// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // http://code.google.com/p/protobuf/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package com.google.protobuf.nano; import java.io.UnsupportedEncodingException; import java.util.Arrays; /** * The classes contained within are used internally by the Protocol Buffer * library and generated message implementations. They are public only because * those generated messages do not reside in the {@code protobuf} package. * Others should not use this class directly. * * @author kenton@google.com (Kenton Varda) */ public final class InternalNano { private InternalNano() {} /** * An object to provide synchronization when lazily initializing static fields * of {@link MessageNano} subclasses. *

* To enable earlier versions of ProGuard to inline short methods from a * generated MessageNano subclass to the call sites, that class must not have * a class initializer, which will be created if there is any static variable * initializers. To lazily initialize the static variables in a thread-safe * manner, the initialization code will synchronize on this object. */ public static final Object LAZY_INIT_LOCK = new Object(); /** * Helper called by generated code to construct default values for string * fields. *

* The protocol compiler does not actually contain a UTF-8 decoder -- it * just pushes UTF-8-encoded text around without touching it. The one place * where this presents a problem is when generating Java string literals. * Unicode characters in the string literal would normally need to be encoded * using a Unicode escape sequence, which would require decoding them. * To get around this, protoc instead embeds the UTF-8 bytes into the * generated code and leaves it to the runtime library to decode them. *

* It gets worse, though. If protoc just generated a byte array, like: * new byte[] {0x12, 0x34, 0x56, 0x78} * Java actually generates *code* which allocates an array and then fills * in each value. This is much less efficient than just embedding the bytes * directly into the bytecode. To get around this, we need another * work-around. String literals are embedded directly, so protoc actually * generates a string literal corresponding to the bytes. The easiest way * to do this is to use the ISO-8859-1 character set, which corresponds to * the first 256 characters of the Unicode range. Protoc can then use * good old CEscape to generate the string. *

* So we have a string literal which represents a set of bytes which * represents another string. This function -- stringDefaultValue -- * converts from the generated string to the string we actually want. The * generated code calls this automatically. */ public static String stringDefaultValue(String bytes) { try { return new String(bytes.getBytes("ISO-8859-1"), "UTF-8"); } catch (UnsupportedEncodingException e) { // This should never happen since all JVMs are required to implement // both of the above character sets. throw new IllegalStateException( "Java VM does not support a standard character set.", e); } } /** * Helper called by generated code to construct default values for bytes * fields. *

* This is a lot like {@link #stringDefaultValue}, but for bytes fields. * In this case we only need the second of the two hacks -- allowing us to * embed raw bytes as a string literal with ISO-8859-1 encoding. */ public static byte[] bytesDefaultValue(String bytes) { try { return bytes.getBytes("ISO-8859-1"); } catch (UnsupportedEncodingException e) { // This should never happen since all JVMs are required to implement // ISO-8859-1. throw new IllegalStateException( "Java VM does not support a standard character set.", e); } } /** * Helper function to convert a string into UTF-8 while turning the * UnsupportedEncodingException to a RuntimeException. */ public static byte[] copyFromUtf8(final String text) { try { return text.getBytes("UTF-8"); } catch (UnsupportedEncodingException e) { throw new RuntimeException("UTF-8 not supported?"); } } /** * Checks repeated int field equality; null-value and 0-length fields are * considered equal. */ public static boolean equals(int[] field1, int[] field2) { if (field1 == null || field1.length == 0) { return field2 == null || field2.length == 0; } else { return Arrays.equals(field1, field2); } } /** * Checks repeated long field equality; null-value and 0-length fields are * considered equal. */ public static boolean equals(long[] field1, long[] field2) { if (field1 == null || field1.length == 0) { return field2 == null || field2.length == 0; } else { return Arrays.equals(field1, field2); } } /** * Checks repeated float field equality; null-value and 0-length fields are * considered equal. */ public static boolean equals(float[] field1, float[] field2) { if (field1 == null || field1.length == 0) { return field2 == null || field2.length == 0; } else { return Arrays.equals(field1, field2); } } /** * Checks repeated double field equality; null-value and 0-length fields are * considered equal. */ public static boolean equals(double[] field1, double[] field2) { if (field1 == null || field1.length == 0) { return field2 == null || field2.length == 0; } else { return Arrays.equals(field1, field2); } } /** * Checks repeated boolean field equality; null-value and 0-length fields are * considered equal. */ public static boolean equals(boolean[] field1, boolean[] field2) { if (field1 == null || field1.length == 0) { return field2 == null || field2.length == 0; } else { return Arrays.equals(field1, field2); } } /** * Checks repeated bytes field equality. Only non-null elements are tested. * Returns true if the two fields have the same sequence of non-null * elements. Null-value fields and fields of any length with only null * elements are considered equal. */ public static boolean equals(byte[][] field1, byte[][] field2) { int index1 = 0; int length1 = field1 == null ? 0 : field1.length; int index2 = 0; int length2 = field2 == null ? 0 : field2.length; while (true) { while (index1 < length1 && field1[index1] == null) { index1++; } while (index2 < length2 && field2[index2] == null) { index2++; } boolean atEndOf1 = index1 >= length1; boolean atEndOf2 = index2 >= length2; if (atEndOf1 && atEndOf2) { // no more non-null elements to test in both arrays return true; } else if (atEndOf1 != atEndOf2) { // one of the arrays have extra non-null elements return false; } else if (!Arrays.equals(field1[index1], field2[index2])) { // element mismatch return false; } index1++; index2++; } } /** * Checks repeated string/message field equality. Only non-null elements are * tested. Returns true if the two fields have the same sequence of non-null * elements. Null-value fields and fields of any length with only null * elements are considered equal. */ public static boolean equals(Object[] field1, Object[] field2) { int index1 = 0; int length1 = field1 == null ? 0 : field1.length; int index2 = 0; int length2 = field2 == null ? 0 : field2.length; while (true) { while (index1 < length1 && field1[index1] == null) { index1++; } while (index2 < length2 && field2[index2] == null) { index2++; } boolean atEndOf1 = index1 >= length1; boolean atEndOf2 = index2 >= length2; if (atEndOf1 && atEndOf2) { // no more non-null elements to test in both arrays return true; } else if (atEndOf1 != atEndOf2) { // one of the arrays have extra non-null elements return false; } else if (!field1[index1].equals(field2[index2])) { // element mismatch return false; } index1++; index2++; } } /** * Computes the hash code of a repeated int field. Null-value and 0-length * fields have the same hash code. */ public static int hashCode(int[] field) { return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); } /** * Computes the hash code of a repeated long field. Null-value and 0-length * fields have the same hash code. */ public static int hashCode(long[] field) { return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); } /** * Computes the hash code of a repeated float field. Null-value and 0-length * fields have the same hash code. */ public static int hashCode(float[] field) { return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); } /** * Computes the hash code of a repeated double field. Null-value and 0-length * fields have the same hash code. */ public static int hashCode(double[] field) { return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); } /** * Computes the hash code of a repeated boolean field. Null-value and 0-length * fields have the same hash code. */ public static int hashCode(boolean[] field) { return field == null || field.length == 0 ? 0 : Arrays.hashCode(field); } /** * Computes the hash code of a repeated bytes field. Only the sequence of all * non-null elements are used in the computation. Null-value fields and fields * of any length with only null elements have the same hash code. */ public static int hashCode(byte[][] field) { int result = 0; for (int i = 0, size = field == null ? 0 : field.length; i < size; i++) { byte[] element = field[i]; if (element != null) { result = 31 * result + Arrays.hashCode(element); } } return result; } /** * Computes the hash code of a repeated string/message field. Only the * sequence of all non-null elements are used in the computation. Null-value * fields and fields of any length with only null elements have the same hash * code. */ public static int hashCode(Object[] field) { int result = 0; for (int i = 0, size = field == null ? 0 : field.length; i < size; i++) { Object element = field[i]; if (element != null) { result = 31 * result + element.hashCode(); } } return result; } }