ForkJoinPool.java revision fe4f216fd6ef2518bfefd6b7970f60befacf5cdd
1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.lang.Thread.UncaughtExceptionHandler;
10import java.util.ArrayList;
11import java.util.Arrays;
12import java.util.Collection;
13import java.util.Collections;
14import java.util.List;
15import java.util.concurrent.AbstractExecutorService;
16import java.util.concurrent.Callable;
17import java.util.concurrent.ExecutorService;
18import java.util.concurrent.Future;
19import java.util.concurrent.RejectedExecutionException;
20import java.util.concurrent.RunnableFuture;
21import java.util.concurrent.ThreadLocalRandom;
22import java.util.concurrent.TimeUnit;
23
24/**
25 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
26 * A {@code ForkJoinPool} provides the entry point for submissions
27 * from non-{@code ForkJoinTask} clients, as well as management and
28 * monitoring operations.
29 *
30 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
31 * ExecutorService} mainly by virtue of employing
32 * <em>work-stealing</em>: all threads in the pool attempt to find and
33 * execute tasks submitted to the pool and/or created by other active
34 * tasks (eventually blocking waiting for work if none exist). This
35 * enables efficient processing when most tasks spawn other subtasks
36 * (as do most {@code ForkJoinTask}s), as well as when many small
37 * tasks are submitted to the pool from external clients.  Especially
38 * when setting <em>asyncMode</em> to true in constructors, {@code
39 * ForkJoinPool}s may also be appropriate for use with event-style
40 * tasks that are never joined.
41 *
42 * <p>A static {@code commonPool()} is available and appropriate for
43 * most applications. The common pool is used by any ForkJoinTask that
44 * is not explicitly submitted to a specified pool. Using the common
45 * pool normally reduces resource usage (its threads are slowly
46 * reclaimed during periods of non-use, and reinstated upon subsequent
47 * use).
48 *
49 * <p>For applications that require separate or custom pools, a {@code
50 * ForkJoinPool} may be constructed with a given target parallelism
51 * level; by default, equal to the number of available processors. The
52 * pool attempts to maintain enough active (or available) threads by
53 * dynamically adding, suspending, or resuming internal worker
54 * threads, even if some tasks are stalled waiting to join others.
55 * However, no such adjustments are guaranteed in the face of blocked
56 * I/O or other unmanaged synchronization. The nested {@link
57 * ManagedBlocker} interface enables extension of the kinds of
58 * synchronization accommodated.
59 *
60 * <p>In addition to execution and lifecycle control methods, this
61 * class provides status check methods (for example
62 * {@link #getStealCount}) that are intended to aid in developing,
63 * tuning, and monitoring fork/join applications. Also, method
64 * {@link #toString} returns indications of pool state in a
65 * convenient form for informal monitoring.
66 *
67 * <p>As is the case with other ExecutorServices, there are three
68 * main task execution methods summarized in the following table.
69 * These are designed to be used primarily by clients not already
70 * engaged in fork/join computations in the current pool.  The main
71 * forms of these methods accept instances of {@code ForkJoinTask},
72 * but overloaded forms also allow mixed execution of plain {@code
73 * Runnable}- or {@code Callable}- based activities as well.  However,
74 * tasks that are already executing in a pool should normally instead
75 * use the within-computation forms listed in the table unless using
76 * async event-style tasks that are not usually joined, in which case
77 * there is little difference among choice of methods.
78 *
79 * <table BORDER CELLPADDING=3 CELLSPACING=1>
80 * <caption>Summary of task execution methods</caption>
81 *  <tr>
82 *    <td></td>
83 *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
84 *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
85 *  </tr>
86 *  <tr>
87 *    <td> <b>Arrange async execution</b></td>
88 *    <td> {@link #execute(ForkJoinTask)}</td>
89 *    <td> {@link ForkJoinTask#fork}</td>
90 *  </tr>
91 *  <tr>
92 *    <td> <b>Await and obtain result</b></td>
93 *    <td> {@link #invoke(ForkJoinTask)}</td>
94 *    <td> {@link ForkJoinTask#invoke}</td>
95 *  </tr>
96 *  <tr>
97 *    <td> <b>Arrange exec and obtain Future</b></td>
98 *    <td> {@link #submit(ForkJoinTask)}</td>
99 *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
100 *  </tr>
101 * </table>
102 *
103 * <p>The common pool is by default constructed with default
104 * parameters, but these may be controlled by setting three
105 * {@linkplain System#getProperty system properties}:
106 * <ul>
107 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
108 * - the parallelism level, a non-negative integer
109 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
110 * - the class name of a {@link ForkJoinWorkerThreadFactory}
111 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
112 * - the class name of a {@link UncaughtExceptionHandler}
113 * </ul>
114 * The system class loader is used to load these classes.
115 * Upon any error in establishing these settings, default parameters
116 * are used. It is possible to disable or limit the use of threads in
117 * the common pool by setting the parallelism property to zero, and/or
118 * using a factory that may return {@code null}.
119 *
120 * <p><b>Implementation notes</b>: This implementation restricts the
121 * maximum number of running threads to 32767. Attempts to create
122 * pools with greater than the maximum number result in
123 * {@code IllegalArgumentException}.
124 *
125 * <p>This implementation rejects submitted tasks (that is, by throwing
126 * {@link RejectedExecutionException}) only when the pool is shut down
127 * or internal resources have been exhausted.
128 *
129 * @since 1.7
130 * @author Doug Lea
131 */
132public class ForkJoinPool extends AbstractExecutorService {
133
134    /*
135     * Implementation Overview
136     *
137     * This class and its nested classes provide the main
138     * functionality and control for a set of worker threads:
139     * Submissions from non-FJ threads enter into submission queues.
140     * Workers take these tasks and typically split them into subtasks
141     * that may be stolen by other workers.  Preference rules give
142     * first priority to processing tasks from their own queues (LIFO
143     * or FIFO, depending on mode), then to randomized FIFO steals of
144     * tasks in other queues.
145     *
146     * WorkQueues
147     * ==========
148     *
149     * Most operations occur within work-stealing queues (in nested
150     * class WorkQueue).  These are special forms of Deques that
151     * support only three of the four possible end-operations -- push,
152     * pop, and poll (aka steal), under the further constraints that
153     * push and pop are called only from the owning thread (or, as
154     * extended here, under a lock), while poll may be called from
155     * other threads.  (If you are unfamiliar with them, you probably
156     * want to read Herlihy and Shavit's book "The Art of
157     * Multiprocessor programming", chapter 16 describing these in
158     * more detail before proceeding.)  The main work-stealing queue
159     * design is roughly similar to those in the papers "Dynamic
160     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
161     * (http://research.sun.com/scalable/pubs/index.html) and
162     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
163     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
164     * See also "Correct and Efficient Work-Stealing for Weak Memory
165     * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
166     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
167     * analysis of memory ordering (atomic, volatile etc) issues.  The
168     * main differences ultimately stem from GC requirements that we
169     * null out taken slots as soon as we can, to maintain as small a
170     * footprint as possible even in programs generating huge numbers
171     * of tasks. To accomplish this, we shift the CAS arbitrating pop
172     * vs poll (steal) from being on the indices ("base" and "top") to
173     * the slots themselves.  So, both a successful pop and poll
174     * mainly entail a CAS of a slot from non-null to null.  Because
175     * we rely on CASes of references, we do not need tag bits on base
176     * or top.  They are simple ints as used in any circular
177     * array-based queue (see for example ArrayDeque).  Updates to the
178     * indices must still be ordered in a way that guarantees that top
179     * == base means the queue is empty, but otherwise may err on the
180     * side of possibly making the queue appear nonempty when a push,
181     * pop, or poll have not fully committed. Note that this means
182     * that the poll operation, considered individually, is not
183     * wait-free. One thief cannot successfully continue until another
184     * in-progress one (or, if previously empty, a push) completes.
185     * However, in the aggregate, we ensure at least probabilistic
186     * non-blockingness.  If an attempted steal fails, a thief always
187     * chooses a different random victim target to try next. So, in
188     * order for one thief to progress, it suffices for any
189     * in-progress poll or new push on any empty queue to
190     * complete. (This is why we normally use method pollAt and its
191     * variants that try once at the apparent base index, else
192     * consider alternative actions, rather than method poll.)
193     *
194     * This approach also enables support of a user mode in which local
195     * task processing is in FIFO, not LIFO order, simply by using
196     * poll rather than pop.  This can be useful in message-passing
197     * frameworks in which tasks are never joined.  However neither
198     * mode considers affinities, loads, cache localities, etc, so
199     * rarely provide the best possible performance on a given
200     * machine, but portably provide good throughput by averaging over
201     * these factors.  (Further, even if we did try to use such
202     * information, we do not usually have a basis for exploiting it.
203     * For example, some sets of tasks profit from cache affinities,
204     * but others are harmed by cache pollution effects.)
205     *
206     * WorkQueues are also used in a similar way for tasks submitted
207     * to the pool. We cannot mix these tasks in the same queues used
208     * for work-stealing (this would contaminate lifo/fifo
209     * processing). Instead, we randomly associate submission queues
210     * with submitting threads, using a form of hashing.  The
211     * Submitter probe value serves as a hash code for
212     * choosing existing queues, and may be randomly repositioned upon
213     * contention with other submitters.  In essence, submitters act
214     * like workers except that they are restricted to executing local
215     * tasks that they submitted. However, because most
216     * shared/external queue operations are more expensive than
217     * internal, and because, at steady state, external submitters
218     * will compete for CPU with workers, ForkJoinTask.join and
219     * related methods disable them from repeatedly helping to process
220     * tasks if all workers are active.  Insertion of tasks in shared
221     * mode requires a lock (mainly to protect in the case of
222     * resizing) but we use only a simple spinlock (using bits in
223     * field qlock), because submitters encountering a busy queue move
224     * on to try or create other queues -- they block only when
225     * creating and registering new queues.
226     *
227     * Management
228     * ==========
229     *
230     * The main throughput advantages of work-stealing stem from
231     * decentralized control -- workers mostly take tasks from
232     * themselves or each other. We cannot negate this in the
233     * implementation of other management responsibilities. The main
234     * tactic for avoiding bottlenecks is packing nearly all
235     * essentially atomic control state into two volatile variables
236     * that are by far most often read (not written) as status and
237     * consistency checks.
238     *
239     * Field "ctl" contains 64 bits holding all the information needed
240     * to atomically decide to add, inactivate, enqueue (on an event
241     * queue), dequeue, and/or re-activate workers.  To enable this
242     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
243     * far in excess of normal operating range) to allow ids, counts,
244     * and their negations (used for thresholding) to fit into 16bit
245     * fields.
246     *
247     * Field "plock" is a form of sequence lock with a saturating
248     * shutdown bit (similarly for per-queue "qlocks"), mainly
249     * protecting updates to the workQueues array, as well as to
250     * enable shutdown.  When used as a lock, it is normally only very
251     * briefly held, so is nearly always available after at most a
252     * brief spin, but we use a monitor-based backup strategy to
253     * block when needed.
254     *
255     * Recording WorkQueues.  WorkQueues are recorded in the
256     * "workQueues" array that is created upon first use and expanded
257     * if necessary.  Updates to the array while recording new workers
258     * and unrecording terminated ones are protected from each other
259     * by a lock but the array is otherwise concurrently readable, and
260     * accessed directly.  To simplify index-based operations, the
261     * array size is always a power of two, and all readers must
262     * tolerate null slots. Worker queues are at odd indices. Shared
263     * (submission) queues are at even indices, up to a maximum of 64
264     * slots, to limit growth even if array needs to expand to add
265     * more workers. Grouping them together in this way simplifies and
266     * speeds up task scanning.
267     *
268     * All worker thread creation is on-demand, triggered by task
269     * submissions, replacement of terminated workers, and/or
270     * compensation for blocked workers. However, all other support
271     * code is set up to work with other policies.  To ensure that we
272     * do not hold on to worker references that would prevent GC, ALL
273     * accesses to workQueues are via indices into the workQueues
274     * array (which is one source of some of the messy code
275     * constructions here). In essence, the workQueues array serves as
276     * a weak reference mechanism. Thus for example the wait queue
277     * field of ctl stores indices, not references.  Access to the
278     * workQueues in associated methods (for example signalWork) must
279     * both index-check and null-check the IDs. All such accesses
280     * ignore bad IDs by returning out early from what they are doing,
281     * since this can only be associated with termination, in which
282     * case it is OK to give up.  All uses of the workQueues array
283     * also check that it is non-null (even if previously
284     * non-null). This allows nulling during termination, which is
285     * currently not necessary, but remains an option for
286     * resource-revocation-based shutdown schemes. It also helps
287     * reduce JIT issuance of uncommon-trap code, which tends to
288     * unnecessarily complicate control flow in some methods.
289     *
290     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
291     * let workers spin indefinitely scanning for tasks when none can
292     * be found immediately, and we cannot start/resume workers unless
293     * there appear to be tasks available.  On the other hand, we must
294     * quickly prod them into action when new tasks are submitted or
295     * generated. In many usages, ramp-up time to activate workers is
296     * the main limiting factor in overall performance (this is
297     * compounded at program start-up by JIT compilation and
298     * allocation). So we try to streamline this as much as possible.
299     * We park/unpark workers after placing in an event wait queue
300     * when they cannot find work. This "queue" is actually a simple
301     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
302     * counter value (that reflects the number of times a worker has
303     * been inactivated) to avoid ABA effects (we need only as many
304     * version numbers as worker threads). Successors are held in
305     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
306     * races, mainly that a task-producing thread can miss seeing (and
307     * signalling) another thread that gave up looking for work but
308     * has not yet entered the wait queue. We solve this by requiring
309     * a full sweep of all workers (via repeated calls to method
310     * scan()) both before and after a newly waiting worker is added
311     * to the wait queue.  Because enqueued workers may actually be
312     * rescanning rather than waiting, we set and clear the "parker"
313     * field of WorkQueues to reduce unnecessary calls to unpark.
314     * (This requires a secondary recheck to avoid missed signals.)
315     * Note the unusual conventions about Thread.interrupts
316     * surrounding parking and other blocking: Because interrupts are
317     * used solely to alert threads to check termination, which is
318     * checked anyway upon blocking, we clear status (using
319     * Thread.interrupted) before any call to park, so that park does
320     * not immediately return due to status being set via some other
321     * unrelated call to interrupt in user code.
322     *
323     * Signalling.  We create or wake up workers only when there
324     * appears to be at least one task they might be able to find and
325     * execute.  When a submission is added or another worker adds a
326     * task to a queue that has fewer than two tasks, they signal
327     * waiting workers (or trigger creation of new ones if fewer than
328     * the given parallelism level -- signalWork).  These primary
329     * signals are buttressed by others whenever other threads remove
330     * a task from a queue and notice that there are other tasks there
331     * as well.  So in general, pools will be over-signalled. On most
332     * platforms, signalling (unpark) overhead time is noticeably
333     * long, and the time between signalling a thread and it actually
334     * making progress can be very noticeably long, so it is worth
335     * offloading these delays from critical paths as much as
336     * possible. Additionally, workers spin-down gradually, by staying
337     * alive so long as they see the ctl state changing.  Similar
338     * stability-sensing techniques are also used before blocking in
339     * awaitJoin and helpComplete.
340     *
341     * Trimming workers. To release resources after periods of lack of
342     * use, a worker starting to wait when the pool is quiescent will
343     * time out and terminate if the pool has remained quiescent for a
344     * given period -- a short period if there are more threads than
345     * parallelism, longer as the number of threads decreases. This
346     * will slowly propagate, eventually terminating all workers after
347     * periods of non-use.
348     *
349     * Shutdown and Termination. A call to shutdownNow atomically sets
350     * a plock bit and then (non-atomically) sets each worker's
351     * qlock status, cancels all unprocessed tasks, and wakes up
352     * all waiting workers.  Detecting whether termination should
353     * commence after a non-abrupt shutdown() call requires more work
354     * and bookkeeping. We need consensus about quiescence (i.e., that
355     * there is no more work). The active count provides a primary
356     * indication but non-abrupt shutdown still requires a rechecking
357     * scan for any workers that are inactive but not queued.
358     *
359     * Joining Tasks
360     * =============
361     *
362     * Any of several actions may be taken when one worker is waiting
363     * to join a task stolen (or always held) by another.  Because we
364     * are multiplexing many tasks on to a pool of workers, we can't
365     * just let them block (as in Thread.join).  We also cannot just
366     * reassign the joiner's run-time stack with another and replace
367     * it later, which would be a form of "continuation", that even if
368     * possible is not necessarily a good idea since we sometimes need
369     * both an unblocked task and its continuation to progress.
370     * Instead we combine two tactics:
371     *
372     *   Helping: Arranging for the joiner to execute some task that it
373     *      would be running if the steal had not occurred.
374     *
375     *   Compensating: Unless there are already enough live threads,
376     *      method tryCompensate() may create or re-activate a spare
377     *      thread to compensate for blocked joiners until they unblock.
378     *
379     * A third form (implemented in tryRemoveAndExec) amounts to
380     * helping a hypothetical compensator: If we can readily tell that
381     * a possible action of a compensator is to steal and execute the
382     * task being joined, the joining thread can do so directly,
383     * without the need for a compensation thread (although at the
384     * expense of larger run-time stacks, but the tradeoff is
385     * typically worthwhile).
386     *
387     * The ManagedBlocker extension API can't use helping so relies
388     * only on compensation in method awaitBlocker.
389     *
390     * The algorithm in tryHelpStealer entails a form of "linear"
391     * helping: Each worker records (in field currentSteal) the most
392     * recent task it stole from some other worker. Plus, it records
393     * (in field currentJoin) the task it is currently actively
394     * joining. Method tryHelpStealer uses these markers to try to
395     * find a worker to help (i.e., steal back a task from and execute
396     * it) that could hasten completion of the actively joined task.
397     * In essence, the joiner executes a task that would be on its own
398     * local deque had the to-be-joined task not been stolen. This may
399     * be seen as a conservative variant of the approach in Wagner &
400     * Calder "Leapfrogging: a portable technique for implementing
401     * efficient futures" SIGPLAN Notices, 1993
402     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
403     * that: (1) We only maintain dependency links across workers upon
404     * steals, rather than use per-task bookkeeping.  This sometimes
405     * requires a linear scan of workQueues array to locate stealers,
406     * but often doesn't because stealers leave hints (that may become
407     * stale/wrong) of where to locate them.  It is only a hint
408     * because a worker might have had multiple steals and the hint
409     * records only one of them (usually the most current).  Hinting
410     * isolates cost to when it is needed, rather than adding to
411     * per-task overhead.  (2) It is "shallow", ignoring nesting and
412     * potentially cyclic mutual steals.  (3) It is intentionally
413     * racy: field currentJoin is updated only while actively joining,
414     * which means that we miss links in the chain during long-lived
415     * tasks, GC stalls etc (which is OK since blocking in such cases
416     * is usually a good idea).  (4) We bound the number of attempts
417     * to find work (see MAX_HELP) and fall back to suspending the
418     * worker and if necessary replacing it with another.
419     *
420     * It is impossible to keep exactly the target parallelism number
421     * of threads running at any given time.  Determining the
422     * existence of conservatively safe helping targets, the
423     * availability of already-created spares, and the apparent need
424     * to create new spares are all racy, so we rely on multiple
425     * retries of each.  Compensation in the apparent absence of
426     * helping opportunities is challenging to control on JVMs, where
427     * GC and other activities can stall progress of tasks that in
428     * turn stall out many other dependent tasks, without us being
429     * able to determine whether they will ever require compensation.
430     * Even though work-stealing otherwise encounters little
431     * degradation in the presence of more threads than cores,
432     * aggressively adding new threads in such cases entails risk of
433     * unwanted positive feedback control loops in which more threads
434     * cause more dependent stalls (as well as delayed progress of
435     * unblocked threads to the point that we know they are available)
436     * leading to more situations requiring more threads, and so
437     * on. This aspect of control can be seen as an (analytically
438     * intractable) game with an opponent that may choose the worst
439     * (for us) active thread to stall at any time.  We take several
440     * precautions to bound losses (and thus bound gains), mainly in
441     * methods tryCompensate and awaitJoin.
442     *
443     * Common Pool
444     * ===========
445     *
446     * The static common pool always exists after static
447     * initialization.  Since it (or any other created pool) need
448     * never be used, we minimize initial construction overhead and
449     * footprint to the setup of about a dozen fields, with no nested
450     * allocation. Most bootstrapping occurs within method
451     * fullExternalPush during the first submission to the pool.
452     *
453     * When external threads submit to the common pool, they can
454     * perform subtask processing (see externalHelpJoin and related
455     * methods).  This caller-helps policy makes it sensible to set
456     * common pool parallelism level to one (or more) less than the
457     * total number of available cores, or even zero for pure
458     * caller-runs.  We do not need to record whether external
459     * submissions are to the common pool -- if not, externalHelpJoin
460     * returns quickly (at the most helping to signal some common pool
461     * workers). These submitters would otherwise be blocked waiting
462     * for completion, so the extra effort (with liberally sprinkled
463     * task status checks) in inapplicable cases amounts to an odd
464     * form of limited spin-wait before blocking in ForkJoinTask.join.
465     *
466     * Style notes
467     * ===========
468     *
469     * There is a lot of representation-level coupling among classes
470     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
471     * fields of WorkQueue maintain data structures managed by
472     * ForkJoinPool, so are directly accessed.  There is little point
473     * trying to reduce this, since any associated future changes in
474     * representations will need to be accompanied by algorithmic
475     * changes anyway. Several methods intrinsically sprawl because
476     * they must accumulate sets of consistent reads of volatiles held
477     * in local variables.  Methods signalWork() and scan() are the
478     * main bottlenecks, so are especially heavily
479     * micro-optimized/mangled.  There are lots of inline assignments
480     * (of form "while ((local = field) != 0)") which are usually the
481     * simplest way to ensure the required read orderings (which are
482     * sometimes critical). This leads to a "C"-like style of listing
483     * declarations of these locals at the heads of methods or blocks.
484     * There are several occurrences of the unusual "do {} while
485     * (!cas...)"  which is the simplest way to force an update of a
486     * CAS'ed variable. There are also other coding oddities (including
487     * several unnecessary-looking hoisted null checks) that help
488     * some methods perform reasonably even when interpreted (not
489     * compiled).
490     *
491     * The order of declarations in this file is:
492     * (1) Static utility functions
493     * (2) Nested (static) classes
494     * (3) Static fields
495     * (4) Fields, along with constants used when unpacking some of them
496     * (5) Internal control methods
497     * (6) Callbacks and other support for ForkJoinTask methods
498     * (7) Exported methods
499     * (8) Static block initializing statics in minimally dependent order
500     */
501
502    // Static utilities
503
504    /**
505     * If there is a security manager, makes sure caller has
506     * permission to modify threads.
507     */
508    private static void checkPermission() {
509        SecurityManager security = System.getSecurityManager();
510        if (security != null)
511            security.checkPermission(modifyThreadPermission);
512    }
513
514    // Nested classes
515
516    /**
517     * Factory for creating new {@link ForkJoinWorkerThread}s.
518     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
519     * for {@code ForkJoinWorkerThread} subclasses that extend base
520     * functionality or initialize threads with different contexts.
521     */
522    public static interface ForkJoinWorkerThreadFactory {
523        /**
524         * Returns a new worker thread operating in the given pool.
525         *
526         * @param pool the pool this thread works in
527         * @throws NullPointerException if the pool is null
528         * @return the new worker thread
529         */
530        public ForkJoinWorkerThread newThread(ForkJoinPool pool);
531    }
532
533    /**
534     * Default ForkJoinWorkerThreadFactory implementation; creates a
535     * new ForkJoinWorkerThread.
536     */
537    static final class DefaultForkJoinWorkerThreadFactory
538        implements ForkJoinWorkerThreadFactory {
539        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
540            return new ForkJoinWorkerThread(pool);
541        }
542    }
543
544    /**
545     * Class for artificial tasks that are used to replace the target
546     * of local joins if they are removed from an interior queue slot
547     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
548     * actually do anything beyond having a unique identity.
549     */
550    static final class EmptyTask extends ForkJoinTask<Void> {
551        private static final long serialVersionUID = -7721805057305804111L;
552        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
553        public final Void getRawResult() { return null; }
554        public final void setRawResult(Void x) {}
555        public final boolean exec() { return true; }
556    }
557
558    /**
559     * Queues supporting work-stealing as well as external task
560     * submission. See above for main rationale and algorithms.
561     * Implementation relies heavily on "Unsafe" intrinsics
562     * and selective use of "volatile":
563     *
564     * Field "base" is the index (mod array.length) of the least valid
565     * queue slot, which is always the next position to steal (poll)
566     * from if nonempty. Reads and writes require volatile orderings
567     * but not CAS, because updates are only performed after slot
568     * CASes.
569     *
570     * Field "top" is the index (mod array.length) of the next queue
571     * slot to push to or pop from. It is written only by owner thread
572     * for push, or under lock for external/shared push, and accessed
573     * by other threads only after reading (volatile) base.  Both top
574     * and base are allowed to wrap around on overflow, but (top -
575     * base) (or more commonly -(base - top) to force volatile read of
576     * base before top) still estimates size. The lock ("qlock") is
577     * forced to -1 on termination, causing all further lock attempts
578     * to fail. (Note: we don't need CAS for termination state because
579     * upon pool shutdown, all shared-queues will stop being used
580     * anyway.)  Nearly all lock bodies are set up so that exceptions
581     * within lock bodies are "impossible" (modulo JVM errors that
582     * would cause failure anyway.)
583     *
584     * The array slots are read and written using the emulation of
585     * volatiles/atomics provided by Unsafe. Insertions must in
586     * general use putOrderedObject as a form of releasing store to
587     * ensure that all writes to the task object are ordered before
588     * its publication in the queue.  All removals entail a CAS to
589     * null.  The array is always a power of two. To ensure safety of
590     * Unsafe array operations, all accesses perform explicit null
591     * checks and implicit bounds checks via power-of-two masking.
592     *
593     * In addition to basic queuing support, this class contains
594     * fields described elsewhere to control execution. It turns out
595     * to work better memory-layout-wise to include them in this class
596     * rather than a separate class.
597     *
598     * Performance on most platforms is very sensitive to placement of
599     * instances of both WorkQueues and their arrays -- we absolutely
600     * do not want multiple WorkQueue instances or multiple queue
601     * arrays sharing cache lines. (It would be best for queue objects
602     * and their arrays to share, but there is nothing available to
603     * help arrange that). The @Contended annotation alerts JVMs to
604     * try to keep instances apart.
605     */
606    static final class WorkQueue {
607        /**
608         * Capacity of work-stealing queue array upon initialization.
609         * Must be a power of two; at least 4, but should be larger to
610         * reduce or eliminate cacheline sharing among queues.
611         * Currently, it is much larger, as a partial workaround for
612         * the fact that JVMs often place arrays in locations that
613         * share GC bookkeeping (especially cardmarks) such that
614         * per-write accesses encounter serious memory contention.
615         */
616        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
617
618        /**
619         * Maximum size for queue arrays. Must be a power of two less
620         * than or equal to 1 << (31 - width of array entry) to ensure
621         * lack of wraparound of index calculations, but defined to a
622         * value a bit less than this to help users trap runaway
623         * programs before saturating systems.
624         */
625        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
626
627        // Heuristic padding to ameliorate unfortunate memory placements
628        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
629
630        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
631        int nextWait;              // encoded record of next event waiter
632        int nsteals;               // number of steals
633        int hint;                  // steal index hint
634        short poolIndex;           // index of this queue in pool
635        final short mode;          // 0: lifo, > 0: fifo, < 0: shared
636        volatile int qlock;        // 1: locked, -1: terminate; else 0
637        volatile int base;         // index of next slot for poll
638        int top;                   // index of next slot for push
639        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
640        final ForkJoinPool pool;   // the containing pool (may be null)
641        final ForkJoinWorkerThread owner; // owning thread or null if shared
642        volatile Thread parker;    // == owner during call to park; else null
643        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
644        ForkJoinTask<?> currentSteal; // current non-local task being executed
645
646        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
647        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
648
649        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
650                  int seed) {
651            this.pool = pool;
652            this.owner = owner;
653            this.mode = (short)mode;
654            this.hint = seed; // store initial seed for runWorker
655            // Place indices in the center of array (that is not yet allocated)
656            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
657        }
658
659        /**
660         * Returns the approximate number of tasks in the queue.
661         */
662        final int queueSize() {
663            int n = base - top;       // non-owner callers must read base first
664            return (n >= 0) ? 0 : -n; // ignore transient negative
665        }
666
667        /**
668         * Provides a more accurate estimate of whether this queue has
669         * any tasks than does queueSize, by checking whether a
670         * near-empty queue has at least one unclaimed task.
671         */
672        final boolean isEmpty() {
673            ForkJoinTask<?>[] a; int m, s;
674            int n = base - (s = top);
675            return (n >= 0 ||
676                    (n == -1 &&
677                     ((a = array) == null ||
678                      (m = a.length - 1) < 0 ||
679                      U.getObject
680                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
681        }
682
683        /**
684         * Pushes a task. Call only by owner in unshared queues.  (The
685         * shared-queue version is embedded in method externalPush.)
686         *
687         * @param task the task. Caller must ensure non-null.
688         * @throws RejectedExecutionException if array cannot be resized
689         */
690        final void push(ForkJoinTask<?> task) {
691            ForkJoinTask<?>[] a; ForkJoinPool p;
692            int s = top, n;
693            if ((a = array) != null) {    // ignore if queue removed
694                int m = a.length - 1;
695                U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
696                if ((n = (top = s + 1) - base) <= 2)
697                    (p = pool).signalWork(p.workQueues, this);
698                else if (n >= m)
699                    growArray();
700            }
701        }
702
703        /**
704         * Initializes or doubles the capacity of array. Call either
705         * by owner or with lock held -- it is OK for base, but not
706         * top, to move while resizings are in progress.
707         */
708        final ForkJoinTask<?>[] growArray() {
709            ForkJoinTask<?>[] oldA = array;
710            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
711            if (size > MAXIMUM_QUEUE_CAPACITY)
712                throw new RejectedExecutionException("Queue capacity exceeded");
713            int oldMask, t, b;
714            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
715            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
716                (t = top) - (b = base) > 0) {
717                int mask = size - 1;
718                do {
719                    ForkJoinTask<?> x;
720                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
721                    int j    = ((b &    mask) << ASHIFT) + ABASE;
722                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
723                    if (x != null &&
724                        U.compareAndSwapObject(oldA, oldj, x, null))
725                        U.putObjectVolatile(a, j, x);
726                } while (++b != t);
727            }
728            return a;
729        }
730
731        /**
732         * Takes next task, if one exists, in LIFO order.  Call only
733         * by owner in unshared queues.
734         */
735        final ForkJoinTask<?> pop() {
736            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
737            if ((a = array) != null && (m = a.length - 1) >= 0) {
738                for (int s; (s = top - 1) - base >= 0;) {
739                    long j = ((m & s) << ASHIFT) + ABASE;
740                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
741                        break;
742                    if (U.compareAndSwapObject(a, j, t, null)) {
743                        top = s;
744                        return t;
745                    }
746                }
747            }
748            return null;
749        }
750
751        /**
752         * Takes a task in FIFO order if b is base of queue and a task
753         * can be claimed without contention. Specialized versions
754         * appear in ForkJoinPool methods scan and tryHelpStealer.
755         */
756        final ForkJoinTask<?> pollAt(int b) {
757            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
758            if ((a = array) != null) {
759                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
760                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
761                    base == b && U.compareAndSwapObject(a, j, t, null)) {
762                    U.putOrderedInt(this, QBASE, b + 1);
763                    return t;
764                }
765            }
766            return null;
767        }
768
769        /**
770         * Takes next task, if one exists, in FIFO order.
771         */
772        final ForkJoinTask<?> poll() {
773            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
774            while ((b = base) - top < 0 && (a = array) != null) {
775                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
776                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
777                if (t != null) {
778                    if (U.compareAndSwapObject(a, j, t, null)) {
779                        U.putOrderedInt(this, QBASE, b + 1);
780                        return t;
781                    }
782                }
783                else if (base == b) {
784                    if (b + 1 == top)
785                        break;
786                    Thread.yield(); // wait for lagging update (very rare)
787                }
788            }
789            return null;
790        }
791
792        /**
793         * Takes next task, if one exists, in order specified by mode.
794         */
795        final ForkJoinTask<?> nextLocalTask() {
796            return mode == 0 ? pop() : poll();
797        }
798
799        /**
800         * Returns next task, if one exists, in order specified by mode.
801         */
802        final ForkJoinTask<?> peek() {
803            ForkJoinTask<?>[] a = array; int m;
804            if (a == null || (m = a.length - 1) < 0)
805                return null;
806            int i = mode == 0 ? top - 1 : base;
807            int j = ((i & m) << ASHIFT) + ABASE;
808            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
809        }
810
811        /**
812         * Pops the given task only if it is at the current top.
813         * (A shared version is available only via FJP.tryExternalUnpush)
814         */
815        final boolean tryUnpush(ForkJoinTask<?> t) {
816            ForkJoinTask<?>[] a; int s;
817            if ((a = array) != null && (s = top) != base &&
818                U.compareAndSwapObject
819                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
820                top = s;
821                return true;
822            }
823            return false;
824        }
825
826        /**
827         * Removes and cancels all known tasks, ignoring any exceptions.
828         */
829        final void cancelAll() {
830            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
831            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
832            for (ForkJoinTask<?> t; (t = poll()) != null; )
833                ForkJoinTask.cancelIgnoringExceptions(t);
834        }
835
836        // Specialized execution methods
837
838        /**
839         * Polls and runs tasks until empty.
840         */
841        final void pollAndExecAll() {
842            for (ForkJoinTask<?> t; (t = poll()) != null;)
843                t.doExec();
844        }
845
846        /**
847         * Executes a top-level task and any local tasks remaining
848         * after execution.
849         */
850        final void runTask(ForkJoinTask<?> task) {
851            if ((currentSteal = task) != null) {
852                task.doExec();
853                ForkJoinTask<?>[] a = array;
854                int md = mode;
855                ++nsteals;
856                currentSteal = null;
857                if (md != 0)
858                    pollAndExecAll();
859                else if (a != null) {
860                    int s, m = a.length - 1;
861                    while ((s = top - 1) - base >= 0) {
862                        long i = ((m & s) << ASHIFT) + ABASE;
863                        ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, i);
864                        if (t == null)
865                            break;
866                        if (U.compareAndSwapObject(a, i, t, null)) {
867                            top = s;
868                            t.doExec();
869                        }
870                    }
871                }
872            }
873        }
874
875        /**
876         * If present, removes from queue and executes the given task,
877         * or any other cancelled task. Returns (true) on any CAS
878         * or consistency check failure so caller can retry.
879         *
880         * @return false if no progress can be made, else true
881         */
882        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
883            boolean stat;
884            ForkJoinTask<?>[] a; int m, s, b, n;
885            if (task != null && (a = array) != null && (m = a.length - 1) >= 0 &&
886                (n = (s = top) - (b = base)) > 0) {
887                boolean removed = false, empty = true;
888                stat = true;
889                for (ForkJoinTask<?> t;;) {           // traverse from s to b
890                    long j = ((--s & m) << ASHIFT) + ABASE;
891                    t = (ForkJoinTask<?>)U.getObject(a, j);
892                    if (t == null)                    // inconsistent length
893                        break;
894                    else if (t == task) {
895                        if (s + 1 == top) {           // pop
896                            if (!U.compareAndSwapObject(a, j, task, null))
897                                break;
898                            top = s;
899                            removed = true;
900                        }
901                        else if (base == b)           // replace with proxy
902                            removed = U.compareAndSwapObject(a, j, task,
903                                                             new EmptyTask());
904                        break;
905                    }
906                    else if (t.status >= 0)
907                        empty = false;
908                    else if (s + 1 == top) {          // pop and throw away
909                        if (U.compareAndSwapObject(a, j, t, null))
910                            top = s;
911                        break;
912                    }
913                    if (--n == 0) {
914                        if (!empty && base == b)
915                            stat = false;
916                        break;
917                    }
918                }
919                if (removed)
920                    task.doExec();
921            }
922            else
923                stat = false;
924            return stat;
925        }
926
927        /**
928         * Tries to poll for and execute the given task or any other
929         * task in its CountedCompleter computation.
930         */
931        final boolean pollAndExecCC(CountedCompleter<?> root) {
932            ForkJoinTask<?>[] a; int b; Object o; CountedCompleter<?> t, r;
933            if ((b = base) - top < 0 && (a = array) != null) {
934                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
935                if ((o = U.getObjectVolatile(a, j)) == null)
936                    return true; // retry
937                if (o instanceof CountedCompleter) {
938                    for (t = (CountedCompleter<?>)o, r = t;;) {
939                        if (r == root) {
940                            if (base == b &&
941                                U.compareAndSwapObject(a, j, t, null)) {
942                                U.putOrderedInt(this, QBASE, b + 1);
943                                t.doExec();
944                            }
945                            return true;
946                        }
947                        else if ((r = r.completer) == null)
948                            break; // not part of root computation
949                    }
950                }
951            }
952            return false;
953        }
954
955        /**
956         * Tries to pop and execute the given task or any other task
957         * in its CountedCompleter computation.
958         */
959        final boolean externalPopAndExecCC(CountedCompleter<?> root) {
960            ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
961            if (base - (s = top) < 0 && (a = array) != null) {
962                long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
963                if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
964                    for (t = (CountedCompleter<?>)o, r = t;;) {
965                        if (r == root) {
966                            if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
967                                if (top == s && array == a &&
968                                    U.compareAndSwapObject(a, j, t, null)) {
969                                    top = s - 1;
970                                    qlock = 0;
971                                    t.doExec();
972                                }
973                                else
974                                    qlock = 0;
975                            }
976                            return true;
977                        }
978                        else if ((r = r.completer) == null)
979                            break;
980                    }
981                }
982            }
983            return false;
984        }
985
986        /**
987         * Internal version
988         */
989        final boolean internalPopAndExecCC(CountedCompleter<?> root) {
990            ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
991            if (base - (s = top) < 0 && (a = array) != null) {
992                long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
993                if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
994                    for (t = (CountedCompleter<?>)o, r = t;;) {
995                        if (r == root) {
996                            if (U.compareAndSwapObject(a, j, t, null)) {
997                                top = s - 1;
998                                t.doExec();
999                            }
1000                            return true;
1001                        }
1002                        else if ((r = r.completer) == null)
1003                            break;
1004                    }
1005                }
1006            }
1007            return false;
1008        }
1009
1010        /**
1011         * Returns true if owned and not known to be blocked.
1012         */
1013        final boolean isApparentlyUnblocked() {
1014            Thread wt; Thread.State s;
1015            return (eventCount >= 0 &&
1016                    (wt = owner) != null &&
1017                    (s = wt.getState()) != Thread.State.BLOCKED &&
1018                    s != Thread.State.WAITING &&
1019                    s != Thread.State.TIMED_WAITING);
1020        }
1021
1022        // Unsafe mechanics
1023        private static final sun.misc.Unsafe U;
1024        private static final long QBASE;
1025        private static final long QLOCK;
1026        private static final int ABASE;
1027        private static final int ASHIFT;
1028        static {
1029            try {
1030                U = sun.misc.Unsafe.getUnsafe();
1031                Class<?> k = WorkQueue.class;
1032                Class<?> ak = ForkJoinTask[].class;
1033                QBASE = U.objectFieldOffset
1034                    (k.getDeclaredField("base"));
1035                QLOCK = U.objectFieldOffset
1036                    (k.getDeclaredField("qlock"));
1037                ABASE = U.arrayBaseOffset(ak);
1038                int scale = U.arrayIndexScale(ak);
1039                if ((scale & (scale - 1)) != 0)
1040                    throw new Error("data type scale not a power of two");
1041                ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1042            } catch (Exception e) {
1043                throw new Error(e);
1044            }
1045        }
1046    }
1047
1048    // static fields (initialized in static initializer below)
1049
1050    /**
1051     * Per-thread submission bookkeeping. Shared across all pools
1052     * to reduce ThreadLocal pollution and because random motion
1053     * to avoid contention in one pool is likely to hold for others.
1054     * Lazily initialized on first submission (but null-checked
1055     * in other contexts to avoid unnecessary initialization).
1056     */
1057    static final ThreadLocal<Submitter> submitters;
1058
1059    /**
1060     * Creates a new ForkJoinWorkerThread. This factory is used unless
1061     * overridden in ForkJoinPool constructors.
1062     */
1063    public static final ForkJoinWorkerThreadFactory
1064        defaultForkJoinWorkerThreadFactory;
1065
1066    /**
1067     * Permission required for callers of methods that may start or
1068     * kill threads.
1069     */
1070    private static final RuntimePermission modifyThreadPermission;
1071
1072    /**
1073     * Common (static) pool. Non-null for public use unless a static
1074     * construction exception, but internal usages null-check on use
1075     * to paranoically avoid potential initialization circularities
1076     * as well as to simplify generated code.
1077     */
1078    static final ForkJoinPool common;
1079
1080    /**
1081     * Common pool parallelism. To allow simpler use and management
1082     * when common pool threads are disabled, we allow the underlying
1083     * common.parallelism field to be zero, but in that case still report
1084     * parallelism as 1 to reflect resulting caller-runs mechanics.
1085     */
1086    static final int commonParallelism;
1087
1088    /**
1089     * Sequence number for creating workerNamePrefix.
1090     */
1091    private static int poolNumberSequence;
1092
1093    /**
1094     * Returns the next sequence number. We don't expect this to
1095     * ever contend, so use simple builtin sync.
1096     */
1097    private static final synchronized int nextPoolId() {
1098        return ++poolNumberSequence;
1099    }
1100
1101    // static constants
1102
1103    /**
1104     * Initial timeout value (in nanoseconds) for the thread
1105     * triggering quiescence to park waiting for new work. On timeout,
1106     * the thread will instead try to shrink the number of
1107     * workers. The value should be large enough to avoid overly
1108     * aggressive shrinkage during most transient stalls (long GCs
1109     * etc).
1110     */
1111    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1112
1113    /**
1114     * Timeout value when there are more threads than parallelism level
1115     */
1116    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1117
1118    /**
1119     * Tolerance for idle timeouts, to cope with timer undershoots
1120     */
1121    private static final long TIMEOUT_SLOP = 2000000L;
1122
1123    /**
1124     * The maximum stolen->joining link depth allowed in method
1125     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1126     * chains are unbounded, but we use a fixed constant to avoid
1127     * (otherwise unchecked) cycles and to bound staleness of
1128     * traversal parameters at the expense of sometimes blocking when
1129     * we could be helping.
1130     */
1131    private static final int MAX_HELP = 64;
1132
1133    /**
1134     * Increment for seed generators. See class ThreadLocal for
1135     * explanation.
1136     */
1137    private static final int SEED_INCREMENT = 0x61c88647;
1138
1139    /*
1140     * Bits and masks for control variables
1141     *
1142     * Field ctl is a long packed with:
1143     * AC: Number of active running workers minus target parallelism (16 bits)
1144     * TC: Number of total workers minus target parallelism (16 bits)
1145     * ST: true if pool is terminating (1 bit)
1146     * EC: the wait count of top waiting thread (15 bits)
1147     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1148     *
1149     * When convenient, we can extract the upper 32 bits of counts and
1150     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1151     * (int)ctl.  The ec field is never accessed alone, but always
1152     * together with id and st. The offsets of counts by the target
1153     * parallelism and the positionings of fields makes it possible to
1154     * perform the most common checks via sign tests of fields: When
1155     * ac is negative, there are not enough active workers, when tc is
1156     * negative, there are not enough total workers, and when e is
1157     * negative, the pool is terminating.  To deal with these possibly
1158     * negative fields, we use casts in and out of "short" and/or
1159     * signed shifts to maintain signedness.
1160     *
1161     * When a thread is queued (inactivated), its eventCount field is
1162     * set negative, which is the only way to tell if a worker is
1163     * prevented from executing tasks, even though it must continue to
1164     * scan for them to avoid queuing races. Note however that
1165     * eventCount updates lag releases so usage requires care.
1166     *
1167     * Field plock is an int packed with:
1168     * SHUTDOWN: true if shutdown is enabled (1 bit)
1169     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1170     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1171     *
1172     * The sequence number enables simple consistency checks:
1173     * Staleness of read-only operations on the workQueues array can
1174     * be checked by comparing plock before vs after the reads.
1175     */
1176
1177    // bit positions/shifts for fields
1178    private static final int  AC_SHIFT   = 48;
1179    private static final int  TC_SHIFT   = 32;
1180    private static final int  ST_SHIFT   = 31;
1181    private static final int  EC_SHIFT   = 16;
1182
1183    // bounds
1184    private static final int  SMASK      = 0xffff;  // short bits
1185    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1186    private static final int  EVENMASK   = 0xfffe;  // even short bits
1187    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1188    private static final int  SHORT_SIGN = 1 << 15;
1189    private static final int  INT_SIGN   = 1 << 31;
1190
1191    // masks
1192    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1193    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1194    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1195
1196    // units for incrementing and decrementing
1197    private static final long TC_UNIT    = 1L << TC_SHIFT;
1198    private static final long AC_UNIT    = 1L << AC_SHIFT;
1199
1200    // masks and units for dealing with u = (int)(ctl >>> 32)
1201    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1202    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1203    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1204    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1205    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1206    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1207
1208    // masks and units for dealing with e = (int)ctl
1209    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1210    private static final int E_SEQ       = 1 << EC_SHIFT;
1211
1212    // plock bits
1213    private static final int SHUTDOWN    = 1 << 31;
1214    private static final int PL_LOCK     = 2;
1215    private static final int PL_SIGNAL   = 1;
1216    private static final int PL_SPINS    = 1 << 8;
1217
1218    // access mode for WorkQueue
1219    static final int LIFO_QUEUE          =  0;
1220    static final int FIFO_QUEUE          =  1;
1221    static final int SHARED_QUEUE        = -1;
1222
1223    // Heuristic padding to ameliorate unfortunate memory placements
1224    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1225
1226    // Instance fields
1227    volatile long stealCount;                  // collects worker counts
1228    volatile long ctl;                         // main pool control
1229    volatile int plock;                        // shutdown status and seqLock
1230    volatile int indexSeed;                    // worker/submitter index seed
1231    final short parallelism;                   // parallelism level
1232    final short mode;                          // LIFO/FIFO
1233    WorkQueue[] workQueues;                    // main registry
1234    final ForkJoinWorkerThreadFactory factory;
1235    final UncaughtExceptionHandler ueh;        // per-worker UEH
1236    final String workerNamePrefix;             // to create worker name string
1237
1238    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1239    volatile Object pad18, pad19, pad1a, pad1b;
1240
1241    /**
1242     * Acquires the plock lock to protect worker array and related
1243     * updates. This method is called only if an initial CAS on plock
1244     * fails. This acts as a spinlock for normal cases, but falls back
1245     * to builtin monitor to block when (rarely) needed. This would be
1246     * a terrible idea for a highly contended lock, but works fine as
1247     * a more conservative alternative to a pure spinlock.
1248     */
1249    private int acquirePlock() {
1250        int spins = PL_SPINS, ps, nps;
1251        for (;;) {
1252            if (((ps = plock) & PL_LOCK) == 0 &&
1253                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1254                return nps;
1255            else if (spins >= 0) {
1256                if (ThreadLocalRandom.current().nextInt() >= 0)
1257                    --spins;
1258            }
1259            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1260                synchronized (this) {
1261                    if ((plock & PL_SIGNAL) != 0) {
1262                        try {
1263                            wait();
1264                        } catch (InterruptedException ie) {
1265                            try {
1266                                Thread.currentThread().interrupt();
1267                            } catch (SecurityException ignore) {
1268                            }
1269                        }
1270                    }
1271                    else
1272                        notifyAll();
1273                }
1274            }
1275        }
1276    }
1277
1278    /**
1279     * Unlocks and signals any thread waiting for plock. Called only
1280     * when CAS of seq value for unlock fails.
1281     */
1282    private void releasePlock(int ps) {
1283        plock = ps;
1284        synchronized (this) { notifyAll(); }
1285    }
1286
1287    /**
1288     * Tries to create and start one worker if fewer than target
1289     * parallelism level exist. Adjusts counts etc on failure.
1290     */
1291    private void tryAddWorker() {
1292        long c; int u, e;
1293        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1294               (u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) {
1295            long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) |
1296                              ((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e;
1297            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1298                ForkJoinWorkerThreadFactory fac;
1299                Throwable ex = null;
1300                ForkJoinWorkerThread wt = null;
1301                try {
1302                    if ((fac = factory) != null &&
1303                        (wt = fac.newThread(this)) != null) {
1304                        wt.start();
1305                        break;
1306                    }
1307                } catch (Throwable rex) {
1308                    ex = rex;
1309                }
1310                deregisterWorker(wt, ex);
1311                break;
1312            }
1313        }
1314    }
1315
1316    //  Registering and deregistering workers
1317
1318    /**
1319     * Callback from ForkJoinWorkerThread to establish and record its
1320     * WorkQueue. To avoid scanning bias due to packing entries in
1321     * front of the workQueues array, we treat the array as a simple
1322     * power-of-two hash table using per-thread seed as hash,
1323     * expanding as needed.
1324     *
1325     * @param wt the worker thread
1326     * @return the worker's queue
1327     */
1328    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1329        UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1330        wt.setDaemon(true);
1331        if ((handler = ueh) != null)
1332            wt.setUncaughtExceptionHandler(handler);
1333        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1334                                          s += SEED_INCREMENT) ||
1335                     s == 0); // skip 0
1336        WorkQueue w = new WorkQueue(this, wt, mode, s);
1337        if (((ps = plock) & PL_LOCK) != 0 ||
1338            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1339            ps = acquirePlock();
1340        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1341        try {
1342            if ((ws = workQueues) != null) {    // skip if shutting down
1343                int n = ws.length, m = n - 1;
1344                int r = (s << 1) | 1;           // use odd-numbered indices
1345                if (ws[r &= m] != null) {       // collision
1346                    int probes = 0;             // step by approx half size
1347                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1348                    while (ws[r = (r + step) & m] != null) {
1349                        if (++probes >= n) {
1350                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1351                            m = n - 1;
1352                            probes = 0;
1353                        }
1354                    }
1355                }
1356                w.poolIndex = (short)r;
1357                w.eventCount = r; // volatile write orders
1358                ws[r] = w;
1359            }
1360        } finally {
1361            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1362                releasePlock(nps);
1363        }
1364        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1)));
1365        return w;
1366    }
1367
1368    /**
1369     * Final callback from terminating worker, as well as upon failure
1370     * to construct or start a worker.  Removes record of worker from
1371     * array, and adjusts counts. If pool is shutting down, tries to
1372     * complete termination.
1373     *
1374     * @param wt the worker thread, or null if construction failed
1375     * @param ex the exception causing failure, or null if none
1376     */
1377    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1378        WorkQueue w = null;
1379        if (wt != null && (w = wt.workQueue) != null) {
1380            int ps; long sc;
1381            w.qlock = -1;                // ensure set
1382            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1383                                               sc = stealCount,
1384                                               sc + w.nsteals));
1385            if (((ps = plock) & PL_LOCK) != 0 ||
1386                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1387                ps = acquirePlock();
1388            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1389            try {
1390                int idx = w.poolIndex;
1391                WorkQueue[] ws = workQueues;
1392                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1393                    ws[idx] = null;
1394            } finally {
1395                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1396                    releasePlock(nps);
1397            }
1398        }
1399
1400        long c;                          // adjust ctl counts
1401        do {} while (!U.compareAndSwapLong
1402                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1403                                           ((c - TC_UNIT) & TC_MASK) |
1404                                           (c & ~(AC_MASK|TC_MASK)))));
1405
1406        if (!tryTerminate(false, false) && w != null && w.array != null) {
1407            w.cancelAll();               // cancel remaining tasks
1408            WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1409            while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1410                if (e > 0) {             // activate or create replacement
1411                    if ((ws = workQueues) == null ||
1412                        (i = e & SMASK) >= ws.length ||
1413                        (v = ws[i]) == null)
1414                        break;
1415                    long nc = (((long)(v.nextWait & E_MASK)) |
1416                               ((long)(u + UAC_UNIT) << 32));
1417                    if (v.eventCount != (e | INT_SIGN))
1418                        break;
1419                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1420                        v.eventCount = (e + E_SEQ) & E_MASK;
1421                        if ((p = v.parker) != null)
1422                            U.unpark(p);
1423                        break;
1424                    }
1425                }
1426                else {
1427                    if ((short)u < 0)
1428                        tryAddWorker();
1429                    break;
1430                }
1431            }
1432        }
1433        if (ex == null)                     // help clean refs on way out
1434            ForkJoinTask.helpExpungeStaleExceptions();
1435        else                                // rethrow
1436            ForkJoinTask.rethrow(ex);
1437    }
1438
1439    // Submissions
1440
1441    /**
1442     * Per-thread records for threads that submit to pools. Currently
1443     * holds only pseudo-random seed / index that is used to choose
1444     * submission queues in method externalPush. In the future, this may
1445     * also incorporate a means to implement different task rejection
1446     * and resubmission policies.
1447     *
1448     * Seeds for submitters and workers/workQueues work in basically
1449     * the same way but are initialized and updated using slightly
1450     * different mechanics. Both are initialized using the same
1451     * approach as in class ThreadLocal, where successive values are
1452     * unlikely to collide with previous values. Seeds are then
1453     * randomly modified upon collisions using xorshifts, which
1454     * requires a non-zero seed.
1455     */
1456    static final class Submitter {
1457        int seed;
1458        Submitter(int s) { seed = s; }
1459    }
1460
1461    /**
1462     * Unless shutting down, adds the given task to a submission queue
1463     * at submitter's current queue index (modulo submission
1464     * range). Only the most common path is directly handled in this
1465     * method. All others are relayed to fullExternalPush.
1466     *
1467     * @param task the task. Caller must ensure non-null.
1468     */
1469    final void externalPush(ForkJoinTask<?> task) {
1470        Submitter z = submitters.get();
1471        WorkQueue q; int r, m, s, n, am; ForkJoinTask<?>[] a;
1472        int ps = plock;
1473        WorkQueue[] ws = workQueues;
1474        if (z != null && ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 &&
1475            (q = ws[m & (r = z.seed) & SQMASK]) != null && r != 0 &&
1476            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1477            if ((a = q.array) != null &&
1478                (am = a.length - 1) > (n = (s = q.top) - q.base)) {
1479                int j = ((am & s) << ASHIFT) + ABASE;
1480                U.putOrderedObject(a, j, task);
1481                q.top = s + 1;                     // push on to deque
1482                q.qlock = 0;
1483                if (n <= 1)
1484                    signalWork(ws, q);
1485                return;
1486            }
1487            q.qlock = 0;
1488        }
1489        fullExternalPush(task);
1490    }
1491
1492    /**
1493     * Full version of externalPush. This method is called, among
1494     * other times, upon the first submission of the first task to the
1495     * pool, so must perform secondary initialization.  It also
1496     * detects first submission by an external thread by looking up
1497     * its ThreadLocal, and creates a new shared queue if the one at
1498     * index if empty or contended. The plock lock body must be
1499     * exception-free (so no try/finally) so we optimistically
1500     * allocate new queues outside the lock and throw them away if
1501     * (very rarely) not needed.
1502     *
1503     * Secondary initialization occurs when plock is zero, to create
1504     * workQueue array and set plock to a valid value.  This lock body
1505     * must also be exception-free. Because the plock seq value can
1506     * eventually wrap around zero, this method harmlessly fails to
1507     * reinitialize if workQueues exists, while still advancing plock.
1508     */
1509    private void fullExternalPush(ForkJoinTask<?> task) {
1510        int r = 0; // random index seed
1511        for (Submitter z = submitters.get();;) {
1512            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1513            if (z == null) {
1514                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1515                                        r += SEED_INCREMENT) && r != 0)
1516                    submitters.set(z = new Submitter(r));
1517            }
1518            else if (r == 0) {                  // move to a different index
1519                r = z.seed;
1520                r ^= r << 13;                   // same xorshift as WorkQueues
1521                r ^= r >>> 17;
1522                z.seed = r ^= (r << 5);
1523            }
1524            if ((ps = plock) < 0)
1525                throw new RejectedExecutionException();
1526            else if (ps == 0 || (ws = workQueues) == null ||
1527                     (m = ws.length - 1) < 0) { // initialize workQueues
1528                int p = parallelism;            // find power of two table size
1529                int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
1530                n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
1531                n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1532                WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1533                                   new WorkQueue[n] : null);
1534                if (((ps = plock) & PL_LOCK) != 0 ||
1535                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1536                    ps = acquirePlock();
1537                if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1538                    workQueues = nws;
1539                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1540                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1541                    releasePlock(nps);
1542            }
1543            else if ((q = ws[k = r & m & SQMASK]) != null) {
1544                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1545                    ForkJoinTask<?>[] a = q.array;
1546                    int s = q.top;
1547                    boolean submitted = false;
1548                    try {                      // locked version of push
1549                        if ((a != null && a.length > s + 1 - q.base) ||
1550                            (a = q.growArray()) != null) {   // must presize
1551                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1552                            U.putOrderedObject(a, j, task);
1553                            q.top = s + 1;
1554                            submitted = true;
1555                        }
1556                    } finally {
1557                        q.qlock = 0;  // unlock
1558                    }
1559                    if (submitted) {
1560                        signalWork(ws, q);
1561                        return;
1562                    }
1563                }
1564                r = 0; // move on failure
1565            }
1566            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1567                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1568                q.poolIndex = (short)k;
1569                if (((ps = plock) & PL_LOCK) != 0 ||
1570                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1571                    ps = acquirePlock();
1572                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1573                    ws[k] = q;
1574                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1575                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1576                    releasePlock(nps);
1577            }
1578            else
1579                r = 0;
1580        }
1581    }
1582
1583    // Maintaining ctl counts
1584
1585    /**
1586     * Increments active count; mainly called upon return from blocking.
1587     */
1588    final void incrementActiveCount() {
1589        long c;
1590        do {} while (!U.compareAndSwapLong
1591                     (this, CTL, c = ctl, ((c & ~AC_MASK) |
1592                                           ((c & AC_MASK) + AC_UNIT))));
1593    }
1594
1595    /**
1596     * Tries to create or activate a worker if too few are active.
1597     *
1598     * @param ws the worker array to use to find signallees
1599     * @param q if non-null, the queue holding tasks to be processed
1600     */
1601    final void signalWork(WorkQueue[] ws, WorkQueue q) {
1602        for (;;) {
1603            long c; int e, u, i; WorkQueue w; Thread p;
1604            if ((u = (int)((c = ctl) >>> 32)) >= 0)
1605                break;
1606            if ((e = (int)c) <= 0) {
1607                if ((short)u < 0)
1608                    tryAddWorker();
1609                break;
1610            }
1611            if (ws == null || ws.length <= (i = e & SMASK) ||
1612                (w = ws[i]) == null)
1613                break;
1614            long nc = (((long)(w.nextWait & E_MASK)) |
1615                       ((long)(u + UAC_UNIT)) << 32);
1616            int ne = (e + E_SEQ) & E_MASK;
1617            if (w.eventCount == (e | INT_SIGN) &&
1618                U.compareAndSwapLong(this, CTL, c, nc)) {
1619                w.eventCount = ne;
1620                if ((p = w.parker) != null)
1621                    U.unpark(p);
1622                break;
1623            }
1624            if (q != null && q.base >= q.top)
1625                break;
1626        }
1627    }
1628
1629    // Scanning for tasks
1630
1631    /**
1632     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1633     */
1634    final void runWorker(WorkQueue w) {
1635        w.growArray(); // allocate queue
1636        for (int r = w.hint; scan(w, r) == 0; ) {
1637            r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1638        }
1639    }
1640
1641    /**
1642     * Scans for and, if found, runs one task, else possibly
1643     * inactivates the worker. This method operates on single reads of
1644     * volatile state and is designed to be re-invoked continuously,
1645     * in part because it returns upon detecting inconsistencies,
1646     * contention, or state changes that indicate possible success on
1647     * re-invocation.
1648     *
1649     * The scan searches for tasks across queues starting at a random
1650     * index, checking each at least twice.  The scan terminates upon
1651     * either finding a non-empty queue, or completing the sweep. If
1652     * the worker is not inactivated, it takes and runs a task from
1653     * this queue. Otherwise, if not activated, it tries to activate
1654     * itself or some other worker by signalling. On failure to find a
1655     * task, returns (for retry) if pool state may have changed during
1656     * an empty scan, or tries to inactivate if active, else possibly
1657     * blocks or terminates via method awaitWork.
1658     *
1659     * @param w the worker (via its WorkQueue)
1660     * @param r a random seed
1661     * @return worker qlock status if would have waited, else 0
1662     */
1663    private final int scan(WorkQueue w, int r) {
1664        WorkQueue[] ws; int m;
1665        long c = ctl;                            // for consistency check
1666        if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) {
1667            for (int j = m + m + 1, ec = w.eventCount;;) {
1668                WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1669                if ((q = ws[(r - j) & m]) != null &&
1670                    (b = q.base) - q.top < 0 && (a = q.array) != null) {
1671                    long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1672                    if ((t = ((ForkJoinTask<?>)
1673                              U.getObjectVolatile(a, i))) != null) {
1674                        if (ec < 0)
1675                            helpRelease(c, ws, w, q, b);
1676                        else if (q.base == b &&
1677                                 U.compareAndSwapObject(a, i, t, null)) {
1678                            U.putOrderedInt(q, QBASE, b + 1);
1679                            if ((b + 1) - q.top < 0)
1680                                signalWork(ws, q);
1681                            w.runTask(t);
1682                        }
1683                    }
1684                    break;
1685                }
1686                else if (--j < 0) {
1687                    if ((ec | (e = (int)c)) < 0) // inactive or terminating
1688                        return awaitWork(w, c, ec);
1689                    else if (ctl == c) {         // try to inactivate and enqueue
1690                        long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1691                        w.nextWait = e;
1692                        w.eventCount = ec | INT_SIGN;
1693                        if (!U.compareAndSwapLong(this, CTL, c, nc))
1694                            w.eventCount = ec;   // back out
1695                    }
1696                    break;
1697                }
1698            }
1699        }
1700        return 0;
1701    }
1702
1703    /**
1704     * A continuation of scan(), possibly blocking or terminating
1705     * worker w. Returns without blocking if pool state has apparently
1706     * changed since last invocation.  Also, if inactivating w has
1707     * caused the pool to become quiescent, checks for pool
1708     * termination, and, so long as this is not the only worker, waits
1709     * for event for up to a given duration.  On timeout, if ctl has
1710     * not changed, terminates the worker, which will in turn wake up
1711     * another worker to possibly repeat this process.
1712     *
1713     * @param w the calling worker
1714     * @param c the ctl value on entry to scan
1715     * @param ec the worker's eventCount on entry to scan
1716     */
1717    private final int awaitWork(WorkQueue w, long c, int ec) {
1718        int stat, ns; long parkTime, deadline;
1719        if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c &&
1720            !Thread.interrupted()) {
1721            int e = (int)c;
1722            int u = (int)(c >>> 32);
1723            int d = (u >> UAC_SHIFT) + parallelism; // active count
1724
1725            if (e < 0 || (d <= 0 && tryTerminate(false, false)))
1726                stat = w.qlock = -1;          // pool is terminating
1727            else if ((ns = w.nsteals) != 0) { // collect steals and retry
1728                long sc;
1729                w.nsteals = 0;
1730                do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1731                                                   sc = stealCount, sc + ns));
1732            }
1733            else {
1734                long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L :
1735                           ((long)(w.nextWait & E_MASK)) | // ctl to restore
1736                           ((long)(u + UAC_UNIT)) << 32);
1737                if (pc != 0L) {               // timed wait if last waiter
1738                    int dc = -(short)(c >>> TC_SHIFT);
1739                    parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
1740                                (dc + 1) * IDLE_TIMEOUT);
1741                    deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1742                }
1743                else
1744                    parkTime = deadline = 0L;
1745                if (w.eventCount == ec && ctl == c) {
1746                    Thread wt = Thread.currentThread();
1747                    U.putObject(wt, PARKBLOCKER, this);
1748                    w.parker = wt;            // emulate LockSupport.park
1749                    if (w.eventCount == ec && ctl == c)
1750                        U.park(false, parkTime);  // must recheck before park
1751                    w.parker = null;
1752                    U.putObject(wt, PARKBLOCKER, null);
1753                    if (parkTime != 0L && ctl == c &&
1754                        deadline - System.nanoTime() <= 0L &&
1755                        U.compareAndSwapLong(this, CTL, c, pc))
1756                        stat = w.qlock = -1;  // shrink pool
1757                }
1758            }
1759        }
1760        return stat;
1761    }
1762
1763    /**
1764     * Possibly releases (signals) a worker. Called only from scan()
1765     * when a worker with apparently inactive status finds a non-empty
1766     * queue. This requires revalidating all of the associated state
1767     * from caller.
1768     */
1769    private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w,
1770                                   WorkQueue q, int b) {
1771        WorkQueue v; int e, i; Thread p;
1772        if (w != null && w.eventCount < 0 && (e = (int)c) > 0 &&
1773            ws != null && ws.length > (i = e & SMASK) &&
1774            (v = ws[i]) != null && ctl == c) {
1775            long nc = (((long)(v.nextWait & E_MASK)) |
1776                       ((long)((int)(c >>> 32) + UAC_UNIT)) << 32);
1777            int ne = (e + E_SEQ) & E_MASK;
1778            if (q != null && q.base == b && w.eventCount < 0 &&
1779                v.eventCount == (e | INT_SIGN) &&
1780                U.compareAndSwapLong(this, CTL, c, nc)) {
1781                v.eventCount = ne;
1782                if ((p = v.parker) != null)
1783                    U.unpark(p);
1784            }
1785        }
1786    }
1787
1788    /**
1789     * Tries to locate and execute tasks for a stealer of the given
1790     * task, or in turn one of its stealers, Traces currentSteal ->
1791     * currentJoin links looking for a thread working on a descendant
1792     * of the given task and with a non-empty queue to steal back and
1793     * execute tasks from. The first call to this method upon a
1794     * waiting join will often entail scanning/search, (which is OK
1795     * because the joiner has nothing better to do), but this method
1796     * leaves hints in workers to speed up subsequent calls. The
1797     * implementation is very branchy to cope with potential
1798     * inconsistencies or loops encountering chains that are stale,
1799     * unknown, or so long that they are likely cyclic.
1800     *
1801     * @param joiner the joining worker
1802     * @param task the task to join
1803     * @return 0 if no progress can be made, negative if task
1804     * known complete, else positive
1805     */
1806    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1807        int stat = 0, steps = 0;                    // bound to avoid cycles
1808        if (task != null && joiner != null &&
1809            joiner.base - joiner.top >= 0) {        // hoist checks
1810            restart: for (;;) {
1811                ForkJoinTask<?> subtask = task;     // current target
1812                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1813                    WorkQueue[] ws; int m, s, h;
1814                    if ((s = task.status) < 0) {
1815                        stat = s;
1816                        break restart;
1817                    }
1818                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1819                        break restart;              // shutting down
1820                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1821                        v.currentSteal != subtask) {
1822                        for (int origin = h;;) {    // find stealer
1823                            if (((h = (h + 2) & m) & 15) == 1 &&
1824                                (subtask.status < 0 || j.currentJoin != subtask))
1825                                continue restart;   // occasional staleness check
1826                            if ((v = ws[h]) != null &&
1827                                v.currentSteal == subtask) {
1828                                j.hint = h;        // save hint
1829                                break;
1830                            }
1831                            if (h == origin)
1832                                break restart;      // cannot find stealer
1833                        }
1834                    }
1835                    for (;;) { // help stealer or descend to its stealer
1836                        ForkJoinTask[] a; int b;
1837                        if (subtask.status < 0)     // surround probes with
1838                            continue restart;       //   consistency checks
1839                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1840                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1841                            ForkJoinTask<?> t =
1842                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1843                            if (subtask.status < 0 || j.currentJoin != subtask ||
1844                                v.currentSteal != subtask)
1845                                continue restart;   // stale
1846                            stat = 1;               // apparent progress
1847                            if (v.base == b) {
1848                                if (t == null)
1849                                    break restart;
1850                                if (U.compareAndSwapObject(a, i, t, null)) {
1851                                    U.putOrderedInt(v, QBASE, b + 1);
1852                                    ForkJoinTask<?> ps = joiner.currentSteal;
1853                                    int jt = joiner.top;
1854                                    do {
1855                                        joiner.currentSteal = t;
1856                                        t.doExec(); // clear local tasks too
1857                                    } while (task.status >= 0 &&
1858                                             joiner.top != jt &&
1859                                             (t = joiner.pop()) != null);
1860                                    joiner.currentSteal = ps;
1861                                    break restart;
1862                                }
1863                            }
1864                        }
1865                        else {                      // empty -- try to descend
1866                            ForkJoinTask<?> next = v.currentJoin;
1867                            if (subtask.status < 0 || j.currentJoin != subtask ||
1868                                v.currentSteal != subtask)
1869                                continue restart;   // stale
1870                            else if (next == null || ++steps == MAX_HELP)
1871                                break restart;      // dead-end or maybe cyclic
1872                            else {
1873                                subtask = next;
1874                                j = v;
1875                                break;
1876                            }
1877                        }
1878                    }
1879                }
1880            }
1881        }
1882        return stat;
1883    }
1884
1885    /**
1886     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1887     * and run tasks within the target's computation.
1888     *
1889     * @param task the task to join
1890     */
1891    private int helpComplete(WorkQueue joiner, CountedCompleter<?> task) {
1892        WorkQueue[] ws; int m;
1893        int s = 0;
1894        if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1895            joiner != null && task != null) {
1896            int j = joiner.poolIndex;
1897            int scans = m + m + 1;
1898            long c = 0L;              // for stability check
1899            for (int k = scans; ; j += 2) {
1900                WorkQueue q;
1901                if ((s = task.status) < 0)
1902                    break;
1903                else if (joiner.internalPopAndExecCC(task))
1904                    k = scans;
1905                else if ((s = task.status) < 0)
1906                    break;
1907                else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
1908                    k = scans;
1909                else if (--k < 0) {
1910                    if (c == (c = ctl))
1911                        break;
1912                    k = scans;
1913                }
1914            }
1915        }
1916        return s;
1917    }
1918
1919    /**
1920     * Tries to decrement active count (sometimes implicitly) and
1921     * possibly release or create a compensating worker in preparation
1922     * for blocking. Fails on contention or termination. Otherwise,
1923     * adds a new thread if no idle workers are available and pool
1924     * may become starved.
1925     *
1926     * @param c the assumed ctl value
1927     */
1928    final boolean tryCompensate(long c) {
1929        WorkQueue[] ws = workQueues;
1930        int pc = parallelism, e = (int)c, m, tc;
1931        if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) {
1932            WorkQueue w = ws[e & m];
1933            if (e != 0 && w != null) {
1934                Thread p;
1935                long nc = ((long)(w.nextWait & E_MASK) |
1936                           (c & (AC_MASK|TC_MASK)));
1937                int ne = (e + E_SEQ) & E_MASK;
1938                if (w.eventCount == (e | INT_SIGN) &&
1939                    U.compareAndSwapLong(this, CTL, c, nc)) {
1940                    w.eventCount = ne;
1941                    if ((p = w.parker) != null)
1942                        U.unpark(p);
1943                    return true;   // replace with idle worker
1944                }
1945            }
1946            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1947                     (int)(c >> AC_SHIFT) + pc > 1) {
1948                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1949                if (U.compareAndSwapLong(this, CTL, c, nc))
1950                    return true;   // no compensation
1951            }
1952            else if (tc + pc < MAX_CAP) {
1953                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1954                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1955                    ForkJoinWorkerThreadFactory fac;
1956                    Throwable ex = null;
1957                    ForkJoinWorkerThread wt = null;
1958                    try {
1959                        if ((fac = factory) != null &&
1960                            (wt = fac.newThread(this)) != null) {
1961                            wt.start();
1962                            return true;
1963                        }
1964                    } catch (Throwable rex) {
1965                        ex = rex;
1966                    }
1967                    deregisterWorker(wt, ex); // clean up and return false
1968                }
1969            }
1970        }
1971        return false;
1972    }
1973
1974    /**
1975     * Helps and/or blocks until the given task is done.
1976     *
1977     * @param joiner the joining worker
1978     * @param task the task
1979     * @return task status on exit
1980     */
1981    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1982        int s = 0;
1983        if (task != null && (s = task.status) >= 0 && joiner != null) {
1984            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1985            joiner.currentJoin = task;
1986            do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
1987                         (s = task.status) >= 0);
1988            if (s >= 0 && (task instanceof CountedCompleter))
1989                s = helpComplete(joiner, (CountedCompleter<?>)task);
1990            long cc = 0;        // for stability checks
1991            while (s >= 0 && (s = task.status) >= 0) {
1992                if ((s = tryHelpStealer(joiner, task)) == 0 &&
1993                    (s = task.status) >= 0) {
1994                    if (!tryCompensate(cc))
1995                        cc = ctl;
1996                    else {
1997                        if (task.trySetSignal() && (s = task.status) >= 0) {
1998                            synchronized (task) {
1999                                if (task.status >= 0) {
2000                                    try {                // see ForkJoinTask
2001                                        task.wait();     //  for explanation
2002                                    } catch (InterruptedException ie) {
2003                                    }
2004                                }
2005                                else
2006                                    task.notifyAll();
2007                            }
2008                        }
2009                        long c; // reactivate
2010                        do {} while (!U.compareAndSwapLong
2011                                     (this, CTL, c = ctl,
2012                                      ((c & ~AC_MASK) |
2013                                       ((c & AC_MASK) + AC_UNIT))));
2014                    }
2015                }
2016            }
2017            joiner.currentJoin = prevJoin;
2018        }
2019        return s;
2020    }
2021
2022    /**
2023     * Stripped-down variant of awaitJoin used by timed joins. Tries
2024     * to help join only while there is continuous progress. (Caller
2025     * will then enter a timed wait.)
2026     *
2027     * @param joiner the joining worker
2028     * @param task the task
2029     */
2030    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2031        int s;
2032        if (joiner != null && task != null && (s = task.status) >= 0) {
2033            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2034            joiner.currentJoin = task;
2035            do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
2036                         (s = task.status) >= 0);
2037            if (s >= 0) {
2038                if (task instanceof CountedCompleter)
2039                    helpComplete(joiner, (CountedCompleter<?>)task);
2040                do {} while (task.status >= 0 &&
2041                             tryHelpStealer(joiner, task) > 0);
2042            }
2043            joiner.currentJoin = prevJoin;
2044        }
2045    }
2046
2047    /**
2048     * Returns a (probably) non-empty steal queue, if one is found
2049     * during a scan, else null.  This method must be retried by
2050     * caller if, by the time it tries to use the queue, it is empty.
2051     */
2052    private WorkQueue findNonEmptyStealQueue() {
2053        int r = ThreadLocalRandom.current().nextInt();
2054        for (;;) {
2055            int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2056            if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2057                for (int j = (m + 1) << 2; j >= 0; --j) {
2058                    if ((q = ws[(((r - j) << 1) | 1) & m]) != null &&
2059                        q.base - q.top < 0)
2060                        return q;
2061                }
2062            }
2063            if (plock == ps)
2064                return null;
2065        }
2066    }
2067
2068    /**
2069     * Runs tasks until {@code isQuiescent()}. We piggyback on
2070     * active count ctl maintenance, but rather than blocking
2071     * when tasks cannot be found, we rescan until all others cannot
2072     * find tasks either.
2073     */
2074    final void helpQuiescePool(WorkQueue w) {
2075        ForkJoinTask<?> ps = w.currentSteal;
2076        for (boolean active = true;;) {
2077            long c; WorkQueue q; ForkJoinTask<?> t; int b;
2078            while ((t = w.nextLocalTask()) != null)
2079                t.doExec();
2080            if ((q = findNonEmptyStealQueue()) != null) {
2081                if (!active) {      // re-establish active count
2082                    active = true;
2083                    do {} while (!U.compareAndSwapLong
2084                                 (this, CTL, c = ctl,
2085                                  ((c & ~AC_MASK) |
2086                                   ((c & AC_MASK) + AC_UNIT))));
2087                }
2088                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2089                    (w.currentSteal = t).doExec();
2090                    w.currentSteal = ps;
2091                }
2092            }
2093            else if (active) {       // decrement active count without queuing
2094                long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT);
2095                if ((int)(nc >> AC_SHIFT) + parallelism == 0)
2096                    break;          // bypass decrement-then-increment
2097                if (U.compareAndSwapLong(this, CTL, c, nc))
2098                    active = false;
2099            }
2100            else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 &&
2101                     U.compareAndSwapLong
2102                     (this, CTL, c, ((c & ~AC_MASK) |
2103                                     ((c & AC_MASK) + AC_UNIT))))
2104                break;
2105        }
2106    }
2107
2108    /**
2109     * Gets and removes a local or stolen task for the given worker.
2110     *
2111     * @return a task, if available
2112     */
2113    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2114        for (ForkJoinTask<?> t;;) {
2115            WorkQueue q; int b;
2116            if ((t = w.nextLocalTask()) != null)
2117                return t;
2118            if ((q = findNonEmptyStealQueue()) == null)
2119                return null;
2120            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2121                return t;
2122        }
2123    }
2124
2125    /**
2126     * Returns a cheap heuristic guide for task partitioning when
2127     * programmers, frameworks, tools, or languages have little or no
2128     * idea about task granularity.  In essence by offering this
2129     * method, we ask users only about tradeoffs in overhead vs
2130     * expected throughput and its variance, rather than how finely to
2131     * partition tasks.
2132     *
2133     * In a steady state strict (tree-structured) computation, each
2134     * thread makes available for stealing enough tasks for other
2135     * threads to remain active. Inductively, if all threads play by
2136     * the same rules, each thread should make available only a
2137     * constant number of tasks.
2138     *
2139     * The minimum useful constant is just 1. But using a value of 1
2140     * would require immediate replenishment upon each steal to
2141     * maintain enough tasks, which is infeasible.  Further,
2142     * partitionings/granularities of offered tasks should minimize
2143     * steal rates, which in general means that threads nearer the top
2144     * of computation tree should generate more than those nearer the
2145     * bottom. In perfect steady state, each thread is at
2146     * approximately the same level of computation tree. However,
2147     * producing extra tasks amortizes the uncertainty of progress and
2148     * diffusion assumptions.
2149     *
2150     * So, users will want to use values larger (but not much larger)
2151     * than 1 to both smooth over transient shortages and hedge
2152     * against uneven progress; as traded off against the cost of
2153     * extra task overhead. We leave the user to pick a threshold
2154     * value to compare with the results of this call to guide
2155     * decisions, but recommend values such as 3.
2156     *
2157     * When all threads are active, it is on average OK to estimate
2158     * surplus strictly locally. In steady-state, if one thread is
2159     * maintaining say 2 surplus tasks, then so are others. So we can
2160     * just use estimated queue length.  However, this strategy alone
2161     * leads to serious mis-estimates in some non-steady-state
2162     * conditions (ramp-up, ramp-down, other stalls). We can detect
2163     * many of these by further considering the number of "idle"
2164     * threads, that are known to have zero queued tasks, so
2165     * compensate by a factor of (#idle/#active) threads.
2166     *
2167     * Note: The approximation of #busy workers as #active workers is
2168     * not very good under current signalling scheme, and should be
2169     * improved.
2170     */
2171    static int getSurplusQueuedTaskCount() {
2172        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2173        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2174            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism;
2175            int n = (q = wt.workQueue).top - q.base;
2176            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2177            return n - (a > (p >>>= 1) ? 0 :
2178                        a > (p >>>= 1) ? 1 :
2179                        a > (p >>>= 1) ? 2 :
2180                        a > (p >>>= 1) ? 4 :
2181                        8);
2182        }
2183        return 0;
2184    }
2185
2186    //  Termination
2187
2188    /**
2189     * Possibly initiates and/or completes termination.  The caller
2190     * triggering termination runs three passes through workQueues:
2191     * (0) Setting termination status, followed by wakeups of queued
2192     * workers; (1) cancelling all tasks; (2) interrupting lagging
2193     * threads (likely in external tasks, but possibly also blocked in
2194     * joins).  Each pass repeats previous steps because of potential
2195     * lagging thread creation.
2196     *
2197     * @param now if true, unconditionally terminate, else only
2198     * if no work and no active workers
2199     * @param enable if true, enable shutdown when next possible
2200     * @return true if now terminating or terminated
2201     */
2202    private boolean tryTerminate(boolean now, boolean enable) {
2203        int ps;
2204        if (this == common)                        // cannot shut down
2205            return false;
2206        if ((ps = plock) >= 0) {                   // enable by setting plock
2207            if (!enable)
2208                return false;
2209            if ((ps & PL_LOCK) != 0 ||
2210                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2211                ps = acquirePlock();
2212            int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2213            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2214                releasePlock(nps);
2215        }
2216        for (long c;;) {
2217            if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
2218                if ((short)(c >>> TC_SHIFT) + parallelism <= 0) {
2219                    synchronized (this) {
2220                        notifyAll();               // signal when 0 workers
2221                    }
2222                }
2223                return true;
2224            }
2225            if (!now) {                            // check if idle & no tasks
2226                WorkQueue[] ws; WorkQueue w;
2227                if ((int)(c >> AC_SHIFT) + parallelism > 0)
2228                    return false;
2229                if ((ws = workQueues) != null) {
2230                    for (int i = 0; i < ws.length; ++i) {
2231                        if ((w = ws[i]) != null &&
2232                            (!w.isEmpty() ||
2233                             ((i & 1) != 0 && w.eventCount >= 0))) {
2234                            signalWork(ws, w);
2235                            return false;
2236                        }
2237                    }
2238                }
2239            }
2240            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2241                for (int pass = 0; pass < 3; ++pass) {
2242                    WorkQueue[] ws; WorkQueue w; Thread wt;
2243                    if ((ws = workQueues) != null) {
2244                        int n = ws.length;
2245                        for (int i = 0; i < n; ++i) {
2246                            if ((w = ws[i]) != null) {
2247                                w.qlock = -1;
2248                                if (pass > 0) {
2249                                    w.cancelAll();
2250                                    if (pass > 1 && (wt = w.owner) != null) {
2251                                        if (!wt.isInterrupted()) {
2252                                            try {
2253                                                wt.interrupt();
2254                                            } catch (Throwable ignore) {
2255                                            }
2256                                        }
2257                                        U.unpark(wt);
2258                                    }
2259                                }
2260                            }
2261                        }
2262                        // Wake up workers parked on event queue
2263                        int i, e; long cc; Thread p;
2264                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2265                               (i = e & SMASK) < n && i >= 0 &&
2266                               (w = ws[i]) != null) {
2267                            long nc = ((long)(w.nextWait & E_MASK) |
2268                                       ((cc + AC_UNIT) & AC_MASK) |
2269                                       (cc & (TC_MASK|STOP_BIT)));
2270                            if (w.eventCount == (e | INT_SIGN) &&
2271                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2272                                w.eventCount = (e + E_SEQ) & E_MASK;
2273                                w.qlock = -1;
2274                                if ((p = w.parker) != null)
2275                                    U.unpark(p);
2276                            }
2277                        }
2278                    }
2279                }
2280            }
2281        }
2282    }
2283
2284    // external operations on common pool
2285
2286    /**
2287     * Returns common pool queue for a thread that has submitted at
2288     * least one task.
2289     */
2290    static WorkQueue commonSubmitterQueue() {
2291        Submitter z; ForkJoinPool p; WorkQueue[] ws; int m, r;
2292        return ((z = submitters.get()) != null &&
2293                (p = common) != null &&
2294                (ws = p.workQueues) != null &&
2295                (m = ws.length - 1) >= 0) ?
2296            ws[m & z.seed & SQMASK] : null;
2297    }
2298
2299    /**
2300     * Tries to pop the given task from submitter's queue in common pool.
2301     */
2302    final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2303        WorkQueue joiner; ForkJoinTask<?>[] a; int m, s;
2304        Submitter z = submitters.get();
2305        WorkQueue[] ws = workQueues;
2306        boolean popped = false;
2307        if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2308            (joiner = ws[z.seed & m & SQMASK]) != null &&
2309            joiner.base != (s = joiner.top) &&
2310            (a = joiner.array) != null) {
2311            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2312            if (U.getObject(a, j) == task &&
2313                U.compareAndSwapInt(joiner, QLOCK, 0, 1)) {
2314                if (joiner.top == s && joiner.array == a &&
2315                    U.compareAndSwapObject(a, j, task, null)) {
2316                    joiner.top = s - 1;
2317                    popped = true;
2318                }
2319                joiner.qlock = 0;
2320            }
2321        }
2322        return popped;
2323    }
2324
2325    final int externalHelpComplete(CountedCompleter<?> task) {
2326        WorkQueue joiner; int m, j;
2327        Submitter z = submitters.get();
2328        WorkQueue[] ws = workQueues;
2329        int s = 0;
2330        if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2331            (joiner = ws[(j = z.seed) & m & SQMASK]) != null && task != null) {
2332            int scans = m + m + 1;
2333            long c = 0L;             // for stability check
2334            j |= 1;                  // poll odd queues
2335            for (int k = scans; ; j += 2) {
2336                WorkQueue q;
2337                if ((s = task.status) < 0)
2338                    break;
2339                else if (joiner.externalPopAndExecCC(task))
2340                    k = scans;
2341                else if ((s = task.status) < 0)
2342                    break;
2343                else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
2344                    k = scans;
2345                else if (--k < 0) {
2346                    if (c == (c = ctl))
2347                        break;
2348                    k = scans;
2349                }
2350            }
2351        }
2352        return s;
2353    }
2354
2355    // Exported methods
2356
2357    // Constructors
2358
2359    /**
2360     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2361     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2362     * #defaultForkJoinWorkerThreadFactory default thread factory},
2363     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2364     */
2365    public ForkJoinPool() {
2366        this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2367             defaultForkJoinWorkerThreadFactory, null, false);
2368    }
2369
2370    /**
2371     * Creates a {@code ForkJoinPool} with the indicated parallelism
2372     * level, the {@linkplain
2373     * #defaultForkJoinWorkerThreadFactory default thread factory},
2374     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2375     *
2376     * @param parallelism the parallelism level
2377     * @throws IllegalArgumentException if parallelism less than or
2378     *         equal to zero, or greater than implementation limit
2379     */
2380    public ForkJoinPool(int parallelism) {
2381        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2382    }
2383
2384    /**
2385     * Creates a {@code ForkJoinPool} with the given parameters.
2386     *
2387     * @param parallelism the parallelism level. For default value,
2388     * use {@link java.lang.Runtime#availableProcessors}.
2389     * @param factory the factory for creating new threads. For default value,
2390     * use {@link #defaultForkJoinWorkerThreadFactory}.
2391     * @param handler the handler for internal worker threads that
2392     * terminate due to unrecoverable errors encountered while executing
2393     * tasks. For default value, use {@code null}.
2394     * @param asyncMode if true,
2395     * establishes local first-in-first-out scheduling mode for forked
2396     * tasks that are never joined. This mode may be more appropriate
2397     * than default locally stack-based mode in applications in which
2398     * worker threads only process event-style asynchronous tasks.
2399     * For default value, use {@code false}.
2400     * @throws IllegalArgumentException if parallelism less than or
2401     *         equal to zero, or greater than implementation limit
2402     * @throws NullPointerException if the factory is null
2403     */
2404    public ForkJoinPool(int parallelism,
2405                        ForkJoinWorkerThreadFactory factory,
2406                        UncaughtExceptionHandler handler,
2407                        boolean asyncMode) {
2408        this(checkParallelism(parallelism),
2409             checkFactory(factory),
2410             handler,
2411             (asyncMode ? FIFO_QUEUE : LIFO_QUEUE),
2412             "ForkJoinPool-" + nextPoolId() + "-worker-");
2413        checkPermission();
2414    }
2415
2416    private static int checkParallelism(int parallelism) {
2417        if (parallelism <= 0 || parallelism > MAX_CAP)
2418            throw new IllegalArgumentException();
2419        return parallelism;
2420    }
2421
2422    private static ForkJoinWorkerThreadFactory checkFactory
2423        (ForkJoinWorkerThreadFactory factory) {
2424        if (factory == null)
2425            throw new NullPointerException();
2426        return factory;
2427    }
2428
2429    /**
2430     * Creates a {@code ForkJoinPool} with the given parameters, without
2431     * any security checks or parameter validation.  Invoked directly by
2432     * makeCommonPool.
2433     */
2434    private ForkJoinPool(int parallelism,
2435                         ForkJoinWorkerThreadFactory factory,
2436                         UncaughtExceptionHandler handler,
2437                         int mode,
2438                         String workerNamePrefix) {
2439        this.workerNamePrefix = workerNamePrefix;
2440        this.factory = factory;
2441        this.ueh = handler;
2442        this.mode = (short)mode;
2443        this.parallelism = (short)parallelism;
2444        long np = (long)(-parallelism); // offset ctl counts
2445        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2446    }
2447
2448    /**
2449     * Returns the common pool instance. This pool is statically
2450     * constructed; its run state is unaffected by attempts to {@link
2451     * #shutdown} or {@link #shutdownNow}. However this pool and any
2452     * ongoing processing are automatically terminated upon program
2453     * {@link System#exit}.  Any program that relies on asynchronous
2454     * task processing to complete before program termination should
2455     * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2456     * before exit.
2457     *
2458     * @return the common pool instance
2459     * @since 1.8
2460     * @hide
2461     */
2462    public static ForkJoinPool commonPool() {
2463        // assert common != null : "static init error";
2464        return common;
2465    }
2466
2467    // Execution methods
2468
2469    /**
2470     * Performs the given task, returning its result upon completion.
2471     * If the computation encounters an unchecked Exception or Error,
2472     * it is rethrown as the outcome of this invocation.  Rethrown
2473     * exceptions behave in the same way as regular exceptions, but,
2474     * when possible, contain stack traces (as displayed for example
2475     * using {@code ex.printStackTrace()}) of both the current thread
2476     * as well as the thread actually encountering the exception;
2477     * minimally only the latter.
2478     *
2479     * @param task the task
2480     * @return the task's result
2481     * @throws NullPointerException if the task is null
2482     * @throws RejectedExecutionException if the task cannot be
2483     *         scheduled for execution
2484     */
2485    public <T> T invoke(ForkJoinTask<T> task) {
2486        if (task == null)
2487            throw new NullPointerException();
2488        externalPush(task);
2489        return task.join();
2490    }
2491
2492    /**
2493     * Arranges for (asynchronous) execution of the given task.
2494     *
2495     * @param task the task
2496     * @throws NullPointerException if the task is null
2497     * @throws RejectedExecutionException if the task cannot be
2498     *         scheduled for execution
2499     */
2500    public void execute(ForkJoinTask<?> task) {
2501        if (task == null)
2502            throw new NullPointerException();
2503        externalPush(task);
2504    }
2505
2506    // AbstractExecutorService methods
2507
2508    /**
2509     * @throws NullPointerException if the task is null
2510     * @throws RejectedExecutionException if the task cannot be
2511     *         scheduled for execution
2512     */
2513    public void execute(Runnable task) {
2514        if (task == null)
2515            throw new NullPointerException();
2516        ForkJoinTask<?> job;
2517        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2518            job = (ForkJoinTask<?>) task;
2519        else
2520            job = new ForkJoinTask.RunnableExecuteAction(task);
2521        externalPush(job);
2522    }
2523
2524    /**
2525     * Submits a ForkJoinTask for execution.
2526     *
2527     * @param task the task to submit
2528     * @return the task
2529     * @throws NullPointerException if the task is null
2530     * @throws RejectedExecutionException if the task cannot be
2531     *         scheduled for execution
2532     */
2533    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2534        if (task == null)
2535            throw new NullPointerException();
2536        externalPush(task);
2537        return task;
2538    }
2539
2540    /**
2541     * @throws NullPointerException if the task is null
2542     * @throws RejectedExecutionException if the task cannot be
2543     *         scheduled for execution
2544     */
2545    public <T> ForkJoinTask<T> submit(Callable<T> task) {
2546        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2547        externalPush(job);
2548        return job;
2549    }
2550
2551    /**
2552     * @throws NullPointerException if the task is null
2553     * @throws RejectedExecutionException if the task cannot be
2554     *         scheduled for execution
2555     */
2556    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2557        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2558        externalPush(job);
2559        return job;
2560    }
2561
2562    /**
2563     * @throws NullPointerException if the task is null
2564     * @throws RejectedExecutionException if the task cannot be
2565     *         scheduled for execution
2566     */
2567    public ForkJoinTask<?> submit(Runnable task) {
2568        if (task == null)
2569            throw new NullPointerException();
2570        ForkJoinTask<?> job;
2571        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2572            job = (ForkJoinTask<?>) task;
2573        else
2574            job = new ForkJoinTask.AdaptedRunnableAction(task);
2575        externalPush(job);
2576        return job;
2577    }
2578
2579    /**
2580     * @throws NullPointerException       {@inheritDoc}
2581     * @throws RejectedExecutionException {@inheritDoc}
2582     */
2583    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2584        // In previous versions of this class, this method constructed
2585        // a task to run ForkJoinTask.invokeAll, but now external
2586        // invocation of multiple tasks is at least as efficient.
2587        ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2588
2589        boolean done = false;
2590        try {
2591            for (Callable<T> t : tasks) {
2592                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2593                futures.add(f);
2594                externalPush(f);
2595            }
2596            for (int i = 0, size = futures.size(); i < size; i++)
2597                ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2598            done = true;
2599            return futures;
2600        } finally {
2601            if (!done)
2602                for (int i = 0, size = futures.size(); i < size; i++)
2603                    futures.get(i).cancel(false);
2604        }
2605    }
2606
2607    /**
2608     * Returns the factory used for constructing new workers.
2609     *
2610     * @return the factory used for constructing new workers
2611     */
2612    public ForkJoinWorkerThreadFactory getFactory() {
2613        return factory;
2614    }
2615
2616    /**
2617     * Returns the handler for internal worker threads that terminate
2618     * due to unrecoverable errors encountered while executing tasks.
2619     *
2620     * @return the handler, or {@code null} if none
2621     */
2622    public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2623        return ueh;
2624    }
2625
2626    /**
2627     * Returns the targeted parallelism level of this pool.
2628     *
2629     * @return the targeted parallelism level of this pool
2630     */
2631    public int getParallelism() {
2632        int par;
2633        return ((par = parallelism) > 0) ? par : 1;
2634    }
2635
2636    /**
2637     * Returns the targeted parallelism level of the common pool.
2638     *
2639     * @return the targeted parallelism level of the common pool
2640     * @since 1.8
2641     * @hide
2642     */
2643    public static int getCommonPoolParallelism() {
2644        return commonParallelism;
2645    }
2646
2647    /**
2648     * Returns the number of worker threads that have started but not
2649     * yet terminated.  The result returned by this method may differ
2650     * from {@link #getParallelism} when threads are created to
2651     * maintain parallelism when others are cooperatively blocked.
2652     *
2653     * @return the number of worker threads
2654     */
2655    public int getPoolSize() {
2656        return parallelism + (short)(ctl >>> TC_SHIFT);
2657    }
2658
2659    /**
2660     * Returns {@code true} if this pool uses local first-in-first-out
2661     * scheduling mode for forked tasks that are never joined.
2662     *
2663     * @return {@code true} if this pool uses async mode
2664     */
2665    public boolean getAsyncMode() {
2666        return mode == FIFO_QUEUE;
2667    }
2668
2669    /**
2670     * Returns an estimate of the number of worker threads that are
2671     * not blocked waiting to join tasks or for other managed
2672     * synchronization. This method may overestimate the
2673     * number of running threads.
2674     *
2675     * @return the number of worker threads
2676     */
2677    public int getRunningThreadCount() {
2678        int rc = 0;
2679        WorkQueue[] ws; WorkQueue w;
2680        if ((ws = workQueues) != null) {
2681            for (int i = 1; i < ws.length; i += 2) {
2682                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2683                    ++rc;
2684            }
2685        }
2686        return rc;
2687    }
2688
2689    /**
2690     * Returns an estimate of the number of threads that are currently
2691     * stealing or executing tasks. This method may overestimate the
2692     * number of active threads.
2693     *
2694     * @return the number of active threads
2695     */
2696    public int getActiveThreadCount() {
2697        int r = parallelism + (int)(ctl >> AC_SHIFT);
2698        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2699    }
2700
2701    /**
2702     * Returns {@code true} if all worker threads are currently idle.
2703     * An idle worker is one that cannot obtain a task to execute
2704     * because none are available to steal from other threads, and
2705     * there are no pending submissions to the pool. This method is
2706     * conservative; it might not return {@code true} immediately upon
2707     * idleness of all threads, but will eventually become true if
2708     * threads remain inactive.
2709     *
2710     * @return {@code true} if all threads are currently idle
2711     */
2712    public boolean isQuiescent() {
2713        return parallelism + (int)(ctl >> AC_SHIFT) <= 0;
2714    }
2715
2716    /**
2717     * Returns an estimate of the total number of tasks stolen from
2718     * one thread's work queue by another. The reported value
2719     * underestimates the actual total number of steals when the pool
2720     * is not quiescent. This value may be useful for monitoring and
2721     * tuning fork/join programs: in general, steal counts should be
2722     * high enough to keep threads busy, but low enough to avoid
2723     * overhead and contention across threads.
2724     *
2725     * @return the number of steals
2726     */
2727    public long getStealCount() {
2728        long count = stealCount;
2729        WorkQueue[] ws; WorkQueue w;
2730        if ((ws = workQueues) != null) {
2731            for (int i = 1; i < ws.length; i += 2) {
2732                if ((w = ws[i]) != null)
2733                    count += w.nsteals;
2734            }
2735        }
2736        return count;
2737    }
2738
2739    /**
2740     * Returns an estimate of the total number of tasks currently held
2741     * in queues by worker threads (but not including tasks submitted
2742     * to the pool that have not begun executing). This value is only
2743     * an approximation, obtained by iterating across all threads in
2744     * the pool. This method may be useful for tuning task
2745     * granularities.
2746     *
2747     * @return the number of queued tasks
2748     */
2749    public long getQueuedTaskCount() {
2750        long count = 0;
2751        WorkQueue[] ws; WorkQueue w;
2752        if ((ws = workQueues) != null) {
2753            for (int i = 1; i < ws.length; i += 2) {
2754                if ((w = ws[i]) != null)
2755                    count += w.queueSize();
2756            }
2757        }
2758        return count;
2759    }
2760
2761    /**
2762     * Returns an estimate of the number of tasks submitted to this
2763     * pool that have not yet begun executing.  This method may take
2764     * time proportional to the number of submissions.
2765     *
2766     * @return the number of queued submissions
2767     */
2768    public int getQueuedSubmissionCount() {
2769        int count = 0;
2770        WorkQueue[] ws; WorkQueue w;
2771        if ((ws = workQueues) != null) {
2772            for (int i = 0; i < ws.length; i += 2) {
2773                if ((w = ws[i]) != null)
2774                    count += w.queueSize();
2775            }
2776        }
2777        return count;
2778    }
2779
2780    /**
2781     * Returns {@code true} if there are any tasks submitted to this
2782     * pool that have not yet begun executing.
2783     *
2784     * @return {@code true} if there are any queued submissions
2785     */
2786    public boolean hasQueuedSubmissions() {
2787        WorkQueue[] ws; WorkQueue w;
2788        if ((ws = workQueues) != null) {
2789            for (int i = 0; i < ws.length; i += 2) {
2790                if ((w = ws[i]) != null && !w.isEmpty())
2791                    return true;
2792            }
2793        }
2794        return false;
2795    }
2796
2797    /**
2798     * Removes and returns the next unexecuted submission if one is
2799     * available.  This method may be useful in extensions to this
2800     * class that re-assign work in systems with multiple pools.
2801     *
2802     * @return the next submission, or {@code null} if none
2803     */
2804    protected ForkJoinTask<?> pollSubmission() {
2805        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2806        if ((ws = workQueues) != null) {
2807            for (int i = 0; i < ws.length; i += 2) {
2808                if ((w = ws[i]) != null && (t = w.poll()) != null)
2809                    return t;
2810            }
2811        }
2812        return null;
2813    }
2814
2815    /**
2816     * Removes all available unexecuted submitted and forked tasks
2817     * from scheduling queues and adds them to the given collection,
2818     * without altering their execution status. These may include
2819     * artificially generated or wrapped tasks. This method is
2820     * designed to be invoked only when the pool is known to be
2821     * quiescent. Invocations at other times may not remove all
2822     * tasks. A failure encountered while attempting to add elements
2823     * to collection {@code c} may result in elements being in
2824     * neither, either or both collections when the associated
2825     * exception is thrown.  The behavior of this operation is
2826     * undefined if the specified collection is modified while the
2827     * operation is in progress.
2828     *
2829     * @param c the collection to transfer elements into
2830     * @return the number of elements transferred
2831     */
2832    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2833        int count = 0;
2834        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2835        if ((ws = workQueues) != null) {
2836            for (int i = 0; i < ws.length; ++i) {
2837                if ((w = ws[i]) != null) {
2838                    while ((t = w.poll()) != null) {
2839                        c.add(t);
2840                        ++count;
2841                    }
2842                }
2843            }
2844        }
2845        return count;
2846    }
2847
2848    /**
2849     * Returns a string identifying this pool, as well as its state,
2850     * including indications of run state, parallelism level, and
2851     * worker and task counts.
2852     *
2853     * @return a string identifying this pool, as well as its state
2854     */
2855    public String toString() {
2856        // Use a single pass through workQueues to collect counts
2857        long qt = 0L, qs = 0L; int rc = 0;
2858        long st = stealCount;
2859        long c = ctl;
2860        WorkQueue[] ws; WorkQueue w;
2861        if ((ws = workQueues) != null) {
2862            for (int i = 0; i < ws.length; ++i) {
2863                if ((w = ws[i]) != null) {
2864                    int size = w.queueSize();
2865                    if ((i & 1) == 0)
2866                        qs += size;
2867                    else {
2868                        qt += size;
2869                        st += w.nsteals;
2870                        if (w.isApparentlyUnblocked())
2871                            ++rc;
2872                    }
2873                }
2874            }
2875        }
2876        int pc = parallelism;
2877        int tc = pc + (short)(c >>> TC_SHIFT);
2878        int ac = pc + (int)(c >> AC_SHIFT);
2879        if (ac < 0) // ignore transient negative
2880            ac = 0;
2881        String level;
2882        if ((c & STOP_BIT) != 0)
2883            level = (tc == 0) ? "Terminated" : "Terminating";
2884        else
2885            level = plock < 0 ? "Shutting down" : "Running";
2886        return super.toString() +
2887            "[" + level +
2888            ", parallelism = " + pc +
2889            ", size = " + tc +
2890            ", active = " + ac +
2891            ", running = " + rc +
2892            ", steals = " + st +
2893            ", tasks = " + qt +
2894            ", submissions = " + qs +
2895            "]";
2896    }
2897
2898    /**
2899     * Possibly initiates an orderly shutdown in which previously
2900     * submitted tasks are executed, but no new tasks will be
2901     * accepted. Invocation has no effect on execution state if this
2902     * is the {@code commonPool()}, and no additional effect if
2903     * already shut down.  Tasks that are in the process of being
2904     * submitted concurrently during the course of this method may or
2905     * may not be rejected.
2906     */
2907    public void shutdown() {
2908        checkPermission();
2909        tryTerminate(false, true);
2910    }
2911
2912    /**
2913     * Possibly attempts to cancel and/or stop all tasks, and reject
2914     * all subsequently submitted tasks.  Invocation has no effect on
2915     * execution state if this is the {@code commonPool()}, and no
2916     * additional effect if already shut down. Otherwise, tasks that
2917     * are in the process of being submitted or executed concurrently
2918     * during the course of this method may or may not be
2919     * rejected. This method cancels both existing and unexecuted
2920     * tasks, in order to permit termination in the presence of task
2921     * dependencies. So the method always returns an empty list
2922     * (unlike the case for some other Executors).
2923     *
2924     * @return an empty list
2925     */
2926    public List<Runnable> shutdownNow() {
2927        checkPermission();
2928        tryTerminate(true, true);
2929        return Collections.emptyList();
2930    }
2931
2932    /**
2933     * Returns {@code true} if all tasks have completed following shut down.
2934     *
2935     * @return {@code true} if all tasks have completed following shut down
2936     */
2937    public boolean isTerminated() {
2938        long c = ctl;
2939        return ((c & STOP_BIT) != 0L &&
2940                (short)(c >>> TC_SHIFT) + parallelism <= 0);
2941    }
2942
2943    /**
2944     * Returns {@code true} if the process of termination has
2945     * commenced but not yet completed.  This method may be useful for
2946     * debugging. A return of {@code true} reported a sufficient
2947     * period after shutdown may indicate that submitted tasks have
2948     * ignored or suppressed interruption, or are waiting for I/O,
2949     * causing this executor not to properly terminate. (See the
2950     * advisory notes for class {@link ForkJoinTask} stating that
2951     * tasks should not normally entail blocking operations.  But if
2952     * they do, they must abort them on interrupt.)
2953     *
2954     * @return {@code true} if terminating but not yet terminated
2955     */
2956    public boolean isTerminating() {
2957        long c = ctl;
2958        return ((c & STOP_BIT) != 0L &&
2959                (short)(c >>> TC_SHIFT) + parallelism > 0);
2960    }
2961
2962    /**
2963     * Returns {@code true} if this pool has been shut down.
2964     *
2965     * @return {@code true} if this pool has been shut down
2966     */
2967    public boolean isShutdown() {
2968        return plock < 0;
2969    }
2970
2971    /**
2972     * Blocks until all tasks have completed execution after a
2973     * shutdown request, or the timeout occurs, or the current thread
2974     * is interrupted, whichever happens first. Because the {@code
2975     * commonPool()} never terminates until program shutdown, when
2976     * applied to the common pool, this method is equivalent to {@link
2977     * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2978     *
2979     * @param timeout the maximum time to wait
2980     * @param unit the time unit of the timeout argument
2981     * @return {@code true} if this executor terminated and
2982     *         {@code false} if the timeout elapsed before termination
2983     * @throws InterruptedException if interrupted while waiting
2984     */
2985    public boolean awaitTermination(long timeout, TimeUnit unit)
2986        throws InterruptedException {
2987        if (Thread.interrupted())
2988            throw new InterruptedException();
2989        if (this == common) {
2990            awaitQuiescence(timeout, unit);
2991            return false;
2992        }
2993        long nanos = unit.toNanos(timeout);
2994        if (isTerminated())
2995            return true;
2996        if (nanos <= 0L)
2997            return false;
2998        long deadline = System.nanoTime() + nanos;
2999        synchronized (this) {
3000            for (;;) {
3001                if (isTerminated())
3002                    return true;
3003                if (nanos <= 0L)
3004                    return false;
3005                long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3006                wait(millis > 0L ? millis : 1L);
3007                nanos = deadline - System.nanoTime();
3008            }
3009        }
3010    }
3011
3012    /**
3013     * If called by a ForkJoinTask operating in this pool, equivalent
3014     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3015     * waits and/or attempts to assist performing tasks until this
3016     * pool {@link #isQuiescent} or the indicated timeout elapses.
3017     *
3018     * @param timeout the maximum time to wait
3019     * @param unit the time unit of the timeout argument
3020     * @return {@code true} if quiescent; {@code false} if the
3021     * timeout elapsed.
3022     */
3023    public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3024        long nanos = unit.toNanos(timeout);
3025        ForkJoinWorkerThread wt;
3026        Thread thread = Thread.currentThread();
3027        if ((thread instanceof ForkJoinWorkerThread) &&
3028            (wt = (ForkJoinWorkerThread)thread).pool == this) {
3029            helpQuiescePool(wt.workQueue);
3030            return true;
3031        }
3032        long startTime = System.nanoTime();
3033        WorkQueue[] ws;
3034        int r = 0, m;
3035        boolean found = true;
3036        while (!isQuiescent() && (ws = workQueues) != null &&
3037               (m = ws.length - 1) >= 0) {
3038            if (!found) {
3039                if ((System.nanoTime() - startTime) > nanos)
3040                    return false;
3041                Thread.yield(); // cannot block
3042            }
3043            found = false;
3044            for (int j = (m + 1) << 2; j >= 0; --j) {
3045                ForkJoinTask<?> t; WorkQueue q; int b;
3046                if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3047                    found = true;
3048                    if ((t = q.pollAt(b)) != null)
3049                        t.doExec();
3050                    break;
3051                }
3052            }
3053        }
3054        return true;
3055    }
3056
3057    /**
3058     * Waits and/or attempts to assist performing tasks indefinitely
3059     * until the {@code commonPool()} {@link #isQuiescent}.
3060     */
3061    static void quiesceCommonPool() {
3062        common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3063    }
3064
3065    /**
3066     * Interface for extending managed parallelism for tasks running
3067     * in {@link ForkJoinPool}s.
3068     *
3069     * <p>A {@code ManagedBlocker} provides two methods.  Method
3070     * {@code isReleasable} must return {@code true} if blocking is
3071     * not necessary. Method {@code block} blocks the current thread
3072     * if necessary (perhaps internally invoking {@code isReleasable}
3073     * before actually blocking). These actions are performed by any
3074     * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3075     * The unusual methods in this API accommodate synchronizers that
3076     * may, but don't usually, block for long periods. Similarly, they
3077     * allow more efficient internal handling of cases in which
3078     * additional workers may be, but usually are not, needed to
3079     * ensure sufficient parallelism.  Toward this end,
3080     * implementations of method {@code isReleasable} must be amenable
3081     * to repeated invocation.
3082     *
3083     * <p>For example, here is a ManagedBlocker based on a
3084     * ReentrantLock:
3085     *  <pre> {@code
3086     * class ManagedLocker implements ManagedBlocker {
3087     *   final ReentrantLock lock;
3088     *   boolean hasLock = false;
3089     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3090     *   public boolean block() {
3091     *     if (!hasLock)
3092     *       lock.lock();
3093     *     return true;
3094     *   }
3095     *   public boolean isReleasable() {
3096     *     return hasLock || (hasLock = lock.tryLock());
3097     *   }
3098     * }}</pre>
3099     *
3100     * <p>Here is a class that possibly blocks waiting for an
3101     * item on a given queue:
3102     *  <pre> {@code
3103     * class QueueTaker<E> implements ManagedBlocker {
3104     *   final BlockingQueue<E> queue;
3105     *   volatile E item = null;
3106     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3107     *   public boolean block() throws InterruptedException {
3108     *     if (item == null)
3109     *       item = queue.take();
3110     *     return true;
3111     *   }
3112     *   public boolean isReleasable() {
3113     *     return item != null || (item = queue.poll()) != null;
3114     *   }
3115     *   public E getItem() { // call after pool.managedBlock completes
3116     *     return item;
3117     *   }
3118     * }}</pre>
3119     */
3120    public static interface ManagedBlocker {
3121        /**
3122         * Possibly blocks the current thread, for example waiting for
3123         * a lock or condition.
3124         *
3125         * @return {@code true} if no additional blocking is necessary
3126         * (i.e., if isReleasable would return true)
3127         * @throws InterruptedException if interrupted while waiting
3128         * (the method is not required to do so, but is allowed to)
3129         */
3130        boolean block() throws InterruptedException;
3131
3132        /**
3133         * Returns {@code true} if blocking is unnecessary.
3134         * @return {@code true} if blocking is unnecessary
3135         */
3136        boolean isReleasable();
3137    }
3138
3139    /**
3140     * Blocks in accord with the given blocker.  If the current thread
3141     * is a {@link ForkJoinWorkerThread}, this method possibly
3142     * arranges for a spare thread to be activated if necessary to
3143     * ensure sufficient parallelism while the current thread is blocked.
3144     *
3145     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3146     * behaviorally equivalent to
3147     *  <pre> {@code
3148     * while (!blocker.isReleasable())
3149     *   if (blocker.block())
3150     *     return;
3151     * }</pre>
3152     *
3153     * If the caller is a {@code ForkJoinTask}, then the pool may
3154     * first be expanded to ensure parallelism, and later adjusted.
3155     *
3156     * @param blocker the blocker
3157     * @throws InterruptedException if blocker.block did so
3158     */
3159    public static void managedBlock(ManagedBlocker blocker)
3160        throws InterruptedException {
3161        Thread t = Thread.currentThread();
3162        if (t instanceof ForkJoinWorkerThread) {
3163            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3164            while (!blocker.isReleasable()) {
3165                if (p.tryCompensate(p.ctl)) {
3166                    try {
3167                        do {} while (!blocker.isReleasable() &&
3168                                     !blocker.block());
3169                    } finally {
3170                        p.incrementActiveCount();
3171                    }
3172                    break;
3173                }
3174            }
3175        }
3176        else {
3177            do {} while (!blocker.isReleasable() &&
3178                         !blocker.block());
3179        }
3180    }
3181
3182    // AbstractExecutorService overrides.  These rely on undocumented
3183    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3184    // implement RunnableFuture.
3185
3186    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3187        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3188    }
3189
3190    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3191        return new ForkJoinTask.AdaptedCallable<T>(callable);
3192    }
3193
3194    // Unsafe mechanics
3195    private static final sun.misc.Unsafe U;
3196    private static final long CTL;
3197    private static final long PARKBLOCKER;
3198    private static final int ABASE;
3199    private static final int ASHIFT;
3200    private static final long STEALCOUNT;
3201    private static final long PLOCK;
3202    private static final long INDEXSEED;
3203    private static final long QBASE;
3204    private static final long QLOCK;
3205
3206    static {
3207        // initialize field offsets for CAS etc
3208        try {
3209            U = sun.misc.Unsafe.getUnsafe();
3210            Class<?> k = ForkJoinPool.class;
3211            CTL = U.objectFieldOffset
3212                (k.getDeclaredField("ctl"));
3213            STEALCOUNT = U.objectFieldOffset
3214                (k.getDeclaredField("stealCount"));
3215            PLOCK = U.objectFieldOffset
3216                (k.getDeclaredField("plock"));
3217            INDEXSEED = U.objectFieldOffset
3218                (k.getDeclaredField("indexSeed"));
3219            Class<?> tk = Thread.class;
3220            PARKBLOCKER = U.objectFieldOffset
3221                (tk.getDeclaredField("parkBlocker"));
3222            Class<?> wk = WorkQueue.class;
3223            QBASE = U.objectFieldOffset
3224                (wk.getDeclaredField("base"));
3225            QLOCK = U.objectFieldOffset
3226                (wk.getDeclaredField("qlock"));
3227            Class<?> ak = ForkJoinTask[].class;
3228            ABASE = U.arrayBaseOffset(ak);
3229            int scale = U.arrayIndexScale(ak);
3230            if ((scale & (scale - 1)) != 0)
3231                throw new Error("data type scale not a power of two");
3232            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3233        } catch (Exception e) {
3234            throw new Error(e);
3235        }
3236
3237        submitters = new ThreadLocal<Submitter>();
3238        defaultForkJoinWorkerThreadFactory =
3239            new DefaultForkJoinWorkerThreadFactory();
3240        modifyThreadPermission = new RuntimePermission("modifyThread");
3241
3242        common = java.security.AccessController.doPrivileged
3243            (new java.security.PrivilegedAction<ForkJoinPool>() {
3244                public ForkJoinPool run() { return makeCommonPool(); }});
3245        int par = common.parallelism; // report 1 even if threads disabled
3246        commonParallelism = par > 0 ? par : 1;
3247    }
3248
3249    /**
3250     * Creates and returns the common pool, respecting user settings
3251     * specified via system properties.
3252     */
3253    private static ForkJoinPool makeCommonPool() {
3254        int parallelism = -1;
3255        ForkJoinWorkerThreadFactory factory
3256            = defaultForkJoinWorkerThreadFactory;
3257        UncaughtExceptionHandler handler = null;
3258        try {  // ignore exceptions in accessing/parsing properties
3259            String pp = System.getProperty
3260                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3261            String fp = System.getProperty
3262                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3263            String hp = System.getProperty
3264                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3265            if (pp != null)
3266                parallelism = Integer.parseInt(pp);
3267            if (fp != null)
3268                factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3269                           getSystemClassLoader().loadClass(fp).newInstance());
3270            if (hp != null)
3271                handler = ((UncaughtExceptionHandler)ClassLoader.
3272                           getSystemClassLoader().loadClass(hp).newInstance());
3273        } catch (Exception ignore) {
3274        }
3275
3276        if (parallelism < 0 && // default 1 less than #cores
3277            (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3278            parallelism = 0;
3279        if (parallelism > MAX_CAP)
3280            parallelism = MAX_CAP;
3281        return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3282                                "ForkJoinPool.commonPool-worker-");
3283    }
3284
3285}
3286