Searched refs:MatrixType (Results 1 - 25 of 242) sorted by relevance

12345678910

/external/eigen/test/eigen2/
H A Deigen2_sizeof.cpp12 template<typename MatrixType> void verifySizeOf(const MatrixType&) argument
14 typedef typename MatrixType::Scalar Scalar;
15 if (MatrixType::RowsAtCompileTime!=Dynamic && MatrixType::ColsAtCompileTime!=Dynamic)
16 VERIFY(sizeof(MatrixType)==sizeof(Scalar)*MatrixType::SizeAtCompileTime);
18 VERIFY(sizeof(MatrixType)==sizeof(Scalar*) + 2 * sizeof(typename MatrixType::Index));
H A Deigen2_miscmatrices.cpp12 template<typename MatrixType> void miscMatrices(const MatrixType& m)
18 typedef typename MatrixType::Scalar Scalar;
19 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
20 typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
25 VERIFY_IS_APPROX(MatrixType::Ones(rows,cols)(r,c), static_cast<Scalar>(1));
26 MatrixType m1 = MatrixType::Ones(rows,cols);
30 Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType
[all...]
H A Deigen2_svd.cpp13 template<typename MatrixType> void svd(const MatrixType& m)
21 typedef typename MatrixType::Scalar Scalar;
23 MatrixType a = MatrixType::Random(rows,cols);
24 Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> b =
25 Matrix<Scalar, MatrixType::RowsAtCompileTime, 1>::Random(rows,1);
26 Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> x(cols,1), x2(cols,1);
33 SVD<MatrixType> svd(a);
34 MatrixType sigm
[all...]
/external/eigen/Eigen/src/Eigen2Support/
H A DLU.h15 template<typename MatrixType>
16 class LU : public FullPivLU<MatrixType>
20 typedef typename MatrixType::Scalar Scalar;
21 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
22 typedef Matrix<int, 1, MatrixType::ColsAtCompileTime, MatrixType::Options, 1, MatrixType::MaxColsAtCompileTime> IntRowVectorType;
23 typedef Matrix<int, MatrixType::RowsAtCompileTime, 1, MatrixType::Options, MatrixType
[all...]
/external/eigen/unsupported/test/
H A Dmatrix_functions.h13 template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
17 template <typename MatrixType>
18 struct generateTestMatrix<MatrixType,0>
20 static void run(MatrixType& result, typename MatrixType::Index size)
22 MatrixType mat = MatrixType::Random(size, size);
23 EigenSolver<MatrixType> es(mat);
24 typename EigenSolver<MatrixType>
[all...]
H A Dmatrix_function.cpp25 template<typename MatrixType>
26 MatrixType randomMatrixWithRealEivals(const typename MatrixType::Index size)
28 typedef typename MatrixType::Index Index;
29 typedef typename MatrixType::Scalar Scalar;
30 typedef typename MatrixType::RealScalar RealScalar;
31 MatrixType diag = MatrixType::Zero(size, size);
36 MatrixType A = MatrixType
[all...]
H A Djacobisvd.cpp13 template<typename MatrixType, int QRPreconditioner>
14 void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
16 svd_check_full<MatrixType, JacobiSVD<MatrixType, QRPreconditioner > >(m, svd);
19 template<typename MatrixType, int QRPreconditioner>
20 void jacobisvd_compare_to_full(const MatrixType& m,
22 const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd)
24 svd_compare_to_full<MatrixType, JacobiSVD<MatrixType, QRPreconditione
53 jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true) argument
[all...]
H A Dmatrix_square_root.cpp12 template<typename MatrixType>
13 void testMatrixSqrt(const MatrixType& m)
15 MatrixType A;
16 generateTestMatrix<MatrixType>::run(A, m.rows());
17 MatrixType sqrtA = A.sqrt();
H A Dbdcsvd.cpp18 template<typename MatrixType>
19 void bdcsvd_check_full(const MatrixType& m, const BDCSVD<MatrixType>& svd)
21 svd_check_full< MatrixType, BDCSVD< MatrixType > >(m, svd);
25 template<typename MatrixType>
26 void bdcsvd_compare_to_full(const MatrixType& m,
28 const BDCSVD<MatrixType>& referenceSvd)
30 svd_compare_to_full< MatrixType, BDCSVD< MatrixType > >(
53 bdcsvd(const MatrixType& a = MatrixType(), bool pickrandom = true) argument
85 compare_bdc_jacobi(const MatrixType& a = MatrixType(), unsigned int computationOptions = 0) argument
[all...]
/external/eigen/bench/
H A Dbasicbenchmark.h7 template<int Mode, typename MatrixType>
8 void benchBasic_loop(const MatrixType& I, MatrixType& m, int iterations) __attribute__((noinline));
10 template<int Mode, typename MatrixType>
11 void benchBasic_loop(const MatrixType& I, MatrixType& m, int iterations)
18 if (MatrixType::SizeAtCompileTime!=Eigen::Dynamic) asm("#fixedsize");
24 if (MatrixType::SizeAtCompileTime!=Eigen::Dynamic) asm("#fixedsize");
30 if (MatrixType::SizeAtCompileTime!=Eigen::Dynamic) asm("#fixedsize");
37 template<int Mode, typename MatrixType>
[all...]
/external/eigen/test/
H A Dsizeof.cpp12 template<typename MatrixType> void verifySizeOf(const MatrixType&) argument
14 typedef typename MatrixType::Scalar Scalar;
15 if (MatrixType::RowsAtCompileTime!=Dynamic && MatrixType::ColsAtCompileTime!=Dynamic)
16 VERIFY(std::ptrdiff_t(sizeof(MatrixType))==std::ptrdiff_t(sizeof(Scalar))*std::ptrdiff_t(MatrixType::SizeAtCompileTime));
18 VERIFY(sizeof(MatrixType)==sizeof(Scalar*) + 2 * sizeof(typename MatrixType::Index));
H A Dupperbidiagonalization.cpp13 template<typename MatrixType> void upperbidiag(const MatrixType& m)
15 const typename MatrixType::Index rows = m.rows();
16 const typename MatrixType::Index cols = m.cols();
18 typedef Matrix<typename MatrixType::RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
19 typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType
[all...]
H A Deigensolver_generalized_real.cpp14 template<typename MatrixType> void generalized_eigensolver_real(const MatrixType& m)
16 typedef typename MatrixType::Index Index;
23 typedef typename MatrixType::Scalar Scalar;
24 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
26 MatrixType a = MatrixType::Random(rows,cols);
27 MatrixType b = MatrixType::Random(rows,cols);
28 MatrixType a
[all...]
H A Dmiscmatrices.cpp12 template<typename MatrixType> void miscMatrices(const MatrixType& m)
17 typedef typename MatrixType::Index Index;
18 typedef typename MatrixType::Scalar Scalar;
19 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
24 VERIFY_IS_APPROX(MatrixType::Ones(rows,cols)(r,c), static_cast<Scalar>(1));
25 MatrixType m1 = MatrixType::Ones(rows,cols);
29 Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType
[all...]
H A Dzerosized.cpp13 template<typename MatrixType> void zeroReduction(const MatrixType& m) {
25 template<typename MatrixType> void zeroSizedMatrix()
27 MatrixType t1;
29 if (MatrixType::SizeAtCompileTime == Dynamic || MatrixType::SizeAtCompileTime == 0)
32 if (MatrixType::RowsAtCompileTime == Dynamic)
34 if (MatrixType::ColsAtCompileTime == Dynamic)
37 if (MatrixType::RowsAtCompileTime == Dynamic && MatrixType
[all...]
H A Dhessenberg.cpp16 typedef Matrix<Scalar,Size,Size> MatrixType; typedef
20 MatrixType m = MatrixType::Random(size,size);
21 HessenbergDecomposition<MatrixType> hess(m);
22 MatrixType Q = hess.matrixQ();
23 MatrixType H = hess.matrixH();
27 VERIFY(H(row,col) == (typename MatrixType::Scalar)0);
33 MatrixType A = MatrixType::Random(size, size);
34 HessenbergDecomposition<MatrixType> cs
[all...]
H A Dselfadjoint.cpp15 template<typename MatrixType> void selfadjoint(const MatrixType& m)
17 typedef typename MatrixType::Index Index;
18 typedef typename MatrixType::Scalar Scalar;
23 MatrixType m1 = MatrixType::Random(rows, cols),
30 VERIFY_IS_APPROX(MatrixType(m3.template triangularView<Upper>()), MatrixType(m1.template triangularView<Upper>()));
35 VERIFY_IS_APPROX(MatrixType(m3.template triangularView<Lower>()), MatrixType(m
[all...]
/external/eigen/Eigen/src/misc/
H A DImage.h23 typedef typename DecompositionType::MatrixType MatrixType; typedef in struct:Eigen::internal::traits
25 typename MatrixType::Scalar,
26 MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose
29 MatrixType::Options,
30 MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix,
31 MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns.
39 typedef typename DecompositionType::MatrixType MatrixType; typedef in struct:Eigen::internal::image_retval_base
43 image_retval_base(const DecompositionType& dec, const MatrixType
[all...]
/external/eigen/Eigen/src/LU/
H A DInverse.h21 template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
24 static inline void run(const MatrixType& matrix, ResultType& result)
30 template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
37 template<typename MatrixType, typename ResultType>
38 struct compute_inverse<MatrixType, ResultType, 1>
40 static inline void run(const MatrixType& matrix, ResultType& result)
42 typedef typename MatrixType::Scalar Scalar;
47 template<typename MatrixType, typenam
362 >::type MatrixType; typedef
[all...]
/external/eigen/Eigen/src/SparseCore/
H A DSparseTranspose.h15 template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>
16 : public SparseMatrixBase<Transpose<MatrixType> >
18 typedef typename internal::remove_all<typename MatrixType::Nested>::type _MatrixTypeNested;
21 EIGEN_SPARSE_PUBLIC_INTERFACE(Transpose<MatrixType> )
29 // NOTE: VC10 and VC11 trigger an ICE if don't put typename TransposeImpl<MatrixType,Sparse>:: in front of Index,
30 // a typedef typename TransposeImpl<MatrixType,Sparse>::Index Index;
33 template<typename MatrixType> class TransposeImpl<MatrixType,Sparse>::InnerIterator
40 EIGEN_STRONG_INLINE InnerIterator(const TransposeImpl& trans, typename TransposeImpl<MatrixType,Spars
[all...]
/external/eigen/unsupported/Eigen/src/MatrixFunctions/
H A DMatrixLogarithm.h30 template <typename MatrixType>
35 typedef typename MatrixType::Scalar Scalar;
36 // typedef typename MatrixType::Index Index;
39 // typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
48 MatrixType compute(const MatrixType& A);
52 void compute2x2(const MatrixType& A, MatrixType& result);
53 void computeBig(const MatrixType& A, MatrixType
[all...]
H A DMatrixFunctionAtomic.h23 template <typename MatrixType>
28 typedef typename MatrixType::Scalar Scalar;
29 typedef typename MatrixType::Index Index;
32 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
43 MatrixType compute(const MatrixType& A);
52 bool taylorConverged(Index s, const MatrixType& F, const MatrixType& Fincr, const MatrixType& P);
64 MatrixType m_Ashifte
[all...]
/external/eigen/Eigen/src/Cholesky/
H A DLLT_MKL.h48 template<typename MatrixType> \
49 static inline typename MatrixType::Index potrf(MatrixType& m, char uplo) \
57 StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \
69 template<typename MatrixType> \
70 static typename MatrixType::Index blocked(MatrixType& m) \
74 template<typename MatrixType, typename VectorType> \
75 static typename MatrixType::Index rankUpdate(MatrixType
[all...]
/external/eigen/Eigen/src/Core/
H A DCwiseUnaryView.h21 * \param MatrixType the type of the matrix we are applying the unary operator
30 template<typename ViewOp, typename MatrixType>
31 struct traits<CwiseUnaryView<ViewOp, MatrixType> >
32 : traits<MatrixType>
35 ViewOp(typename traits<MatrixType>::Scalar)
37 typedef typename MatrixType::Nested MatrixTypeNested;
42 MatrixTypeInnerStride = inner_stride_at_compile_time<MatrixType>::ret,
47 : int(MatrixTypeInnerStride) * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar)),
48 OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret == Dynamic
50 : outer_stride_at_compile_time<MatrixType>
[all...]
/external/eigen/Eigen/src/Eigenvalues/
H A DHessenbergDecomposition.h18 template<typename MatrixType> struct HessenbergDecompositionMatrixHReturnType;
19 template<typename MatrixType>
20 struct traits<HessenbergDecompositionMatrixHReturnType<MatrixType> >
22 typedef MatrixType ReturnType;
47 * HessenbergDecomposition(const MatrixType&) constructor which computes the
62 typedef _MatrixType MatrixType; typedef in class:Eigen::HessenbergDecomposition
65 Size = MatrixType::RowsAtCompileTime,
67 Options = MatrixType::Options,
68 MaxSize = MatrixType::MaxRowsAtCompileTime,
72 /** \brief Scalar type for matrices of type #MatrixType
[all...]

Completed in 245 milliseconds

12345678910