package org.bouncycastle.crypto.modes; import org.bouncycastle.crypto.BlockCipher; import org.bouncycastle.crypto.CipherParameters; import org.bouncycastle.crypto.DataLengthException; import org.bouncycastle.crypto.InvalidCipherTextException; import org.bouncycastle.crypto.modes.gcm.GCMExponentiator; import org.bouncycastle.crypto.modes.gcm.GCMMultiplier; import org.bouncycastle.crypto.modes.gcm.Tables1kGCMExponentiator; import org.bouncycastle.crypto.modes.gcm.Tables8kGCMMultiplier; import org.bouncycastle.crypto.params.AEADParameters; import org.bouncycastle.crypto.params.KeyParameter; import org.bouncycastle.crypto.params.ParametersWithIV; import org.bouncycastle.crypto.util.Pack; import org.bouncycastle.util.Arrays; /** * Implements the Galois/Counter mode (GCM) detailed in * NIST Special Publication 800-38D. */ public class GCMBlockCipher implements AEADBlockCipher { private static final int BLOCK_SIZE = 16; // not final due to a compiler bug private BlockCipher cipher; private GCMMultiplier multiplier; private GCMExponentiator exp; // These fields are set by init and not modified by processing private boolean forEncryption; private int macSize; private byte[] nonce; private byte[] initialAssociatedText; private byte[] H; private byte[] J0; // These fields are modified during processing private byte[] bufBlock; private byte[] macBlock; private byte[] S, S_at, S_atPre; private byte[] counter; private int bufOff; private long totalLength; private byte[] atBlock; private int atBlockPos; private long atLength; private long atLengthPre; public GCMBlockCipher(BlockCipher c) { this(c, null); } public GCMBlockCipher(BlockCipher c, GCMMultiplier m) { if (c.getBlockSize() != BLOCK_SIZE) { throw new IllegalArgumentException( "cipher required with a block size of " + BLOCK_SIZE + "."); } if (m == null) { // TODO Consider a static property specifying default multiplier m = new Tables8kGCMMultiplier(); } this.cipher = c; this.multiplier = m; } public BlockCipher getUnderlyingCipher() { return cipher; } public String getAlgorithmName() { return cipher.getAlgorithmName() + "/GCM"; } public void init(boolean forEncryption, CipherParameters params) throws IllegalArgumentException { this.forEncryption = forEncryption; this.macBlock = null; KeyParameter keyParam; if (params instanceof AEADParameters) { AEADParameters param = (AEADParameters)params; nonce = param.getNonce(); initialAssociatedText = param.getAssociatedText(); int macSizeBits = param.getMacSize(); if (macSizeBits < 96 || macSizeBits > 128 || macSizeBits % 8 != 0) { throw new IllegalArgumentException("Invalid value for MAC size: " + macSizeBits); } macSize = macSizeBits / 8; keyParam = param.getKey(); } else if (params instanceof ParametersWithIV) { ParametersWithIV param = (ParametersWithIV)params; nonce = param.getIV(); initialAssociatedText = null; macSize = 16; keyParam = (KeyParameter)param.getParameters(); } else { throw new IllegalArgumentException("invalid parameters passed to GCM"); } int bufLength = forEncryption ? BLOCK_SIZE : (BLOCK_SIZE + macSize); this.bufBlock = new byte[bufLength]; if (nonce == null || nonce.length < 1) { throw new IllegalArgumentException("IV must be at least 1 byte"); } // TODO This should be configurable by init parameters // (but must be 16 if nonce length not 12) (BLOCK_SIZE?) // this.tagLength = 16; // Cipher always used in forward mode // if keyParam is null we're reusing the last key. if (keyParam != null) { cipher.init(true, keyParam); this.H = new byte[BLOCK_SIZE]; cipher.processBlock(H, 0, H, 0); // GCMMultiplier tables don't change unless the key changes (and are expensive to init) multiplier.init(H); exp = null; } this.J0 = new byte[BLOCK_SIZE]; if (nonce.length == 12) { System.arraycopy(nonce, 0, J0, 0, nonce.length); this.J0[BLOCK_SIZE - 1] = 0x01; } else { gHASH(J0, nonce, nonce.length); byte[] X = new byte[BLOCK_SIZE]; Pack.longToBigEndian((long)nonce.length * 8, X, 8); gHASHBlock(J0, X); } this.S = new byte[BLOCK_SIZE]; this.S_at = new byte[BLOCK_SIZE]; this.S_atPre = new byte[BLOCK_SIZE]; this.atBlock = new byte[BLOCK_SIZE]; this.atBlockPos = 0; this.atLength = 0; this.atLengthPre = 0; this.counter = Arrays.clone(J0); this.bufOff = 0; this.totalLength = 0; if (initialAssociatedText != null) { processAADBytes(initialAssociatedText, 0, initialAssociatedText.length); } } public byte[] getMac() { return Arrays.clone(macBlock); } public int getOutputSize(int len) { int totalData = len + bufOff; if (forEncryption) { return totalData + macSize; } return totalData < macSize ? 0 : totalData - macSize; } public int getUpdateOutputSize(int len) { int totalData = len + bufOff; if (!forEncryption) { if (totalData < macSize) { return 0; } totalData -= macSize; } return totalData - totalData % BLOCK_SIZE; } public void processAADByte(byte in) { atBlock[atBlockPos] = in; if (++atBlockPos == BLOCK_SIZE) { // Hash each block as it fills gHASHBlock(S_at, atBlock); atBlockPos = 0; atLength += BLOCK_SIZE; } } public void processAADBytes(byte[] in, int inOff, int len) { for (int i = 0; i < len; ++i) { atBlock[atBlockPos] = in[inOff + i]; if (++atBlockPos == BLOCK_SIZE) { // Hash each block as it fills gHASHBlock(S_at, atBlock); atBlockPos = 0; atLength += BLOCK_SIZE; } } } private void initCipher() { if (atLength > 0) { System.arraycopy(S_at, 0, S_atPre, 0, BLOCK_SIZE); atLengthPre = atLength; } // Finish hash for partial AAD block if (atBlockPos > 0) { gHASHPartial(S_atPre, atBlock, 0, atBlockPos); atLengthPre += atBlockPos; } if (atLengthPre > 0) { System.arraycopy(S_atPre, 0, S, 0, BLOCK_SIZE); } } public int processByte(byte in, byte[] out, int outOff) throws DataLengthException { bufBlock[bufOff] = in; if (++bufOff == bufBlock.length) { outputBlock(out, outOff); return BLOCK_SIZE; } return 0; } public int processBytes(byte[] in, int inOff, int len, byte[] out, int outOff) throws DataLengthException { int resultLen = 0; for (int i = 0; i < len; ++i) { bufBlock[bufOff] = in[inOff + i]; if (++bufOff == bufBlock.length) { outputBlock(out, outOff + resultLen); resultLen += BLOCK_SIZE; } } return resultLen; } private void outputBlock(byte[] output, int offset) { if (totalLength == 0) { initCipher(); } gCTRBlock(bufBlock, output, offset); if (forEncryption) { bufOff = 0; } else { System.arraycopy(bufBlock, BLOCK_SIZE, bufBlock, 0, macSize); bufOff = macSize; } } public int doFinal(byte[] out, int outOff) throws IllegalStateException, InvalidCipherTextException { if (totalLength == 0) { initCipher(); } int extra = bufOff; if (!forEncryption) { if (extra < macSize) { throw new InvalidCipherTextException("data too short"); } extra -= macSize; } if (extra > 0) { gCTRPartial(bufBlock, 0, extra, out, outOff); } atLength += atBlockPos; if (atLength > atLengthPre) { /* * Some AAD was sent after the cipher started. We determine the difference b/w the hash value * we actually used when the cipher started (S_atPre) and the final hash value calculated (S_at). * Then we carry this difference forward by multiplying by H^c, where c is the number of (full or * partial) cipher-text blocks produced, and adjust the current hash. */ // Finish hash for partial AAD block if (atBlockPos > 0) { gHASHPartial(S_at, atBlock, 0, atBlockPos); } // Find the difference between the AAD hashes if (atLengthPre > 0) { xor(S_at, S_atPre); } // Number of cipher-text blocks produced long c = ((totalLength * 8) + 127) >>> 7; // Calculate the adjustment factor byte[] H_c = new byte[16]; if (exp == null) { exp = new Tables1kGCMExponentiator(); exp.init(H); } exp.exponentiateX(c, H_c); // Carry the difference forward multiply(S_at, H_c); // Adjust the current hash xor(S, S_at); } // Final gHASH byte[] X = new byte[BLOCK_SIZE]; Pack.longToBigEndian(atLength * 8, X, 0); Pack.longToBigEndian(totalLength * 8, X, 8); gHASHBlock(S, X); // TODO Fix this if tagLength becomes configurable // T = MSBt(GCTRk(J0,S)) byte[] tag = new byte[BLOCK_SIZE]; cipher.processBlock(J0, 0, tag, 0); xor(tag, S); int resultLen = extra; // We place into macBlock our calculated value for T this.macBlock = new byte[macSize]; System.arraycopy(tag, 0, macBlock, 0, macSize); if (forEncryption) { // Append T to the message System.arraycopy(macBlock, 0, out, outOff + bufOff, macSize); resultLen += macSize; } else { // Retrieve the T value from the message and compare to calculated one byte[] msgMac = new byte[macSize]; System.arraycopy(bufBlock, extra, msgMac, 0, macSize); if (!Arrays.constantTimeAreEqual(this.macBlock, msgMac)) { throw new InvalidCipherTextException("mac check in GCM failed"); } } reset(false); return resultLen; } public void reset() { reset(true); } private void reset( boolean clearMac) { cipher.reset(); S = new byte[BLOCK_SIZE]; S_at = new byte[BLOCK_SIZE]; S_atPre = new byte[BLOCK_SIZE]; atBlock = new byte[BLOCK_SIZE]; atBlockPos = 0; atLength = 0; atLengthPre = 0; counter = Arrays.clone(J0); bufOff = 0; totalLength = 0; if (bufBlock != null) { Arrays.fill(bufBlock, (byte)0); } if (clearMac) { macBlock = null; } if (initialAssociatedText != null) { processAADBytes(initialAssociatedText, 0, initialAssociatedText.length); } } private void gCTRBlock(byte[] block, byte[] out, int outOff) { byte[] tmp = getNextCounterBlock(); xor(tmp, block); System.arraycopy(tmp, 0, out, outOff, BLOCK_SIZE); gHASHBlock(S, forEncryption ? tmp : block); totalLength += BLOCK_SIZE; } private void gCTRPartial(byte[] buf, int off, int len, byte[] out, int outOff) { byte[] tmp = getNextCounterBlock(); xor(tmp, buf, off, len); System.arraycopy(tmp, 0, out, outOff, len); gHASHPartial(S, forEncryption ? tmp : buf, 0, len); totalLength += len; } private void gHASH(byte[] Y, byte[] b, int len) { for (int pos = 0; pos < len; pos += BLOCK_SIZE) { int num = Math.min(len - pos, BLOCK_SIZE); gHASHPartial(Y, b, pos, num); } } private void gHASHBlock(byte[] Y, byte[] b) { xor(Y, b); multiplier.multiplyH(Y); } private void gHASHPartial(byte[] Y, byte[] b, int off, int len) { xor(Y, b, off, len); multiplier.multiplyH(Y); } private byte[] getNextCounterBlock() { for (int i = 15; i >= 12; --i) { byte b = (byte)((counter[i] + 1) & 0xff); counter[i] = b; if (b != 0) { break; } } byte[] tmp = new byte[BLOCK_SIZE]; // TODO Sure would be nice if ciphers could operate on int[] cipher.processBlock(counter, 0, tmp, 0); return tmp; } private static void multiply(byte[] block, byte[] val) { byte[] tmp = Arrays.clone(block); byte[] c = new byte[16]; for (int i = 0; i < 16; ++i) { byte bits = val[i]; for (int j = 7; j >= 0; --j) { if ((bits & (1 << j)) != 0) { xor(c, tmp); } boolean lsb = (tmp[15] & 1) != 0; shiftRight(tmp); if (lsb) { // R = new byte[]{ 0xe1, ... }; // xor(v, R); tmp[0] ^= (byte)0xe1; } } } System.arraycopy(c, 0, block, 0, 16); } private static void shiftRight(byte[] block) { int i = 0; int bit = 0; for (;;) { int b = block[i] & 0xff; block[i] = (byte) ((b >>> 1) | bit); if (++i == 16) { break; } bit = (b & 1) << 7; } } private static void xor(byte[] block, byte[] val) { for (int i = 15; i >= 0; --i) { block[i] ^= val[i]; } } private static void xor(byte[] block, byte[] val, int off, int len) { while (len-- > 0) { block[len] ^= val[off + len]; } } }