ForkJoinPool.java revision 75a06e56a4cc4599946e21422513e4bafa759509
1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.lang.Thread.UncaughtExceptionHandler;
10import java.util.ArrayList;
11import java.util.Arrays;
12import java.util.Collection;
13import java.util.Collections;
14import java.util.List;
15import java.util.concurrent.AbstractExecutorService;
16import java.util.concurrent.Callable;
17import java.util.concurrent.ExecutorService;
18import java.util.concurrent.Future;
19import java.util.concurrent.RejectedExecutionException;
20import java.util.concurrent.RunnableFuture;
21import java.util.concurrent.ThreadLocalRandom;
22import java.util.concurrent.TimeUnit;
23
24/**
25 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
26 * A {@code ForkJoinPool} provides the entry point for submissions
27 * from non-{@code ForkJoinTask} clients, as well as management and
28 * monitoring operations.
29 *
30 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
31 * ExecutorService} mainly by virtue of employing
32 * <em>work-stealing</em>: all threads in the pool attempt to find and
33 * execute tasks submitted to the pool and/or created by other active
34 * tasks (eventually blocking waiting for work if none exist). This
35 * enables efficient processing when most tasks spawn other subtasks
36 * (as do most {@code ForkJoinTask}s), as well as when many small
37 * tasks are submitted to the pool from external clients.  Especially
38 * when setting <em>asyncMode</em> to true in constructors, {@code
39 * ForkJoinPool}s may also be appropriate for use with event-style
40 * tasks that are never joined.
41 *
42 * <p>A static {@link #commonPool()} is available and appropriate for
43 * most applications. The common pool is used by any ForkJoinTask that
44 * is not explicitly submitted to a specified pool. Using the common
45 * pool normally reduces resource usage (its threads are slowly
46 * reclaimed during periods of non-use, and reinstated upon subsequent
47 * use).
48 *
49 * <p>For applications that require separate or custom pools, a {@code
50 * ForkJoinPool} may be constructed with a given target parallelism
51 * level; by default, equal to the number of available processors. The
52 * pool attempts to maintain enough active (or available) threads by
53 * dynamically adding, suspending, or resuming internal worker
54 * threads, even if some tasks are stalled waiting to join others.
55 * However, no such adjustments are guaranteed in the face of blocked
56 * I/O or other unmanaged synchronization. The nested {@link
57 * ManagedBlocker} interface enables extension of the kinds of
58 * synchronization accommodated.
59 *
60 * <p>In addition to execution and lifecycle control methods, this
61 * class provides status check methods (for example
62 * {@link #getStealCount}) that are intended to aid in developing,
63 * tuning, and monitoring fork/join applications. Also, method
64 * {@link #toString} returns indications of pool state in a
65 * convenient form for informal monitoring.
66 *
67 * <p>As is the case with other ExecutorServices, there are three
68 * main task execution methods summarized in the following table.
69 * These are designed to be used primarily by clients not already
70 * engaged in fork/join computations in the current pool.  The main
71 * forms of these methods accept instances of {@code ForkJoinTask},
72 * but overloaded forms also allow mixed execution of plain {@code
73 * Runnable}- or {@code Callable}- based activities as well.  However,
74 * tasks that are already executing in a pool should normally instead
75 * use the within-computation forms listed in the table unless using
76 * async event-style tasks that are not usually joined, in which case
77 * there is little difference among choice of methods.
78 *
79 * <table BORDER CELLPADDING=3 CELLSPACING=1>
80 * <caption>Summary of task execution methods</caption>
81 *  <tr>
82 *    <td></td>
83 *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
84 *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
85 *  </tr>
86 *  <tr>
87 *    <td> <b>Arrange async execution</b></td>
88 *    <td> {@link #execute(ForkJoinTask)}</td>
89 *    <td> {@link ForkJoinTask#fork}</td>
90 *  </tr>
91 *  <tr>
92 *    <td> <b>Await and obtain result</b></td>
93 *    <td> {@link #invoke(ForkJoinTask)}</td>
94 *    <td> {@link ForkJoinTask#invoke}</td>
95 *  </tr>
96 *  <tr>
97 *    <td> <b>Arrange exec and obtain Future</b></td>
98 *    <td> {@link #submit(ForkJoinTask)}</td>
99 *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
100 *  </tr>
101 * </table>
102 *
103 * <p>The common pool is by default constructed with default
104 * parameters, but these may be controlled by setting three
105 * {@linkplain System#getProperty system properties}:
106 * <ul>
107 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
108 * - the parallelism level, a non-negative integer
109 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
110 * - the class name of a {@link ForkJoinWorkerThreadFactory}
111 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
112 * - the class name of a {@link UncaughtExceptionHandler}
113 * </ul>
114 * The system class loader is used to load these classes.
115 * Upon any error in establishing these settings, default parameters
116 * are used. It is possible to disable or limit the use of threads in
117 * the common pool by setting the parallelism property to zero, and/or
118 * using a factory that may return {@code null}.
119 *
120 * <p><b>Implementation notes</b>: This implementation restricts the
121 * maximum number of running threads to 32767. Attempts to create
122 * pools with greater than the maximum number result in
123 * {@code IllegalArgumentException}.
124 *
125 * <p>This implementation rejects submitted tasks (that is, by throwing
126 * {@link RejectedExecutionException}) only when the pool is shut down
127 * or internal resources have been exhausted.
128 *
129 * @since 1.7
130 * @hide
131 * @author Doug Lea
132 */
133public class ForkJoinPool extends AbstractExecutorService {
134
135    /*
136     * Implementation Overview
137     *
138     * This class and its nested classes provide the main
139     * functionality and control for a set of worker threads:
140     * Submissions from non-FJ threads enter into submission queues.
141     * Workers take these tasks and typically split them into subtasks
142     * that may be stolen by other workers.  Preference rules give
143     * first priority to processing tasks from their own queues (LIFO
144     * or FIFO, depending on mode), then to randomized FIFO steals of
145     * tasks in other queues.
146     *
147     * WorkQueues
148     * ==========
149     *
150     * Most operations occur within work-stealing queues (in nested
151     * class WorkQueue).  These are special forms of Deques that
152     * support only three of the four possible end-operations -- push,
153     * pop, and poll (aka steal), under the further constraints that
154     * push and pop are called only from the owning thread (or, as
155     * extended here, under a lock), while poll may be called from
156     * other threads.  (If you are unfamiliar with them, you probably
157     * want to read Herlihy and Shavit's book "The Art of
158     * Multiprocessor programming", chapter 16 describing these in
159     * more detail before proceeding.)  The main work-stealing queue
160     * design is roughly similar to those in the papers "Dynamic
161     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
162     * (http://research.sun.com/scalable/pubs/index.html) and
163     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
164     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
165     * See also "Correct and Efficient Work-Stealing for Weak Memory
166     * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
167     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
168     * analysis of memory ordering (atomic, volatile etc) issues.  The
169     * main differences ultimately stem from GC requirements that we
170     * null out taken slots as soon as we can, to maintain as small a
171     * footprint as possible even in programs generating huge numbers
172     * of tasks. To accomplish this, we shift the CAS arbitrating pop
173     * vs poll (steal) from being on the indices ("base" and "top") to
174     * the slots themselves.  So, both a successful pop and poll
175     * mainly entail a CAS of a slot from non-null to null.  Because
176     * we rely on CASes of references, we do not need tag bits on base
177     * or top.  They are simple ints as used in any circular
178     * array-based queue (see for example ArrayDeque).  Updates to the
179     * indices must still be ordered in a way that guarantees that top
180     * == base means the queue is empty, but otherwise may err on the
181     * side of possibly making the queue appear nonempty when a push,
182     * pop, or poll have not fully committed. Note that this means
183     * that the poll operation, considered individually, is not
184     * wait-free. One thief cannot successfully continue until another
185     * in-progress one (or, if previously empty, a push) completes.
186     * However, in the aggregate, we ensure at least probabilistic
187     * non-blockingness.  If an attempted steal fails, a thief always
188     * chooses a different random victim target to try next. So, in
189     * order for one thief to progress, it suffices for any
190     * in-progress poll or new push on any empty queue to
191     * complete. (This is why we normally use method pollAt and its
192     * variants that try once at the apparent base index, else
193     * consider alternative actions, rather than method poll.)
194     *
195     * This approach also enables support of a user mode in which local
196     * task processing is in FIFO, not LIFO order, simply by using
197     * poll rather than pop.  This can be useful in message-passing
198     * frameworks in which tasks are never joined.  However neither
199     * mode considers affinities, loads, cache localities, etc, so
200     * rarely provide the best possible performance on a given
201     * machine, but portably provide good throughput by averaging over
202     * these factors.  (Further, even if we did try to use such
203     * information, we do not usually have a basis for exploiting it.
204     * For example, some sets of tasks profit from cache affinities,
205     * but others are harmed by cache pollution effects.)
206     *
207     * WorkQueues are also used in a similar way for tasks submitted
208     * to the pool. We cannot mix these tasks in the same queues used
209     * for work-stealing (this would contaminate lifo/fifo
210     * processing). Instead, we randomly associate submission queues
211     * with submitting threads, using a form of hashing.  The
212     * Submitter probe value serves as a hash code for
213     * choosing existing queues, and may be randomly repositioned upon
214     * contention with other submitters.  In essence, submitters act
215     * like workers except that they are restricted to executing local
216     * tasks that they submitted (or in the case of CountedCompleters,
217     * others with the same root task).  However, because most
218     * shared/external queue operations are more expensive than
219     * internal, and because, at steady state, external submitters
220     * will compete for CPU with workers, ForkJoinTask.join and
221     * related methods disable them from repeatedly helping to process
222     * tasks if all workers are active.  Insertion of tasks in shared
223     * mode requires a lock (mainly to protect in the case of
224     * resizing) but we use only a simple spinlock (using bits in
225     * field qlock), because submitters encountering a busy queue move
226     * on to try or create other queues -- they block only when
227     * creating and registering new queues.
228     *
229     * Management
230     * ==========
231     *
232     * The main throughput advantages of work-stealing stem from
233     * decentralized control -- workers mostly take tasks from
234     * themselves or each other. We cannot negate this in the
235     * implementation of other management responsibilities. The main
236     * tactic for avoiding bottlenecks is packing nearly all
237     * essentially atomic control state into two volatile variables
238     * that are by far most often read (not written) as status and
239     * consistency checks.
240     *
241     * Field "ctl" contains 64 bits holding all the information needed
242     * to atomically decide to add, inactivate, enqueue (on an event
243     * queue), dequeue, and/or re-activate workers.  To enable this
244     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
245     * far in excess of normal operating range) to allow ids, counts,
246     * and their negations (used for thresholding) to fit into 16bit
247     * fields.
248     *
249     * Field "plock" is a form of sequence lock with a saturating
250     * shutdown bit (similarly for per-queue "qlocks"), mainly
251     * protecting updates to the workQueues array, as well as to
252     * enable shutdown.  When used as a lock, it is normally only very
253     * briefly held, so is nearly always available after at most a
254     * brief spin, but we use a monitor-based backup strategy to
255     * block when needed.
256     *
257     * Recording WorkQueues.  WorkQueues are recorded in the
258     * "workQueues" array that is created upon first use and expanded
259     * if necessary.  Updates to the array while recording new workers
260     * and unrecording terminated ones are protected from each other
261     * by a lock but the array is otherwise concurrently readable, and
262     * accessed directly.  To simplify index-based operations, the
263     * array size is always a power of two, and all readers must
264     * tolerate null slots. Worker queues are at odd indices. Shared
265     * (submission) queues are at even indices, up to a maximum of 64
266     * slots, to limit growth even if array needs to expand to add
267     * more workers. Grouping them together in this way simplifies and
268     * speeds up task scanning.
269     *
270     * All worker thread creation is on-demand, triggered by task
271     * submissions, replacement of terminated workers, and/or
272     * compensation for blocked workers. However, all other support
273     * code is set up to work with other policies.  To ensure that we
274     * do not hold on to worker references that would prevent GC, ALL
275     * accesses to workQueues are via indices into the workQueues
276     * array (which is one source of some of the messy code
277     * constructions here). In essence, the workQueues array serves as
278     * a weak reference mechanism. Thus for example the wait queue
279     * field of ctl stores indices, not references.  Access to the
280     * workQueues in associated methods (for example signalWork) must
281     * both index-check and null-check the IDs. All such accesses
282     * ignore bad IDs by returning out early from what they are doing,
283     * since this can only be associated with termination, in which
284     * case it is OK to give up.  All uses of the workQueues array
285     * also check that it is non-null (even if previously
286     * non-null). This allows nulling during termination, which is
287     * currently not necessary, but remains an option for
288     * resource-revocation-based shutdown schemes. It also helps
289     * reduce JIT issuance of uncommon-trap code, which tends to
290     * unnecessarily complicate control flow in some methods.
291     *
292     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
293     * let workers spin indefinitely scanning for tasks when none can
294     * be found immediately, and we cannot start/resume workers unless
295     * there appear to be tasks available.  On the other hand, we must
296     * quickly prod them into action when new tasks are submitted or
297     * generated. In many usages, ramp-up time to activate workers is
298     * the main limiting factor in overall performance (this is
299     * compounded at program start-up by JIT compilation and
300     * allocation). So we try to streamline this as much as possible.
301     * We park/unpark workers after placing in an event wait queue
302     * when they cannot find work. This "queue" is actually a simple
303     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
304     * counter value (that reflects the number of times a worker has
305     * been inactivated) to avoid ABA effects (we need only as many
306     * version numbers as worker threads). Successors are held in
307     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
308     * races, mainly that a task-producing thread can miss seeing (and
309     * signalling) another thread that gave up looking for work but
310     * has not yet entered the wait queue. We solve this by requiring
311     * a full sweep of all workers (via repeated calls to method
312     * scan()) both before and after a newly waiting worker is added
313     * to the wait queue.  Because enqueued workers may actually be
314     * rescanning rather than waiting, we set and clear the "parker"
315     * field of WorkQueues to reduce unnecessary calls to unpark.
316     * (This requires a secondary recheck to avoid missed signals.)
317     * Note the unusual conventions about Thread.interrupts
318     * surrounding parking and other blocking: Because interrupts are
319     * used solely to alert threads to check termination, which is
320     * checked anyway upon blocking, we clear status (using
321     * Thread.interrupted) before any call to park, so that park does
322     * not immediately return due to status being set via some other
323     * unrelated call to interrupt in user code.
324     *
325     * Signalling.  We create or wake up workers only when there
326     * appears to be at least one task they might be able to find and
327     * execute.  When a submission is added or another worker adds a
328     * task to a queue that has fewer than two tasks, they signal
329     * waiting workers (or trigger creation of new ones if fewer than
330     * the given parallelism level -- signalWork).  These primary
331     * signals are buttressed by others whenever other threads remove
332     * a task from a queue and notice that there are other tasks there
333     * as well.  So in general, pools will be over-signalled. On most
334     * platforms, signalling (unpark) overhead time is noticeably
335     * long, and the time between signalling a thread and it actually
336     * making progress can be very noticeably long, so it is worth
337     * offloading these delays from critical paths as much as
338     * possible. Additionally, workers spin-down gradually, by staying
339     * alive so long as they see the ctl state changing.  Similar
340     * stability-sensing techniques are also used before blocking in
341     * awaitJoin and helpComplete.
342     *
343     * Trimming workers. To release resources after periods of lack of
344     * use, a worker starting to wait when the pool is quiescent will
345     * time out and terminate if the pool has remained quiescent for a
346     * given period -- a short period if there are more threads than
347     * parallelism, longer as the number of threads decreases. This
348     * will slowly propagate, eventually terminating all workers after
349     * periods of non-use.
350     *
351     * Shutdown and Termination. A call to shutdownNow atomically sets
352     * a plock bit and then (non-atomically) sets each worker's
353     * qlock status, cancels all unprocessed tasks, and wakes up
354     * all waiting workers.  Detecting whether termination should
355     * commence after a non-abrupt shutdown() call requires more work
356     * and bookkeeping. We need consensus about quiescence (i.e., that
357     * there is no more work). The active count provides a primary
358     * indication but non-abrupt shutdown still requires a rechecking
359     * scan for any workers that are inactive but not queued.
360     *
361     * Joining Tasks
362     * =============
363     *
364     * Any of several actions may be taken when one worker is waiting
365     * to join a task stolen (or always held) by another.  Because we
366     * are multiplexing many tasks on to a pool of workers, we can't
367     * just let them block (as in Thread.join).  We also cannot just
368     * reassign the joiner's run-time stack with another and replace
369     * it later, which would be a form of "continuation", that even if
370     * possible is not necessarily a good idea since we sometimes need
371     * both an unblocked task and its continuation to progress.
372     * Instead we combine two tactics:
373     *
374     *   Helping: Arranging for the joiner to execute some task that it
375     *      would be running if the steal had not occurred.
376     *
377     *   Compensating: Unless there are already enough live threads,
378     *      method tryCompensate() may create or re-activate a spare
379     *      thread to compensate for blocked joiners until they unblock.
380     *
381     * A third form (implemented in tryRemoveAndExec) amounts to
382     * helping a hypothetical compensator: If we can readily tell that
383     * a possible action of a compensator is to steal and execute the
384     * task being joined, the joining thread can do so directly,
385     * without the need for a compensation thread (although at the
386     * expense of larger run-time stacks, but the tradeoff is
387     * typically worthwhile).
388     *
389     * The ManagedBlocker extension API can't use helping so relies
390     * only on compensation in method awaitBlocker.
391     *
392     * The algorithm in tryHelpStealer entails a form of "linear"
393     * helping: Each worker records (in field currentSteal) the most
394     * recent task it stole from some other worker. Plus, it records
395     * (in field currentJoin) the task it is currently actively
396     * joining. Method tryHelpStealer uses these markers to try to
397     * find a worker to help (i.e., steal back a task from and execute
398     * it) that could hasten completion of the actively joined task.
399     * In essence, the joiner executes a task that would be on its own
400     * local deque had the to-be-joined task not been stolen. This may
401     * be seen as a conservative variant of the approach in Wagner &
402     * Calder "Leapfrogging: a portable technique for implementing
403     * efficient futures" SIGPLAN Notices, 1993
404     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
405     * that: (1) We only maintain dependency links across workers upon
406     * steals, rather than use per-task bookkeeping.  This sometimes
407     * requires a linear scan of workQueues array to locate stealers,
408     * but often doesn't because stealers leave hints (that may become
409     * stale/wrong) of where to locate them.  It is only a hint
410     * because a worker might have had multiple steals and the hint
411     * records only one of them (usually the most current).  Hinting
412     * isolates cost to when it is needed, rather than adding to
413     * per-task overhead.  (2) It is "shallow", ignoring nesting and
414     * potentially cyclic mutual steals.  (3) It is intentionally
415     * racy: field currentJoin is updated only while actively joining,
416     * which means that we miss links in the chain during long-lived
417     * tasks, GC stalls etc (which is OK since blocking in such cases
418     * is usually a good idea).  (4) We bound the number of attempts
419     * to find work (see MAX_HELP) and fall back to suspending the
420     * worker and if necessary replacing it with another.
421     *
422     * Helping actions for CountedCompleters are much simpler: Method
423     * helpComplete can take and execute any task with the same root
424     * as the task being waited on. However, this still entails some
425     * traversal of completer chains, so is less efficient than using
426     * CountedCompleters without explicit joins.
427     *
428     * It is impossible to keep exactly the target parallelism number
429     * of threads running at any given time.  Determining the
430     * existence of conservatively safe helping targets, the
431     * availability of already-created spares, and the apparent need
432     * to create new spares are all racy, so we rely on multiple
433     * retries of each.  Compensation in the apparent absence of
434     * helping opportunities is challenging to control on JVMs, where
435     * GC and other activities can stall progress of tasks that in
436     * turn stall out many other dependent tasks, without us being
437     * able to determine whether they will ever require compensation.
438     * Even though work-stealing otherwise encounters little
439     * degradation in the presence of more threads than cores,
440     * aggressively adding new threads in such cases entails risk of
441     * unwanted positive feedback control loops in which more threads
442     * cause more dependent stalls (as well as delayed progress of
443     * unblocked threads to the point that we know they are available)
444     * leading to more situations requiring more threads, and so
445     * on. This aspect of control can be seen as an (analytically
446     * intractable) game with an opponent that may choose the worst
447     * (for us) active thread to stall at any time.  We take several
448     * precautions to bound losses (and thus bound gains), mainly in
449     * methods tryCompensate and awaitJoin.
450     *
451     * Common Pool
452     * ===========
453     *
454     * The static common pool always exists after static
455     * initialization.  Since it (or any other created pool) need
456     * never be used, we minimize initial construction overhead and
457     * footprint to the setup of about a dozen fields, with no nested
458     * allocation. Most bootstrapping occurs within method
459     * fullExternalPush during the first submission to the pool.
460     *
461     * When external threads submit to the common pool, they can
462     * perform subtask processing (see externalHelpJoin and related
463     * methods).  This caller-helps policy makes it sensible to set
464     * common pool parallelism level to one (or more) less than the
465     * total number of available cores, or even zero for pure
466     * caller-runs.  We do not need to record whether external
467     * submissions are to the common pool -- if not, externalHelpJoin
468     * returns quickly (at the most helping to signal some common pool
469     * workers). These submitters would otherwise be blocked waiting
470     * for completion, so the extra effort (with liberally sprinkled
471     * task status checks) in inapplicable cases amounts to an odd
472     * form of limited spin-wait before blocking in ForkJoinTask.join.
473     *
474     * Style notes
475     * ===========
476     *
477     * There is a lot of representation-level coupling among classes
478     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
479     * fields of WorkQueue maintain data structures managed by
480     * ForkJoinPool, so are directly accessed.  There is little point
481     * trying to reduce this, since any associated future changes in
482     * representations will need to be accompanied by algorithmic
483     * changes anyway. Several methods intrinsically sprawl because
484     * they must accumulate sets of consistent reads of volatiles held
485     * in local variables.  Methods signalWork() and scan() are the
486     * main bottlenecks, so are especially heavily
487     * micro-optimized/mangled.  There are lots of inline assignments
488     * (of form "while ((local = field) != 0)") which are usually the
489     * simplest way to ensure the required read orderings (which are
490     * sometimes critical). This leads to a "C"-like style of listing
491     * declarations of these locals at the heads of methods or blocks.
492     * There are several occurrences of the unusual "do {} while
493     * (!cas...)"  which is the simplest way to force an update of a
494     * CAS'ed variable. There are also other coding oddities (including
495     * several unnecessary-looking hoisted null checks) that help
496     * some methods perform reasonably even when interpreted (not
497     * compiled).
498     *
499     * The order of declarations in this file is:
500     * (1) Static utility functions
501     * (2) Nested (static) classes
502     * (3) Static fields
503     * (4) Fields, along with constants used when unpacking some of them
504     * (5) Internal control methods
505     * (6) Callbacks and other support for ForkJoinTask methods
506     * (7) Exported methods
507     * (8) Static block initializing statics in minimally dependent order
508     */
509
510    // Static utilities
511
512    /**
513     * If there is a security manager, makes sure caller has
514     * permission to modify threads.
515     */
516    private static void checkPermission() {
517        SecurityManager security = System.getSecurityManager();
518        if (security != null)
519            security.checkPermission(modifyThreadPermission);
520    }
521
522    // Nested classes
523
524    /**
525     * Factory for creating new {@link ForkJoinWorkerThread}s.
526     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
527     * for {@code ForkJoinWorkerThread} subclasses that extend base
528     * functionality or initialize threads with different contexts.
529     */
530    public static interface ForkJoinWorkerThreadFactory {
531        /**
532         * Returns a new worker thread operating in the given pool.
533         *
534         * @param pool the pool this thread works in
535         * @throws NullPointerException if the pool is null
536         * @return the new worker thread
537         */
538        public ForkJoinWorkerThread newThread(ForkJoinPool pool);
539    }
540
541    /**
542     * Default ForkJoinWorkerThreadFactory implementation; creates a
543     * new ForkJoinWorkerThread.
544     */
545    static final class DefaultForkJoinWorkerThreadFactory
546        implements ForkJoinWorkerThreadFactory {
547        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
548            return new ForkJoinWorkerThread(pool);
549        }
550    }
551
552    /**
553     * Class for artificial tasks that are used to replace the target
554     * of local joins if they are removed from an interior queue slot
555     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
556     * actually do anything beyond having a unique identity.
557     */
558    static final class EmptyTask extends ForkJoinTask<Void> {
559        private static final long serialVersionUID = -7721805057305804111L;
560        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
561        public final Void getRawResult() { return null; }
562        public final void setRawResult(Void x) {}
563        public final boolean exec() { return true; }
564    }
565
566    /**
567     * Queues supporting work-stealing as well as external task
568     * submission. See above for main rationale and algorithms.
569     * Implementation relies heavily on "Unsafe" intrinsics
570     * and selective use of "volatile":
571     *
572     * Field "base" is the index (mod array.length) of the least valid
573     * queue slot, which is always the next position to steal (poll)
574     * from if nonempty. Reads and writes require volatile orderings
575     * but not CAS, because updates are only performed after slot
576     * CASes.
577     *
578     * Field "top" is the index (mod array.length) of the next queue
579     * slot to push to or pop from. It is written only by owner thread
580     * for push, or under lock for external/shared push, and accessed
581     * by other threads only after reading (volatile) base.  Both top
582     * and base are allowed to wrap around on overflow, but (top -
583     * base) (or more commonly -(base - top) to force volatile read of
584     * base before top) still estimates size. The lock ("qlock") is
585     * forced to -1 on termination, causing all further lock attempts
586     * to fail. (Note: we don't need CAS for termination state because
587     * upon pool shutdown, all shared-queues will stop being used
588     * anyway.)  Nearly all lock bodies are set up so that exceptions
589     * within lock bodies are "impossible" (modulo JVM errors that
590     * would cause failure anyway.)
591     *
592     * The array slots are read and written using the emulation of
593     * volatiles/atomics provided by Unsafe. Insertions must in
594     * general use putOrderedObject as a form of releasing store to
595     * ensure that all writes to the task object are ordered before
596     * its publication in the queue.  All removals entail a CAS to
597     * null.  The array is always a power of two. To ensure safety of
598     * Unsafe array operations, all accesses perform explicit null
599     * checks and implicit bounds checks via power-of-two masking.
600     *
601     * In addition to basic queuing support, this class contains
602     * fields described elsewhere to control execution. It turns out
603     * to work better memory-layout-wise to include them in this class
604     * rather than a separate class.
605     *
606     * Performance on most platforms is very sensitive to placement of
607     * instances of both WorkQueues and their arrays -- we absolutely
608     * do not want multiple WorkQueue instances or multiple queue
609     * arrays sharing cache lines. (It would be best for queue objects
610     * and their arrays to share, but there is nothing available to
611     * help arrange that). The @Contended annotation alerts JVMs to
612     * try to keep instances apart.
613     */
614    static final class WorkQueue {
615        /**
616         * Capacity of work-stealing queue array upon initialization.
617         * Must be a power of two; at least 4, but should be larger to
618         * reduce or eliminate cacheline sharing among queues.
619         * Currently, it is much larger, as a partial workaround for
620         * the fact that JVMs often place arrays in locations that
621         * share GC bookkeeping (especially cardmarks) such that
622         * per-write accesses encounter serious memory contention.
623         */
624        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
625
626        /**
627         * Maximum size for queue arrays. Must be a power of two less
628         * than or equal to 1 << (31 - width of array entry) to ensure
629         * lack of wraparound of index calculations, but defined to a
630         * value a bit less than this to help users trap runaway
631         * programs before saturating systems.
632         */
633        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
634
635        // Heuristic padding to ameliorate unfortunate memory placements
636        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
637
638        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
639        int nextWait;              // encoded record of next event waiter
640        int nsteals;               // number of steals
641        int hint;                  // steal index hint
642        short poolIndex;           // index of this queue in pool
643        final short mode;          // 0: lifo, > 0: fifo, < 0: shared
644        volatile int qlock;        // 1: locked, -1: terminate; else 0
645        volatile int base;         // index of next slot for poll
646        int top;                   // index of next slot for push
647        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
648        final ForkJoinPool pool;   // the containing pool (may be null)
649        final ForkJoinWorkerThread owner; // owning thread or null if shared
650        volatile Thread parker;    // == owner during call to park; else null
651        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
652        ForkJoinTask<?> currentSteal; // current non-local task being executed
653
654        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
655        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
656
657        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
658                  int seed) {
659            this.pool = pool;
660            this.owner = owner;
661            this.mode = (short)mode;
662            this.hint = seed; // store initial seed for runWorker
663            // Place indices in the center of array (that is not yet allocated)
664            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
665        }
666
667        /**
668         * Returns the approximate number of tasks in the queue.
669         */
670        final int queueSize() {
671            int n = base - top;       // non-owner callers must read base first
672            return (n >= 0) ? 0 : -n; // ignore transient negative
673        }
674
675        /**
676         * Provides a more accurate estimate of whether this queue has
677         * any tasks than does queueSize, by checking whether a
678         * near-empty queue has at least one unclaimed task.
679         */
680        final boolean isEmpty() {
681            ForkJoinTask<?>[] a; int m, s;
682            int n = base - (s = top);
683            return (n >= 0 ||
684                    (n == -1 &&
685                     ((a = array) == null ||
686                      (m = a.length - 1) < 0 ||
687                      U.getObject
688                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
689        }
690
691        /**
692         * Pushes a task. Call only by owner in unshared queues.  (The
693         * shared-queue version is embedded in method externalPush.)
694         *
695         * @param task the task. Caller must ensure non-null.
696         * @throws RejectedExecutionException if array cannot be resized
697         */
698        final void push(ForkJoinTask<?> task) {
699            ForkJoinTask<?>[] a; ForkJoinPool p;
700            int s = top, n;
701            if ((a = array) != null) {    // ignore if queue removed
702                int m = a.length - 1;
703                U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
704                if ((n = (top = s + 1) - base) <= 2)
705                    (p = pool).signalWork(p.workQueues, this);
706                else if (n >= m)
707                    growArray();
708            }
709        }
710
711        /**
712         * Initializes or doubles the capacity of array. Call either
713         * by owner or with lock held -- it is OK for base, but not
714         * top, to move while resizings are in progress.
715         */
716        final ForkJoinTask<?>[] growArray() {
717            ForkJoinTask<?>[] oldA = array;
718            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
719            if (size > MAXIMUM_QUEUE_CAPACITY)
720                throw new RejectedExecutionException("Queue capacity exceeded");
721            int oldMask, t, b;
722            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
723            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
724                (t = top) - (b = base) > 0) {
725                int mask = size - 1;
726                do {
727                    ForkJoinTask<?> x;
728                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
729                    int j    = ((b &    mask) << ASHIFT) + ABASE;
730                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
731                    if (x != null &&
732                        U.compareAndSwapObject(oldA, oldj, x, null))
733                        U.putObjectVolatile(a, j, x);
734                } while (++b != t);
735            }
736            return a;
737        }
738
739        /**
740         * Takes next task, if one exists, in LIFO order.  Call only
741         * by owner in unshared queues.
742         */
743        final ForkJoinTask<?> pop() {
744            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
745            if ((a = array) != null && (m = a.length - 1) >= 0) {
746                for (int s; (s = top - 1) - base >= 0;) {
747                    long j = ((m & s) << ASHIFT) + ABASE;
748                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
749                        break;
750                    if (U.compareAndSwapObject(a, j, t, null)) {
751                        top = s;
752                        return t;
753                    }
754                }
755            }
756            return null;
757        }
758
759        /**
760         * Takes a task in FIFO order if b is base of queue and a task
761         * can be claimed without contention. Specialized versions
762         * appear in ForkJoinPool methods scan and tryHelpStealer.
763         */
764        final ForkJoinTask<?> pollAt(int b) {
765            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
766            if ((a = array) != null) {
767                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
768                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
769                    base == b && U.compareAndSwapObject(a, j, t, null)) {
770                    U.putOrderedInt(this, QBASE, b + 1);
771                    return t;
772                }
773            }
774            return null;
775        }
776
777        /**
778         * Takes next task, if one exists, in FIFO order.
779         */
780        final ForkJoinTask<?> poll() {
781            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
782            while ((b = base) - top < 0 && (a = array) != null) {
783                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
784                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
785                if (t != null) {
786                    if (U.compareAndSwapObject(a, j, t, null)) {
787                        U.putOrderedInt(this, QBASE, b + 1);
788                        return t;
789                    }
790                }
791                else if (base == b) {
792                    if (b + 1 == top)
793                        break;
794                    Thread.yield(); // wait for lagging update (very rare)
795                }
796            }
797            return null;
798        }
799
800        /**
801         * Takes next task, if one exists, in order specified by mode.
802         */
803        final ForkJoinTask<?> nextLocalTask() {
804            return mode == 0 ? pop() : poll();
805        }
806
807        /**
808         * Returns next task, if one exists, in order specified by mode.
809         */
810        final ForkJoinTask<?> peek() {
811            ForkJoinTask<?>[] a = array; int m;
812            if (a == null || (m = a.length - 1) < 0)
813                return null;
814            int i = mode == 0 ? top - 1 : base;
815            int j = ((i & m) << ASHIFT) + ABASE;
816            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
817        }
818
819        /**
820         * Pops the given task only if it is at the current top.
821         * (A shared version is available only via FJP.tryExternalUnpush)
822         */
823        final boolean tryUnpush(ForkJoinTask<?> t) {
824            ForkJoinTask<?>[] a; int s;
825            if ((a = array) != null && (s = top) != base &&
826                U.compareAndSwapObject
827                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
828                top = s;
829                return true;
830            }
831            return false;
832        }
833
834        /**
835         * Removes and cancels all known tasks, ignoring any exceptions.
836         */
837        final void cancelAll() {
838            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
839            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
840            for (ForkJoinTask<?> t; (t = poll()) != null; )
841                ForkJoinTask.cancelIgnoringExceptions(t);
842        }
843
844        // Specialized execution methods
845
846        /**
847         * Polls and runs tasks until empty.
848         */
849        final void pollAndExecAll() {
850            for (ForkJoinTask<?> t; (t = poll()) != null;)
851                t.doExec();
852        }
853
854        /**
855         * Executes a top-level task and any local tasks remaining
856         * after execution.
857         */
858        final void runTask(ForkJoinTask<?> task) {
859            if ((currentSteal = task) != null) {
860                task.doExec();
861                ForkJoinTask<?>[] a = array;
862                int md = mode;
863                ++nsteals;
864                currentSteal = null;
865                if (md != 0)
866                    pollAndExecAll();
867                else if (a != null) {
868                    int s, m = a.length - 1;
869                    while ((s = top - 1) - base >= 0) {
870                        long i = ((m & s) << ASHIFT) + ABASE;
871                        ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, i);
872                        if (t == null)
873                            break;
874                        if (U.compareAndSwapObject(a, i, t, null)) {
875                            top = s;
876                            t.doExec();
877                        }
878                    }
879                }
880            }
881        }
882
883        /**
884         * If present, removes from queue and executes the given task,
885         * or any other cancelled task. Returns (true) on any CAS
886         * or consistency check failure so caller can retry.
887         *
888         * @return false if no progress can be made, else true
889         */
890        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
891            boolean stat;
892            ForkJoinTask<?>[] a; int m, s, b, n;
893            if (task != null && (a = array) != null && (m = a.length - 1) >= 0 &&
894                (n = (s = top) - (b = base)) > 0) {
895                boolean removed = false, empty = true;
896                stat = true;
897                for (ForkJoinTask<?> t;;) {           // traverse from s to b
898                    long j = ((--s & m) << ASHIFT) + ABASE;
899                    t = (ForkJoinTask<?>)U.getObject(a, j);
900                    if (t == null)                    // inconsistent length
901                        break;
902                    else if (t == task) {
903                        if (s + 1 == top) {           // pop
904                            if (!U.compareAndSwapObject(a, j, task, null))
905                                break;
906                            top = s;
907                            removed = true;
908                        }
909                        else if (base == b)           // replace with proxy
910                            removed = U.compareAndSwapObject(a, j, task,
911                                                             new EmptyTask());
912                        break;
913                    }
914                    else if (t.status >= 0)
915                        empty = false;
916                    else if (s + 1 == top) {          // pop and throw away
917                        if (U.compareAndSwapObject(a, j, t, null))
918                            top = s;
919                        break;
920                    }
921                    if (--n == 0) {
922                        if (!empty && base == b)
923                            stat = false;
924                        break;
925                    }
926                }
927                if (removed)
928                    task.doExec();
929            }
930            else
931                stat = false;
932            return stat;
933        }
934
935        /**
936         * Tries to poll for and execute the given task or any other
937         * task in its CountedCompleter computation.
938         */
939        final boolean pollAndExecCC(CountedCompleter<?> root) {
940            ForkJoinTask<?>[] a; int b; Object o; CountedCompleter<?> t, r;
941            if ((b = base) - top < 0 && (a = array) != null) {
942                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
943                if ((o = U.getObjectVolatile(a, j)) == null)
944                    return true; // retry
945                if (o instanceof CountedCompleter) {
946                    for (t = (CountedCompleter<?>)o, r = t;;) {
947                        if (r == root) {
948                            if (base == b &&
949                                U.compareAndSwapObject(a, j, t, null)) {
950                                U.putOrderedInt(this, QBASE, b + 1);
951                                t.doExec();
952                            }
953                            return true;
954                        }
955                        else if ((r = r.completer) == null)
956                            break; // not part of root computation
957                    }
958                }
959            }
960            return false;
961        }
962
963        /**
964         * Tries to pop and execute the given task or any other task
965         * in its CountedCompleter computation.
966         */
967        final boolean externalPopAndExecCC(CountedCompleter<?> root) {
968            ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
969            if (base - (s = top) < 0 && (a = array) != null) {
970                long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
971                if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
972                    for (t = (CountedCompleter<?>)o, r = t;;) {
973                        if (r == root) {
974                            if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
975                                if (top == s && array == a &&
976                                    U.compareAndSwapObject(a, j, t, null)) {
977                                    top = s - 1;
978                                    qlock = 0;
979                                    t.doExec();
980                                }
981                                else
982                                    qlock = 0;
983                            }
984                            return true;
985                        }
986                        else if ((r = r.completer) == null)
987                            break;
988                    }
989                }
990            }
991            return false;
992        }
993
994        /**
995         * Internal version
996         */
997        final boolean internalPopAndExecCC(CountedCompleter<?> root) {
998            ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
999            if (base - (s = top) < 0 && (a = array) != null) {
1000                long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
1001                if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
1002                    for (t = (CountedCompleter<?>)o, r = t;;) {
1003                        if (r == root) {
1004                            if (U.compareAndSwapObject(a, j, t, null)) {
1005                                top = s - 1;
1006                                t.doExec();
1007                            }
1008                            return true;
1009                        }
1010                        else if ((r = r.completer) == null)
1011                            break;
1012                    }
1013                }
1014            }
1015            return false;
1016        }
1017
1018        /**
1019         * Returns true if owned and not known to be blocked.
1020         */
1021        final boolean isApparentlyUnblocked() {
1022            Thread wt; Thread.State s;
1023            return (eventCount >= 0 &&
1024                    (wt = owner) != null &&
1025                    (s = wt.getState()) != Thread.State.BLOCKED &&
1026                    s != Thread.State.WAITING &&
1027                    s != Thread.State.TIMED_WAITING);
1028        }
1029
1030        // Unsafe mechanics
1031        private static final sun.misc.Unsafe U;
1032        private static final long QBASE;
1033        private static final long QLOCK;
1034        private static final int ABASE;
1035        private static final int ASHIFT;
1036        static {
1037            try {
1038                U = sun.misc.Unsafe.getUnsafe();
1039                Class<?> k = WorkQueue.class;
1040                Class<?> ak = ForkJoinTask[].class;
1041                QBASE = U.objectFieldOffset
1042                    (k.getDeclaredField("base"));
1043                QLOCK = U.objectFieldOffset
1044                    (k.getDeclaredField("qlock"));
1045                ABASE = U.arrayBaseOffset(ak);
1046                int scale = U.arrayIndexScale(ak);
1047                if ((scale & (scale - 1)) != 0)
1048                    throw new Error("data type scale not a power of two");
1049                ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1050            } catch (Exception e) {
1051                throw new Error(e);
1052            }
1053        }
1054    }
1055
1056    // static fields (initialized in static initializer below)
1057
1058    /**
1059     * Per-thread submission bookkeeping. Shared across all pools
1060     * to reduce ThreadLocal pollution and because random motion
1061     * to avoid contention in one pool is likely to hold for others.
1062     * Lazily initialized on first submission (but null-checked
1063     * in other contexts to avoid unnecessary initialization).
1064     */
1065    static final ThreadLocal<Submitter> submitters;
1066
1067    /**
1068     * Creates a new ForkJoinWorkerThread. This factory is used unless
1069     * overridden in ForkJoinPool constructors.
1070     */
1071    public static final ForkJoinWorkerThreadFactory
1072        defaultForkJoinWorkerThreadFactory;
1073
1074    /**
1075     * Permission required for callers of methods that may start or
1076     * kill threads.
1077     */
1078    private static final RuntimePermission modifyThreadPermission;
1079
1080    /**
1081     * Common (static) pool. Non-null for public use unless a static
1082     * construction exception, but internal usages null-check on use
1083     * to paranoically avoid potential initialization circularities
1084     * as well as to simplify generated code.
1085     */
1086    static final ForkJoinPool common;
1087
1088    /**
1089     * Common pool parallelism. To allow simpler use and management
1090     * when common pool threads are disabled, we allow the underlying
1091     * common.parallelism field to be zero, but in that case still report
1092     * parallelism as 1 to reflect resulting caller-runs mechanics.
1093     */
1094    static final int commonParallelism;
1095
1096    /**
1097     * Sequence number for creating workerNamePrefix.
1098     */
1099    private static int poolNumberSequence;
1100
1101    /**
1102     * Returns the next sequence number. We don't expect this to
1103     * ever contend, so use simple builtin sync.
1104     */
1105    private static final synchronized int nextPoolId() {
1106        return ++poolNumberSequence;
1107    }
1108
1109    // static constants
1110
1111    /**
1112     * Initial timeout value (in nanoseconds) for the thread
1113     * triggering quiescence to park waiting for new work. On timeout,
1114     * the thread will instead try to shrink the number of
1115     * workers. The value should be large enough to avoid overly
1116     * aggressive shrinkage during most transient stalls (long GCs
1117     * etc).
1118     */
1119    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1120
1121    /**
1122     * Timeout value when there are more threads than parallelism level
1123     */
1124    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1125
1126    /**
1127     * Tolerance for idle timeouts, to cope with timer undershoots
1128     */
1129    private static final long TIMEOUT_SLOP = 2000000L;
1130
1131    /**
1132     * The maximum stolen->joining link depth allowed in method
1133     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1134     * chains are unbounded, but we use a fixed constant to avoid
1135     * (otherwise unchecked) cycles and to bound staleness of
1136     * traversal parameters at the expense of sometimes blocking when
1137     * we could be helping.
1138     */
1139    private static final int MAX_HELP = 64;
1140
1141    /**
1142     * Increment for seed generators. See class ThreadLocal for
1143     * explanation.
1144     */
1145    private static final int SEED_INCREMENT = 0x61c88647;
1146
1147    /*
1148     * Bits and masks for control variables
1149     *
1150     * Field ctl is a long packed with:
1151     * AC: Number of active running workers minus target parallelism (16 bits)
1152     * TC: Number of total workers minus target parallelism (16 bits)
1153     * ST: true if pool is terminating (1 bit)
1154     * EC: the wait count of top waiting thread (15 bits)
1155     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1156     *
1157     * When convenient, we can extract the upper 32 bits of counts and
1158     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1159     * (int)ctl.  The ec field is never accessed alone, but always
1160     * together with id and st. The offsets of counts by the target
1161     * parallelism and the positionings of fields makes it possible to
1162     * perform the most common checks via sign tests of fields: When
1163     * ac is negative, there are not enough active workers, when tc is
1164     * negative, there are not enough total workers, and when e is
1165     * negative, the pool is terminating.  To deal with these possibly
1166     * negative fields, we use casts in and out of "short" and/or
1167     * signed shifts to maintain signedness.
1168     *
1169     * When a thread is queued (inactivated), its eventCount field is
1170     * set negative, which is the only way to tell if a worker is
1171     * prevented from executing tasks, even though it must continue to
1172     * scan for them to avoid queuing races. Note however that
1173     * eventCount updates lag releases so usage requires care.
1174     *
1175     * Field plock is an int packed with:
1176     * SHUTDOWN: true if shutdown is enabled (1 bit)
1177     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1178     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1179     *
1180     * The sequence number enables simple consistency checks:
1181     * Staleness of read-only operations on the workQueues array can
1182     * be checked by comparing plock before vs after the reads.
1183     */
1184
1185    // bit positions/shifts for fields
1186    private static final int  AC_SHIFT   = 48;
1187    private static final int  TC_SHIFT   = 32;
1188    private static final int  ST_SHIFT   = 31;
1189    private static final int  EC_SHIFT   = 16;
1190
1191    // bounds
1192    private static final int  SMASK      = 0xffff;  // short bits
1193    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1194    private static final int  EVENMASK   = 0xfffe;  // even short bits
1195    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1196    private static final int  SHORT_SIGN = 1 << 15;
1197    private static final int  INT_SIGN   = 1 << 31;
1198
1199    // masks
1200    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1201    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1202    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1203
1204    // units for incrementing and decrementing
1205    private static final long TC_UNIT    = 1L << TC_SHIFT;
1206    private static final long AC_UNIT    = 1L << AC_SHIFT;
1207
1208    // masks and units for dealing with u = (int)(ctl >>> 32)
1209    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1210    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1211    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1212    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1213    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1214    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1215
1216    // masks and units for dealing with e = (int)ctl
1217    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1218    private static final int E_SEQ       = 1 << EC_SHIFT;
1219
1220    // plock bits
1221    private static final int SHUTDOWN    = 1 << 31;
1222    private static final int PL_LOCK     = 2;
1223    private static final int PL_SIGNAL   = 1;
1224    private static final int PL_SPINS    = 1 << 8;
1225
1226    // access mode for WorkQueue
1227    static final int LIFO_QUEUE          =  0;
1228    static final int FIFO_QUEUE          =  1;
1229    static final int SHARED_QUEUE        = -1;
1230
1231    // Heuristic padding to ameliorate unfortunate memory placements
1232    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1233
1234    // Instance fields
1235    volatile long stealCount;                  // collects worker counts
1236    volatile long ctl;                         // main pool control
1237    volatile int plock;                        // shutdown status and seqLock
1238    volatile int indexSeed;                    // worker/submitter index seed
1239    final short parallelism;                   // parallelism level
1240    final short mode;                          // LIFO/FIFO
1241    WorkQueue[] workQueues;                    // main registry
1242    final ForkJoinWorkerThreadFactory factory;
1243    final UncaughtExceptionHandler ueh;        // per-worker UEH
1244    final String workerNamePrefix;             // to create worker name string
1245
1246    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1247    volatile Object pad18, pad19, pad1a, pad1b;
1248
1249    /**
1250     * Acquires the plock lock to protect worker array and related
1251     * updates. This method is called only if an initial CAS on plock
1252     * fails. This acts as a spinlock for normal cases, but falls back
1253     * to builtin monitor to block when (rarely) needed. This would be
1254     * a terrible idea for a highly contended lock, but works fine as
1255     * a more conservative alternative to a pure spinlock.
1256     */
1257    private int acquirePlock() {
1258        int spins = PL_SPINS, ps, nps;
1259        for (;;) {
1260            if (((ps = plock) & PL_LOCK) == 0 &&
1261                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1262                return nps;
1263            else if (spins >= 0) {
1264                if (ThreadLocalRandom.current().nextInt() >= 0)
1265                    --spins;
1266            }
1267            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1268                synchronized (this) {
1269                    if ((plock & PL_SIGNAL) != 0) {
1270                        try {
1271                            wait();
1272                        } catch (InterruptedException ie) {
1273                            try {
1274                                Thread.currentThread().interrupt();
1275                            } catch (SecurityException ignore) {
1276                            }
1277                        }
1278                    }
1279                    else
1280                        notifyAll();
1281                }
1282            }
1283        }
1284    }
1285
1286    /**
1287     * Unlocks and signals any thread waiting for plock. Called only
1288     * when CAS of seq value for unlock fails.
1289     */
1290    private void releasePlock(int ps) {
1291        plock = ps;
1292        synchronized (this) { notifyAll(); }
1293    }
1294
1295    /**
1296     * Tries to create and start one worker if fewer than target
1297     * parallelism level exist. Adjusts counts etc on failure.
1298     */
1299    private void tryAddWorker() {
1300        long c; int u, e;
1301        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1302               (u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) {
1303            long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) |
1304                              ((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e;
1305            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1306                ForkJoinWorkerThreadFactory fac;
1307                Throwable ex = null;
1308                ForkJoinWorkerThread wt = null;
1309                try {
1310                    if ((fac = factory) != null &&
1311                        (wt = fac.newThread(this)) != null) {
1312                        wt.start();
1313                        break;
1314                    }
1315                } catch (Throwable rex) {
1316                    ex = rex;
1317                }
1318                deregisterWorker(wt, ex);
1319                break;
1320            }
1321        }
1322    }
1323
1324    //  Registering and deregistering workers
1325
1326    /**
1327     * Callback from ForkJoinWorkerThread to establish and record its
1328     * WorkQueue. To avoid scanning bias due to packing entries in
1329     * front of the workQueues array, we treat the array as a simple
1330     * power-of-two hash table using per-thread seed as hash,
1331     * expanding as needed.
1332     *
1333     * @param wt the worker thread
1334     * @return the worker's queue
1335     */
1336    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1337        UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1338        wt.setDaemon(true);
1339        if ((handler = ueh) != null)
1340            wt.setUncaughtExceptionHandler(handler);
1341        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1342                                          s += SEED_INCREMENT) ||
1343                     s == 0); // skip 0
1344        WorkQueue w = new WorkQueue(this, wt, mode, s);
1345        if (((ps = plock) & PL_LOCK) != 0 ||
1346            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1347            ps = acquirePlock();
1348        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1349        try {
1350            if ((ws = workQueues) != null) {    // skip if shutting down
1351                int n = ws.length, m = n - 1;
1352                int r = (s << 1) | 1;           // use odd-numbered indices
1353                if (ws[r &= m] != null) {       // collision
1354                    int probes = 0;             // step by approx half size
1355                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1356                    while (ws[r = (r + step) & m] != null) {
1357                        if (++probes >= n) {
1358                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1359                            m = n - 1;
1360                            probes = 0;
1361                        }
1362                    }
1363                }
1364                w.poolIndex = (short)r;
1365                w.eventCount = r; // volatile write orders
1366                ws[r] = w;
1367            }
1368        } finally {
1369            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1370                releasePlock(nps);
1371        }
1372        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1)));
1373        return w;
1374    }
1375
1376    /**
1377     * Final callback from terminating worker, as well as upon failure
1378     * to construct or start a worker.  Removes record of worker from
1379     * array, and adjusts counts. If pool is shutting down, tries to
1380     * complete termination.
1381     *
1382     * @param wt the worker thread, or null if construction failed
1383     * @param ex the exception causing failure, or null if none
1384     */
1385    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1386        WorkQueue w = null;
1387        if (wt != null && (w = wt.workQueue) != null) {
1388            int ps; long sc;
1389            w.qlock = -1;                // ensure set
1390            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1391                                               sc = stealCount,
1392                                               sc + w.nsteals));
1393            if (((ps = plock) & PL_LOCK) != 0 ||
1394                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1395                ps = acquirePlock();
1396            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1397            try {
1398                int idx = w.poolIndex;
1399                WorkQueue[] ws = workQueues;
1400                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1401                    ws[idx] = null;
1402            } finally {
1403                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1404                    releasePlock(nps);
1405            }
1406        }
1407
1408        long c;                          // adjust ctl counts
1409        do {} while (!U.compareAndSwapLong
1410                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1411                                           ((c - TC_UNIT) & TC_MASK) |
1412                                           (c & ~(AC_MASK|TC_MASK)))));
1413
1414        if (!tryTerminate(false, false) && w != null && w.array != null) {
1415            w.cancelAll();               // cancel remaining tasks
1416            WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1417            while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1418                if (e > 0) {             // activate or create replacement
1419                    if ((ws = workQueues) == null ||
1420                        (i = e & SMASK) >= ws.length ||
1421                        (v = ws[i]) == null)
1422                        break;
1423                    long nc = (((long)(v.nextWait & E_MASK)) |
1424                               ((long)(u + UAC_UNIT) << 32));
1425                    if (v.eventCount != (e | INT_SIGN))
1426                        break;
1427                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1428                        v.eventCount = (e + E_SEQ) & E_MASK;
1429                        if ((p = v.parker) != null)
1430                            U.unpark(p);
1431                        break;
1432                    }
1433                }
1434                else {
1435                    if ((short)u < 0)
1436                        tryAddWorker();
1437                    break;
1438                }
1439            }
1440        }
1441        if (ex == null)                     // help clean refs on way out
1442            ForkJoinTask.helpExpungeStaleExceptions();
1443        else                                // rethrow
1444            ForkJoinTask.rethrow(ex);
1445    }
1446
1447    // Submissions
1448
1449    /**
1450     * Per-thread records for threads that submit to pools. Currently
1451     * holds only pseudo-random seed / index that is used to choose
1452     * submission queues in method externalPush. In the future, this may
1453     * also incorporate a means to implement different task rejection
1454     * and resubmission policies.
1455     *
1456     * Seeds for submitters and workers/workQueues work in basically
1457     * the same way but are initialized and updated using slightly
1458     * different mechanics. Both are initialized using the same
1459     * approach as in class ThreadLocal, where successive values are
1460     * unlikely to collide with previous values. Seeds are then
1461     * randomly modified upon collisions using xorshifts, which
1462     * requires a non-zero seed.
1463     */
1464    static final class Submitter {
1465        int seed;
1466        Submitter(int s) { seed = s; }
1467    }
1468
1469    /**
1470     * Unless shutting down, adds the given task to a submission queue
1471     * at submitter's current queue index (modulo submission
1472     * range). Only the most common path is directly handled in this
1473     * method. All others are relayed to fullExternalPush.
1474     *
1475     * @param task the task. Caller must ensure non-null.
1476     */
1477    final void externalPush(ForkJoinTask<?> task) {
1478        Submitter z = submitters.get();
1479        WorkQueue q; int r, m, s, n, am; ForkJoinTask<?>[] a;
1480        int ps = plock;
1481        WorkQueue[] ws = workQueues;
1482        if (z != null && ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 &&
1483            (q = ws[m & (r = z.seed) & SQMASK]) != null && r != 0 &&
1484            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1485            if ((a = q.array) != null &&
1486                (am = a.length - 1) > (n = (s = q.top) - q.base)) {
1487                int j = ((am & s) << ASHIFT) + ABASE;
1488                U.putOrderedObject(a, j, task);
1489                q.top = s + 1;                     // push on to deque
1490                q.qlock = 0;
1491                if (n <= 1)
1492                    signalWork(ws, q);
1493                return;
1494            }
1495            q.qlock = 0;
1496        }
1497        fullExternalPush(task);
1498    }
1499
1500    /**
1501     * Full version of externalPush. This method is called, among
1502     * other times, upon the first submission of the first task to the
1503     * pool, so must perform secondary initialization.  It also
1504     * detects first submission by an external thread by looking up
1505     * its ThreadLocal, and creates a new shared queue if the one at
1506     * index if empty or contended. The plock lock body must be
1507     * exception-free (so no try/finally) so we optimistically
1508     * allocate new queues outside the lock and throw them away if
1509     * (very rarely) not needed.
1510     *
1511     * Secondary initialization occurs when plock is zero, to create
1512     * workQueue array and set plock to a valid value.  This lock body
1513     * must also be exception-free. Because the plock seq value can
1514     * eventually wrap around zero, this method harmlessly fails to
1515     * reinitialize if workQueues exists, while still advancing plock.
1516     */
1517    private void fullExternalPush(ForkJoinTask<?> task) {
1518        int r = 0; // random index seed
1519        for (Submitter z = submitters.get();;) {
1520            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1521            if (z == null) {
1522                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1523                                        r += SEED_INCREMENT) && r != 0)
1524                    submitters.set(z = new Submitter(r));
1525            }
1526            else if (r == 0) {                  // move to a different index
1527                r = z.seed;
1528                r ^= r << 13;                   // same xorshift as WorkQueues
1529                r ^= r >>> 17;
1530                z.seed = r ^= (r << 5);
1531            }
1532            if ((ps = plock) < 0)
1533                throw new RejectedExecutionException();
1534            else if (ps == 0 || (ws = workQueues) == null ||
1535                     (m = ws.length - 1) < 0) { // initialize workQueues
1536                int p = parallelism;            // find power of two table size
1537                int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
1538                n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
1539                n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1540                WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1541                                   new WorkQueue[n] : null);
1542                if (((ps = plock) & PL_LOCK) != 0 ||
1543                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1544                    ps = acquirePlock();
1545                if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1546                    workQueues = nws;
1547                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1548                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1549                    releasePlock(nps);
1550            }
1551            else if ((q = ws[k = r & m & SQMASK]) != null) {
1552                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1553                    ForkJoinTask<?>[] a = q.array;
1554                    int s = q.top;
1555                    boolean submitted = false;
1556                    try {                      // locked version of push
1557                        if ((a != null && a.length > s + 1 - q.base) ||
1558                            (a = q.growArray()) != null) {   // must presize
1559                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1560                            U.putOrderedObject(a, j, task);
1561                            q.top = s + 1;
1562                            submitted = true;
1563                        }
1564                    } finally {
1565                        q.qlock = 0;  // unlock
1566                    }
1567                    if (submitted) {
1568                        signalWork(ws, q);
1569                        return;
1570                    }
1571                }
1572                r = 0; // move on failure
1573            }
1574            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1575                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1576                q.poolIndex = (short)k;
1577                if (((ps = plock) & PL_LOCK) != 0 ||
1578                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1579                    ps = acquirePlock();
1580                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1581                    ws[k] = q;
1582                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1583                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1584                    releasePlock(nps);
1585            }
1586            else
1587                r = 0;
1588        }
1589    }
1590
1591    // Maintaining ctl counts
1592
1593    /**
1594     * Increments active count; mainly called upon return from blocking.
1595     */
1596    final void incrementActiveCount() {
1597        long c;
1598        do {} while (!U.compareAndSwapLong
1599                     (this, CTL, c = ctl, ((c & ~AC_MASK) |
1600                                           ((c & AC_MASK) + AC_UNIT))));
1601    }
1602
1603    /**
1604     * Tries to create or activate a worker if too few are active.
1605     *
1606     * @param ws the worker array to use to find signallees
1607     * @param q if non-null, the queue holding tasks to be processed
1608     */
1609    final void signalWork(WorkQueue[] ws, WorkQueue q) {
1610        for (;;) {
1611            long c; int e, u, i; WorkQueue w; Thread p;
1612            if ((u = (int)((c = ctl) >>> 32)) >= 0)
1613                break;
1614            if ((e = (int)c) <= 0) {
1615                if ((short)u < 0)
1616                    tryAddWorker();
1617                break;
1618            }
1619            if (ws == null || ws.length <= (i = e & SMASK) ||
1620                (w = ws[i]) == null)
1621                break;
1622            long nc = (((long)(w.nextWait & E_MASK)) |
1623                       ((long)(u + UAC_UNIT)) << 32);
1624            int ne = (e + E_SEQ) & E_MASK;
1625            if (w.eventCount == (e | INT_SIGN) &&
1626                U.compareAndSwapLong(this, CTL, c, nc)) {
1627                w.eventCount = ne;
1628                if ((p = w.parker) != null)
1629                    U.unpark(p);
1630                break;
1631            }
1632            if (q != null && q.base >= q.top)
1633                break;
1634        }
1635    }
1636
1637    // Scanning for tasks
1638
1639    /**
1640     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1641     */
1642    final void runWorker(WorkQueue w) {
1643        w.growArray(); // allocate queue
1644        for (int r = w.hint; scan(w, r) == 0; ) {
1645            r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1646        }
1647    }
1648
1649    /**
1650     * Scans for and, if found, runs one task, else possibly
1651     * inactivates the worker. This method operates on single reads of
1652     * volatile state and is designed to be re-invoked continuously,
1653     * in part because it returns upon detecting inconsistencies,
1654     * contention, or state changes that indicate possible success on
1655     * re-invocation.
1656     *
1657     * The scan searches for tasks across queues starting at a random
1658     * index, checking each at least twice.  The scan terminates upon
1659     * either finding a non-empty queue, or completing the sweep. If
1660     * the worker is not inactivated, it takes and runs a task from
1661     * this queue. Otherwise, if not activated, it tries to activate
1662     * itself or some other worker by signalling. On failure to find a
1663     * task, returns (for retry) if pool state may have changed during
1664     * an empty scan, or tries to inactivate if active, else possibly
1665     * blocks or terminates via method awaitWork.
1666     *
1667     * @param w the worker (via its WorkQueue)
1668     * @param r a random seed
1669     * @return worker qlock status if would have waited, else 0
1670     */
1671    private final int scan(WorkQueue w, int r) {
1672        WorkQueue[] ws; int m;
1673        long c = ctl;                            // for consistency check
1674        if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) {
1675            for (int j = m + m + 1, ec = w.eventCount;;) {
1676                WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1677                if ((q = ws[(r - j) & m]) != null &&
1678                    (b = q.base) - q.top < 0 && (a = q.array) != null) {
1679                    long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1680                    if ((t = ((ForkJoinTask<?>)
1681                              U.getObjectVolatile(a, i))) != null) {
1682                        if (ec < 0)
1683                            helpRelease(c, ws, w, q, b);
1684                        else if (q.base == b &&
1685                                 U.compareAndSwapObject(a, i, t, null)) {
1686                            U.putOrderedInt(q, QBASE, b + 1);
1687                            if ((b + 1) - q.top < 0)
1688                                signalWork(ws, q);
1689                            w.runTask(t);
1690                        }
1691                    }
1692                    break;
1693                }
1694                else if (--j < 0) {
1695                    if ((ec | (e = (int)c)) < 0) // inactive or terminating
1696                        return awaitWork(w, c, ec);
1697                    else if (ctl == c) {         // try to inactivate and enqueue
1698                        long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1699                        w.nextWait = e;
1700                        w.eventCount = ec | INT_SIGN;
1701                        if (!U.compareAndSwapLong(this, CTL, c, nc))
1702                            w.eventCount = ec;   // back out
1703                    }
1704                    break;
1705                }
1706            }
1707        }
1708        return 0;
1709    }
1710
1711    /**
1712     * A continuation of scan(), possibly blocking or terminating
1713     * worker w. Returns without blocking if pool state has apparently
1714     * changed since last invocation.  Also, if inactivating w has
1715     * caused the pool to become quiescent, checks for pool
1716     * termination, and, so long as this is not the only worker, waits
1717     * for event for up to a given duration.  On timeout, if ctl has
1718     * not changed, terminates the worker, which will in turn wake up
1719     * another worker to possibly repeat this process.
1720     *
1721     * @param w the calling worker
1722     * @param c the ctl value on entry to scan
1723     * @param ec the worker's eventCount on entry to scan
1724     */
1725    private final int awaitWork(WorkQueue w, long c, int ec) {
1726        int stat, ns; long parkTime, deadline;
1727        if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c &&
1728            !Thread.interrupted()) {
1729            int e = (int)c;
1730            int u = (int)(c >>> 32);
1731            int d = (u >> UAC_SHIFT) + parallelism; // active count
1732
1733            if (e < 0 || (d <= 0 && tryTerminate(false, false)))
1734                stat = w.qlock = -1;          // pool is terminating
1735            else if ((ns = w.nsteals) != 0) { // collect steals and retry
1736                long sc;
1737                w.nsteals = 0;
1738                do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1739                                                   sc = stealCount, sc + ns));
1740            }
1741            else {
1742                long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L :
1743                           ((long)(w.nextWait & E_MASK)) | // ctl to restore
1744                           ((long)(u + UAC_UNIT)) << 32);
1745                if (pc != 0L) {               // timed wait if last waiter
1746                    int dc = -(short)(c >>> TC_SHIFT);
1747                    parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
1748                                (dc + 1) * IDLE_TIMEOUT);
1749                    deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1750                }
1751                else
1752                    parkTime = deadline = 0L;
1753                if (w.eventCount == ec && ctl == c) {
1754                    Thread wt = Thread.currentThread();
1755                    U.putObject(wt, PARKBLOCKER, this);
1756                    w.parker = wt;            // emulate LockSupport.park
1757                    if (w.eventCount == ec && ctl == c)
1758                        U.park(false, parkTime);  // must recheck before park
1759                    w.parker = null;
1760                    U.putObject(wt, PARKBLOCKER, null);
1761                    if (parkTime != 0L && ctl == c &&
1762                        deadline - System.nanoTime() <= 0L &&
1763                        U.compareAndSwapLong(this, CTL, c, pc))
1764                        stat = w.qlock = -1;  // shrink pool
1765                }
1766            }
1767        }
1768        return stat;
1769    }
1770
1771    /**
1772     * Possibly releases (signals) a worker. Called only from scan()
1773     * when a worker with apparently inactive status finds a non-empty
1774     * queue. This requires revalidating all of the associated state
1775     * from caller.
1776     */
1777    private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w,
1778                                   WorkQueue q, int b) {
1779        WorkQueue v; int e, i; Thread p;
1780        if (w != null && w.eventCount < 0 && (e = (int)c) > 0 &&
1781            ws != null && ws.length > (i = e & SMASK) &&
1782            (v = ws[i]) != null && ctl == c) {
1783            long nc = (((long)(v.nextWait & E_MASK)) |
1784                       ((long)((int)(c >>> 32) + UAC_UNIT)) << 32);
1785            int ne = (e + E_SEQ) & E_MASK;
1786            if (q != null && q.base == b && w.eventCount < 0 &&
1787                v.eventCount == (e | INT_SIGN) &&
1788                U.compareAndSwapLong(this, CTL, c, nc)) {
1789                v.eventCount = ne;
1790                if ((p = v.parker) != null)
1791                    U.unpark(p);
1792            }
1793        }
1794    }
1795
1796    /**
1797     * Tries to locate and execute tasks for a stealer of the given
1798     * task, or in turn one of its stealers, Traces currentSteal ->
1799     * currentJoin links looking for a thread working on a descendant
1800     * of the given task and with a non-empty queue to steal back and
1801     * execute tasks from. The first call to this method upon a
1802     * waiting join will often entail scanning/search, (which is OK
1803     * because the joiner has nothing better to do), but this method
1804     * leaves hints in workers to speed up subsequent calls. The
1805     * implementation is very branchy to cope with potential
1806     * inconsistencies or loops encountering chains that are stale,
1807     * unknown, or so long that they are likely cyclic.
1808     *
1809     * @param joiner the joining worker
1810     * @param task the task to join
1811     * @return 0 if no progress can be made, negative if task
1812     * known complete, else positive
1813     */
1814    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1815        int stat = 0, steps = 0;                    // bound to avoid cycles
1816        if (task != null && joiner != null &&
1817            joiner.base - joiner.top >= 0) {        // hoist checks
1818            restart: for (;;) {
1819                ForkJoinTask<?> subtask = task;     // current target
1820                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1821                    WorkQueue[] ws; int m, s, h;
1822                    if ((s = task.status) < 0) {
1823                        stat = s;
1824                        break restart;
1825                    }
1826                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1827                        break restart;              // shutting down
1828                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1829                        v.currentSteal != subtask) {
1830                        for (int origin = h;;) {    // find stealer
1831                            if (((h = (h + 2) & m) & 15) == 1 &&
1832                                (subtask.status < 0 || j.currentJoin != subtask))
1833                                continue restart;   // occasional staleness check
1834                            if ((v = ws[h]) != null &&
1835                                v.currentSteal == subtask) {
1836                                j.hint = h;        // save hint
1837                                break;
1838                            }
1839                            if (h == origin)
1840                                break restart;      // cannot find stealer
1841                        }
1842                    }
1843                    for (;;) { // help stealer or descend to its stealer
1844                        ForkJoinTask[] a; int b;
1845                        if (subtask.status < 0)     // surround probes with
1846                            continue restart;       //   consistency checks
1847                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1848                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1849                            ForkJoinTask<?> t =
1850                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1851                            if (subtask.status < 0 || j.currentJoin != subtask ||
1852                                v.currentSteal != subtask)
1853                                continue restart;   // stale
1854                            stat = 1;               // apparent progress
1855                            if (v.base == b) {
1856                                if (t == null)
1857                                    break restart;
1858                                if (U.compareAndSwapObject(a, i, t, null)) {
1859                                    U.putOrderedInt(v, QBASE, b + 1);
1860                                    ForkJoinTask<?> ps = joiner.currentSteal;
1861                                    int jt = joiner.top;
1862                                    do {
1863                                        joiner.currentSteal = t;
1864                                        t.doExec(); // clear local tasks too
1865                                    } while (task.status >= 0 &&
1866                                             joiner.top != jt &&
1867                                             (t = joiner.pop()) != null);
1868                                    joiner.currentSteal = ps;
1869                                    break restart;
1870                                }
1871                            }
1872                        }
1873                        else {                      // empty -- try to descend
1874                            ForkJoinTask<?> next = v.currentJoin;
1875                            if (subtask.status < 0 || j.currentJoin != subtask ||
1876                                v.currentSteal != subtask)
1877                                continue restart;   // stale
1878                            else if (next == null || ++steps == MAX_HELP)
1879                                break restart;      // dead-end or maybe cyclic
1880                            else {
1881                                subtask = next;
1882                                j = v;
1883                                break;
1884                            }
1885                        }
1886                    }
1887                }
1888            }
1889        }
1890        return stat;
1891    }
1892
1893    /**
1894     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1895     * and run tasks within the target's computation.
1896     *
1897     * @param task the task to join
1898     */
1899    private int helpComplete(WorkQueue joiner, CountedCompleter<?> task) {
1900        WorkQueue[] ws; int m;
1901        int s = 0;
1902        if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1903            joiner != null && task != null) {
1904            int j = joiner.poolIndex;
1905            int scans = m + m + 1;
1906            long c = 0L;              // for stability check
1907            for (int k = scans; ; j += 2) {
1908                WorkQueue q;
1909                if ((s = task.status) < 0)
1910                    break;
1911                else if (joiner.internalPopAndExecCC(task))
1912                    k = scans;
1913                else if ((s = task.status) < 0)
1914                    break;
1915                else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
1916                    k = scans;
1917                else if (--k < 0) {
1918                    if (c == (c = ctl))
1919                        break;
1920                    k = scans;
1921                }
1922            }
1923        }
1924        return s;
1925    }
1926
1927    /**
1928     * Tries to decrement active count (sometimes implicitly) and
1929     * possibly release or create a compensating worker in preparation
1930     * for blocking. Fails on contention or termination. Otherwise,
1931     * adds a new thread if no idle workers are available and pool
1932     * may become starved.
1933     *
1934     * @param c the assumed ctl value
1935     */
1936    final boolean tryCompensate(long c) {
1937        WorkQueue[] ws = workQueues;
1938        int pc = parallelism, e = (int)c, m, tc;
1939        if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) {
1940            WorkQueue w = ws[e & m];
1941            if (e != 0 && w != null) {
1942                Thread p;
1943                long nc = ((long)(w.nextWait & E_MASK) |
1944                           (c & (AC_MASK|TC_MASK)));
1945                int ne = (e + E_SEQ) & E_MASK;
1946                if (w.eventCount == (e | INT_SIGN) &&
1947                    U.compareAndSwapLong(this, CTL, c, nc)) {
1948                    w.eventCount = ne;
1949                    if ((p = w.parker) != null)
1950                        U.unpark(p);
1951                    return true;   // replace with idle worker
1952                }
1953            }
1954            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1955                     (int)(c >> AC_SHIFT) + pc > 1) {
1956                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1957                if (U.compareAndSwapLong(this, CTL, c, nc))
1958                    return true;   // no compensation
1959            }
1960            else if (tc + pc < MAX_CAP) {
1961                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1962                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1963                    ForkJoinWorkerThreadFactory fac;
1964                    Throwable ex = null;
1965                    ForkJoinWorkerThread wt = null;
1966                    try {
1967                        if ((fac = factory) != null &&
1968                            (wt = fac.newThread(this)) != null) {
1969                            wt.start();
1970                            return true;
1971                        }
1972                    } catch (Throwable rex) {
1973                        ex = rex;
1974                    }
1975                    deregisterWorker(wt, ex); // clean up and return false
1976                }
1977            }
1978        }
1979        return false;
1980    }
1981
1982    /**
1983     * Helps and/or blocks until the given task is done.
1984     *
1985     * @param joiner the joining worker
1986     * @param task the task
1987     * @return task status on exit
1988     */
1989    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1990        int s = 0;
1991        if (task != null && (s = task.status) >= 0 && joiner != null) {
1992            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1993            joiner.currentJoin = task;
1994            do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
1995                         (s = task.status) >= 0);
1996            if (s >= 0 && (task instanceof CountedCompleter))
1997                s = helpComplete(joiner, (CountedCompleter<?>)task);
1998            long cc = 0;        // for stability checks
1999            while (s >= 0 && (s = task.status) >= 0) {
2000                if ((s = tryHelpStealer(joiner, task)) == 0 &&
2001                    (s = task.status) >= 0) {
2002                    if (!tryCompensate(cc))
2003                        cc = ctl;
2004                    else {
2005                        if (task.trySetSignal() && (s = task.status) >= 0) {
2006                            synchronized (task) {
2007                                if (task.status >= 0) {
2008                                    try {                // see ForkJoinTask
2009                                        task.wait();     //  for explanation
2010                                    } catch (InterruptedException ie) {
2011                                    }
2012                                }
2013                                else
2014                                    task.notifyAll();
2015                            }
2016                        }
2017                        long c; // reactivate
2018                        do {} while (!U.compareAndSwapLong
2019                                     (this, CTL, c = ctl,
2020                                      ((c & ~AC_MASK) |
2021                                       ((c & AC_MASK) + AC_UNIT))));
2022                    }
2023                }
2024            }
2025            joiner.currentJoin = prevJoin;
2026        }
2027        return s;
2028    }
2029
2030    /**
2031     * Stripped-down variant of awaitJoin used by timed joins. Tries
2032     * to help join only while there is continuous progress. (Caller
2033     * will then enter a timed wait.)
2034     *
2035     * @param joiner the joining worker
2036     * @param task the task
2037     */
2038    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2039        int s;
2040        if (joiner != null && task != null && (s = task.status) >= 0) {
2041            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2042            joiner.currentJoin = task;
2043            do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
2044                         (s = task.status) >= 0);
2045            if (s >= 0) {
2046                if (task instanceof CountedCompleter)
2047                    helpComplete(joiner, (CountedCompleter<?>)task);
2048                do {} while (task.status >= 0 &&
2049                             tryHelpStealer(joiner, task) > 0);
2050            }
2051            joiner.currentJoin = prevJoin;
2052        }
2053    }
2054
2055    /**
2056     * Returns a (probably) non-empty steal queue, if one is found
2057     * during a scan, else null.  This method must be retried by
2058     * caller if, by the time it tries to use the queue, it is empty.
2059     */
2060    private WorkQueue findNonEmptyStealQueue() {
2061        int r = ThreadLocalRandom.current().nextInt();
2062        for (;;) {
2063            int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2064            if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2065                for (int j = (m + 1) << 2; j >= 0; --j) {
2066                    if ((q = ws[(((r - j) << 1) | 1) & m]) != null &&
2067                        q.base - q.top < 0)
2068                        return q;
2069                }
2070            }
2071            if (plock == ps)
2072                return null;
2073        }
2074    }
2075
2076    /**
2077     * Runs tasks until {@code isQuiescent()}. We piggyback on
2078     * active count ctl maintenance, but rather than blocking
2079     * when tasks cannot be found, we rescan until all others cannot
2080     * find tasks either.
2081     */
2082    final void helpQuiescePool(WorkQueue w) {
2083        ForkJoinTask<?> ps = w.currentSteal;
2084        for (boolean active = true;;) {
2085            long c; WorkQueue q; ForkJoinTask<?> t; int b;
2086            while ((t = w.nextLocalTask()) != null)
2087                t.doExec();
2088            if ((q = findNonEmptyStealQueue()) != null) {
2089                if (!active) {      // re-establish active count
2090                    active = true;
2091                    do {} while (!U.compareAndSwapLong
2092                                 (this, CTL, c = ctl,
2093                                  ((c & ~AC_MASK) |
2094                                   ((c & AC_MASK) + AC_UNIT))));
2095                }
2096                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2097                    (w.currentSteal = t).doExec();
2098                    w.currentSteal = ps;
2099                }
2100            }
2101            else if (active) {       // decrement active count without queuing
2102                long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT);
2103                if ((int)(nc >> AC_SHIFT) + parallelism == 0)
2104                    break;          // bypass decrement-then-increment
2105                if (U.compareAndSwapLong(this, CTL, c, nc))
2106                    active = false;
2107            }
2108            else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 &&
2109                     U.compareAndSwapLong
2110                     (this, CTL, c, ((c & ~AC_MASK) |
2111                                     ((c & AC_MASK) + AC_UNIT))))
2112                break;
2113        }
2114    }
2115
2116    /**
2117     * Gets and removes a local or stolen task for the given worker.
2118     *
2119     * @return a task, if available
2120     */
2121    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2122        for (ForkJoinTask<?> t;;) {
2123            WorkQueue q; int b;
2124            if ((t = w.nextLocalTask()) != null)
2125                return t;
2126            if ((q = findNonEmptyStealQueue()) == null)
2127                return null;
2128            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2129                return t;
2130        }
2131    }
2132
2133    /**
2134     * Returns a cheap heuristic guide for task partitioning when
2135     * programmers, frameworks, tools, or languages have little or no
2136     * idea about task granularity.  In essence by offering this
2137     * method, we ask users only about tradeoffs in overhead vs
2138     * expected throughput and its variance, rather than how finely to
2139     * partition tasks.
2140     *
2141     * In a steady state strict (tree-structured) computation, each
2142     * thread makes available for stealing enough tasks for other
2143     * threads to remain active. Inductively, if all threads play by
2144     * the same rules, each thread should make available only a
2145     * constant number of tasks.
2146     *
2147     * The minimum useful constant is just 1. But using a value of 1
2148     * would require immediate replenishment upon each steal to
2149     * maintain enough tasks, which is infeasible.  Further,
2150     * partitionings/granularities of offered tasks should minimize
2151     * steal rates, which in general means that threads nearer the top
2152     * of computation tree should generate more than those nearer the
2153     * bottom. In perfect steady state, each thread is at
2154     * approximately the same level of computation tree. However,
2155     * producing extra tasks amortizes the uncertainty of progress and
2156     * diffusion assumptions.
2157     *
2158     * So, users will want to use values larger (but not much larger)
2159     * than 1 to both smooth over transient shortages and hedge
2160     * against uneven progress; as traded off against the cost of
2161     * extra task overhead. We leave the user to pick a threshold
2162     * value to compare with the results of this call to guide
2163     * decisions, but recommend values such as 3.
2164     *
2165     * When all threads are active, it is on average OK to estimate
2166     * surplus strictly locally. In steady-state, if one thread is
2167     * maintaining say 2 surplus tasks, then so are others. So we can
2168     * just use estimated queue length.  However, this strategy alone
2169     * leads to serious mis-estimates in some non-steady-state
2170     * conditions (ramp-up, ramp-down, other stalls). We can detect
2171     * many of these by further considering the number of "idle"
2172     * threads, that are known to have zero queued tasks, so
2173     * compensate by a factor of (#idle/#active) threads.
2174     *
2175     * Note: The approximation of #busy workers as #active workers is
2176     * not very good under current signalling scheme, and should be
2177     * improved.
2178     */
2179    static int getSurplusQueuedTaskCount() {
2180        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2181        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2182            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism;
2183            int n = (q = wt.workQueue).top - q.base;
2184            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2185            return n - (a > (p >>>= 1) ? 0 :
2186                        a > (p >>>= 1) ? 1 :
2187                        a > (p >>>= 1) ? 2 :
2188                        a > (p >>>= 1) ? 4 :
2189                        8);
2190        }
2191        return 0;
2192    }
2193
2194    //  Termination
2195
2196    /**
2197     * Possibly initiates and/or completes termination.  The caller
2198     * triggering termination runs three passes through workQueues:
2199     * (0) Setting termination status, followed by wakeups of queued
2200     * workers; (1) cancelling all tasks; (2) interrupting lagging
2201     * threads (likely in external tasks, but possibly also blocked in
2202     * joins).  Each pass repeats previous steps because of potential
2203     * lagging thread creation.
2204     *
2205     * @param now if true, unconditionally terminate, else only
2206     * if no work and no active workers
2207     * @param enable if true, enable shutdown when next possible
2208     * @return true if now terminating or terminated
2209     */
2210    private boolean tryTerminate(boolean now, boolean enable) {
2211        int ps;
2212        if (this == common)                        // cannot shut down
2213            return false;
2214        if ((ps = plock) >= 0) {                   // enable by setting plock
2215            if (!enable)
2216                return false;
2217            if ((ps & PL_LOCK) != 0 ||
2218                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2219                ps = acquirePlock();
2220            int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2221            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2222                releasePlock(nps);
2223        }
2224        for (long c;;) {
2225            if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
2226                if ((short)(c >>> TC_SHIFT) + parallelism <= 0) {
2227                    synchronized (this) {
2228                        notifyAll();               // signal when 0 workers
2229                    }
2230                }
2231                return true;
2232            }
2233            if (!now) {                            // check if idle & no tasks
2234                WorkQueue[] ws; WorkQueue w;
2235                if ((int)(c >> AC_SHIFT) + parallelism > 0)
2236                    return false;
2237                if ((ws = workQueues) != null) {
2238                    for (int i = 0; i < ws.length; ++i) {
2239                        if ((w = ws[i]) != null &&
2240                            (!w.isEmpty() ||
2241                             ((i & 1) != 0 && w.eventCount >= 0))) {
2242                            signalWork(ws, w);
2243                            return false;
2244                        }
2245                    }
2246                }
2247            }
2248            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2249                for (int pass = 0; pass < 3; ++pass) {
2250                    WorkQueue[] ws; WorkQueue w; Thread wt;
2251                    if ((ws = workQueues) != null) {
2252                        int n = ws.length;
2253                        for (int i = 0; i < n; ++i) {
2254                            if ((w = ws[i]) != null) {
2255                                w.qlock = -1;
2256                                if (pass > 0) {
2257                                    w.cancelAll();
2258                                    if (pass > 1 && (wt = w.owner) != null) {
2259                                        if (!wt.isInterrupted()) {
2260                                            try {
2261                                                wt.interrupt();
2262                                            } catch (Throwable ignore) {
2263                                            }
2264                                        }
2265                                        U.unpark(wt);
2266                                    }
2267                                }
2268                            }
2269                        }
2270                        // Wake up workers parked on event queue
2271                        int i, e; long cc; Thread p;
2272                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2273                               (i = e & SMASK) < n && i >= 0 &&
2274                               (w = ws[i]) != null) {
2275                            long nc = ((long)(w.nextWait & E_MASK) |
2276                                       ((cc + AC_UNIT) & AC_MASK) |
2277                                       (cc & (TC_MASK|STOP_BIT)));
2278                            if (w.eventCount == (e | INT_SIGN) &&
2279                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2280                                w.eventCount = (e + E_SEQ) & E_MASK;
2281                                w.qlock = -1;
2282                                if ((p = w.parker) != null)
2283                                    U.unpark(p);
2284                            }
2285                        }
2286                    }
2287                }
2288            }
2289        }
2290    }
2291
2292    // external operations on common pool
2293
2294    /**
2295     * Returns common pool queue for a thread that has submitted at
2296     * least one task.
2297     */
2298    static WorkQueue commonSubmitterQueue() {
2299        Submitter z; ForkJoinPool p; WorkQueue[] ws; int m, r;
2300        return ((z = submitters.get()) != null &&
2301                (p = common) != null &&
2302                (ws = p.workQueues) != null &&
2303                (m = ws.length - 1) >= 0) ?
2304            ws[m & z.seed & SQMASK] : null;
2305    }
2306
2307    /**
2308     * Tries to pop the given task from submitter's queue in common pool.
2309     */
2310    final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2311        WorkQueue joiner; ForkJoinTask<?>[] a; int m, s;
2312        Submitter z = submitters.get();
2313        WorkQueue[] ws = workQueues;
2314        boolean popped = false;
2315        if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2316            (joiner = ws[z.seed & m & SQMASK]) != null &&
2317            joiner.base != (s = joiner.top) &&
2318            (a = joiner.array) != null) {
2319            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2320            if (U.getObject(a, j) == task &&
2321                U.compareAndSwapInt(joiner, QLOCK, 0, 1)) {
2322                if (joiner.top == s && joiner.array == a &&
2323                    U.compareAndSwapObject(a, j, task, null)) {
2324                    joiner.top = s - 1;
2325                    popped = true;
2326                }
2327                joiner.qlock = 0;
2328            }
2329        }
2330        return popped;
2331    }
2332
2333    final int externalHelpComplete(CountedCompleter<?> task) {
2334        WorkQueue joiner; int m, j;
2335        Submitter z = submitters.get();
2336        WorkQueue[] ws = workQueues;
2337        int s = 0;
2338        if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2339            (joiner = ws[(j = z.seed) & m & SQMASK]) != null && task != null) {
2340            int scans = m + m + 1;
2341            long c = 0L;             // for stability check
2342            j |= 1;                  // poll odd queues
2343            for (int k = scans; ; j += 2) {
2344                WorkQueue q;
2345                if ((s = task.status) < 0)
2346                    break;
2347                else if (joiner.externalPopAndExecCC(task))
2348                    k = scans;
2349                else if ((s = task.status) < 0)
2350                    break;
2351                else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
2352                    k = scans;
2353                else if (--k < 0) {
2354                    if (c == (c = ctl))
2355                        break;
2356                    k = scans;
2357                }
2358            }
2359        }
2360        return s;
2361    }
2362
2363    // Exported methods
2364
2365    // Constructors
2366
2367    /**
2368     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2369     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2370     * #defaultForkJoinWorkerThreadFactory default thread factory},
2371     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2372     */
2373    public ForkJoinPool() {
2374        this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2375             defaultForkJoinWorkerThreadFactory, null, false);
2376    }
2377
2378    /**
2379     * Creates a {@code ForkJoinPool} with the indicated parallelism
2380     * level, the {@linkplain
2381     * #defaultForkJoinWorkerThreadFactory default thread factory},
2382     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2383     *
2384     * @param parallelism the parallelism level
2385     * @throws IllegalArgumentException if parallelism less than or
2386     *         equal to zero, or greater than implementation limit
2387     */
2388    public ForkJoinPool(int parallelism) {
2389        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2390    }
2391
2392    /**
2393     * Creates a {@code ForkJoinPool} with the given parameters.
2394     *
2395     * @param parallelism the parallelism level. For default value,
2396     * use {@link java.lang.Runtime#availableProcessors}.
2397     * @param factory the factory for creating new threads. For default value,
2398     * use {@link #defaultForkJoinWorkerThreadFactory}.
2399     * @param handler the handler for internal worker threads that
2400     * terminate due to unrecoverable errors encountered while executing
2401     * tasks. For default value, use {@code null}.
2402     * @param asyncMode if true,
2403     * establishes local first-in-first-out scheduling mode for forked
2404     * tasks that are never joined. This mode may be more appropriate
2405     * than default locally stack-based mode in applications in which
2406     * worker threads only process event-style asynchronous tasks.
2407     * For default value, use {@code false}.
2408     * @throws IllegalArgumentException if parallelism less than or
2409     *         equal to zero, or greater than implementation limit
2410     * @throws NullPointerException if the factory is null
2411     */
2412    public ForkJoinPool(int parallelism,
2413                        ForkJoinWorkerThreadFactory factory,
2414                        UncaughtExceptionHandler handler,
2415                        boolean asyncMode) {
2416        this(checkParallelism(parallelism),
2417             checkFactory(factory),
2418             handler,
2419             (asyncMode ? FIFO_QUEUE : LIFO_QUEUE),
2420             "ForkJoinPool-" + nextPoolId() + "-worker-");
2421        checkPermission();
2422    }
2423
2424    private static int checkParallelism(int parallelism) {
2425        if (parallelism <= 0 || parallelism > MAX_CAP)
2426            throw new IllegalArgumentException();
2427        return parallelism;
2428    }
2429
2430    private static ForkJoinWorkerThreadFactory checkFactory
2431        (ForkJoinWorkerThreadFactory factory) {
2432        if (factory == null)
2433            throw new NullPointerException();
2434        return factory;
2435    }
2436
2437    /**
2438     * Creates a {@code ForkJoinPool} with the given parameters, without
2439     * any security checks or parameter validation.  Invoked directly by
2440     * makeCommonPool.
2441     */
2442    private ForkJoinPool(int parallelism,
2443                         ForkJoinWorkerThreadFactory factory,
2444                         UncaughtExceptionHandler handler,
2445                         int mode,
2446                         String workerNamePrefix) {
2447        this.workerNamePrefix = workerNamePrefix;
2448        this.factory = factory;
2449        this.ueh = handler;
2450        this.mode = (short)mode;
2451        this.parallelism = (short)parallelism;
2452        long np = (long)(-parallelism); // offset ctl counts
2453        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2454    }
2455
2456    /**
2457     * Returns the common pool instance. This pool is statically
2458     * constructed; its run state is unaffected by attempts to {@link
2459     * #shutdown} or {@link #shutdownNow}. However this pool and any
2460     * ongoing processing are automatically terminated upon program
2461     * {@link System#exit}.  Any program that relies on asynchronous
2462     * task processing to complete before program termination should
2463     * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2464     * before exit.
2465     *
2466     * @return the common pool instance
2467     * @since 1.8
2468     * @hide
2469     */
2470    public static ForkJoinPool commonPool() {
2471        // assert common != null : "static init error";
2472        return common;
2473    }
2474
2475    // Execution methods
2476
2477    /**
2478     * Performs the given task, returning its result upon completion.
2479     * If the computation encounters an unchecked Exception or Error,
2480     * it is rethrown as the outcome of this invocation.  Rethrown
2481     * exceptions behave in the same way as regular exceptions, but,
2482     * when possible, contain stack traces (as displayed for example
2483     * using {@code ex.printStackTrace()}) of both the current thread
2484     * as well as the thread actually encountering the exception;
2485     * minimally only the latter.
2486     *
2487     * @param task the task
2488     * @return the task's result
2489     * @throws NullPointerException if the task is null
2490     * @throws RejectedExecutionException if the task cannot be
2491     *         scheduled for execution
2492     */
2493    public <T> T invoke(ForkJoinTask<T> task) {
2494        if (task == null)
2495            throw new NullPointerException();
2496        externalPush(task);
2497        return task.join();
2498    }
2499
2500    /**
2501     * Arranges for (asynchronous) execution of the given task.
2502     *
2503     * @param task the task
2504     * @throws NullPointerException if the task is null
2505     * @throws RejectedExecutionException if the task cannot be
2506     *         scheduled for execution
2507     */
2508    public void execute(ForkJoinTask<?> task) {
2509        if (task == null)
2510            throw new NullPointerException();
2511        externalPush(task);
2512    }
2513
2514    // AbstractExecutorService methods
2515
2516    /**
2517     * @throws NullPointerException if the task is null
2518     * @throws RejectedExecutionException if the task cannot be
2519     *         scheduled for execution
2520     */
2521    public void execute(Runnable task) {
2522        if (task == null)
2523            throw new NullPointerException();
2524        ForkJoinTask<?> job;
2525        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2526            job = (ForkJoinTask<?>) task;
2527        else
2528            job = new ForkJoinTask.RunnableExecuteAction(task);
2529        externalPush(job);
2530    }
2531
2532    /**
2533     * Submits a ForkJoinTask for execution.
2534     *
2535     * @param task the task to submit
2536     * @return the task
2537     * @throws NullPointerException if the task is null
2538     * @throws RejectedExecutionException if the task cannot be
2539     *         scheduled for execution
2540     */
2541    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2542        if (task == null)
2543            throw new NullPointerException();
2544        externalPush(task);
2545        return task;
2546    }
2547
2548    /**
2549     * @throws NullPointerException if the task is null
2550     * @throws RejectedExecutionException if the task cannot be
2551     *         scheduled for execution
2552     */
2553    public <T> ForkJoinTask<T> submit(Callable<T> task) {
2554        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2555        externalPush(job);
2556        return job;
2557    }
2558
2559    /**
2560     * @throws NullPointerException if the task is null
2561     * @throws RejectedExecutionException if the task cannot be
2562     *         scheduled for execution
2563     */
2564    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2565        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2566        externalPush(job);
2567        return job;
2568    }
2569
2570    /**
2571     * @throws NullPointerException if the task is null
2572     * @throws RejectedExecutionException if the task cannot be
2573     *         scheduled for execution
2574     */
2575    public ForkJoinTask<?> submit(Runnable task) {
2576        if (task == null)
2577            throw new NullPointerException();
2578        ForkJoinTask<?> job;
2579        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2580            job = (ForkJoinTask<?>) task;
2581        else
2582            job = new ForkJoinTask.AdaptedRunnableAction(task);
2583        externalPush(job);
2584        return job;
2585    }
2586
2587    /**
2588     * @throws NullPointerException       {@inheritDoc}
2589     * @throws RejectedExecutionException {@inheritDoc}
2590     */
2591    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2592        // In previous versions of this class, this method constructed
2593        // a task to run ForkJoinTask.invokeAll, but now external
2594        // invocation of multiple tasks is at least as efficient.
2595        ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2596
2597        boolean done = false;
2598        try {
2599            for (Callable<T> t : tasks) {
2600                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2601                futures.add(f);
2602                externalPush(f);
2603            }
2604            for (int i = 0, size = futures.size(); i < size; i++)
2605                ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2606            done = true;
2607            return futures;
2608        } finally {
2609            if (!done)
2610                for (int i = 0, size = futures.size(); i < size; i++)
2611                    futures.get(i).cancel(false);
2612        }
2613    }
2614
2615    /**
2616     * Returns the factory used for constructing new workers.
2617     *
2618     * @return the factory used for constructing new workers
2619     */
2620    public ForkJoinWorkerThreadFactory getFactory() {
2621        return factory;
2622    }
2623
2624    /**
2625     * Returns the handler for internal worker threads that terminate
2626     * due to unrecoverable errors encountered while executing tasks.
2627     *
2628     * @return the handler, or {@code null} if none
2629     */
2630    public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2631        return ueh;
2632    }
2633
2634    /**
2635     * Returns the targeted parallelism level of this pool.
2636     *
2637     * @return the targeted parallelism level of this pool
2638     */
2639    public int getParallelism() {
2640        int par;
2641        return ((par = parallelism) > 0) ? par : 1;
2642    }
2643
2644    /**
2645     * Returns the targeted parallelism level of the common pool.
2646     *
2647     * @return the targeted parallelism level of the common pool
2648     * @since 1.8
2649     * @hide
2650     */
2651    public static int getCommonPoolParallelism() {
2652        return commonParallelism;
2653    }
2654
2655    /**
2656     * Returns the number of worker threads that have started but not
2657     * yet terminated.  The result returned by this method may differ
2658     * from {@link #getParallelism} when threads are created to
2659     * maintain parallelism when others are cooperatively blocked.
2660     *
2661     * @return the number of worker threads
2662     */
2663    public int getPoolSize() {
2664        return parallelism + (short)(ctl >>> TC_SHIFT);
2665    }
2666
2667    /**
2668     * Returns {@code true} if this pool uses local first-in-first-out
2669     * scheduling mode for forked tasks that are never joined.
2670     *
2671     * @return {@code true} if this pool uses async mode
2672     */
2673    public boolean getAsyncMode() {
2674        return mode == FIFO_QUEUE;
2675    }
2676
2677    /**
2678     * Returns an estimate of the number of worker threads that are
2679     * not blocked waiting to join tasks or for other managed
2680     * synchronization. This method may overestimate the
2681     * number of running threads.
2682     *
2683     * @return the number of worker threads
2684     */
2685    public int getRunningThreadCount() {
2686        int rc = 0;
2687        WorkQueue[] ws; WorkQueue w;
2688        if ((ws = workQueues) != null) {
2689            for (int i = 1; i < ws.length; i += 2) {
2690                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2691                    ++rc;
2692            }
2693        }
2694        return rc;
2695    }
2696
2697    /**
2698     * Returns an estimate of the number of threads that are currently
2699     * stealing or executing tasks. This method may overestimate the
2700     * number of active threads.
2701     *
2702     * @return the number of active threads
2703     */
2704    public int getActiveThreadCount() {
2705        int r = parallelism + (int)(ctl >> AC_SHIFT);
2706        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2707    }
2708
2709    /**
2710     * Returns {@code true} if all worker threads are currently idle.
2711     * An idle worker is one that cannot obtain a task to execute
2712     * because none are available to steal from other threads, and
2713     * there are no pending submissions to the pool. This method is
2714     * conservative; it might not return {@code true} immediately upon
2715     * idleness of all threads, but will eventually become true if
2716     * threads remain inactive.
2717     *
2718     * @return {@code true} if all threads are currently idle
2719     */
2720    public boolean isQuiescent() {
2721        return parallelism + (int)(ctl >> AC_SHIFT) <= 0;
2722    }
2723
2724    /**
2725     * Returns an estimate of the total number of tasks stolen from
2726     * one thread's work queue by another. The reported value
2727     * underestimates the actual total number of steals when the pool
2728     * is not quiescent. This value may be useful for monitoring and
2729     * tuning fork/join programs: in general, steal counts should be
2730     * high enough to keep threads busy, but low enough to avoid
2731     * overhead and contention across threads.
2732     *
2733     * @return the number of steals
2734     */
2735    public long getStealCount() {
2736        long count = stealCount;
2737        WorkQueue[] ws; WorkQueue w;
2738        if ((ws = workQueues) != null) {
2739            for (int i = 1; i < ws.length; i += 2) {
2740                if ((w = ws[i]) != null)
2741                    count += w.nsteals;
2742            }
2743        }
2744        return count;
2745    }
2746
2747    /**
2748     * Returns an estimate of the total number of tasks currently held
2749     * in queues by worker threads (but not including tasks submitted
2750     * to the pool that have not begun executing). This value is only
2751     * an approximation, obtained by iterating across all threads in
2752     * the pool. This method may be useful for tuning task
2753     * granularities.
2754     *
2755     * @return the number of queued tasks
2756     */
2757    public long getQueuedTaskCount() {
2758        long count = 0;
2759        WorkQueue[] ws; WorkQueue w;
2760        if ((ws = workQueues) != null) {
2761            for (int i = 1; i < ws.length; i += 2) {
2762                if ((w = ws[i]) != null)
2763                    count += w.queueSize();
2764            }
2765        }
2766        return count;
2767    }
2768
2769    /**
2770     * Returns an estimate of the number of tasks submitted to this
2771     * pool that have not yet begun executing.  This method may take
2772     * time proportional to the number of submissions.
2773     *
2774     * @return the number of queued submissions
2775     */
2776    public int getQueuedSubmissionCount() {
2777        int count = 0;
2778        WorkQueue[] ws; WorkQueue w;
2779        if ((ws = workQueues) != null) {
2780            for (int i = 0; i < ws.length; i += 2) {
2781                if ((w = ws[i]) != null)
2782                    count += w.queueSize();
2783            }
2784        }
2785        return count;
2786    }
2787
2788    /**
2789     * Returns {@code true} if there are any tasks submitted to this
2790     * pool that have not yet begun executing.
2791     *
2792     * @return {@code true} if there are any queued submissions
2793     */
2794    public boolean hasQueuedSubmissions() {
2795        WorkQueue[] ws; WorkQueue w;
2796        if ((ws = workQueues) != null) {
2797            for (int i = 0; i < ws.length; i += 2) {
2798                if ((w = ws[i]) != null && !w.isEmpty())
2799                    return true;
2800            }
2801        }
2802        return false;
2803    }
2804
2805    /**
2806     * Removes and returns the next unexecuted submission if one is
2807     * available.  This method may be useful in extensions to this
2808     * class that re-assign work in systems with multiple pools.
2809     *
2810     * @return the next submission, or {@code null} if none
2811     */
2812    protected ForkJoinTask<?> pollSubmission() {
2813        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2814        if ((ws = workQueues) != null) {
2815            for (int i = 0; i < ws.length; i += 2) {
2816                if ((w = ws[i]) != null && (t = w.poll()) != null)
2817                    return t;
2818            }
2819        }
2820        return null;
2821    }
2822
2823    /**
2824     * Removes all available unexecuted submitted and forked tasks
2825     * from scheduling queues and adds them to the given collection,
2826     * without altering their execution status. These may include
2827     * artificially generated or wrapped tasks. This method is
2828     * designed to be invoked only when the pool is known to be
2829     * quiescent. Invocations at other times may not remove all
2830     * tasks. A failure encountered while attempting to add elements
2831     * to collection {@code c} may result in elements being in
2832     * neither, either or both collections when the associated
2833     * exception is thrown.  The behavior of this operation is
2834     * undefined if the specified collection is modified while the
2835     * operation is in progress.
2836     *
2837     * @param c the collection to transfer elements into
2838     * @return the number of elements transferred
2839     */
2840    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2841        int count = 0;
2842        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2843        if ((ws = workQueues) != null) {
2844            for (int i = 0; i < ws.length; ++i) {
2845                if ((w = ws[i]) != null) {
2846                    while ((t = w.poll()) != null) {
2847                        c.add(t);
2848                        ++count;
2849                    }
2850                }
2851            }
2852        }
2853        return count;
2854    }
2855
2856    /**
2857     * Returns a string identifying this pool, as well as its state,
2858     * including indications of run state, parallelism level, and
2859     * worker and task counts.
2860     *
2861     * @return a string identifying this pool, as well as its state
2862     */
2863    public String toString() {
2864        // Use a single pass through workQueues to collect counts
2865        long qt = 0L, qs = 0L; int rc = 0;
2866        long st = stealCount;
2867        long c = ctl;
2868        WorkQueue[] ws; WorkQueue w;
2869        if ((ws = workQueues) != null) {
2870            for (int i = 0; i < ws.length; ++i) {
2871                if ((w = ws[i]) != null) {
2872                    int size = w.queueSize();
2873                    if ((i & 1) == 0)
2874                        qs += size;
2875                    else {
2876                        qt += size;
2877                        st += w.nsteals;
2878                        if (w.isApparentlyUnblocked())
2879                            ++rc;
2880                    }
2881                }
2882            }
2883        }
2884        int pc = parallelism;
2885        int tc = pc + (short)(c >>> TC_SHIFT);
2886        int ac = pc + (int)(c >> AC_SHIFT);
2887        if (ac < 0) // ignore transient negative
2888            ac = 0;
2889        String level;
2890        if ((c & STOP_BIT) != 0)
2891            level = (tc == 0) ? "Terminated" : "Terminating";
2892        else
2893            level = plock < 0 ? "Shutting down" : "Running";
2894        return super.toString() +
2895            "[" + level +
2896            ", parallelism = " + pc +
2897            ", size = " + tc +
2898            ", active = " + ac +
2899            ", running = " + rc +
2900            ", steals = " + st +
2901            ", tasks = " + qt +
2902            ", submissions = " + qs +
2903            "]";
2904    }
2905
2906    /**
2907     * Possibly initiates an orderly shutdown in which previously
2908     * submitted tasks are executed, but no new tasks will be
2909     * accepted. Invocation has no effect on execution state if this
2910     * is the {@link #commonPool()}, and no additional effect if
2911     * already shut down.  Tasks that are in the process of being
2912     * submitted concurrently during the course of this method may or
2913     * may not be rejected.
2914     */
2915    public void shutdown() {
2916        checkPermission();
2917        tryTerminate(false, true);
2918    }
2919
2920    /**
2921     * Possibly attempts to cancel and/or stop all tasks, and reject
2922     * all subsequently submitted tasks.  Invocation has no effect on
2923     * execution state if this is the {@link #commonPool()}, and no
2924     * additional effect if already shut down. Otherwise, tasks that
2925     * are in the process of being submitted or executed concurrently
2926     * during the course of this method may or may not be
2927     * rejected. This method cancels both existing and unexecuted
2928     * tasks, in order to permit termination in the presence of task
2929     * dependencies. So the method always returns an empty list
2930     * (unlike the case for some other Executors).
2931     *
2932     * @return an empty list
2933     */
2934    public List<Runnable> shutdownNow() {
2935        checkPermission();
2936        tryTerminate(true, true);
2937        return Collections.emptyList();
2938    }
2939
2940    /**
2941     * Returns {@code true} if all tasks have completed following shut down.
2942     *
2943     * @return {@code true} if all tasks have completed following shut down
2944     */
2945    public boolean isTerminated() {
2946        long c = ctl;
2947        return ((c & STOP_BIT) != 0L &&
2948                (short)(c >>> TC_SHIFT) + parallelism <= 0);
2949    }
2950
2951    /**
2952     * Returns {@code true} if the process of termination has
2953     * commenced but not yet completed.  This method may be useful for
2954     * debugging. A return of {@code true} reported a sufficient
2955     * period after shutdown may indicate that submitted tasks have
2956     * ignored or suppressed interruption, or are waiting for I/O,
2957     * causing this executor not to properly terminate. (See the
2958     * advisory notes for class {@link ForkJoinTask} stating that
2959     * tasks should not normally entail blocking operations.  But if
2960     * they do, they must abort them on interrupt.)
2961     *
2962     * @return {@code true} if terminating but not yet terminated
2963     */
2964    public boolean isTerminating() {
2965        long c = ctl;
2966        return ((c & STOP_BIT) != 0L &&
2967                (short)(c >>> TC_SHIFT) + parallelism > 0);
2968    }
2969
2970    /**
2971     * Returns {@code true} if this pool has been shut down.
2972     *
2973     * @return {@code true} if this pool has been shut down
2974     */
2975    public boolean isShutdown() {
2976        return plock < 0;
2977    }
2978
2979    /**
2980     * Blocks until all tasks have completed execution after a
2981     * shutdown request, or the timeout occurs, or the current thread
2982     * is interrupted, whichever happens first. Because the {@link
2983     * #commonPool()} never terminates until program shutdown, when
2984     * applied to the common pool, this method is equivalent to {@link
2985     * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2986     *
2987     * @param timeout the maximum time to wait
2988     * @param unit the time unit of the timeout argument
2989     * @return {@code true} if this executor terminated and
2990     *         {@code false} if the timeout elapsed before termination
2991     * @throws InterruptedException if interrupted while waiting
2992     */
2993    public boolean awaitTermination(long timeout, TimeUnit unit)
2994        throws InterruptedException {
2995        if (Thread.interrupted())
2996            throw new InterruptedException();
2997        if (this == common) {
2998            awaitQuiescence(timeout, unit);
2999            return false;
3000        }
3001        long nanos = unit.toNanos(timeout);
3002        if (isTerminated())
3003            return true;
3004        if (nanos <= 0L)
3005            return false;
3006        long deadline = System.nanoTime() + nanos;
3007        synchronized (this) {
3008            for (;;) {
3009                if (isTerminated())
3010                    return true;
3011                if (nanos <= 0L)
3012                    return false;
3013                long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3014                wait(millis > 0L ? millis : 1L);
3015                nanos = deadline - System.nanoTime();
3016            }
3017        }
3018    }
3019
3020    /**
3021     * If called by a ForkJoinTask operating in this pool, equivalent
3022     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3023     * waits and/or attempts to assist performing tasks until this
3024     * pool {@link #isQuiescent} or the indicated timeout elapses.
3025     *
3026     * @param timeout the maximum time to wait
3027     * @param unit the time unit of the timeout argument
3028     * @return {@code true} if quiescent; {@code false} if the
3029     * timeout elapsed.
3030     */
3031    public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3032        long nanos = unit.toNanos(timeout);
3033        ForkJoinWorkerThread wt;
3034        Thread thread = Thread.currentThread();
3035        if ((thread instanceof ForkJoinWorkerThread) &&
3036            (wt = (ForkJoinWorkerThread)thread).pool == this) {
3037            helpQuiescePool(wt.workQueue);
3038            return true;
3039        }
3040        long startTime = System.nanoTime();
3041        WorkQueue[] ws;
3042        int r = 0, m;
3043        boolean found = true;
3044        while (!isQuiescent() && (ws = workQueues) != null &&
3045               (m = ws.length - 1) >= 0) {
3046            if (!found) {
3047                if ((System.nanoTime() - startTime) > nanos)
3048                    return false;
3049                Thread.yield(); // cannot block
3050            }
3051            found = false;
3052            for (int j = (m + 1) << 2; j >= 0; --j) {
3053                ForkJoinTask<?> t; WorkQueue q; int b;
3054                if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3055                    found = true;
3056                    if ((t = q.pollAt(b)) != null)
3057                        t.doExec();
3058                    break;
3059                }
3060            }
3061        }
3062        return true;
3063    }
3064
3065    /**
3066     * Waits and/or attempts to assist performing tasks indefinitely
3067     * until the {@link #commonPool()} {@link #isQuiescent}.
3068     */
3069    static void quiesceCommonPool() {
3070        common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3071    }
3072
3073    /**
3074     * Interface for extending managed parallelism for tasks running
3075     * in {@link ForkJoinPool}s.
3076     *
3077     * <p>A {@code ManagedBlocker} provides two methods.  Method
3078     * {@code isReleasable} must return {@code true} if blocking is
3079     * not necessary. Method {@code block} blocks the current thread
3080     * if necessary (perhaps internally invoking {@code isReleasable}
3081     * before actually blocking). These actions are performed by any
3082     * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3083     * The unusual methods in this API accommodate synchronizers that
3084     * may, but don't usually, block for long periods. Similarly, they
3085     * allow more efficient internal handling of cases in which
3086     * additional workers may be, but usually are not, needed to
3087     * ensure sufficient parallelism.  Toward this end,
3088     * implementations of method {@code isReleasable} must be amenable
3089     * to repeated invocation.
3090     *
3091     * <p>For example, here is a ManagedBlocker based on a
3092     * ReentrantLock:
3093     *  <pre> {@code
3094     * class ManagedLocker implements ManagedBlocker {
3095     *   final ReentrantLock lock;
3096     *   boolean hasLock = false;
3097     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3098     *   public boolean block() {
3099     *     if (!hasLock)
3100     *       lock.lock();
3101     *     return true;
3102     *   }
3103     *   public boolean isReleasable() {
3104     *     return hasLock || (hasLock = lock.tryLock());
3105     *   }
3106     * }}</pre>
3107     *
3108     * <p>Here is a class that possibly blocks waiting for an
3109     * item on a given queue:
3110     *  <pre> {@code
3111     * class QueueTaker<E> implements ManagedBlocker {
3112     *   final BlockingQueue<E> queue;
3113     *   volatile E item = null;
3114     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3115     *   public boolean block() throws InterruptedException {
3116     *     if (item == null)
3117     *       item = queue.take();
3118     *     return true;
3119     *   }
3120     *   public boolean isReleasable() {
3121     *     return item != null || (item = queue.poll()) != null;
3122     *   }
3123     *   public E getItem() { // call after pool.managedBlock completes
3124     *     return item;
3125     *   }
3126     * }}</pre>
3127     */
3128    public static interface ManagedBlocker {
3129        /**
3130         * Possibly blocks the current thread, for example waiting for
3131         * a lock or condition.
3132         *
3133         * @return {@code true} if no additional blocking is necessary
3134         * (i.e., if isReleasable would return true)
3135         * @throws InterruptedException if interrupted while waiting
3136         * (the method is not required to do so, but is allowed to)
3137         */
3138        boolean block() throws InterruptedException;
3139
3140        /**
3141         * Returns {@code true} if blocking is unnecessary.
3142         * @return {@code true} if blocking is unnecessary
3143         */
3144        boolean isReleasable();
3145    }
3146
3147    /**
3148     * Blocks in accord with the given blocker.  If the current thread
3149     * is a {@link ForkJoinWorkerThread}, this method possibly
3150     * arranges for a spare thread to be activated if necessary to
3151     * ensure sufficient parallelism while the current thread is blocked.
3152     *
3153     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3154     * behaviorally equivalent to
3155     *  <pre> {@code
3156     * while (!blocker.isReleasable())
3157     *   if (blocker.block())
3158     *     return;
3159     * }</pre>
3160     *
3161     * If the caller is a {@code ForkJoinTask}, then the pool may
3162     * first be expanded to ensure parallelism, and later adjusted.
3163     *
3164     * @param blocker the blocker
3165     * @throws InterruptedException if blocker.block did so
3166     */
3167    public static void managedBlock(ManagedBlocker blocker)
3168        throws InterruptedException {
3169        Thread t = Thread.currentThread();
3170        if (t instanceof ForkJoinWorkerThread) {
3171            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3172            while (!blocker.isReleasable()) {
3173                if (p.tryCompensate(p.ctl)) {
3174                    try {
3175                        do {} while (!blocker.isReleasable() &&
3176                                     !blocker.block());
3177                    } finally {
3178                        p.incrementActiveCount();
3179                    }
3180                    break;
3181                }
3182            }
3183        }
3184        else {
3185            do {} while (!blocker.isReleasable() &&
3186                         !blocker.block());
3187        }
3188    }
3189
3190    // AbstractExecutorService overrides.  These rely on undocumented
3191    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3192    // implement RunnableFuture.
3193
3194    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3195        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3196    }
3197
3198    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3199        return new ForkJoinTask.AdaptedCallable<T>(callable);
3200    }
3201
3202    // Unsafe mechanics
3203    private static final sun.misc.Unsafe U;
3204    private static final long CTL;
3205    private static final long PARKBLOCKER;
3206    private static final int ABASE;
3207    private static final int ASHIFT;
3208    private static final long STEALCOUNT;
3209    private static final long PLOCK;
3210    private static final long INDEXSEED;
3211    private static final long QBASE;
3212    private static final long QLOCK;
3213
3214    static {
3215        // initialize field offsets for CAS etc
3216        try {
3217            U = sun.misc.Unsafe.getUnsafe();
3218            Class<?> k = ForkJoinPool.class;
3219            CTL = U.objectFieldOffset
3220                (k.getDeclaredField("ctl"));
3221            STEALCOUNT = U.objectFieldOffset
3222                (k.getDeclaredField("stealCount"));
3223            PLOCK = U.objectFieldOffset
3224                (k.getDeclaredField("plock"));
3225            INDEXSEED = U.objectFieldOffset
3226                (k.getDeclaredField("indexSeed"));
3227            Class<?> tk = Thread.class;
3228            PARKBLOCKER = U.objectFieldOffset
3229                (tk.getDeclaredField("parkBlocker"));
3230            Class<?> wk = WorkQueue.class;
3231            QBASE = U.objectFieldOffset
3232                (wk.getDeclaredField("base"));
3233            QLOCK = U.objectFieldOffset
3234                (wk.getDeclaredField("qlock"));
3235            Class<?> ak = ForkJoinTask[].class;
3236            ABASE = U.arrayBaseOffset(ak);
3237            int scale = U.arrayIndexScale(ak);
3238            if ((scale & (scale - 1)) != 0)
3239                throw new Error("data type scale not a power of two");
3240            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3241        } catch (Exception e) {
3242            throw new Error(e);
3243        }
3244
3245        submitters = new ThreadLocal<Submitter>();
3246        defaultForkJoinWorkerThreadFactory =
3247            new DefaultForkJoinWorkerThreadFactory();
3248        modifyThreadPermission = new RuntimePermission("modifyThread");
3249
3250        common = java.security.AccessController.doPrivileged
3251            (new java.security.PrivilegedAction<ForkJoinPool>() {
3252                public ForkJoinPool run() { return makeCommonPool(); }});
3253        int par = common.parallelism; // report 1 even if threads disabled
3254        commonParallelism = par > 0 ? par : 1;
3255    }
3256
3257    /**
3258     * Creates and returns the common pool, respecting user settings
3259     * specified via system properties.
3260     */
3261    private static ForkJoinPool makeCommonPool() {
3262        int parallelism = -1;
3263        ForkJoinWorkerThreadFactory factory
3264            = defaultForkJoinWorkerThreadFactory;
3265        UncaughtExceptionHandler handler = null;
3266        try {  // ignore exceptions in accessing/parsing properties
3267            String pp = System.getProperty
3268                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3269            String fp = System.getProperty
3270                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3271            String hp = System.getProperty
3272                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3273            if (pp != null)
3274                parallelism = Integer.parseInt(pp);
3275            if (fp != null)
3276                factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3277                           getSystemClassLoader().loadClass(fp).newInstance());
3278            if (hp != null)
3279                handler = ((UncaughtExceptionHandler)ClassLoader.
3280                           getSystemClassLoader().loadClass(hp).newInstance());
3281        } catch (Exception ignore) {
3282        }
3283
3284        if (parallelism < 0 && // default 1 less than #cores
3285            (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3286            parallelism = 0;
3287        if (parallelism > MAX_CAP)
3288            parallelism = MAX_CAP;
3289        return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3290                                "ForkJoinPool.commonPool-worker-");
3291    }
3292
3293}
3294