Threads.cpp revision 4ffed01fb7d945a584e4cf82fd9fd13cfee07b73
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17// #define LOG_NDEBUG 0
18#define LOG_TAG "libutils.threads"
19
20#include <assert.h>
21#include <errno.h>
22#include <memory.h>
23#include <stdio.h>
24#include <stdlib.h>
25#include <unistd.h>
26
27#if defined(HAVE_PTHREADS)
28# include <pthread.h>
29# include <sched.h>
30# include <sys/resource.h>
31#ifdef HAVE_ANDROID_OS
32# include <private/bionic_pthread.h>
33#endif
34#elif defined(HAVE_WIN32_THREADS)
35# include <windows.h>
36# include <stdint.h>
37# include <process.h>
38# define HAVE_CREATETHREAD  // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
39#endif
40
41#if defined(HAVE_PRCTL)
42#include <sys/prctl.h>
43#endif
44
45#include <utils/threads.h>
46#include <utils/Log.h>
47
48#include <cutils/sched_policy.h>
49
50#ifdef HAVE_ANDROID_OS
51# define __android_unused
52#else
53# define __android_unused __attribute__((__unused__))
54#endif
55
56/*
57 * ===========================================================================
58 *      Thread wrappers
59 * ===========================================================================
60 */
61
62using namespace android;
63
64// ----------------------------------------------------------------------------
65#if defined(HAVE_PTHREADS)
66// ----------------------------------------------------------------------------
67
68/*
69 * Create and run a new thread.
70 *
71 * We create it "detached", so it cleans up after itself.
72 */
73
74typedef void* (*android_pthread_entry)(void*);
75
76struct thread_data_t {
77    thread_func_t   entryFunction;
78    void*           userData;
79    int             priority;
80    char *          threadName;
81
82    // we use this trampoline when we need to set the priority with
83    // nice/setpriority, and name with prctl.
84    static int trampoline(const thread_data_t* t) {
85        thread_func_t f = t->entryFunction;
86        void* u = t->userData;
87        int prio = t->priority;
88        char * name = t->threadName;
89        delete t;
90        setpriority(PRIO_PROCESS, 0, prio);
91        if (prio >= ANDROID_PRIORITY_BACKGROUND) {
92            set_sched_policy(0, SP_BACKGROUND);
93        } else {
94            set_sched_policy(0, SP_FOREGROUND);
95        }
96
97        if (name) {
98            androidSetThreadName(name);
99            free(name);
100        }
101        return f(u);
102    }
103};
104
105void androidSetThreadName(const char* name) {
106#if defined(HAVE_PRCTL)
107    // Mac OS doesn't have this, and we build libutil for the host too
108    int hasAt = 0;
109    int hasDot = 0;
110    const char *s = name;
111    while (*s) {
112        if (*s == '.') hasDot = 1;
113        else if (*s == '@') hasAt = 1;
114        s++;
115    }
116    int len = s - name;
117    if (len < 15 || hasAt || !hasDot) {
118        s = name;
119    } else {
120        s = name + len - 15;
121    }
122    prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
123#endif
124}
125
126int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
127                               void *userData,
128                               const char* threadName __android_unused,
129                               int32_t threadPriority,
130                               size_t threadStackSize,
131                               android_thread_id_t *threadId)
132{
133    pthread_attr_t attr;
134    pthread_attr_init(&attr);
135    pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
136
137#ifdef HAVE_ANDROID_OS  /* valgrind is rejecting RT-priority create reqs */
138    if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
139        // Now that the pthread_t has a method to find the associated
140        // android_thread_id_t (pid) from pthread_t, it would be possible to avoid
141        // this trampoline in some cases as the parent could set the properties
142        // for the child.  However, there would be a race condition because the
143        // child becomes ready immediately, and it doesn't work for the name.
144        // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
145        // proposed but not yet accepted.
146        thread_data_t* t = new thread_data_t;
147        t->priority = threadPriority;
148        t->threadName = threadName ? strdup(threadName) : NULL;
149        t->entryFunction = entryFunction;
150        t->userData = userData;
151        entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
152        userData = t;
153    }
154#endif
155
156    if (threadStackSize) {
157        pthread_attr_setstacksize(&attr, threadStackSize);
158    }
159
160    errno = 0;
161    pthread_t thread;
162    int result = pthread_create(&thread, &attr,
163                    (android_pthread_entry)entryFunction, userData);
164    pthread_attr_destroy(&attr);
165    if (result != 0) {
166        ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n"
167             "(android threadPriority=%d)",
168            entryFunction, result, errno, threadPriority);
169        return 0;
170    }
171
172    // Note that *threadID is directly available to the parent only, as it is
173    // assigned after the child starts.  Use memory barrier / lock if the child
174    // or other threads also need access.
175    if (threadId != NULL) {
176        *threadId = (android_thread_id_t)thread; // XXX: this is not portable
177    }
178    return 1;
179}
180
181#ifdef HAVE_ANDROID_OS
182static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
183{
184    return (pthread_t) thread;
185}
186#endif
187
188android_thread_id_t androidGetThreadId()
189{
190    return (android_thread_id_t)pthread_self();
191}
192
193// ----------------------------------------------------------------------------
194#elif defined(HAVE_WIN32_THREADS)
195// ----------------------------------------------------------------------------
196
197/*
198 * Trampoline to make us __stdcall-compliant.
199 *
200 * We're expected to delete "vDetails" when we're done.
201 */
202struct threadDetails {
203    int (*func)(void*);
204    void* arg;
205};
206static __stdcall unsigned int threadIntermediary(void* vDetails)
207{
208    struct threadDetails* pDetails = (struct threadDetails*) vDetails;
209    int result;
210
211    result = (*(pDetails->func))(pDetails->arg);
212
213    delete pDetails;
214
215    ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
216    return (unsigned int) result;
217}
218
219/*
220 * Create and run a new thread.
221 */
222static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
223{
224    HANDLE hThread;
225    struct threadDetails* pDetails = new threadDetails; // must be on heap
226    unsigned int thrdaddr;
227
228    pDetails->func = fn;
229    pDetails->arg = arg;
230
231#if defined(HAVE__BEGINTHREADEX)
232    hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
233                    &thrdaddr);
234    if (hThread == 0)
235#elif defined(HAVE_CREATETHREAD)
236    hThread = CreateThread(NULL, 0,
237                    (LPTHREAD_START_ROUTINE) threadIntermediary,
238                    (void*) pDetails, 0, (DWORD*) &thrdaddr);
239    if (hThread == NULL)
240#endif
241    {
242        ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
243        return false;
244    }
245
246#if defined(HAVE_CREATETHREAD)
247    /* close the management handle */
248    CloseHandle(hThread);
249#endif
250
251    if (id != NULL) {
252      	*id = (android_thread_id_t)thrdaddr;
253    }
254
255    return true;
256}
257
258int androidCreateRawThreadEtc(android_thread_func_t fn,
259                               void *userData,
260                               const char* /*threadName*/,
261                               int32_t /*threadPriority*/,
262                               size_t /*threadStackSize*/,
263                               android_thread_id_t *threadId)
264{
265    return doCreateThread(  fn, userData, threadId);
266}
267
268android_thread_id_t androidGetThreadId()
269{
270    return (android_thread_id_t)GetCurrentThreadId();
271}
272
273// ----------------------------------------------------------------------------
274#else
275#error "Threads not supported"
276#endif
277
278// ----------------------------------------------------------------------------
279
280int androidCreateThread(android_thread_func_t fn, void* arg)
281{
282    return createThreadEtc(fn, arg);
283}
284
285int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
286{
287    return createThreadEtc(fn, arg, "android:unnamed_thread",
288                           PRIORITY_DEFAULT, 0, id);
289}
290
291static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
292
293int androidCreateThreadEtc(android_thread_func_t entryFunction,
294                            void *userData,
295                            const char* threadName,
296                            int32_t threadPriority,
297                            size_t threadStackSize,
298                            android_thread_id_t *threadId)
299{
300    return gCreateThreadFn(entryFunction, userData, threadName,
301        threadPriority, threadStackSize, threadId);
302}
303
304void androidSetCreateThreadFunc(android_create_thread_fn func)
305{
306    gCreateThreadFn = func;
307}
308
309pid_t androidGetTid()
310{
311#ifdef HAVE_GETTID
312    return gettid();
313#else
314    return getpid();
315#endif
316}
317
318#ifdef HAVE_ANDROID_OS
319int androidSetThreadPriority(pid_t tid, int pri)
320{
321    int rc = 0;
322
323#if defined(HAVE_PTHREADS)
324    int lasterr = 0;
325
326    if (pri >= ANDROID_PRIORITY_BACKGROUND) {
327        rc = set_sched_policy(tid, SP_BACKGROUND);
328    } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
329        rc = set_sched_policy(tid, SP_FOREGROUND);
330    }
331
332    if (rc) {
333        lasterr = errno;
334    }
335
336    if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
337        rc = INVALID_OPERATION;
338    } else {
339        errno = lasterr;
340    }
341#endif
342
343    return rc;
344}
345
346int androidGetThreadPriority(pid_t tid) {
347#if defined(HAVE_PTHREADS)
348    return getpriority(PRIO_PROCESS, tid);
349#else
350    return ANDROID_PRIORITY_NORMAL;
351#endif
352}
353
354#endif
355
356namespace android {
357
358/*
359 * ===========================================================================
360 *      Mutex class
361 * ===========================================================================
362 */
363
364#if defined(HAVE_PTHREADS)
365// implemented as inlines in threads.h
366#elif defined(HAVE_WIN32_THREADS)
367
368Mutex::Mutex()
369{
370    HANDLE hMutex;
371
372    assert(sizeof(hMutex) == sizeof(mState));
373
374    hMutex = CreateMutex(NULL, FALSE, NULL);
375    mState = (void*) hMutex;
376}
377
378Mutex::Mutex(const char* name)
379{
380    // XXX: name not used for now
381    HANDLE hMutex;
382
383    assert(sizeof(hMutex) == sizeof(mState));
384
385    hMutex = CreateMutex(NULL, FALSE, NULL);
386    mState = (void*) hMutex;
387}
388
389Mutex::Mutex(int type, const char* name)
390{
391    // XXX: type and name not used for now
392    HANDLE hMutex;
393
394    assert(sizeof(hMutex) == sizeof(mState));
395
396    hMutex = CreateMutex(NULL, FALSE, NULL);
397    mState = (void*) hMutex;
398}
399
400Mutex::~Mutex()
401{
402    CloseHandle((HANDLE) mState);
403}
404
405status_t Mutex::lock()
406{
407    DWORD dwWaitResult;
408    dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
409    return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
410}
411
412void Mutex::unlock()
413{
414    if (!ReleaseMutex((HANDLE) mState))
415        ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
416}
417
418status_t Mutex::tryLock()
419{
420    DWORD dwWaitResult;
421
422    dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
423    if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
424        ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
425    return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
426}
427
428#else
429#error "Somebody forgot to implement threads for this platform."
430#endif
431
432
433/*
434 * ===========================================================================
435 *      Condition class
436 * ===========================================================================
437 */
438
439#if defined(HAVE_PTHREADS)
440// implemented as inlines in threads.h
441#elif defined(HAVE_WIN32_THREADS)
442
443/*
444 * Windows doesn't have a condition variable solution.  It's possible
445 * to create one, but it's easy to get it wrong.  For a discussion, and
446 * the origin of this implementation, see:
447 *
448 *  http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
449 *
450 * The implementation shown on the page does NOT follow POSIX semantics.
451 * As an optimization they require acquiring the external mutex before
452 * calling signal() and broadcast(), whereas POSIX only requires grabbing
453 * it before calling wait().  The implementation here has been un-optimized
454 * to have the correct behavior.
455 */
456typedef struct WinCondition {
457    // Number of waiting threads.
458    int                 waitersCount;
459
460    // Serialize access to waitersCount.
461    CRITICAL_SECTION    waitersCountLock;
462
463    // Semaphore used to queue up threads waiting for the condition to
464    // become signaled.
465    HANDLE              sema;
466
467    // An auto-reset event used by the broadcast/signal thread to wait
468    // for all the waiting thread(s) to wake up and be released from
469    // the semaphore.
470    HANDLE              waitersDone;
471
472    // This mutex wouldn't be necessary if we required that the caller
473    // lock the external mutex before calling signal() and broadcast().
474    // I'm trying to mimic pthread semantics though.
475    HANDLE              internalMutex;
476
477    // Keeps track of whether we were broadcasting or signaling.  This
478    // allows us to optimize the code if we're just signaling.
479    bool                wasBroadcast;
480
481    status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
482    {
483        // Increment the wait count, avoiding race conditions.
484        EnterCriticalSection(&condState->waitersCountLock);
485        condState->waitersCount++;
486        //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
487        //    condState->waitersCount, getThreadId());
488        LeaveCriticalSection(&condState->waitersCountLock);
489
490        DWORD timeout = INFINITE;
491        if (abstime) {
492            nsecs_t reltime = *abstime - systemTime();
493            if (reltime < 0)
494                reltime = 0;
495            timeout = reltime/1000000;
496        }
497
498        // Atomically release the external mutex and wait on the semaphore.
499        DWORD res =
500            SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
501
502        //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
503
504        // Reacquire lock to avoid race conditions.
505        EnterCriticalSection(&condState->waitersCountLock);
506
507        // No longer waiting.
508        condState->waitersCount--;
509
510        // Check to see if we're the last waiter after a broadcast.
511        bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
512
513        //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
514        //    lastWaiter, condState->wasBroadcast, condState->waitersCount);
515
516        LeaveCriticalSection(&condState->waitersCountLock);
517
518        // If we're the last waiter thread during this particular broadcast
519        // then signal broadcast() that we're all awake.  It'll drop the
520        // internal mutex.
521        if (lastWaiter) {
522            // Atomically signal the "waitersDone" event and wait until we
523            // can acquire the internal mutex.  We want to do this in one step
524            // because it ensures that everybody is in the mutex FIFO before
525            // any thread has a chance to run.  Without it, another thread
526            // could wake up, do work, and hop back in ahead of us.
527            SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
528                INFINITE, FALSE);
529        } else {
530            // Grab the internal mutex.
531            WaitForSingleObject(condState->internalMutex, INFINITE);
532        }
533
534        // Release the internal and grab the external.
535        ReleaseMutex(condState->internalMutex);
536        WaitForSingleObject(hMutex, INFINITE);
537
538        return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
539    }
540} WinCondition;
541
542/*
543 * Constructor.  Set up the WinCondition stuff.
544 */
545Condition::Condition()
546{
547    WinCondition* condState = new WinCondition;
548
549    condState->waitersCount = 0;
550    condState->wasBroadcast = false;
551    // semaphore: no security, initial value of 0
552    condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
553    InitializeCriticalSection(&condState->waitersCountLock);
554    // auto-reset event, not signaled initially
555    condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
556    // used so we don't have to lock external mutex on signal/broadcast
557    condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
558
559    mState = condState;
560}
561
562/*
563 * Destructor.  Free Windows resources as well as our allocated storage.
564 */
565Condition::~Condition()
566{
567    WinCondition* condState = (WinCondition*) mState;
568    if (condState != NULL) {
569        CloseHandle(condState->sema);
570        CloseHandle(condState->waitersDone);
571        delete condState;
572    }
573}
574
575
576status_t Condition::wait(Mutex& mutex)
577{
578    WinCondition* condState = (WinCondition*) mState;
579    HANDLE hMutex = (HANDLE) mutex.mState;
580
581    return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
582}
583
584status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
585{
586    WinCondition* condState = (WinCondition*) mState;
587    HANDLE hMutex = (HANDLE) mutex.mState;
588    nsecs_t absTime = systemTime()+reltime;
589
590    return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
591}
592
593/*
594 * Signal the condition variable, allowing one thread to continue.
595 */
596void Condition::signal()
597{
598    WinCondition* condState = (WinCondition*) mState;
599
600    // Lock the internal mutex.  This ensures that we don't clash with
601    // broadcast().
602    WaitForSingleObject(condState->internalMutex, INFINITE);
603
604    EnterCriticalSection(&condState->waitersCountLock);
605    bool haveWaiters = (condState->waitersCount > 0);
606    LeaveCriticalSection(&condState->waitersCountLock);
607
608    // If no waiters, then this is a no-op.  Otherwise, knock the semaphore
609    // down a notch.
610    if (haveWaiters)
611        ReleaseSemaphore(condState->sema, 1, 0);
612
613    // Release internal mutex.
614    ReleaseMutex(condState->internalMutex);
615}
616
617/*
618 * Signal the condition variable, allowing all threads to continue.
619 *
620 * First we have to wake up all threads waiting on the semaphore, then
621 * we wait until all of the threads have actually been woken before
622 * releasing the internal mutex.  This ensures that all threads are woken.
623 */
624void Condition::broadcast()
625{
626    WinCondition* condState = (WinCondition*) mState;
627
628    // Lock the internal mutex.  This keeps the guys we're waking up
629    // from getting too far.
630    WaitForSingleObject(condState->internalMutex, INFINITE);
631
632    EnterCriticalSection(&condState->waitersCountLock);
633    bool haveWaiters = false;
634
635    if (condState->waitersCount > 0) {
636        haveWaiters = true;
637        condState->wasBroadcast = true;
638    }
639
640    if (haveWaiters) {
641        // Wake up all the waiters.
642        ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
643
644        LeaveCriticalSection(&condState->waitersCountLock);
645
646        // Wait for all awakened threads to acquire the counting semaphore.
647        // The last guy who was waiting sets this.
648        WaitForSingleObject(condState->waitersDone, INFINITE);
649
650        // Reset wasBroadcast.  (No crit section needed because nobody
651        // else can wake up to poke at it.)
652        condState->wasBroadcast = 0;
653    } else {
654        // nothing to do
655        LeaveCriticalSection(&condState->waitersCountLock);
656    }
657
658    // Release internal mutex.
659    ReleaseMutex(condState->internalMutex);
660}
661
662#else
663#error "condition variables not supported on this platform"
664#endif
665
666// ----------------------------------------------------------------------------
667
668/*
669 * This is our thread object!
670 */
671
672Thread::Thread(bool canCallJava)
673    :   mCanCallJava(canCallJava),
674        mThread(thread_id_t(-1)),
675        mLock("Thread::mLock"),
676        mStatus(NO_ERROR),
677        mExitPending(false), mRunning(false)
678#ifdef HAVE_ANDROID_OS
679        , mTid(-1)
680#endif
681{
682}
683
684Thread::~Thread()
685{
686}
687
688status_t Thread::readyToRun()
689{
690    return NO_ERROR;
691}
692
693status_t Thread::run(const char* name, int32_t priority, size_t stack)
694{
695    Mutex::Autolock _l(mLock);
696
697    if (mRunning) {
698        // thread already started
699        return INVALID_OPERATION;
700    }
701
702    // reset status and exitPending to their default value, so we can
703    // try again after an error happened (either below, or in readyToRun())
704    mStatus = NO_ERROR;
705    mExitPending = false;
706    mThread = thread_id_t(-1);
707
708    // hold a strong reference on ourself
709    mHoldSelf = this;
710
711    mRunning = true;
712
713    bool res;
714    if (mCanCallJava) {
715        res = createThreadEtc(_threadLoop,
716                this, name, priority, stack, &mThread);
717    } else {
718        res = androidCreateRawThreadEtc(_threadLoop,
719                this, name, priority, stack, &mThread);
720    }
721
722    if (res == false) {
723        mStatus = UNKNOWN_ERROR;   // something happened!
724        mRunning = false;
725        mThread = thread_id_t(-1);
726        mHoldSelf.clear();  // "this" may have gone away after this.
727
728        return UNKNOWN_ERROR;
729    }
730
731    // Do not refer to mStatus here: The thread is already running (may, in fact
732    // already have exited with a valid mStatus result). The NO_ERROR indication
733    // here merely indicates successfully starting the thread and does not
734    // imply successful termination/execution.
735    return NO_ERROR;
736
737    // Exiting scope of mLock is a memory barrier and allows new thread to run
738}
739
740int Thread::_threadLoop(void* user)
741{
742    Thread* const self = static_cast<Thread*>(user);
743
744    sp<Thread> strong(self->mHoldSelf);
745    wp<Thread> weak(strong);
746    self->mHoldSelf.clear();
747
748#ifdef HAVE_ANDROID_OS
749    // this is very useful for debugging with gdb
750    self->mTid = gettid();
751#endif
752
753    bool first = true;
754
755    do {
756        bool result;
757        if (first) {
758            first = false;
759            self->mStatus = self->readyToRun();
760            result = (self->mStatus == NO_ERROR);
761
762            if (result && !self->exitPending()) {
763                // Binder threads (and maybe others) rely on threadLoop
764                // running at least once after a successful ::readyToRun()
765                // (unless, of course, the thread has already been asked to exit
766                // at that point).
767                // This is because threads are essentially used like this:
768                //   (new ThreadSubclass())->run();
769                // The caller therefore does not retain a strong reference to
770                // the thread and the thread would simply disappear after the
771                // successful ::readyToRun() call instead of entering the
772                // threadLoop at least once.
773                result = self->threadLoop();
774            }
775        } else {
776            result = self->threadLoop();
777        }
778
779        // establish a scope for mLock
780        {
781        Mutex::Autolock _l(self->mLock);
782        if (result == false || self->mExitPending) {
783            self->mExitPending = true;
784            self->mRunning = false;
785            // clear thread ID so that requestExitAndWait() does not exit if
786            // called by a new thread using the same thread ID as this one.
787            self->mThread = thread_id_t(-1);
788            // note that interested observers blocked in requestExitAndWait are
789            // awoken by broadcast, but blocked on mLock until break exits scope
790            self->mThreadExitedCondition.broadcast();
791            break;
792        }
793        }
794
795        // Release our strong reference, to let a chance to the thread
796        // to die a peaceful death.
797        strong.clear();
798        // And immediately, re-acquire a strong reference for the next loop
799        strong = weak.promote();
800    } while(strong != 0);
801
802    return 0;
803}
804
805void Thread::requestExit()
806{
807    Mutex::Autolock _l(mLock);
808    mExitPending = true;
809}
810
811status_t Thread::requestExitAndWait()
812{
813    Mutex::Autolock _l(mLock);
814    if (mThread == getThreadId()) {
815        ALOGW(
816        "Thread (this=%p): don't call waitForExit() from this "
817        "Thread object's thread. It's a guaranteed deadlock!",
818        this);
819
820        return WOULD_BLOCK;
821    }
822
823    mExitPending = true;
824
825    while (mRunning == true) {
826        mThreadExitedCondition.wait(mLock);
827    }
828    // This next line is probably not needed any more, but is being left for
829    // historical reference. Note that each interested party will clear flag.
830    mExitPending = false;
831
832    return mStatus;
833}
834
835status_t Thread::join()
836{
837    Mutex::Autolock _l(mLock);
838    if (mThread == getThreadId()) {
839        ALOGW(
840        "Thread (this=%p): don't call join() from this "
841        "Thread object's thread. It's a guaranteed deadlock!",
842        this);
843
844        return WOULD_BLOCK;
845    }
846
847    while (mRunning == true) {
848        mThreadExitedCondition.wait(mLock);
849    }
850
851    return mStatus;
852}
853
854bool Thread::isRunning() const {
855    Mutex::Autolock _l(mLock);
856    return mRunning;
857}
858
859#ifdef HAVE_ANDROID_OS
860pid_t Thread::getTid() const
861{
862    // mTid is not defined until the child initializes it, and the caller may need it earlier
863    Mutex::Autolock _l(mLock);
864    pid_t tid;
865    if (mRunning) {
866        pthread_t pthread = android_thread_id_t_to_pthread(mThread);
867        tid = __pthread_gettid(pthread);
868    } else {
869        ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
870        tid = -1;
871    }
872    return tid;
873}
874#endif
875
876bool Thread::exitPending() const
877{
878    Mutex::Autolock _l(mLock);
879    return mExitPending;
880}
881
882
883
884};  // namespace android
885