1/*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.util.AbstractQueue;
10import java.util.ArrayList;
11import java.util.Collection;
12import java.util.Iterator;
13import java.util.NoSuchElementException;
14import java.util.Queue;
15
16// BEGIN android-note
17// removed link to collections framework docs
18// END android-note
19
20/**
21 * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
22 * This queue orders elements FIFO (first-in-first-out).
23 * The <em>head</em> of the queue is that element that has been on the
24 * queue the longest time.
25 * The <em>tail</em> of the queue is that element that has been on the
26 * queue the shortest time. New elements
27 * are inserted at the tail of the queue, and the queue retrieval
28 * operations obtain elements at the head of the queue.
29 * A {@code ConcurrentLinkedQueue} is an appropriate choice when
30 * many threads will share access to a common collection.
31 * Like most other concurrent collection implementations, this class
32 * does not permit the use of {@code null} elements.
33 *
34 * <p>This implementation employs an efficient <em>non-blocking</em>
35 * algorithm based on one described in <a
36 * href="http://www.cs.rochester.edu/u/michael/PODC96.html"> Simple,
37 * Fast, and Practical Non-Blocking and Blocking Concurrent Queue
38 * Algorithms</a> by Maged M. Michael and Michael L. Scott.
39 *
40 * <p>Iterators are <i>weakly consistent</i>, returning elements
41 * reflecting the state of the queue at some point at or since the
42 * creation of the iterator.  They do <em>not</em> throw {@link
43 * java.util.ConcurrentModificationException}, and may proceed concurrently
44 * with other operations.  Elements contained in the queue since the creation
45 * of the iterator will be returned exactly once.
46 *
47 * <p>Beware that, unlike in most collections, the {@code size} method
48 * is <em>NOT</em> a constant-time operation. Because of the
49 * asynchronous nature of these queues, determining the current number
50 * of elements requires a traversal of the elements, and so may report
51 * inaccurate results if this collection is modified during traversal.
52 * Additionally, the bulk operations {@code addAll},
53 * {@code removeAll}, {@code retainAll}, {@code containsAll},
54 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
55 * to be performed atomically. For example, an iterator operating
56 * concurrently with an {@code addAll} operation might view only some
57 * of the added elements.
58 *
59 * <p>This class and its iterator implement all of the <em>optional</em>
60 * methods of the {@link Queue} and {@link Iterator} interfaces.
61 *
62 * <p>Memory consistency effects: As with other concurrent
63 * collections, actions in a thread prior to placing an object into a
64 * {@code ConcurrentLinkedQueue}
65 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
66 * actions subsequent to the access or removal of that element from
67 * the {@code ConcurrentLinkedQueue} in another thread.
68 *
69 * @since 1.5
70 * @author Doug Lea
71 * @param <E> the type of elements held in this collection
72 */
73public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
74        implements Queue<E>, java.io.Serializable {
75    private static final long serialVersionUID = 196745693267521676L;
76
77    /*
78     * This is a modification of the Michael & Scott algorithm,
79     * adapted for a garbage-collected environment, with support for
80     * interior node deletion (to support remove(Object)).  For
81     * explanation, read the paper.
82     *
83     * Note that like most non-blocking algorithms in this package,
84     * this implementation relies on the fact that in garbage
85     * collected systems, there is no possibility of ABA problems due
86     * to recycled nodes, so there is no need to use "counted
87     * pointers" or related techniques seen in versions used in
88     * non-GC'ed settings.
89     *
90     * The fundamental invariants are:
91     * - There is exactly one (last) Node with a null next reference,
92     *   which is CASed when enqueueing.  This last Node can be
93     *   reached in O(1) time from tail, but tail is merely an
94     *   optimization - it can always be reached in O(N) time from
95     *   head as well.
96     * - The elements contained in the queue are the non-null items in
97     *   Nodes that are reachable from head.  CASing the item
98     *   reference of a Node to null atomically removes it from the
99     *   queue.  Reachability of all elements from head must remain
100     *   true even in the case of concurrent modifications that cause
101     *   head to advance.  A dequeued Node may remain in use
102     *   indefinitely due to creation of an Iterator or simply a
103     *   poll() that has lost its time slice.
104     *
105     * The above might appear to imply that all Nodes are GC-reachable
106     * from a predecessor dequeued Node.  That would cause two problems:
107     * - allow a rogue Iterator to cause unbounded memory retention
108     * - cause cross-generational linking of old Nodes to new Nodes if
109     *   a Node was tenured while live, which generational GCs have a
110     *   hard time dealing with, causing repeated major collections.
111     * However, only non-deleted Nodes need to be reachable from
112     * dequeued Nodes, and reachability does not necessarily have to
113     * be of the kind understood by the GC.  We use the trick of
114     * linking a Node that has just been dequeued to itself.  Such a
115     * self-link implicitly means to advance to head.
116     *
117     * Both head and tail are permitted to lag.  In fact, failing to
118     * update them every time one could is a significant optimization
119     * (fewer CASes). As with LinkedTransferQueue (see the internal
120     * documentation for that class), we use a slack threshold of two;
121     * that is, we update head/tail when the current pointer appears
122     * to be two or more steps away from the first/last node.
123     *
124     * Since head and tail are updated concurrently and independently,
125     * it is possible for tail to lag behind head (why not)?
126     *
127     * CASing a Node's item reference to null atomically removes the
128     * element from the queue.  Iterators skip over Nodes with null
129     * items.  Prior implementations of this class had a race between
130     * poll() and remove(Object) where the same element would appear
131     * to be successfully removed by two concurrent operations.  The
132     * method remove(Object) also lazily unlinks deleted Nodes, but
133     * this is merely an optimization.
134     *
135     * When constructing a Node (before enqueuing it) we avoid paying
136     * for a volatile write to item by using Unsafe.putObject instead
137     * of a normal write.  This allows the cost of enqueue to be
138     * "one-and-a-half" CASes.
139     *
140     * Both head and tail may or may not point to a Node with a
141     * non-null item.  If the queue is empty, all items must of course
142     * be null.  Upon creation, both head and tail refer to a dummy
143     * Node with null item.  Both head and tail are only updated using
144     * CAS, so they never regress, although again this is merely an
145     * optimization.
146     */
147
148    private static class Node<E> {
149        volatile E item;
150        volatile Node<E> next;
151
152        /**
153         * Constructs a new node.  Uses relaxed write because item can
154         * only be seen after publication via casNext.
155         */
156        Node(E item) {
157            UNSAFE.putObject(this, itemOffset, item);
158        }
159
160        boolean casItem(E cmp, E val) {
161            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
162        }
163
164        void lazySetNext(Node<E> val) {
165            UNSAFE.putOrderedObject(this, nextOffset, val);
166        }
167
168        boolean casNext(Node<E> cmp, Node<E> val) {
169            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
170        }
171
172        // Unsafe mechanics
173
174        private static final sun.misc.Unsafe UNSAFE;
175        private static final long itemOffset;
176        private static final long nextOffset;
177
178        static {
179            try {
180                UNSAFE = sun.misc.Unsafe.getUnsafe();
181                Class<?> k = Node.class;
182                itemOffset = UNSAFE.objectFieldOffset
183                    (k.getDeclaredField("item"));
184                nextOffset = UNSAFE.objectFieldOffset
185                    (k.getDeclaredField("next"));
186            } catch (Exception e) {
187                throw new Error(e);
188            }
189        }
190    }
191
192    /**
193     * A node from which the first live (non-deleted) node (if any)
194     * can be reached in O(1) time.
195     * Invariants:
196     * - all live nodes are reachable from head via succ()
197     * - head != null
198     * - (tmp = head).next != tmp || tmp != head
199     * Non-invariants:
200     * - head.item may or may not be null.
201     * - it is permitted for tail to lag behind head, that is, for tail
202     *   to not be reachable from head!
203     */
204    private transient volatile Node<E> head;
205
206    /**
207     * A node from which the last node on list (that is, the unique
208     * node with node.next == null) can be reached in O(1) time.
209     * Invariants:
210     * - the last node is always reachable from tail via succ()
211     * - tail != null
212     * Non-invariants:
213     * - tail.item may or may not be null.
214     * - it is permitted for tail to lag behind head, that is, for tail
215     *   to not be reachable from head!
216     * - tail.next may or may not be self-pointing to tail.
217     */
218    private transient volatile Node<E> tail;
219
220    /**
221     * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
222     */
223    public ConcurrentLinkedQueue() {
224        head = tail = new Node<E>(null);
225    }
226
227    /**
228     * Creates a {@code ConcurrentLinkedQueue}
229     * initially containing the elements of the given collection,
230     * added in traversal order of the collection's iterator.
231     *
232     * @param c the collection of elements to initially contain
233     * @throws NullPointerException if the specified collection or any
234     *         of its elements are null
235     */
236    public ConcurrentLinkedQueue(Collection<? extends E> c) {
237        Node<E> h = null, t = null;
238        for (E e : c) {
239            checkNotNull(e);
240            Node<E> newNode = new Node<E>(e);
241            if (h == null)
242                h = t = newNode;
243            else {
244                t.lazySetNext(newNode);
245                t = newNode;
246            }
247        }
248        if (h == null)
249            h = t = new Node<E>(null);
250        head = h;
251        tail = t;
252    }
253
254    // Have to override just to update the javadoc
255
256    /**
257     * Inserts the specified element at the tail of this queue.
258     * As the queue is unbounded, this method will never throw
259     * {@link IllegalStateException} or return {@code false}.
260     *
261     * @return {@code true} (as specified by {@link Collection#add})
262     * @throws NullPointerException if the specified element is null
263     */
264    public boolean add(E e) {
265        return offer(e);
266    }
267
268    /**
269     * Tries to CAS head to p. If successful, repoint old head to itself
270     * as sentinel for succ(), below.
271     */
272    final void updateHead(Node<E> h, Node<E> p) {
273        if (h != p && casHead(h, p))
274            h.lazySetNext(h);
275    }
276
277    /**
278     * Returns the successor of p, or the head node if p.next has been
279     * linked to self, which will only be true if traversing with a
280     * stale pointer that is now off the list.
281     */
282    final Node<E> succ(Node<E> p) {
283        Node<E> next = p.next;
284        return (p == next) ? head : next;
285    }
286
287    /**
288     * Inserts the specified element at the tail of this queue.
289     * As the queue is unbounded, this method will never return {@code false}.
290     *
291     * @return {@code true} (as specified by {@link Queue#offer})
292     * @throws NullPointerException if the specified element is null
293     */
294    public boolean offer(E e) {
295        checkNotNull(e);
296        final Node<E> newNode = new Node<E>(e);
297
298        for (Node<E> t = tail, p = t;;) {
299            Node<E> q = p.next;
300            if (q == null) {
301                // p is last node
302                if (p.casNext(null, newNode)) {
303                    // Successful CAS is the linearization point
304                    // for e to become an element of this queue,
305                    // and for newNode to become "live".
306                    if (p != t) // hop two nodes at a time
307                        casTail(t, newNode);  // Failure is OK.
308                    return true;
309                }
310                // Lost CAS race to another thread; re-read next
311            }
312            else if (p == q)
313                // We have fallen off list.  If tail is unchanged, it
314                // will also be off-list, in which case we need to
315                // jump to head, from which all live nodes are always
316                // reachable.  Else the new tail is a better bet.
317                p = (t != (t = tail)) ? t : head;
318            else
319                // Check for tail updates after two hops.
320                p = (p != t && t != (t = tail)) ? t : q;
321        }
322    }
323
324    public E poll() {
325        restartFromHead:
326        for (;;) {
327            for (Node<E> h = head, p = h, q;;) {
328                E item = p.item;
329
330                if (item != null && p.casItem(item, null)) {
331                    // Successful CAS is the linearization point
332                    // for item to be removed from this queue.
333                    if (p != h) // hop two nodes at a time
334                        updateHead(h, ((q = p.next) != null) ? q : p);
335                    return item;
336                }
337                else if ((q = p.next) == null) {
338                    updateHead(h, p);
339                    return null;
340                }
341                else if (p == q)
342                    continue restartFromHead;
343                else
344                    p = q;
345            }
346        }
347    }
348
349    public E peek() {
350        restartFromHead:
351        for (;;) {
352            for (Node<E> h = head, p = h, q;;) {
353                E item = p.item;
354                if (item != null || (q = p.next) == null) {
355                    updateHead(h, p);
356                    return item;
357                }
358                else if (p == q)
359                    continue restartFromHead;
360                else
361                    p = q;
362            }
363        }
364    }
365
366    /**
367     * Returns the first live (non-deleted) node on list, or null if none.
368     * This is yet another variant of poll/peek; here returning the
369     * first node, not element.  We could make peek() a wrapper around
370     * first(), but that would cost an extra volatile read of item,
371     * and the need to add a retry loop to deal with the possibility
372     * of losing a race to a concurrent poll().
373     */
374    Node<E> first() {
375        restartFromHead:
376        for (;;) {
377            for (Node<E> h = head, p = h, q;;) {
378                boolean hasItem = (p.item != null);
379                if (hasItem || (q = p.next) == null) {
380                    updateHead(h, p);
381                    return hasItem ? p : null;
382                }
383                else if (p == q)
384                    continue restartFromHead;
385                else
386                    p = q;
387            }
388        }
389    }
390
391    /**
392     * Returns {@code true} if this queue contains no elements.
393     *
394     * @return {@code true} if this queue contains no elements
395     */
396    public boolean isEmpty() {
397        return first() == null;
398    }
399
400    /**
401     * Returns the number of elements in this queue.  If this queue
402     * contains more than {@code Integer.MAX_VALUE} elements, returns
403     * {@code Integer.MAX_VALUE}.
404     *
405     * <p>Beware that, unlike in most collections, this method is
406     * <em>NOT</em> a constant-time operation. Because of the
407     * asynchronous nature of these queues, determining the current
408     * number of elements requires an O(n) traversal.
409     * Additionally, if elements are added or removed during execution
410     * of this method, the returned result may be inaccurate.  Thus,
411     * this method is typically not very useful in concurrent
412     * applications.
413     *
414     * @return the number of elements in this queue
415     */
416    public int size() {
417        int count = 0;
418        for (Node<E> p = first(); p != null; p = succ(p))
419            if (p.item != null)
420                // Collection.size() spec says to max out
421                if (++count == Integer.MAX_VALUE)
422                    break;
423        return count;
424    }
425
426    /**
427     * Returns {@code true} if this queue contains the specified element.
428     * More formally, returns {@code true} if and only if this queue contains
429     * at least one element {@code e} such that {@code o.equals(e)}.
430     *
431     * @param o object to be checked for containment in this queue
432     * @return {@code true} if this queue contains the specified element
433     */
434    public boolean contains(Object o) {
435        if (o == null) return false;
436        for (Node<E> p = first(); p != null; p = succ(p)) {
437            E item = p.item;
438            if (item != null && o.equals(item))
439                return true;
440        }
441        return false;
442    }
443
444    /**
445     * Removes a single instance of the specified element from this queue,
446     * if it is present.  More formally, removes an element {@code e} such
447     * that {@code o.equals(e)}, if this queue contains one or more such
448     * elements.
449     * Returns {@code true} if this queue contained the specified element
450     * (or equivalently, if this queue changed as a result of the call).
451     *
452     * @param o element to be removed from this queue, if present
453     * @return {@code true} if this queue changed as a result of the call
454     */
455    public boolean remove(Object o) {
456        if (o == null) return false;
457        Node<E> pred = null;
458        for (Node<E> p = first(); p != null; p = succ(p)) {
459            E item = p.item;
460            if (item != null &&
461                o.equals(item) &&
462                p.casItem(item, null)) {
463                Node<E> next = succ(p);
464                if (pred != null && next != null)
465                    pred.casNext(p, next);
466                return true;
467            }
468            pred = p;
469        }
470        return false;
471    }
472
473    /**
474     * Appends all of the elements in the specified collection to the end of
475     * this queue, in the order that they are returned by the specified
476     * collection's iterator.  Attempts to {@code addAll} of a queue to
477     * itself result in {@code IllegalArgumentException}.
478     *
479     * @param c the elements to be inserted into this queue
480     * @return {@code true} if this queue changed as a result of the call
481     * @throws NullPointerException if the specified collection or any
482     *         of its elements are null
483     * @throws IllegalArgumentException if the collection is this queue
484     */
485    public boolean addAll(Collection<? extends E> c) {
486        if (c == this)
487            // As historically specified in AbstractQueue#addAll
488            throw new IllegalArgumentException();
489
490        // Copy c into a private chain of Nodes
491        Node<E> beginningOfTheEnd = null, last = null;
492        for (E e : c) {
493            checkNotNull(e);
494            Node<E> newNode = new Node<E>(e);
495            if (beginningOfTheEnd == null)
496                beginningOfTheEnd = last = newNode;
497            else {
498                last.lazySetNext(newNode);
499                last = newNode;
500            }
501        }
502        if (beginningOfTheEnd == null)
503            return false;
504
505        // Atomically append the chain at the tail of this collection
506        for (Node<E> t = tail, p = t;;) {
507            Node<E> q = p.next;
508            if (q == null) {
509                // p is last node
510                if (p.casNext(null, beginningOfTheEnd)) {
511                    // Successful CAS is the linearization point
512                    // for all elements to be added to this queue.
513                    if (!casTail(t, last)) {
514                        // Try a little harder to update tail,
515                        // since we may be adding many elements.
516                        t = tail;
517                        if (last.next == null)
518                            casTail(t, last);
519                    }
520                    return true;
521                }
522                // Lost CAS race to another thread; re-read next
523            }
524            else if (p == q)
525                // We have fallen off list.  If tail is unchanged, it
526                // will also be off-list, in which case we need to
527                // jump to head, from which all live nodes are always
528                // reachable.  Else the new tail is a better bet.
529                p = (t != (t = tail)) ? t : head;
530            else
531                // Check for tail updates after two hops.
532                p = (p != t && t != (t = tail)) ? t : q;
533        }
534    }
535
536    /**
537     * Returns an array containing all of the elements in this queue, in
538     * proper sequence.
539     *
540     * <p>The returned array will be "safe" in that no references to it are
541     * maintained by this queue.  (In other words, this method must allocate
542     * a new array).  The caller is thus free to modify the returned array.
543     *
544     * <p>This method acts as bridge between array-based and collection-based
545     * APIs.
546     *
547     * @return an array containing all of the elements in this queue
548     */
549    public Object[] toArray() {
550        // Use ArrayList to deal with resizing.
551        ArrayList<E> al = new ArrayList<E>();
552        for (Node<E> p = first(); p != null; p = succ(p)) {
553            E item = p.item;
554            if (item != null)
555                al.add(item);
556        }
557        return al.toArray();
558    }
559
560    /**
561     * Returns an array containing all of the elements in this queue, in
562     * proper sequence; the runtime type of the returned array is that of
563     * the specified array.  If the queue fits in the specified array, it
564     * is returned therein.  Otherwise, a new array is allocated with the
565     * runtime type of the specified array and the size of this queue.
566     *
567     * <p>If this queue fits in the specified array with room to spare
568     * (i.e., the array has more elements than this queue), the element in
569     * the array immediately following the end of the queue is set to
570     * {@code null}.
571     *
572     * <p>Like the {@link #toArray()} method, this method acts as bridge between
573     * array-based and collection-based APIs.  Further, this method allows
574     * precise control over the runtime type of the output array, and may,
575     * under certain circumstances, be used to save allocation costs.
576     *
577     * <p>Suppose {@code x} is a queue known to contain only strings.
578     * The following code can be used to dump the queue into a newly
579     * allocated array of {@code String}:
580     *
581     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
582     *
583     * Note that {@code toArray(new Object[0])} is identical in function to
584     * {@code toArray()}.
585     *
586     * @param a the array into which the elements of the queue are to
587     *          be stored, if it is big enough; otherwise, a new array of the
588     *          same runtime type is allocated for this purpose
589     * @return an array containing all of the elements in this queue
590     * @throws ArrayStoreException if the runtime type of the specified array
591     *         is not a supertype of the runtime type of every element in
592     *         this queue
593     * @throws NullPointerException if the specified array is null
594     */
595    @SuppressWarnings("unchecked")
596    public <T> T[] toArray(T[] a) {
597        // try to use sent-in array
598        int k = 0;
599        Node<E> p;
600        for (p = first(); p != null && k < a.length; p = succ(p)) {
601            E item = p.item;
602            if (item != null)
603                a[k++] = (T)item;
604        }
605        if (p == null) {
606            if (k < a.length)
607                a[k] = null;
608            return a;
609        }
610
611        // If won't fit, use ArrayList version
612        ArrayList<E> al = new ArrayList<E>();
613        for (Node<E> q = first(); q != null; q = succ(q)) {
614            E item = q.item;
615            if (item != null)
616                al.add(item);
617        }
618        return al.toArray(a);
619    }
620
621    /**
622     * Returns an iterator over the elements in this queue in proper sequence.
623     * The elements will be returned in order from first (head) to last (tail).
624     *
625     * <p>The returned iterator is a "weakly consistent" iterator that
626     * will never throw {@link java.util.ConcurrentModificationException
627     * ConcurrentModificationException}, and guarantees to traverse
628     * elements as they existed upon construction of the iterator, and
629     * may (but is not guaranteed to) reflect any modifications
630     * subsequent to construction.
631     *
632     * @return an iterator over the elements in this queue in proper sequence
633     */
634    public Iterator<E> iterator() {
635        return new Itr();
636    }
637
638    private class Itr implements Iterator<E> {
639        /**
640         * Next node to return item for.
641         */
642        private Node<E> nextNode;
643
644        /**
645         * nextItem holds on to item fields because once we claim
646         * that an element exists in hasNext(), we must return it in
647         * the following next() call even if it was in the process of
648         * being removed when hasNext() was called.
649         */
650        private E nextItem;
651
652        /**
653         * Node of the last returned item, to support remove.
654         */
655        private Node<E> lastRet;
656
657        Itr() {
658            advance();
659        }
660
661        /**
662         * Moves to next valid node and returns item to return for
663         * next(), or null if no such.
664         */
665        private E advance() {
666            lastRet = nextNode;
667            E x = nextItem;
668
669            Node<E> pred, p;
670            if (nextNode == null) {
671                p = first();
672                pred = null;
673            } else {
674                pred = nextNode;
675                p = succ(nextNode);
676            }
677
678            for (;;) {
679                if (p == null) {
680                    nextNode = null;
681                    nextItem = null;
682                    return x;
683                }
684                E item = p.item;
685                if (item != null) {
686                    nextNode = p;
687                    nextItem = item;
688                    return x;
689                } else {
690                    // skip over nulls
691                    Node<E> next = succ(p);
692                    if (pred != null && next != null)
693                        pred.casNext(p, next);
694                    p = next;
695                }
696            }
697        }
698
699        public boolean hasNext() {
700            return nextNode != null;
701        }
702
703        public E next() {
704            if (nextNode == null) throw new NoSuchElementException();
705            return advance();
706        }
707
708        public void remove() {
709            Node<E> l = lastRet;
710            if (l == null) throw new IllegalStateException();
711            // rely on a future traversal to relink.
712            l.item = null;
713            lastRet = null;
714        }
715    }
716
717    /**
718     * Saves this queue to a stream (that is, serializes it).
719     *
720     * @serialData All of the elements (each an {@code E}) in
721     * the proper order, followed by a null
722     */
723    private void writeObject(java.io.ObjectOutputStream s)
724        throws java.io.IOException {
725
726        // Write out any hidden stuff
727        s.defaultWriteObject();
728
729        // Write out all elements in the proper order.
730        for (Node<E> p = first(); p != null; p = succ(p)) {
731            Object item = p.item;
732            if (item != null)
733                s.writeObject(item);
734        }
735
736        // Use trailing null as sentinel
737        s.writeObject(null);
738    }
739
740    /**
741     * Reconstitutes this queue from a stream (that is, deserializes it).
742     */
743    private void readObject(java.io.ObjectInputStream s)
744        throws java.io.IOException, ClassNotFoundException {
745        s.defaultReadObject();
746
747        // Read in elements until trailing null sentinel found
748        Node<E> h = null, t = null;
749        Object item;
750        while ((item = s.readObject()) != null) {
751            @SuppressWarnings("unchecked")
752            Node<E> newNode = new Node<E>((E) item);
753            if (h == null)
754                h = t = newNode;
755            else {
756                t.lazySetNext(newNode);
757                t = newNode;
758            }
759        }
760        if (h == null)
761            h = t = new Node<E>(null);
762        head = h;
763        tail = t;
764    }
765
766    /**
767     * Throws NullPointerException if argument is null.
768     *
769     * @param v the element
770     */
771    private static void checkNotNull(Object v) {
772        if (v == null)
773            throw new NullPointerException();
774    }
775
776    private boolean casTail(Node<E> cmp, Node<E> val) {
777        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
778    }
779
780    private boolean casHead(Node<E> cmp, Node<E> val) {
781        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
782    }
783
784    // Unsafe mechanics
785
786    private static final sun.misc.Unsafe UNSAFE;
787    private static final long headOffset;
788    private static final long tailOffset;
789    static {
790        try {
791            UNSAFE = sun.misc.Unsafe.getUnsafe();
792            Class<?> k = ConcurrentLinkedQueue.class;
793            headOffset = UNSAFE.objectFieldOffset
794                (k.getDeclaredField("head"));
795            tailOffset = UNSAFE.objectFieldOffset
796                (k.getDeclaredField("tail"));
797        } catch (Exception e) {
798            throw new Error(e);
799        }
800    }
801}
802