrinsics.
2982  CheckDebugInfoIntrinsics(TheModule);
2983
2984  return false;
2985}
2986
2987
2988//===----------------------------------------------------------------------===//
2989// External interface
2990//===----------------------------------------------------------------------===//
2991
2992/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2993///
2994Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2995                                   LLVMContext& Context,
2996                                   std::string *ErrMsg) {
2997  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2998  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2999  M->setMaterializer(R);
3000  if (R->ParseBitcodeInto(M)) {
3001    if (ErrMsg)
3002      *ErrMsg = R->getErrorString();
3003
3004    delete M;  // Also deletes R.
3005    return 0;
3006  }
3007  // Have the BitcodeReader dtor delete 'Buffer'.
3008  R->setBufferOwned(true);
3009  return M;
3010}
3011
3012/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3013/// If an error occurs, return null and fill in *ErrMsg if non-null.
3014Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
3015                               std::string *ErrMsg){
3016  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
3017  if (!M) return 0;
3018
3019  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
3020  // there was an error.
3021  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
3022
3023  // Read in the entire module, and destroy the BitcodeReader.
3024  if (M->MaterializeAllPermanently(ErrMsg)) {
3025    delete M;
3026    return 0;
3027  }
3028
3029  return M;
3030}
3031
3032std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
3033                                         LLVMContext& Context,
3034                                         std::string *ErrMsg) {
3035  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3036  // Don't let the BitcodeReader dtor delete 'Buffer'.
3037  R->setBufferOwned(false);
3038
3039  std::string Triple("");
3040  if (R->ParseTriple(Triple))
3041    if (ErrMsg)
3042      *ErrMsg = R->getErrorString();
3043
3044  delete R;
3045  return Triple;
3046}
3047