mir_dataflow.cc revision 9820b7c1dc70e75ad405b9e6e63578fa9fe94e94
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "compiler_internals.h"
18#include "local_value_numbering.h"
19#include "dataflow_iterator-inl.h"
20
21namespace art {
22
23/*
24 * Main table containing data flow attributes for each bytecode. The
25 * first kNumPackedOpcodes entries are for Dalvik bytecode
26 * instructions, where extended opcode at the MIR level are appended
27 * afterwards.
28 *
29 * TODO - many optimization flags are incomplete - they will only limit the
30 * scope of optimizations but will not cause mis-optimizations.
31 */
32const uint64_t MIRGraph::oat_data_flow_attributes_[kMirOpLast] = {
33  // 00 NOP
34  DF_NOP,
35
36  // 01 MOVE vA, vB
37  DF_DA | DF_UB | DF_IS_MOVE,
38
39  // 02 MOVE_FROM16 vAA, vBBBB
40  DF_DA | DF_UB | DF_IS_MOVE,
41
42  // 03 MOVE_16 vAAAA, vBBBB
43  DF_DA | DF_UB | DF_IS_MOVE,
44
45  // 04 MOVE_WIDE vA, vB
46  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
47
48  // 05 MOVE_WIDE_FROM16 vAA, vBBBB
49  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
50
51  // 06 MOVE_WIDE_16 vAAAA, vBBBB
52  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
53
54  // 07 MOVE_OBJECT vA, vB
55  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
56
57  // 08 MOVE_OBJECT_FROM16 vAA, vBBBB
58  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
59
60  // 09 MOVE_OBJECT_16 vAAAA, vBBBB
61  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
62
63  // 0A MOVE_RESULT vAA
64  DF_DA,
65
66  // 0B MOVE_RESULT_WIDE vAA
67  DF_DA | DF_A_WIDE,
68
69  // 0C MOVE_RESULT_OBJECT vAA
70  DF_DA | DF_REF_A,
71
72  // 0D MOVE_EXCEPTION vAA
73  DF_DA | DF_REF_A | DF_NON_NULL_DST,
74
75  // 0E RETURN_VOID
76  DF_NOP,
77
78  // 0F RETURN vAA
79  DF_UA,
80
81  // 10 RETURN_WIDE vAA
82  DF_UA | DF_A_WIDE,
83
84  // 11 RETURN_OBJECT vAA
85  DF_UA | DF_REF_A,
86
87  // 12 CONST_4 vA, #+B
88  DF_DA | DF_SETS_CONST,
89
90  // 13 CONST_16 vAA, #+BBBB
91  DF_DA | DF_SETS_CONST,
92
93  // 14 CONST vAA, #+BBBBBBBB
94  DF_DA | DF_SETS_CONST,
95
96  // 15 CONST_HIGH16 VAA, #+BBBB0000
97  DF_DA | DF_SETS_CONST,
98
99  // 16 CONST_WIDE_16 vAA, #+BBBB
100  DF_DA | DF_A_WIDE | DF_SETS_CONST,
101
102  // 17 CONST_WIDE_32 vAA, #+BBBBBBBB
103  DF_DA | DF_A_WIDE | DF_SETS_CONST,
104
105  // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
106  DF_DA | DF_A_WIDE | DF_SETS_CONST,
107
108  // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
109  DF_DA | DF_A_WIDE | DF_SETS_CONST,
110
111  // 1A CONST_STRING vAA, string@BBBB
112  DF_DA | DF_REF_A | DF_NON_NULL_DST,
113
114  // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB
115  DF_DA | DF_REF_A | DF_NON_NULL_DST,
116
117  // 1C CONST_CLASS vAA, type@BBBB
118  DF_DA | DF_REF_A | DF_NON_NULL_DST,
119
120  // 1D MONITOR_ENTER vAA
121  DF_UA | DF_NULL_CHK_0 | DF_REF_A,
122
123  // 1E MONITOR_EXIT vAA
124  DF_UA | DF_NULL_CHK_0 | DF_REF_A,
125
126  // 1F CHK_CAST vAA, type@BBBB
127  DF_UA | DF_REF_A | DF_UMS,
128
129  // 20 INSTANCE_OF vA, vB, type@CCCC
130  DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS,
131
132  // 21 ARRAY_LENGTH vA, vB
133  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_CORE_A | DF_REF_B,
134
135  // 22 NEW_INSTANCE vAA, type@BBBB
136  DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS,
137
138  // 23 NEW_ARRAY vA, vB, type@CCCC
139  DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS,
140
141  // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
142  DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS,
143
144  // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
145  DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS,
146
147  // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB
148  DF_UA | DF_REF_A | DF_UMS,
149
150  // 27 THROW vAA
151  DF_UA | DF_REF_A | DF_UMS,
152
153  // 28 GOTO
154  DF_NOP,
155
156  // 29 GOTO_16
157  DF_NOP,
158
159  // 2A GOTO_32
160  DF_NOP,
161
162  // 2B PACKED_SWITCH vAA, +BBBBBBBB
163  DF_UA,
164
165  // 2C SPARSE_SWITCH vAA, +BBBBBBBB
166  DF_UA,
167
168  // 2D CMPL_FLOAT vAA, vBB, vCC
169  DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
170
171  // 2E CMPG_FLOAT vAA, vBB, vCC
172  DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
173
174  // 2F CMPL_DOUBLE vAA, vBB, vCC
175  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
176
177  // 30 CMPG_DOUBLE vAA, vBB, vCC
178  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
179
180  // 31 CMP_LONG vAA, vBB, vCC
181  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
182
183  // 32 IF_EQ vA, vB, +CCCC
184  DF_UA | DF_UB,
185
186  // 33 IF_NE vA, vB, +CCCC
187  DF_UA | DF_UB,
188
189  // 34 IF_LT vA, vB, +CCCC
190  DF_UA | DF_UB,
191
192  // 35 IF_GE vA, vB, +CCCC
193  DF_UA | DF_UB,
194
195  // 36 IF_GT vA, vB, +CCCC
196  DF_UA | DF_UB,
197
198  // 37 IF_LE vA, vB, +CCCC
199  DF_UA | DF_UB,
200
201  // 38 IF_EQZ vAA, +BBBB
202  DF_UA,
203
204  // 39 IF_NEZ vAA, +BBBB
205  DF_UA,
206
207  // 3A IF_LTZ vAA, +BBBB
208  DF_UA,
209
210  // 3B IF_GEZ vAA, +BBBB
211  DF_UA,
212
213  // 3C IF_GTZ vAA, +BBBB
214  DF_UA,
215
216  // 3D IF_LEZ vAA, +BBBB
217  DF_UA,
218
219  // 3E UNUSED_3E
220  DF_NOP,
221
222  // 3F UNUSED_3F
223  DF_NOP,
224
225  // 40 UNUSED_40
226  DF_NOP,
227
228  // 41 UNUSED_41
229  DF_NOP,
230
231  // 42 UNUSED_42
232  DF_NOP,
233
234  // 43 UNUSED_43
235  DF_NOP,
236
237  // 44 AGET vAA, vBB, vCC
238  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
239
240  // 45 AGET_WIDE vAA, vBB, vCC
241  DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
242
243  // 46 AGET_OBJECT vAA, vBB, vCC
244  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN,
245
246  // 47 AGET_BOOLEAN vAA, vBB, vCC
247  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
248
249  // 48 AGET_BYTE vAA, vBB, vCC
250  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
251
252  // 49 AGET_CHAR vAA, vBB, vCC
253  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
254
255  // 4A AGET_SHORT vAA, vBB, vCC
256  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
257
258  // 4B APUT vAA, vBB, vCC
259  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
260
261  // 4C APUT_WIDE vAA, vBB, vCC
262  DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_2 | DF_RANGE_CHK_3 | DF_REF_B | DF_CORE_C | DF_LVN,
263
264  // 4D APUT_OBJECT vAA, vBB, vCC
265  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN,
266
267  // 4E APUT_BOOLEAN vAA, vBB, vCC
268  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
269
270  // 4F APUT_BYTE vAA, vBB, vCC
271  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
272
273  // 50 APUT_CHAR vAA, vBB, vCC
274  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
275
276  // 51 APUT_SHORT vAA, vBB, vCC
277  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
278
279  // 52 IGET vA, vB, field@CCCC
280  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
281
282  // 53 IGET_WIDE vA, vB, field@CCCC
283  DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
284
285  // 54 IGET_OBJECT vA, vB, field@CCCC
286  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
287
288  // 55 IGET_BOOLEAN vA, vB, field@CCCC
289  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
290
291  // 56 IGET_BYTE vA, vB, field@CCCC
292  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
293
294  // 57 IGET_CHAR vA, vB, field@CCCC
295  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
296
297  // 58 IGET_SHORT vA, vB, field@CCCC
298  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
299
300  // 59 IPUT vA, vB, field@CCCC
301  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
302
303  // 5A IPUT_WIDE vA, vB, field@CCCC
304  DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B | DF_IFIELD | DF_LVN,
305
306  // 5B IPUT_OBJECT vA, vB, field@CCCC
307  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
308
309  // 5C IPUT_BOOLEAN vA, vB, field@CCCC
310  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
311
312  // 5D IPUT_BYTE vA, vB, field@CCCC
313  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
314
315  // 5E IPUT_CHAR vA, vB, field@CCCC
316  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
317
318  // 5F IPUT_SHORT vA, vB, field@CCCC
319  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
320
321  // 60 SGET vAA, field@BBBB
322  DF_DA | DF_SFIELD | DF_UMS,
323
324  // 61 SGET_WIDE vAA, field@BBBB
325  DF_DA | DF_A_WIDE | DF_SFIELD | DF_UMS,
326
327  // 62 SGET_OBJECT vAA, field@BBBB
328  DF_DA | DF_REF_A | DF_SFIELD | DF_UMS,
329
330  // 63 SGET_BOOLEAN vAA, field@BBBB
331  DF_DA | DF_SFIELD | DF_UMS,
332
333  // 64 SGET_BYTE vAA, field@BBBB
334  DF_DA | DF_SFIELD | DF_UMS,
335
336  // 65 SGET_CHAR vAA, field@BBBB
337  DF_DA | DF_SFIELD | DF_UMS,
338
339  // 66 SGET_SHORT vAA, field@BBBB
340  DF_DA | DF_SFIELD | DF_UMS,
341
342  // 67 SPUT vAA, field@BBBB
343  DF_UA | DF_SFIELD | DF_UMS,
344
345  // 68 SPUT_WIDE vAA, field@BBBB
346  DF_UA | DF_A_WIDE | DF_SFIELD | DF_UMS,
347
348  // 69 SPUT_OBJECT vAA, field@BBBB
349  DF_UA | DF_REF_A | DF_SFIELD | DF_UMS,
350
351  // 6A SPUT_BOOLEAN vAA, field@BBBB
352  DF_UA | DF_SFIELD | DF_UMS,
353
354  // 6B SPUT_BYTE vAA, field@BBBB
355  DF_UA | DF_SFIELD | DF_UMS,
356
357  // 6C SPUT_CHAR vAA, field@BBBB
358  DF_UA | DF_SFIELD | DF_UMS,
359
360  // 6D SPUT_SHORT vAA, field@BBBB
361  DF_UA | DF_SFIELD | DF_UMS,
362
363  // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
364  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
365
366  // 6F INVOKE_SUPER {vD, vE, vF, vG, vA}
367  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
368
369  // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}
370  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
371
372  // 71 INVOKE_STATIC {vD, vE, vF, vG, vA}
373  DF_FORMAT_35C | DF_UMS,
374
375  // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}
376  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
377
378  // 73 UNUSED_73
379  DF_NOP,
380
381  // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
382  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
383
384  // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
385  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
386
387  // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
388  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
389
390  // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
391  DF_FORMAT_3RC | DF_UMS,
392
393  // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
394  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
395
396  // 79 UNUSED_79
397  DF_NOP,
398
399  // 7A UNUSED_7A
400  DF_NOP,
401
402  // 7B NEG_INT vA, vB
403  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
404
405  // 7C NOT_INT vA, vB
406  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
407
408  // 7D NEG_LONG vA, vB
409  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
410
411  // 7E NOT_LONG vA, vB
412  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
413
414  // 7F NEG_FLOAT vA, vB
415  DF_DA | DF_UB | DF_FP_A | DF_FP_B,
416
417  // 80 NEG_DOUBLE vA, vB
418  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
419
420  // 81 INT_TO_LONG vA, vB
421  DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B,
422
423  // 82 INT_TO_FLOAT vA, vB
424  DF_DA | DF_UB | DF_FP_A | DF_CORE_B,
425
426  // 83 INT_TO_DOUBLE vA, vB
427  DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B,
428
429  // 84 LONG_TO_INT vA, vB
430  DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
431
432  // 85 LONG_TO_FLOAT vA, vB
433  DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
434
435  // 86 LONG_TO_DOUBLE vA, vB
436  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
437
438  // 87 FLOAT_TO_INT vA, vB
439  DF_DA | DF_UB | DF_FP_B | DF_CORE_A,
440
441  // 88 FLOAT_TO_LONG vA, vB
442  DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A,
443
444  // 89 FLOAT_TO_DOUBLE vA, vB
445  DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B,
446
447  // 8A DOUBLE_TO_INT vA, vB
448  DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
449
450  // 8B DOUBLE_TO_LONG vA, vB
451  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
452
453  // 8C DOUBLE_TO_FLOAT vA, vB
454  DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
455
456  // 8D INT_TO_BYTE vA, vB
457  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
458
459  // 8E INT_TO_CHAR vA, vB
460  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
461
462  // 8F INT_TO_SHORT vA, vB
463  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
464
465  // 90 ADD_INT vAA, vBB, vCC
466  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
467
468  // 91 SUB_INT vAA, vBB, vCC
469  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
470
471  // 92 MUL_INT vAA, vBB, vCC
472  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
473
474  // 93 DIV_INT vAA, vBB, vCC
475  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
476
477  // 94 REM_INT vAA, vBB, vCC
478  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
479
480  // 95 AND_INT vAA, vBB, vCC
481  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
482
483  // 96 OR_INT vAA, vBB, vCC
484  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
485
486  // 97 XOR_INT vAA, vBB, vCC
487  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
488
489  // 98 SHL_INT vAA, vBB, vCC
490  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
491
492  // 99 SHR_INT vAA, vBB, vCC
493  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
494
495  // 9A USHR_INT vAA, vBB, vCC
496  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
497
498  // 9B ADD_LONG vAA, vBB, vCC
499  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
500
501  // 9C SUB_LONG vAA, vBB, vCC
502  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
503
504  // 9D MUL_LONG vAA, vBB, vCC
505  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
506
507  // 9E DIV_LONG vAA, vBB, vCC
508  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
509
510  // 9F REM_LONG vAA, vBB, vCC
511  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
512
513  // A0 AND_LONG vAA, vBB, vCC
514  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
515
516  // A1 OR_LONG vAA, vBB, vCC
517  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
518
519  // A2 XOR_LONG vAA, vBB, vCC
520  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
521
522  // A3 SHL_LONG vAA, vBB, vCC
523  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
524
525  // A4 SHR_LONG vAA, vBB, vCC
526  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
527
528  // A5 USHR_LONG vAA, vBB, vCC
529  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
530
531  // A6 ADD_FLOAT vAA, vBB, vCC
532  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
533
534  // A7 SUB_FLOAT vAA, vBB, vCC
535  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
536
537  // A8 MUL_FLOAT vAA, vBB, vCC
538  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
539
540  // A9 DIV_FLOAT vAA, vBB, vCC
541  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
542
543  // AA REM_FLOAT vAA, vBB, vCC
544  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
545
546  // AB ADD_DOUBLE vAA, vBB, vCC
547  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
548
549  // AC SUB_DOUBLE vAA, vBB, vCC
550  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
551
552  // AD MUL_DOUBLE vAA, vBB, vCC
553  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
554
555  // AE DIV_DOUBLE vAA, vBB, vCC
556  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
557
558  // AF REM_DOUBLE vAA, vBB, vCC
559  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
560
561  // B0 ADD_INT_2ADDR vA, vB
562  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
563
564  // B1 SUB_INT_2ADDR vA, vB
565  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
566
567  // B2 MUL_INT_2ADDR vA, vB
568  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
569
570  // B3 DIV_INT_2ADDR vA, vB
571  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
572
573  // B4 REM_INT_2ADDR vA, vB
574  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
575
576  // B5 AND_INT_2ADDR vA, vB
577  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
578
579  // B6 OR_INT_2ADDR vA, vB
580  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
581
582  // B7 XOR_INT_2ADDR vA, vB
583  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
584
585  // B8 SHL_INT_2ADDR vA, vB
586  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
587
588  // B9 SHR_INT_2ADDR vA, vB
589  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
590
591  // BA USHR_INT_2ADDR vA, vB
592  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
593
594  // BB ADD_LONG_2ADDR vA, vB
595  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
596
597  // BC SUB_LONG_2ADDR vA, vB
598  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
599
600  // BD MUL_LONG_2ADDR vA, vB
601  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
602
603  // BE DIV_LONG_2ADDR vA, vB
604  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
605
606  // BF REM_LONG_2ADDR vA, vB
607  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
608
609  // C0 AND_LONG_2ADDR vA, vB
610  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
611
612  // C1 OR_LONG_2ADDR vA, vB
613  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
614
615  // C2 XOR_LONG_2ADDR vA, vB
616  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
617
618  // C3 SHL_LONG_2ADDR vA, vB
619  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
620
621  // C4 SHR_LONG_2ADDR vA, vB
622  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
623
624  // C5 USHR_LONG_2ADDR vA, vB
625  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
626
627  // C6 ADD_FLOAT_2ADDR vA, vB
628  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
629
630  // C7 SUB_FLOAT_2ADDR vA, vB
631  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
632
633  // C8 MUL_FLOAT_2ADDR vA, vB
634  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
635
636  // C9 DIV_FLOAT_2ADDR vA, vB
637  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
638
639  // CA REM_FLOAT_2ADDR vA, vB
640  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
641
642  // CB ADD_DOUBLE_2ADDR vA, vB
643  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
644
645  // CC SUB_DOUBLE_2ADDR vA, vB
646  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
647
648  // CD MUL_DOUBLE_2ADDR vA, vB
649  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
650
651  // CE DIV_DOUBLE_2ADDR vA, vB
652  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
653
654  // CF REM_DOUBLE_2ADDR vA, vB
655  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
656
657  // D0 ADD_INT_LIT16 vA, vB, #+CCCC
658  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
659
660  // D1 RSUB_INT vA, vB, #+CCCC
661  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
662
663  // D2 MUL_INT_LIT16 vA, vB, #+CCCC
664  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
665
666  // D3 DIV_INT_LIT16 vA, vB, #+CCCC
667  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
668
669  // D4 REM_INT_LIT16 vA, vB, #+CCCC
670  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
671
672  // D5 AND_INT_LIT16 vA, vB, #+CCCC
673  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
674
675  // D6 OR_INT_LIT16 vA, vB, #+CCCC
676  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
677
678  // D7 XOR_INT_LIT16 vA, vB, #+CCCC
679  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
680
681  // D8 ADD_INT_LIT8 vAA, vBB, #+CC
682  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
683
684  // D9 RSUB_INT_LIT8 vAA, vBB, #+CC
685  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
686
687  // DA MUL_INT_LIT8 vAA, vBB, #+CC
688  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
689
690  // DB DIV_INT_LIT8 vAA, vBB, #+CC
691  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
692
693  // DC REM_INT_LIT8 vAA, vBB, #+CC
694  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
695
696  // DD AND_INT_LIT8 vAA, vBB, #+CC
697  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
698
699  // DE OR_INT_LIT8 vAA, vBB, #+CC
700  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
701
702  // DF XOR_INT_LIT8 vAA, vBB, #+CC
703  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
704
705  // E0 SHL_INT_LIT8 vAA, vBB, #+CC
706  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
707
708  // E1 SHR_INT_LIT8 vAA, vBB, #+CC
709  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
710
711  // E2 USHR_INT_LIT8 vAA, vBB, #+CC
712  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
713
714  // E3 IGET_VOLATILE
715  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
716
717  // E4 IPUT_VOLATILE
718  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
719
720  // E5 SGET_VOLATILE
721  DF_DA | DF_SFIELD | DF_UMS,
722
723  // E6 SPUT_VOLATILE
724  DF_UA | DF_SFIELD | DF_UMS,
725
726  // E7 IGET_OBJECT_VOLATILE
727  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
728
729  // E8 IGET_WIDE_VOLATILE
730  DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
731
732  // E9 IPUT_WIDE_VOLATILE
733  DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B | DF_IFIELD | DF_LVN,
734
735  // EA SGET_WIDE_VOLATILE
736  DF_DA | DF_A_WIDE | DF_SFIELD | DF_UMS,
737
738  // EB SPUT_WIDE_VOLATILE
739  DF_UA | DF_A_WIDE | DF_SFIELD | DF_UMS,
740
741  // EC BREAKPOINT
742  DF_NOP,
743
744  // ED THROW_VERIFICATION_ERROR
745  DF_NOP | DF_UMS,
746
747  // EE EXECUTE_INLINE
748  DF_FORMAT_35C,
749
750  // EF EXECUTE_INLINE_RANGE
751  DF_FORMAT_3RC,
752
753  // F0 INVOKE_OBJECT_INIT_RANGE
754  DF_NOP | DF_NULL_CHK_0,
755
756  // F1 RETURN_VOID_BARRIER
757  DF_NOP,
758
759  // F2 IGET_QUICK
760  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN,
761
762  // F3 IGET_WIDE_QUICK
763  DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN,
764
765  // F4 IGET_OBJECT_QUICK
766  DF_DA | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN,
767
768  // F5 IPUT_QUICK
769  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_IFIELD | DF_LVN,
770
771  // F6 IPUT_WIDE_QUICK
772  DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_IFIELD | DF_LVN,
773
774  // F7 IPUT_OBJECT_QUICK
775  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_IFIELD | DF_LVN,
776
777  // F8 INVOKE_VIRTUAL_QUICK
778  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
779
780  // F9 INVOKE_VIRTUAL_QUICK_RANGE
781  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
782
783  // FA INVOKE_SUPER_QUICK
784  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
785
786  // FB INVOKE_SUPER_QUICK_RANGE
787  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
788
789  // FC IPUT_OBJECT_VOLATILE
790  DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
791
792  // FD SGET_OBJECT_VOLATILE
793  DF_DA | DF_REF_A | DF_SFIELD | DF_UMS,
794
795  // FE SPUT_OBJECT_VOLATILE
796  DF_UA | DF_REF_A | DF_SFIELD | DF_UMS,
797
798  // FF UNUSED_FF
799  DF_NOP,
800
801  // Beginning of extended MIR opcodes
802  // 100 MIR_PHI
803  DF_DA | DF_NULL_TRANSFER_N,
804
805  // 101 MIR_COPY
806  DF_DA | DF_UB | DF_IS_MOVE,
807
808  // 102 MIR_FUSED_CMPL_FLOAT
809  DF_UA | DF_UB | DF_FP_A | DF_FP_B,
810
811  // 103 MIR_FUSED_CMPG_FLOAT
812  DF_UA | DF_UB | DF_FP_A | DF_FP_B,
813
814  // 104 MIR_FUSED_CMPL_DOUBLE
815  DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
816
817  // 105 MIR_FUSED_CMPG_DOUBLE
818  DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
819
820  // 106 MIR_FUSED_CMP_LONG
821  DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
822
823  // 107 MIR_NOP
824  DF_NOP,
825
826  // 108 MIR_NULL_CHECK
827  0,
828
829  // 109 MIR_RANGE_CHECK
830  0,
831
832  // 110 MIR_DIV_ZERO_CHECK
833  0,
834
835  // 111 MIR_CHECK
836  0,
837
838  // 112 MIR_CHECKPART2
839  0,
840
841  // 113 MIR_SELECT
842  DF_DA | DF_UB,
843};
844
845/* Return the base virtual register for a SSA name */
846int MIRGraph::SRegToVReg(int ssa_reg) const {
847  return ssa_base_vregs_->Get(ssa_reg);
848}
849
850/* Any register that is used before being defined is considered live-in */
851void MIRGraph::HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
852                            ArenaBitVector* live_in_v, int dalvik_reg_id) {
853  use_v->SetBit(dalvik_reg_id);
854  if (!def_v->IsBitSet(dalvik_reg_id)) {
855    live_in_v->SetBit(dalvik_reg_id);
856  }
857}
858
859/* Mark a reg as being defined */
860void MIRGraph::HandleDef(ArenaBitVector* def_v, int dalvik_reg_id) {
861  def_v->SetBit(dalvik_reg_id);
862}
863
864/*
865 * Find out live-in variables for natural loops. Variables that are live-in in
866 * the main loop body are considered to be defined in the entry block.
867 */
868bool MIRGraph::FindLocalLiveIn(BasicBlock* bb) {
869  MIR* mir;
870  ArenaBitVector *use_v, *def_v, *live_in_v;
871
872  if (bb->data_flow_info == NULL) return false;
873
874  use_v = bb->data_flow_info->use_v =
875      new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapUse);
876  def_v = bb->data_flow_info->def_v =
877      new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapDef);
878  live_in_v = bb->data_flow_info->live_in_v =
879      new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapLiveIn);
880
881  for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
882    uint64_t df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode];
883    DecodedInstruction *d_insn = &mir->dalvikInsn;
884
885    if (df_attributes & DF_HAS_USES) {
886      if (df_attributes & DF_UA) {
887        HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA);
888        if (df_attributes & DF_A_WIDE) {
889          HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA+1);
890        }
891      }
892      if (df_attributes & DF_UB) {
893        HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB);
894        if (df_attributes & DF_B_WIDE) {
895          HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB+1);
896        }
897      }
898      if (df_attributes & DF_UC) {
899        HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC);
900        if (df_attributes & DF_C_WIDE) {
901          HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+1);
902        }
903      }
904    }
905    if (df_attributes & DF_FORMAT_35C) {
906      for (unsigned int i = 0; i < d_insn->vA; i++) {
907        HandleLiveInUse(use_v, def_v, live_in_v, d_insn->arg[i]);
908      }
909    }
910    if (df_attributes & DF_FORMAT_3RC) {
911      for (unsigned int i = 0; i < d_insn->vA; i++) {
912        HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+i);
913      }
914    }
915    if (df_attributes & DF_HAS_DEFS) {
916      HandleDef(def_v, d_insn->vA);
917      if (df_attributes & DF_A_WIDE) {
918        HandleDef(def_v, d_insn->vA+1);
919      }
920    }
921  }
922  return true;
923}
924
925int MIRGraph::AddNewSReg(int v_reg) {
926  // Compiler temps always have a subscript of 0
927  int subscript = (v_reg < 0) ? 0 : ++ssa_last_defs_[v_reg];
928  int ssa_reg = GetNumSSARegs();
929  SetNumSSARegs(ssa_reg + 1);
930  ssa_base_vregs_->Insert(v_reg);
931  ssa_subscripts_->Insert(subscript);
932  DCHECK_EQ(ssa_base_vregs_->Size(), ssa_subscripts_->Size());
933  return ssa_reg;
934}
935
936/* Find out the latest SSA register for a given Dalvik register */
937void MIRGraph::HandleSSAUse(int* uses, int dalvik_reg, int reg_index) {
938  DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers));
939  uses[reg_index] = vreg_to_ssa_map_[dalvik_reg];
940}
941
942/* Setup a new SSA register for a given Dalvik register */
943void MIRGraph::HandleSSADef(int* defs, int dalvik_reg, int reg_index) {
944  DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers));
945  int ssa_reg = AddNewSReg(dalvik_reg);
946  vreg_to_ssa_map_[dalvik_reg] = ssa_reg;
947  defs[reg_index] = ssa_reg;
948}
949
950/* Look up new SSA names for format_35c instructions */
951void MIRGraph::DataFlowSSAFormat35C(MIR* mir) {
952  DecodedInstruction *d_insn = &mir->dalvikInsn;
953  int num_uses = d_insn->vA;
954  int i;
955
956  mir->ssa_rep->num_uses = num_uses;
957  mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses,
958                                                       kArenaAllocDFInfo));
959  // NOTE: will be filled in during type & size inference pass
960  mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses,
961                                                          kArenaAllocDFInfo));
962
963  for (i = 0; i < num_uses; i++) {
964    HandleSSAUse(mir->ssa_rep->uses, d_insn->arg[i], i);
965  }
966}
967
968/* Look up new SSA names for format_3rc instructions */
969void MIRGraph::DataFlowSSAFormat3RC(MIR* mir) {
970  DecodedInstruction *d_insn = &mir->dalvikInsn;
971  int num_uses = d_insn->vA;
972  int i;
973
974  mir->ssa_rep->num_uses = num_uses;
975  mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses,
976                                                       kArenaAllocDFInfo));
977  // NOTE: will be filled in during type & size inference pass
978  mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses,
979                                                          kArenaAllocDFInfo));
980
981  for (i = 0; i < num_uses; i++) {
982    HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+i, i);
983  }
984}
985
986/* Entry function to convert a block into SSA representation */
987bool MIRGraph::DoSSAConversion(BasicBlock* bb) {
988  MIR* mir;
989
990  if (bb->data_flow_info == NULL) return false;
991
992  for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
993    mir->ssa_rep =
994        static_cast<struct SSARepresentation *>(arena_->Alloc(sizeof(SSARepresentation),
995                                                              kArenaAllocDFInfo));
996
997    uint64_t df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode];
998
999      // If not a pseudo-op, note non-leaf or can throw
1000    if (static_cast<int>(mir->dalvikInsn.opcode) <
1001        static_cast<int>(kNumPackedOpcodes)) {
1002      int flags = Instruction::FlagsOf(mir->dalvikInsn.opcode);
1003
1004      if ((flags & Instruction::kInvoke) != 0 && (mir->optimization_flags & MIR_INLINED) == 0) {
1005        attributes_ &= ~METHOD_IS_LEAF;
1006      }
1007    }
1008
1009    int num_uses = 0;
1010
1011    if (df_attributes & DF_FORMAT_35C) {
1012      DataFlowSSAFormat35C(mir);
1013      continue;
1014    }
1015
1016    if (df_attributes & DF_FORMAT_3RC) {
1017      DataFlowSSAFormat3RC(mir);
1018      continue;
1019    }
1020
1021    if (df_attributes & DF_HAS_USES) {
1022      if (df_attributes & DF_UA) {
1023        num_uses++;
1024        if (df_attributes & DF_A_WIDE) {
1025          num_uses++;
1026        }
1027      }
1028      if (df_attributes & DF_UB) {
1029        num_uses++;
1030        if (df_attributes & DF_B_WIDE) {
1031          num_uses++;
1032        }
1033      }
1034      if (df_attributes & DF_UC) {
1035        num_uses++;
1036        if (df_attributes & DF_C_WIDE) {
1037          num_uses++;
1038        }
1039      }
1040    }
1041
1042    if (num_uses) {
1043      mir->ssa_rep->num_uses = num_uses;
1044      mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses,
1045                                                           kArenaAllocDFInfo));
1046      mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses,
1047                                                              kArenaAllocDFInfo));
1048    }
1049
1050    int num_defs = 0;
1051
1052    if (df_attributes & DF_HAS_DEFS) {
1053      num_defs++;
1054      if (df_attributes & DF_A_WIDE) {
1055        num_defs++;
1056      }
1057    }
1058
1059    if (num_defs) {
1060      mir->ssa_rep->num_defs = num_defs;
1061      mir->ssa_rep->defs = static_cast<int*>(arena_->Alloc(sizeof(int) * num_defs,
1062                                                           kArenaAllocDFInfo));
1063      mir->ssa_rep->fp_def = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_defs,
1064                                                              kArenaAllocDFInfo));
1065    }
1066
1067    DecodedInstruction *d_insn = &mir->dalvikInsn;
1068
1069    if (df_attributes & DF_HAS_USES) {
1070      num_uses = 0;
1071      if (df_attributes & DF_UA) {
1072        mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A;
1073        HandleSSAUse(mir->ssa_rep->uses, d_insn->vA, num_uses++);
1074        if (df_attributes & DF_A_WIDE) {
1075          mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A;
1076          HandleSSAUse(mir->ssa_rep->uses, d_insn->vA+1, num_uses++);
1077        }
1078      }
1079      if (df_attributes & DF_UB) {
1080        mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B;
1081        HandleSSAUse(mir->ssa_rep->uses, d_insn->vB, num_uses++);
1082        if (df_attributes & DF_B_WIDE) {
1083          mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B;
1084          HandleSSAUse(mir->ssa_rep->uses, d_insn->vB+1, num_uses++);
1085        }
1086      }
1087      if (df_attributes & DF_UC) {
1088        mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C;
1089        HandleSSAUse(mir->ssa_rep->uses, d_insn->vC, num_uses++);
1090        if (df_attributes & DF_C_WIDE) {
1091          mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C;
1092          HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+1, num_uses++);
1093        }
1094      }
1095    }
1096    if (df_attributes & DF_HAS_DEFS) {
1097      mir->ssa_rep->fp_def[0] = df_attributes & DF_FP_A;
1098      HandleSSADef(mir->ssa_rep->defs, d_insn->vA, 0);
1099      if (df_attributes & DF_A_WIDE) {
1100        mir->ssa_rep->fp_def[1] = df_attributes & DF_FP_A;
1101        HandleSSADef(mir->ssa_rep->defs, d_insn->vA+1, 1);
1102      }
1103    }
1104  }
1105
1106  /*
1107   * Take a snapshot of Dalvik->SSA mapping at the end of each block. The
1108   * input to PHI nodes can be derived from the snapshot of all
1109   * predecessor blocks.
1110   */
1111  bb->data_flow_info->vreg_to_ssa_map =
1112      static_cast<int*>(arena_->Alloc(sizeof(int) * cu_->num_dalvik_registers,
1113                                      kArenaAllocDFInfo));
1114
1115  memcpy(bb->data_flow_info->vreg_to_ssa_map, vreg_to_ssa_map_,
1116         sizeof(int) * cu_->num_dalvik_registers);
1117  return true;
1118}
1119
1120/* Setup the basic data structures for SSA conversion */
1121void MIRGraph::CompilerInitializeSSAConversion() {
1122  size_t num_dalvik_reg = cu_->num_dalvik_registers;
1123
1124  ssa_base_vregs_ = new (arena_) GrowableArray<int>(arena_, num_dalvik_reg + GetDefCount() + 128,
1125                                                    kGrowableArraySSAtoDalvikMap);
1126  ssa_subscripts_ = new (arena_) GrowableArray<int>(arena_, num_dalvik_reg + GetDefCount() + 128,
1127                                                    kGrowableArraySSAtoDalvikMap);
1128  /*
1129   * Initial number of SSA registers is equal to the number of Dalvik
1130   * registers.
1131   */
1132  SetNumSSARegs(num_dalvik_reg);
1133
1134  /*
1135   * Initialize the SSA2Dalvik map list. For the first num_dalvik_reg elements,
1136   * the subscript is 0 so we use the ENCODE_REG_SUB macro to encode the value
1137   * into "(0 << 16) | i"
1138   */
1139  for (unsigned int i = 0; i < num_dalvik_reg; i++) {
1140    ssa_base_vregs_->Insert(i);
1141    ssa_subscripts_->Insert(0);
1142  }
1143
1144  /*
1145   * Initialize the DalvikToSSAMap map. There is one entry for each
1146   * Dalvik register, and the SSA names for those are the same.
1147   */
1148  vreg_to_ssa_map_ =
1149      static_cast<int*>(arena_->Alloc(sizeof(int) * num_dalvik_reg,
1150                                      kArenaAllocDFInfo));
1151  /* Keep track of the higest def for each dalvik reg */
1152  ssa_last_defs_ =
1153      static_cast<int*>(arena_->Alloc(sizeof(int) * num_dalvik_reg,
1154                                      kArenaAllocDFInfo));
1155
1156  for (unsigned int i = 0; i < num_dalvik_reg; i++) {
1157    vreg_to_ssa_map_[i] = i;
1158    ssa_last_defs_[i] = 0;
1159  }
1160
1161  // Create a compiler temporary for Method*. This is done after SSA initialization.
1162  GetNewCompilerTemp(kCompilerTempSpecialMethodPtr, false);
1163
1164  /*
1165   * Allocate the BasicBlockDataFlow structure for the entry and code blocks
1166   */
1167  GrowableArray<BasicBlock*>::Iterator iterator(&block_list_);
1168
1169  while (true) {
1170    BasicBlock* bb = iterator.Next();
1171    if (bb == NULL) break;
1172    if (bb->hidden == true) continue;
1173    if (bb->block_type == kDalvikByteCode ||
1174      bb->block_type == kEntryBlock ||
1175      bb->block_type == kExitBlock) {
1176      bb->data_flow_info =
1177          static_cast<BasicBlockDataFlow*>(arena_->Alloc(sizeof(BasicBlockDataFlow),
1178                                                         kArenaAllocDFInfo));
1179      }
1180  }
1181}
1182
1183/*
1184 * This function will make a best guess at whether the invoke will
1185 * end up using Method*.  It isn't critical to get it exactly right,
1186 * and attempting to do would involve more complexity than it's
1187 * worth.
1188 */
1189bool MIRGraph::InvokeUsesMethodStar(MIR* mir) {
1190  InvokeType type;
1191  Instruction::Code opcode = mir->dalvikInsn.opcode;
1192  switch (opcode) {
1193    case Instruction::INVOKE_STATIC:
1194    case Instruction::INVOKE_STATIC_RANGE:
1195      type = kStatic;
1196      break;
1197    case Instruction::INVOKE_DIRECT:
1198    case Instruction::INVOKE_DIRECT_RANGE:
1199      type = kDirect;
1200      break;
1201    case Instruction::INVOKE_VIRTUAL:
1202    case Instruction::INVOKE_VIRTUAL_RANGE:
1203      type = kVirtual;
1204      break;
1205    case Instruction::INVOKE_INTERFACE:
1206    case Instruction::INVOKE_INTERFACE_RANGE:
1207      return false;
1208    case Instruction::INVOKE_SUPER_RANGE:
1209    case Instruction::INVOKE_SUPER:
1210      type = kSuper;
1211      break;
1212    default:
1213      LOG(WARNING) << "Unexpected invoke op: " << opcode;
1214      return false;
1215  }
1216  DexCompilationUnit m_unit(cu_);
1217  MethodReference target_method(cu_->dex_file, mir->dalvikInsn.vB);
1218  int vtable_idx;
1219  uintptr_t direct_code;
1220  uintptr_t direct_method;
1221  uint32_t current_offset = static_cast<uint32_t>(current_offset_);
1222  bool fast_path =
1223      cu_->compiler_driver->ComputeInvokeInfo(&m_unit, current_offset,
1224                                              false, true,
1225                                              &type, &target_method,
1226                                              &vtable_idx,
1227                                              &direct_code, &direct_method) &&
1228                                              !(cu_->enable_debug & (1 << kDebugSlowInvokePath));
1229  return (((type == kDirect) || (type == kStatic)) &&
1230          fast_path && ((direct_code == 0) || (direct_method == 0)));
1231}
1232
1233/*
1234 * Count uses, weighting by loop nesting depth.  This code only
1235 * counts explicitly used s_regs.  A later phase will add implicit
1236 * counts for things such as Method*, null-checked references, etc.
1237 */
1238void MIRGraph::CountUses(struct BasicBlock* bb) {
1239  if (bb->block_type != kDalvikByteCode) {
1240    return;
1241  }
1242  // Each level of nesting adds *100 to count, up to 3 levels deep.
1243  uint32_t depth = std::min(3U, static_cast<uint32_t>(bb->nesting_depth));
1244  uint32_t weight = std::max(1U, depth * 100);
1245  for (MIR* mir = bb->first_mir_insn; (mir != NULL); mir = mir->next) {
1246    if (mir->ssa_rep == NULL) {
1247      continue;
1248    }
1249    for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
1250      int s_reg = mir->ssa_rep->uses[i];
1251      raw_use_counts_.Increment(s_reg);
1252      use_counts_.Put(s_reg, use_counts_.Get(s_reg) + weight);
1253    }
1254    if (!(cu_->disable_opt & (1 << kPromoteCompilerTemps))) {
1255      uint64_t df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode];
1256      // Implicit use of Method* ? */
1257      if (df_attributes & DF_UMS) {
1258        /*
1259         * Some invokes will not use Method* - need to perform test similar
1260         * to that found in GenInvoke() to decide whether to count refs
1261         * for Method* on invoke-class opcodes.  This is a relatively expensive
1262         * operation, so should only be done once.
1263         * TODO: refactor InvokeUsesMethodStar() to perform check at parse time,
1264         * and save results for both here and GenInvoke.  For now, go ahead
1265         * and assume all invokes use method*.
1266         */
1267        raw_use_counts_.Increment(method_sreg_);
1268        use_counts_.Put(method_sreg_, use_counts_.Get(method_sreg_) + weight);
1269      }
1270    }
1271  }
1272}
1273
1274/* Verify if all the successor is connected with all the claimed predecessors */
1275bool MIRGraph::VerifyPredInfo(BasicBlock* bb) {
1276  GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
1277
1278  while (true) {
1279    BasicBlock *pred_bb = GetBasicBlock(iter.Next());
1280    if (!pred_bb) break;
1281    bool found = false;
1282    if (pred_bb->taken == bb->id) {
1283        found = true;
1284    } else if (pred_bb->fall_through == bb->id) {
1285        found = true;
1286    } else if (pred_bb->successor_block_list_type != kNotUsed) {
1287      GrowableArray<SuccessorBlockInfo*>::Iterator iterator(pred_bb->successor_blocks);
1288      while (true) {
1289        SuccessorBlockInfo *successor_block_info = iterator.Next();
1290        if (successor_block_info == NULL) break;
1291        BasicBlockId succ_bb = successor_block_info->block;
1292        if (succ_bb == bb->id) {
1293            found = true;
1294            break;
1295        }
1296      }
1297    }
1298    if (found == false) {
1299      char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
1300      GetBlockName(bb, block_name1);
1301      GetBlockName(pred_bb, block_name2);
1302      DumpCFG("/sdcard/cfg/", false);
1303      LOG(FATAL) << "Successor " << block_name1 << "not found from "
1304                 << block_name2;
1305    }
1306  }
1307  return true;
1308}
1309
1310void MIRGraph::VerifyDataflow() {
1311    /* Verify if all blocks are connected as claimed */
1312  AllNodesIterator iter(this);
1313  for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1314    VerifyPredInfo(bb);
1315  }
1316}
1317
1318}  // namespace art
1319