FusionDictionary.java revision 72b1c9394105b6fbc0d8c6ff00f3574ee37a9aaa
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
5 * use this file except in compliance with the License. You may obtain a copy of
6 * the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
12 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
13 * License for the specific language governing permissions and limitations under
14 * the License.
15 */
16
17package com.android.inputmethod.latin.makedict;
18
19import java.util.ArrayList;
20import java.util.Arrays;
21import java.util.Collections;
22import java.util.HashMap;
23import java.util.Iterator;
24import java.util.LinkedList;
25
26/**
27 * A dictionary that can fusion heads and tails of words for more compression.
28 */
29public class FusionDictionary implements Iterable<Word> {
30
31    private static final boolean DBG = MakedictLog.DBG;
32
33    /**
34     * A node of the dictionary, containing several CharGroups.
35     *
36     * A node is but an ordered array of CharGroups, which essentially contain all the
37     * real information.
38     * This class also contains fields to cache size and address, to help with binary
39     * generation.
40     */
41    public static class Node {
42        ArrayList<CharGroup> mData;
43        // To help with binary generation
44        int mCachedSize;
45        int mCachedAddress;
46        public Node() {
47            mData = new ArrayList<CharGroup>();
48            mCachedSize = Integer.MIN_VALUE;
49            mCachedAddress = Integer.MIN_VALUE;
50        }
51        public Node(ArrayList<CharGroup> data) {
52            mData = data;
53            mCachedSize = Integer.MIN_VALUE;
54            mCachedAddress = Integer.MIN_VALUE;
55        }
56    }
57
58    /**
59     * A string with a frequency.
60     *
61     * This represents an "attribute", that is either a bigram or a shortcut.
62     */
63    public static class WeightedString {
64        public final String mWord;
65        public int mFrequency;
66        public WeightedString(String word, int frequency) {
67            mWord = word;
68            mFrequency = frequency;
69        }
70
71        @Override
72        public int hashCode() {
73            return Arrays.hashCode(new Object[] { mWord, mFrequency });
74        }
75
76        @Override
77        public boolean equals(Object o) {
78            if (o == this) return true;
79            if (!(o instanceof WeightedString)) return false;
80            WeightedString w = (WeightedString)o;
81            return mWord.equals(w.mWord) && mFrequency == w.mFrequency;
82        }
83    }
84
85    /**
86     * A group of characters, with a frequency, shortcut targets, bigrams, and children.
87     *
88     * This is the central class of the in-memory representation. A CharGroup is what can
89     * be seen as a traditional "trie node", except it can hold several characters at the
90     * same time. A CharGroup essentially represents one or several characters in the middle
91     * of the trie trie; as such, it can be a terminal, and it can have children.
92     * In this in-memory representation, whether the CharGroup is a terminal or not is represented
93     * in the frequency, where NOT_A_TERMINAL (= -1) means this is not a terminal and any other
94     * value is the frequency of this terminal. A terminal may have non-null shortcuts and/or
95     * bigrams, but a non-terminal may not. Moreover, children, if present, are null.
96     */
97    public static class CharGroup {
98        public static final int NOT_A_TERMINAL = -1;
99        final int mChars[];
100        ArrayList<WeightedString> mShortcutTargets;
101        ArrayList<WeightedString> mBigrams;
102        int mFrequency; // NOT_A_TERMINAL == mFrequency indicates this is not a terminal.
103        Node mChildren;
104        boolean mIsNotAWord; // Only a shortcut
105        boolean mIsBlacklistEntry;
106        // The two following members to help with binary generation
107        int mCachedSize;
108        int mCachedAddress;
109
110        public CharGroup(final int[] chars, final ArrayList<WeightedString> shortcutTargets,
111                final ArrayList<WeightedString> bigrams, final int frequency,
112                final boolean isNotAWord, final boolean isBlacklistEntry) {
113            mChars = chars;
114            mFrequency = frequency;
115            mShortcutTargets = shortcutTargets;
116            mBigrams = bigrams;
117            mChildren = null;
118            mIsNotAWord = isNotAWord;
119            mIsBlacklistEntry = isBlacklistEntry;
120        }
121
122        public CharGroup(final int[] chars, final ArrayList<WeightedString> shortcutTargets,
123                final ArrayList<WeightedString> bigrams, final int frequency,
124                final boolean isNotAWord, final boolean isBlacklistEntry, final Node children) {
125            mChars = chars;
126            mFrequency = frequency;
127            mShortcutTargets = shortcutTargets;
128            mBigrams = bigrams;
129            mChildren = children;
130            mIsNotAWord = isNotAWord;
131            mIsBlacklistEntry = isBlacklistEntry;
132        }
133
134        public void addChild(CharGroup n) {
135            if (null == mChildren) {
136                mChildren = new Node();
137            }
138            mChildren.mData.add(n);
139        }
140
141        public boolean isTerminal() {
142            return NOT_A_TERMINAL != mFrequency;
143        }
144
145        public boolean hasSeveralChars() {
146            assert(mChars.length > 0);
147            return 1 < mChars.length;
148        }
149
150        /**
151         * Adds a word to the bigram list. Updates the frequency if the word already
152         * exists.
153         */
154        public void addBigram(final String word, final int frequency) {
155            if (mBigrams == null) {
156                mBigrams = new ArrayList<WeightedString>();
157            }
158            WeightedString bigram = getBigram(word);
159            if (bigram != null) {
160                bigram.mFrequency = frequency;
161            } else {
162                bigram = new WeightedString(word, frequency);
163                mBigrams.add(bigram);
164            }
165        }
166
167        /**
168         * Gets the shortcut target for the given word. Returns null if the word is not in the
169         * shortcut list.
170         */
171        public WeightedString getShortcut(final String word) {
172            // TODO: Don't do a linear search
173            if (mShortcutTargets != null) {
174                final int size = mShortcutTargets.size();
175                for (int i = 0; i < size; ++i) {
176                    WeightedString shortcut = mShortcutTargets.get(i);
177                    if (shortcut.mWord.equals(word)) {
178                        return shortcut;
179                    }
180                }
181            }
182            return null;
183        }
184
185        /**
186         * Gets the bigram for the given word.
187         * Returns null if the word is not in the bigrams list.
188         */
189        public WeightedString getBigram(final String word) {
190            // TODO: Don't do a linear search
191            if (mBigrams != null) {
192                final int size = mBigrams.size();
193                for (int i = 0; i < size; ++i) {
194                    WeightedString bigram = mBigrams.get(i);
195                    if (bigram.mWord.equals(word)) {
196                        return bigram;
197                    }
198                }
199            }
200            return null;
201        }
202
203        /**
204         * Updates the CharGroup with the given properties. Adds the shortcut and bigram lists to
205         * the existing ones if any. Note: unigram, bigram, and shortcut frequencies are only
206         * updated if they are higher than the existing ones.
207         */
208        public void update(final int frequency, final ArrayList<WeightedString> shortcutTargets,
209                final ArrayList<WeightedString> bigrams,
210                final boolean isNotAWord, final boolean isBlacklistEntry) {
211            if (frequency > mFrequency) {
212                mFrequency = frequency;
213            }
214            if (shortcutTargets != null) {
215                if (mShortcutTargets == null) {
216                    mShortcutTargets = shortcutTargets;
217                } else {
218                    final int size = shortcutTargets.size();
219                    for (int i = 0; i < size; ++i) {
220                        final WeightedString shortcut = shortcutTargets.get(i);
221                        final WeightedString existingShortcut = getShortcut(shortcut.mWord);
222                        if (existingShortcut == null) {
223                            mShortcutTargets.add(shortcut);
224                        } else if (existingShortcut.mFrequency < shortcut.mFrequency) {
225                            existingShortcut.mFrequency = shortcut.mFrequency;
226                        }
227                    }
228                }
229            }
230            if (bigrams != null) {
231                if (mBigrams == null) {
232                    mBigrams = bigrams;
233                } else {
234                    final int size = bigrams.size();
235                    for (int i = 0; i < size; ++i) {
236                        final WeightedString bigram = bigrams.get(i);
237                        final WeightedString existingBigram = getBigram(bigram.mWord);
238                        if (existingBigram == null) {
239                            mBigrams.add(bigram);
240                        } else if (existingBigram.mFrequency < bigram.mFrequency) {
241                            existingBigram.mFrequency = bigram.mFrequency;
242                        }
243                    }
244                }
245            }
246            mIsNotAWord = isNotAWord;
247            mIsBlacklistEntry = isBlacklistEntry;
248        }
249    }
250
251    /**
252     * Options global to the dictionary.
253     *
254     * There are no options at the moment, so this class is empty.
255     */
256    public static class DictionaryOptions {
257        public final boolean mGermanUmlautProcessing;
258        public final boolean mFrenchLigatureProcessing;
259        public final HashMap<String, String> mAttributes;
260        public DictionaryOptions(final HashMap<String, String> attributes,
261                final boolean germanUmlautProcessing, final boolean frenchLigatureProcessing) {
262            mAttributes = attributes;
263            mGermanUmlautProcessing = germanUmlautProcessing;
264            mFrenchLigatureProcessing = frenchLigatureProcessing;
265        }
266    }
267
268    public final DictionaryOptions mOptions;
269    public final Node mRoot;
270
271    public FusionDictionary(final Node root, final DictionaryOptions options) {
272        mRoot = root;
273        mOptions = options;
274    }
275
276    public void addOptionAttribute(final String key, final String value) {
277        mOptions.mAttributes.put(key, value);
278    }
279
280    /**
281     * Helper method to convert a String to an int array.
282     */
283    static private int[] getCodePoints(final String word) {
284        // TODO: this is a copy-paste of the contents of StringUtils.toCodePointArray,
285        // which is not visible from the makedict package. Factor this code.
286        final char[] characters = word.toCharArray();
287        final int length = characters.length;
288        final int[] codePoints = new int[Character.codePointCount(characters, 0, length)];
289        int codePoint = Character.codePointAt(characters, 0);
290        int dsti = 0;
291        for (int srci = Character.charCount(codePoint);
292                srci < length; srci += Character.charCount(codePoint), ++dsti) {
293            codePoints[dsti] = codePoint;
294            codePoint = Character.codePointAt(characters, srci);
295        }
296        codePoints[dsti] = codePoint;
297        return codePoints;
298    }
299
300    /**
301     * Helper method to add a word as a string.
302     *
303     * This method adds a word to the dictionary with the given frequency. Optional
304     * lists of bigrams and shortcuts can be passed here. For each word inside,
305     * they will be added to the dictionary as necessary.
306     *
307     * @param word the word to add.
308     * @param frequency the frequency of the word, in the range [0..255].
309     * @param shortcutTargets a list of shortcut targets for this word, or null.
310     * @param isNotAWord true if this should not be considered a word (e.g. shortcut only)
311     */
312    public void add(final String word, final int frequency,
313            final ArrayList<WeightedString> shortcutTargets, final boolean isNotAWord) {
314        add(getCodePoints(word), frequency, shortcutTargets, isNotAWord,
315                false /* isBlacklistEntry */);
316    }
317
318    /**
319     * Helper method to add a blacklist entry as a string.
320     *
321     * @param word the word to add as a blacklist entry.
322     * @param shortcutTargets a list of shortcut targets for this word, or null.
323     * @param isNotAWord true if this is not a word for spellcheking purposes (shortcut only or so)
324     */
325    public void addBlacklistEntry(final String word,
326            final ArrayList<WeightedString> shortcutTargets, final boolean isNotAWord) {
327        add(getCodePoints(word), 0, shortcutTargets, isNotAWord, true /* isBlacklistEntry */);
328    }
329
330    /**
331     * Sanity check for a node.
332     *
333     * This method checks that all CharGroups in a node are ordered as expected.
334     * If they are, nothing happens. If they aren't, an exception is thrown.
335     */
336    private void checkStack(Node node) {
337        ArrayList<CharGroup> stack = node.mData;
338        int lastValue = -1;
339        for (int i = 0; i < stack.size(); ++i) {
340            int currentValue = stack.get(i).mChars[0];
341            if (currentValue <= lastValue)
342                throw new RuntimeException("Invalid stack");
343            else
344                lastValue = currentValue;
345        }
346    }
347
348    /**
349     * Helper method to add a new bigram to the dictionary.
350     *
351     * @param word1 the previous word of the context
352     * @param word2 the next word of the context
353     * @param frequency the bigram frequency
354     */
355    public void setBigram(final String word1, final String word2, final int frequency) {
356        CharGroup charGroup = findWordInTree(mRoot, word1);
357        if (charGroup != null) {
358            final CharGroup charGroup2 = findWordInTree(mRoot, word2);
359            if (charGroup2 == null) {
360                add(getCodePoints(word2), 0, null, false /* isNotAWord */,
361                        false /* isBlacklistEntry */);
362            }
363            charGroup.addBigram(word2, frequency);
364        } else {
365            throw new RuntimeException("First word of bigram not found");
366        }
367    }
368
369    /**
370     * Add a word to this dictionary.
371     *
372     * The shortcuts, if any, have to be in the dictionary already. If they aren't,
373     * an exception is thrown.
374     *
375     * @param word the word, as an int array.
376     * @param frequency the frequency of the word, in the range [0..255].
377     * @param shortcutTargets an optional list of shortcut targets for this word (null if none).
378     * @param isNotAWord true if this is not a word for spellcheking purposes (shortcut only or so)
379     * @param isBlacklistEntry true if this is a blacklisted word, false otherwise
380     */
381    private void add(final int[] word, final int frequency,
382            final ArrayList<WeightedString> shortcutTargets,
383            final boolean isNotAWord, final boolean isBlacklistEntry) {
384        assert(frequency >= 0 && frequency <= 255);
385        Node currentNode = mRoot;
386        int charIndex = 0;
387
388        CharGroup currentGroup = null;
389        int differentCharIndex = 0; // Set by the loop to the index of the char that differs
390        int nodeIndex = findIndexOfChar(mRoot, word[charIndex]);
391        while (CHARACTER_NOT_FOUND != nodeIndex) {
392            currentGroup = currentNode.mData.get(nodeIndex);
393            differentCharIndex = compareArrays(currentGroup.mChars, word, charIndex);
394            if (ARRAYS_ARE_EQUAL != differentCharIndex
395                    && differentCharIndex < currentGroup.mChars.length) break;
396            if (null == currentGroup.mChildren) break;
397            charIndex += currentGroup.mChars.length;
398            if (charIndex >= word.length) break;
399            currentNode = currentGroup.mChildren;
400            nodeIndex = findIndexOfChar(currentNode, word[charIndex]);
401        }
402
403        if (-1 == nodeIndex) {
404            // No node at this point to accept the word. Create one.
405            final int insertionIndex = findInsertionIndex(currentNode, word[charIndex]);
406            final CharGroup newGroup = new CharGroup(
407                    Arrays.copyOfRange(word, charIndex, word.length),
408                    shortcutTargets, null /* bigrams */, frequency, isNotAWord, isBlacklistEntry);
409            currentNode.mData.add(insertionIndex, newGroup);
410            if (DBG) checkStack(currentNode);
411        } else {
412            // There is a word with a common prefix.
413            if (differentCharIndex == currentGroup.mChars.length) {
414                if (charIndex + differentCharIndex >= word.length) {
415                    // The new word is a prefix of an existing word, but the node on which it
416                    // should end already exists as is. Since the old CharNode was not a terminal,
417                    // make it one by filling in its frequency and other attributes
418                    currentGroup.update(frequency, shortcutTargets, null, isNotAWord,
419                            isBlacklistEntry);
420                } else {
421                    // The new word matches the full old word and extends past it.
422                    // We only have to create a new node and add it to the end of this.
423                    final CharGroup newNode = new CharGroup(
424                            Arrays.copyOfRange(word, charIndex + differentCharIndex, word.length),
425                                    shortcutTargets, null /* bigrams */, frequency, isNotAWord,
426                                    isBlacklistEntry);
427                    currentGroup.mChildren = new Node();
428                    currentGroup.mChildren.mData.add(newNode);
429                }
430            } else {
431                if (0 == differentCharIndex) {
432                    // Exact same word. Update the frequency if higher. This will also add the
433                    // new shortcuts to the existing shortcut list if it already exists.
434                    currentGroup.update(frequency, shortcutTargets, null,
435                            currentGroup.mIsNotAWord && isNotAWord,
436                            currentGroup.mIsBlacklistEntry || isBlacklistEntry);
437                } else {
438                    // Partial prefix match only. We have to replace the current node with a node
439                    // containing the current prefix and create two new ones for the tails.
440                    Node newChildren = new Node();
441                    final CharGroup newOldWord = new CharGroup(
442                            Arrays.copyOfRange(currentGroup.mChars, differentCharIndex,
443                                    currentGroup.mChars.length), currentGroup.mShortcutTargets,
444                            currentGroup.mBigrams, currentGroup.mFrequency,
445                            currentGroup.mIsNotAWord, currentGroup.mIsBlacklistEntry,
446                            currentGroup.mChildren);
447                    newChildren.mData.add(newOldWord);
448
449                    final CharGroup newParent;
450                    if (charIndex + differentCharIndex >= word.length) {
451                        newParent = new CharGroup(
452                                Arrays.copyOfRange(currentGroup.mChars, 0, differentCharIndex),
453                                shortcutTargets, null /* bigrams */, frequency,
454                                isNotAWord, isBlacklistEntry, newChildren);
455                    } else {
456                        newParent = new CharGroup(
457                                Arrays.copyOfRange(currentGroup.mChars, 0, differentCharIndex),
458                                null /* shortcutTargets */, null /* bigrams */, -1,
459                                false /* isNotAWord */, false /* isBlacklistEntry */, newChildren);
460                        final CharGroup newWord = new CharGroup(Arrays.copyOfRange(word,
461                                charIndex + differentCharIndex, word.length),
462                                shortcutTargets, null /* bigrams */, frequency,
463                                isNotAWord, isBlacklistEntry);
464                        final int addIndex = word[charIndex + differentCharIndex]
465                                > currentGroup.mChars[differentCharIndex] ? 1 : 0;
466                        newChildren.mData.add(addIndex, newWord);
467                    }
468                    currentNode.mData.set(nodeIndex, newParent);
469                }
470                if (DBG) checkStack(currentNode);
471            }
472        }
473    }
474
475    private static int ARRAYS_ARE_EQUAL = 0;
476
477    /**
478     * Custom comparison of two int arrays taken to contain character codes.
479     *
480     * This method compares the two arrays passed as an argument in a lexicographic way,
481     * with an offset in the dst string.
482     * This method does NOT test for the first character. It is taken to be equal.
483     * I repeat: this method starts the comparison at 1 <> dstOffset + 1.
484     * The index where the strings differ is returned. ARRAYS_ARE_EQUAL = 0 is returned if the
485     * strings are equal. This works BECAUSE we don't look at the first character.
486     *
487     * @param src the left-hand side string of the comparison.
488     * @param dst the right-hand side string of the comparison.
489     * @param dstOffset the offset in the right-hand side string.
490     * @return the index at which the strings differ, or ARRAYS_ARE_EQUAL = 0 if they don't.
491     */
492    private static int compareArrays(final int[] src, final int[] dst, int dstOffset) {
493        // We do NOT test the first char, because we come from a method that already
494        // tested it.
495        for (int i = 1; i < src.length; ++i) {
496            if (dstOffset + i >= dst.length) return i;
497            if (src[i] != dst[dstOffset + i]) return i;
498        }
499        if (dst.length > src.length) return src.length;
500        return ARRAYS_ARE_EQUAL;
501    }
502
503    /**
504     * Helper class that compares and sorts two chargroups according to their
505     * first element only. I repeat: ONLY the first element is considered, the rest
506     * is ignored.
507     * This comparator imposes orderings that are inconsistent with equals.
508     */
509    static private class CharGroupComparator implements java.util.Comparator<CharGroup> {
510        @Override
511        public int compare(CharGroup c1, CharGroup c2) {
512            if (c1.mChars[0] == c2.mChars[0]) return 0;
513            return c1.mChars[0] < c2.mChars[0] ? -1 : 1;
514        }
515    }
516    final static private CharGroupComparator CHARGROUP_COMPARATOR = new CharGroupComparator();
517
518    /**
519     * Finds the insertion index of a character within a node.
520     */
521    private static int findInsertionIndex(final Node node, int character) {
522        final ArrayList<CharGroup> data = node.mData;
523        final CharGroup reference = new CharGroup(new int[] { character },
524                null /* shortcutTargets */, null /* bigrams */, 0, false /* isNotAWord */,
525                false /* isBlacklistEntry */);
526        int result = Collections.binarySearch(data, reference, CHARGROUP_COMPARATOR);
527        return result >= 0 ? result : -result - 1;
528    }
529
530    private static int CHARACTER_NOT_FOUND = -1;
531
532    /**
533     * Find the index of a char in a node, if it exists.
534     *
535     * @param node the node to search in.
536     * @param character the character to search for.
537     * @return the position of the character if it's there, or CHARACTER_NOT_FOUND = -1 else.
538     */
539    private static int findIndexOfChar(final Node node, int character) {
540        final int insertionIndex = findInsertionIndex(node, character);
541        if (node.mData.size() <= insertionIndex) return CHARACTER_NOT_FOUND;
542        return character == node.mData.get(insertionIndex).mChars[0] ? insertionIndex
543                : CHARACTER_NOT_FOUND;
544    }
545
546    /**
547     * Helper method to find a word in a given branch.
548     */
549    public static CharGroup findWordInTree(Node node, final String s) {
550        int index = 0;
551        final StringBuilder checker = DBG ? new StringBuilder() : null;
552
553        CharGroup currentGroup;
554        do {
555            int indexOfGroup = findIndexOfChar(node, s.codePointAt(index));
556            if (CHARACTER_NOT_FOUND == indexOfGroup) return null;
557            currentGroup = node.mData.get(indexOfGroup);
558
559            if (s.length() - index < currentGroup.mChars.length) return null;
560            int newIndex = index;
561            while (newIndex < s.length() && newIndex - index < currentGroup.mChars.length) {
562                if (currentGroup.mChars[newIndex - index] != s.codePointAt(newIndex)) return null;
563                newIndex++;
564            }
565            index = newIndex;
566
567            if (DBG) checker.append(new String(currentGroup.mChars, 0, currentGroup.mChars.length));
568            if (index < s.length()) {
569                node = currentGroup.mChildren;
570            }
571        } while (null != node && index < s.length());
572
573        if (index < s.length()) return null;
574        if (!currentGroup.isTerminal()) return null;
575        if (DBG && !s.equals(checker.toString())) return null;
576        return currentGroup;
577    }
578
579    /**
580     * Helper method to find out whether a word is in the dict or not.
581     */
582    public boolean hasWord(final String s) {
583        if (null == s || "".equals(s)) {
584            throw new RuntimeException("Can't search for a null or empty string");
585        }
586        return null != findWordInTree(mRoot, s);
587    }
588
589    /**
590     * Recursively count the number of character groups in a given branch of the trie.
591     *
592     * @param node the parent node.
593     * @return the number of char groups in all the branch under this node.
594     */
595    public static int countCharGroups(final Node node) {
596        final int nodeSize = node.mData.size();
597        int size = nodeSize;
598        for (int i = nodeSize - 1; i >= 0; --i) {
599            CharGroup group = node.mData.get(i);
600            if (null != group.mChildren)
601                size += countCharGroups(group.mChildren);
602        }
603        return size;
604    }
605
606    /**
607     * Recursively count the number of nodes in a given branch of the trie.
608     *
609     * @param node the node to count.
610     * @return the number of nodes in this branch.
611     */
612    public static int countNodes(final Node node) {
613        int size = 1;
614        for (int i = node.mData.size() - 1; i >= 0; --i) {
615            CharGroup group = node.mData.get(i);
616            if (null != group.mChildren)
617                size += countNodes(group.mChildren);
618        }
619        return size;
620    }
621
622    // Recursively find out whether there are any bigrams.
623    // This can be pretty expensive especially if there aren't any (we return as soon
624    // as we find one, so it's much cheaper if there are bigrams)
625    private static boolean hasBigramsInternal(final Node node) {
626        if (null == node) return false;
627        for (int i = node.mData.size() - 1; i >= 0; --i) {
628            CharGroup group = node.mData.get(i);
629            if (null != group.mBigrams) return true;
630            if (hasBigramsInternal(group.mChildren)) return true;
631        }
632        return false;
633    }
634
635    /**
636     * Finds out whether there are any bigrams in this dictionary.
637     *
638     * @return true if there is any bigram, false otherwise.
639     */
640    // TODO: this is expensive especially for large dictionaries without any bigram.
641    // The up side is, this is always accurate and correct and uses no memory. We should
642    // find a more efficient way of doing this, without compromising too much on memory
643    // and ease of use.
644    public boolean hasBigrams() {
645        return hasBigramsInternal(mRoot);
646    }
647
648    // Historically, the tails of the words were going to be merged to save space.
649    // However, that would prevent the code to search for a specific address in log(n)
650    // time so this was abandoned.
651    // The code is still of interest as it does add some compression to any dictionary
652    // that has no need for attributes. Implementations that does not read attributes should be
653    // able to read a dictionary with merged tails.
654    // Also, the following code does support frequencies, as in, it will only merges
655    // tails that share the same frequency. Though it would result in the above loss of
656    // performance while searching by address, it is still technically possible to merge
657    // tails that contain attributes, but this code does not take that into account - it does
658    // not compare attributes and will merge terminals with different attributes regardless.
659    public void mergeTails() {
660        MakedictLog.i("Do not merge tails");
661        return;
662
663//        MakedictLog.i("Merging nodes. Number of nodes : " + countNodes(root));
664//        MakedictLog.i("Number of groups : " + countCharGroups(root));
665//
666//        final HashMap<String, ArrayList<Node>> repository =
667//                  new HashMap<String, ArrayList<Node>>();
668//        mergeTailsInner(repository, root);
669//
670//        MakedictLog.i("Number of different pseudohashes : " + repository.size());
671//        int size = 0;
672//        for (ArrayList<Node> a : repository.values()) {
673//            size += a.size();
674//        }
675//        MakedictLog.i("Number of nodes after merge : " + (1 + size));
676//        MakedictLog.i("Recursively seen nodes : " + countNodes(root));
677    }
678
679    // The following methods are used by the deactivated mergeTails()
680//   private static boolean isEqual(Node a, Node b) {
681//       if (null == a && null == b) return true;
682//       if (null == a || null == b) return false;
683//       if (a.data.size() != b.data.size()) return false;
684//       final int size = a.data.size();
685//       for (int i = size - 1; i >= 0; --i) {
686//           CharGroup aGroup = a.data.get(i);
687//           CharGroup bGroup = b.data.get(i);
688//           if (aGroup.frequency != bGroup.frequency) return false;
689//           if (aGroup.alternates == null && bGroup.alternates != null) return false;
690//           if (aGroup.alternates != null && !aGroup.equals(bGroup.alternates)) return false;
691//           if (!Arrays.equals(aGroup.chars, bGroup.chars)) return false;
692//           if (!isEqual(aGroup.children, bGroup.children)) return false;
693//       }
694//       return true;
695//   }
696
697//   static private HashMap<String, ArrayList<Node>> mergeTailsInner(
698//           final HashMap<String, ArrayList<Node>> map, final Node node) {
699//       final ArrayList<CharGroup> branches = node.data;
700//       final int nodeSize = branches.size();
701//       for (int i = 0; i < nodeSize; ++i) {
702//           CharGroup group = branches.get(i);
703//           if (null != group.children) {
704//               String pseudoHash = getPseudoHash(group.children);
705//               ArrayList<Node> similarList = map.get(pseudoHash);
706//               if (null == similarList) {
707//                   similarList = new ArrayList<Node>();
708//                   map.put(pseudoHash, similarList);
709//               }
710//               boolean merged = false;
711//               for (Node similar : similarList) {
712//                   if (isEqual(group.children, similar)) {
713//                       group.children = similar;
714//                       merged = true;
715//                       break;
716//                   }
717//               }
718//               if (!merged) {
719//                   similarList.add(group.children);
720//               }
721//               mergeTailsInner(map, group.children);
722//           }
723//       }
724//       return map;
725//   }
726
727//  private static String getPseudoHash(final Node node) {
728//      StringBuilder s = new StringBuilder();
729//      for (CharGroup g : node.data) {
730//          s.append(g.frequency);
731//          for (int ch : g.chars){
732//              s.append(Character.toChars(ch));
733//          }
734//      }
735//      return s.toString();
736//  }
737
738    /**
739     * Iterator to walk through a dictionary.
740     *
741     * This is purely for convenience.
742     */
743    public static class DictionaryIterator implements Iterator<Word> {
744
745        private static class Position {
746            public Iterator<CharGroup> pos;
747            public int length;
748            public Position(ArrayList<CharGroup> groups) {
749                pos = groups.iterator();
750                length = 0;
751            }
752        }
753        final StringBuilder mCurrentString;
754        final LinkedList<Position> mPositions;
755
756        public DictionaryIterator(ArrayList<CharGroup> root) {
757            mCurrentString = new StringBuilder();
758            mPositions = new LinkedList<Position>();
759            final Position rootPos = new Position(root);
760            mPositions.add(rootPos);
761        }
762
763        @Override
764        public boolean hasNext() {
765            for (Position p : mPositions) {
766                if (p.pos.hasNext()) {
767                    return true;
768                }
769            }
770            return false;
771        }
772
773        @Override
774        public Word next() {
775            Position currentPos = mPositions.getLast();
776            mCurrentString.setLength(mCurrentString.length() - currentPos.length);
777
778            do {
779                if (currentPos.pos.hasNext()) {
780                    final CharGroup currentGroup = currentPos.pos.next();
781                    currentPos.length = currentGroup.mChars.length;
782                    for (int i : currentGroup.mChars)
783                        mCurrentString.append(Character.toChars(i));
784                    if (null != currentGroup.mChildren) {
785                        currentPos = new Position(currentGroup.mChildren.mData);
786                        mPositions.addLast(currentPos);
787                    }
788                    if (currentGroup.mFrequency >= 0)
789                        return new Word(mCurrentString.toString(), currentGroup.mFrequency,
790                                currentGroup.mShortcutTargets, currentGroup.mBigrams,
791                                currentGroup.mIsNotAWord, currentGroup.mIsBlacklistEntry);
792                } else {
793                    mPositions.removeLast();
794                    currentPos = mPositions.getLast();
795                    mCurrentString.setLength(mCurrentString.length() - mPositions.getLast().length);
796                }
797            } while(true);
798        }
799
800        @Override
801        public void remove() {
802            throw new UnsupportedOperationException("Unsupported yet");
803        }
804
805    }
806
807    /**
808     * Method to return an iterator.
809     *
810     * This method enables Java's enhanced for loop. With this you can have a FusionDictionary x
811     * and say : for (Word w : x) {}
812     */
813    @Override
814    public Iterator<Word> iterator() {
815        return new DictionaryIterator(mRoot.mData);
816    }
817}
818