/* * Copyright (C) 2009 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.primitives; import static com.google.common.base.Preconditions.checkArgument; import static com.google.common.base.Preconditions.checkNotNull; import com.google.common.annotations.VisibleForTesting; // BEGIN android-changed //import sun.misc.Unsafe; // END android-changed import java.lang.reflect.Field; import java.nio.ByteOrder; import java.security.AccessController; import java.security.PrivilegedAction; import java.util.Comparator; /** * Static utility methods pertaining to {@code byte} primitives that interpret * values as unsigned (that is, any negative value {@code b} is treated * as the positive value {@code 256 + b}). The corresponding methods that treat * the values as signed are found in {@link SignedBytes}, and the methods for * which signedness is not an issue are in {@link Bytes}. * * @author Kevin Bourrillion * @author Martin Buchholz * @author Hiroshi Yamauchi * @since 1.0 */ public final class UnsignedBytes { private UnsignedBytes() {} /** * The largest power of two that can be represented as an unsigned {@code byte}. * * @since 10.0 */ public static final byte MAX_POWER_OF_TWO = (byte) (1 << 7); /** * Returns the value of the given byte as an integer, when treated as * unsigned. That is, returns {@code value + 256} if {@code value} is * negative; {@code value} itself otherwise. * * @since 6.0 */ public static int toInt(byte value) { return value & 0xFF; } /** * Returns the {@code byte} value that, when treated as unsigned, is equal to * {@code value}, if possible. * * @param value a value between 0 and 255 inclusive * @return the {@code byte} value that, when treated as unsigned, equals * {@code value} * @throws IllegalArgumentException if {@code value} is negative or greater * than 255 */ public static byte checkedCast(long value) { checkArgument(value >> 8 == 0, "out of range: %s", value); return (byte) value; } /** * Returns the {@code byte} value that, when treated as unsigned, is nearest * in value to {@code value}. * * @param value any {@code long} value * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if * {@code value <= 0}, and {@code value} cast to {@code byte} otherwise */ public static byte saturatedCast(long value) { if (value > 255) { return (byte) 255; // -1 } if (value < 0) { return (byte) 0; } return (byte) value; } /** * Compares the two specified {@code byte} values, treating them as unsigned * values between 0 and 255 inclusive. For example, {@code (byte) -127} is * considered greater than {@code (byte) 127} because it is seen as having * the value of positive {@code 129}. * * @param a the first {@code byte} to compare * @param b the second {@code byte} to compare * @return a negative value if {@code a} is less than {@code b}; a positive * value if {@code a} is greater than {@code b}; or zero if they are equal */ public static int compare(byte a, byte b) { return toInt(a) - toInt(b); } /** * Returns the least value present in {@code array}. * * @param array a nonempty array of {@code byte} values * @return the value present in {@code array} that is less than or equal to * every other value in the array * @throws IllegalArgumentException if {@code array} is empty */ public static byte min(byte... array) { checkArgument(array.length > 0); int min = toInt(array[0]); for (int i = 1; i < array.length; i++) { int next = toInt(array[i]); if (next < min) { min = next; } } return (byte) min; } /** * Returns the greatest value present in {@code array}. * * @param array a nonempty array of {@code byte} values * @return the value present in {@code array} that is greater than or equal * to every other value in the array * @throws IllegalArgumentException if {@code array} is empty */ public static byte max(byte... array) { checkArgument(array.length > 0); int max = toInt(array[0]); for (int i = 1; i < array.length; i++) { int next = toInt(array[i]); if (next > max) { max = next; } } return (byte) max; } /** * Returns a string containing the supplied {@code byte} values separated by * {@code separator}. For example, {@code join(":", (byte) 1, (byte) 2, * (byte) 255)} returns the string {@code "1:2:255"}. * * @param separator the text that should appear between consecutive values in * the resulting string (but not at the start or end) * @param array an array of {@code byte} values, possibly empty */ public static String join(String separator, byte... array) { checkNotNull(separator); if (array.length == 0) { return ""; } // For pre-sizing a builder, just get the right order of magnitude StringBuilder builder = new StringBuilder(array.length * 5); builder.append(toInt(array[0])); for (int i = 1; i < array.length; i++) { builder.append(separator).append(toInt(array[i])); } return builder.toString(); } /** * Returns a comparator that compares two {@code byte} arrays * lexicographically. That is, it compares, using {@link * #compare(byte, byte)}), the first pair of values that follow any common * prefix, or when one array is a prefix of the other, treats the shorter * array as the lesser. For example, {@code [] < [0x01] < [0x01, 0x7F] < * [0x01, 0x80] < [0x02]}. Values are treated as unsigned. * *

The returned comparator is inconsistent with {@link * Object#equals(Object)} (since arrays support only identity equality), but * it is consistent with {@link java.util.Arrays#equals(byte[], byte[])}. * * @see * Lexicographical order article at Wikipedia * @since 2.0 */ public static Comparator lexicographicalComparator() { return LexicographicalComparatorHolder.BEST_COMPARATOR; } @VisibleForTesting static Comparator lexicographicalComparatorJavaImpl() { return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; } /** * Provides a lexicographical comparator implementation; either a Java * implementation or a faster implementation based on {@link Unsafe}. * *

Uses reflection to gracefully fall back to the Java implementation if * {@code Unsafe} isn't available. */ @VisibleForTesting static class LexicographicalComparatorHolder { static final String UNSAFE_COMPARATOR_NAME = LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; // BEGIN android-changed static final Comparator BEST_COMPARATOR = lexicographicalComparatorJavaImpl(); // @VisibleForTesting // enum UnsafeComparator implements Comparator { // INSTANCE; // static final boolean littleEndian = // ByteOrder.nativeOrder().equals(ByteOrder.LITTLE_ENDIAN); // /* // * The following static final fields exist for performance reasons. // * // * In UnsignedBytesBenchmark, accessing the following objects via static // * final fields is the fastest (more than twice as fast as the Java // * implementation, vs ~1.5x with non-final static fields, on x86_32) // * under the Hotspot server compiler. The reason is obviously that the // * non-final fields need to be reloaded inside the loop. // * // * And, no, defining (final or not) local variables out of the loop still // * isn't as good because the null check on the theUnsafe object remains // * inside the loop and BYTE_ARRAY_BASE_OFFSET doesn't get // * constant-folded. // * // * The compiler can treat static final fields as compile-time constants // * and can constant-fold them while (final or not) local variables are // * run time values. // */ // static final Unsafe theUnsafe; // /** The offset to the first element in a byte array. */ // static final int BYTE_ARRAY_BASE_OFFSET; // static { // theUnsafe = (Unsafe) AccessController.doPrivileged( // new PrivilegedAction() { // @Override // public Object run() { // try { // Field f = Unsafe.class.getDeclaredField("theUnsafe"); // f.setAccessible(true); // return f.get(null); // } catch (NoSuchFieldException e) { // // It doesn't matter what we throw; // // it's swallowed in getBestComparator(). // throw new Error(); // } catch (IllegalAccessException e) { // throw new Error(); // } // } // }); // BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); // // sanity check - this should never fail // if (theUnsafe.arrayIndexScale(byte[].class) != 1) { // throw new AssertionError(); // } // } // @Override public int compare(byte[] left, byte[] right) { // int minLength = Math.min(left.length, right.length); // int minWords = minLength / Longs.BYTES; // /* // * Compare 8 bytes at a time. Benchmarking shows comparing 8 bytes at a // * time is no slower than comparing 4 bytes at a time even on 32-bit. // * On the other hand, it is substantially faster on 64-bit. // */ // for (int i = 0; i < minWords * Longs.BYTES; i += Longs.BYTES) { // long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); // long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); // long diff = lw ^ rw; // if (diff != 0) { // if (!littleEndian) { // return UnsignedLongs.compare(lw, rw); // } // // Use binary search // int n = 0; // int y; // int x = (int) diff; // if (x == 0) { // x = (int) (diff >>> 32); // n = 32; // } // y = x << 16; // if (y == 0) { // n += 16; // } else { // x = y; // } // y = x << 8; // if (y == 0) { // n += 8; // } // return (int) (((lw >>> n) & 0xFFL) - ((rw >>> n) & 0xFFL)); // } // } // // The epilogue to cover the last (minLength % 8) elements. // for (int i = minWords * Longs.BYTES; i < minLength; i++) { // int result = UnsignedBytes.compare(left[i], right[i]); // if (result != 0) { // return result; // } // } // return left.length - right.length; // } // } // END android-changed enum PureJavaComparator implements Comparator { INSTANCE; @Override public int compare(byte[] left, byte[] right) { int minLength = Math.min(left.length, right.length); for (int i = 0; i < minLength; i++) { int result = UnsignedBytes.compare(left[i], right[i]); if (result != 0) { return result; } } return left.length - right.length; } } // BEGIN android-changed // /** // * Returns the Unsafe-using Comparator, or falls back to the pure-Java // * implementation if unable to do so. // */ // static Comparator getBestComparator() { // try { // Class theClass = Class.forName(UNSAFE_COMPARATOR_NAME); // // yes, UnsafeComparator does implement Comparator // @SuppressWarnings("unchecked") // Comparator comparator = // (Comparator) theClass.getEnumConstants()[0]; // return comparator; // } catch (Throwable t) { // ensure we really catch *everything* // return lexicographicalComparatorJavaImpl(); // } // } // END android-changed } }