mir_graph.h revision 3aa57730e2aec451bb836918d936c6862598d8d6
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
18#define ART_COMPILER_DEX_MIR_GRAPH_H_
19
20#include <stdint.h>
21
22#include "dex_file.h"
23#include "dex_instruction.h"
24#include "compiler_ir.h"
25#include "invoke_type.h"
26#include "mir_field_info.h"
27#include "mir_method_info.h"
28#include "utils/arena_bit_vector.h"
29#include "utils/growable_array.h"
30#include "reg_storage.h"
31
32namespace art {
33
34enum InstructionAnalysisAttributePos {
35  kUninterestingOp = 0,
36  kArithmeticOp,
37  kFPOp,
38  kSingleOp,
39  kDoubleOp,
40  kIntOp,
41  kLongOp,
42  kBranchOp,
43  kInvokeOp,
44  kArrayOp,
45  kHeavyweightOp,
46  kSimpleConstOp,
47  kMoveOp,
48  kSwitch
49};
50
51#define AN_NONE (1 << kUninterestingOp)
52#define AN_MATH (1 << kArithmeticOp)
53#define AN_FP (1 << kFPOp)
54#define AN_LONG (1 << kLongOp)
55#define AN_INT (1 << kIntOp)
56#define AN_SINGLE (1 << kSingleOp)
57#define AN_DOUBLE (1 << kDoubleOp)
58#define AN_FLOATMATH (1 << kFPOp)
59#define AN_BRANCH (1 << kBranchOp)
60#define AN_INVOKE (1 << kInvokeOp)
61#define AN_ARRAYOP (1 << kArrayOp)
62#define AN_HEAVYWEIGHT (1 << kHeavyweightOp)
63#define AN_SIMPLECONST (1 << kSimpleConstOp)
64#define AN_MOVE (1 << kMoveOp)
65#define AN_SWITCH (1 << kSwitch)
66#define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST)
67
68enum DataFlowAttributePos {
69  kUA = 0,
70  kUB,
71  kUC,
72  kAWide,
73  kBWide,
74  kCWide,
75  kDA,
76  kIsMove,
77  kSetsConst,
78  kFormat35c,
79  kFormat3rc,
80  kNullCheckSrc0,        // Null check of uses[0].
81  kNullCheckSrc1,        // Null check of uses[1].
82  kNullCheckSrc2,        // Null check of uses[2].
83  kNullCheckOut0,        // Null check out outgoing arg0.
84  kDstNonNull,           // May assume dst is non-null.
85  kRetNonNull,           // May assume retval is non-null.
86  kNullTransferSrc0,     // Object copy src[0] -> dst.
87  kNullTransferSrcN,     // Phi null check state transfer.
88  kRangeCheckSrc1,       // Range check of uses[1].
89  kRangeCheckSrc2,       // Range check of uses[2].
90  kRangeCheckSrc3,       // Range check of uses[3].
91  kFPA,
92  kFPB,
93  kFPC,
94  kCoreA,
95  kCoreB,
96  kCoreC,
97  kRefA,
98  kRefB,
99  kRefC,
100  kUsesMethodStar,       // Implicit use of Method*.
101  kUsesIField,           // Accesses an instance field (IGET/IPUT).
102  kUsesSField,           // Accesses a static field (SGET/SPUT).
103  kDoLVN,                // Worth computing local value numbers.
104};
105
106#define DF_NOP                  UINT64_C(0)
107#define DF_UA                   (UINT64_C(1) << kUA)
108#define DF_UB                   (UINT64_C(1) << kUB)
109#define DF_UC                   (UINT64_C(1) << kUC)
110#define DF_A_WIDE               (UINT64_C(1) << kAWide)
111#define DF_B_WIDE               (UINT64_C(1) << kBWide)
112#define DF_C_WIDE               (UINT64_C(1) << kCWide)
113#define DF_DA                   (UINT64_C(1) << kDA)
114#define DF_IS_MOVE              (UINT64_C(1) << kIsMove)
115#define DF_SETS_CONST           (UINT64_C(1) << kSetsConst)
116#define DF_FORMAT_35C           (UINT64_C(1) << kFormat35c)
117#define DF_FORMAT_3RC           (UINT64_C(1) << kFormat3rc)
118#define DF_NULL_CHK_0           (UINT64_C(1) << kNullCheckSrc0)
119#define DF_NULL_CHK_1           (UINT64_C(1) << kNullCheckSrc1)
120#define DF_NULL_CHK_2           (UINT64_C(1) << kNullCheckSrc2)
121#define DF_NULL_CHK_OUT0        (UINT64_C(1) << kNullCheckOut0)
122#define DF_NON_NULL_DST         (UINT64_C(1) << kDstNonNull)
123#define DF_NON_NULL_RET         (UINT64_C(1) << kRetNonNull)
124#define DF_NULL_TRANSFER_0      (UINT64_C(1) << kNullTransferSrc0)
125#define DF_NULL_TRANSFER_N      (UINT64_C(1) << kNullTransferSrcN)
126#define DF_RANGE_CHK_1          (UINT64_C(1) << kRangeCheckSrc1)
127#define DF_RANGE_CHK_2          (UINT64_C(1) << kRangeCheckSrc2)
128#define DF_RANGE_CHK_3          (UINT64_C(1) << kRangeCheckSrc3)
129#define DF_FP_A                 (UINT64_C(1) << kFPA)
130#define DF_FP_B                 (UINT64_C(1) << kFPB)
131#define DF_FP_C                 (UINT64_C(1) << kFPC)
132#define DF_CORE_A               (UINT64_C(1) << kCoreA)
133#define DF_CORE_B               (UINT64_C(1) << kCoreB)
134#define DF_CORE_C               (UINT64_C(1) << kCoreC)
135#define DF_REF_A                (UINT64_C(1) << kRefA)
136#define DF_REF_B                (UINT64_C(1) << kRefB)
137#define DF_REF_C                (UINT64_C(1) << kRefC)
138#define DF_UMS                  (UINT64_C(1) << kUsesMethodStar)
139#define DF_IFIELD               (UINT64_C(1) << kUsesIField)
140#define DF_SFIELD               (UINT64_C(1) << kUsesSField)
141#define DF_LVN                  (UINT64_C(1) << kDoLVN)
142
143#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)
144
145#define DF_HAS_DEFS             (DF_DA)
146
147#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_0 | \
148                                 DF_NULL_CHK_1 | \
149                                 DF_NULL_CHK_2 | \
150                                 DF_NULL_CHK_OUT0)
151
152#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_1 | \
153                                 DF_RANGE_CHK_2 | \
154                                 DF_RANGE_CHK_3)
155
156#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
157                                 DF_HAS_RANGE_CHKS)
158
159#define DF_A_IS_REG             (DF_UA | DF_DA)
160#define DF_B_IS_REG             (DF_UB)
161#define DF_C_IS_REG             (DF_UC)
162#define DF_IS_GETTER_OR_SETTER  (DF_IS_GETTER | DF_IS_SETTER)
163#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
164#define DF_NULL_TRANSFER        (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)
165enum OatMethodAttributes {
166  kIsLeaf,            // Method is leaf.
167  kHasLoop,           // Method contains simple loop.
168};
169
170#define METHOD_IS_LEAF          (1 << kIsLeaf)
171#define METHOD_HAS_LOOP         (1 << kHasLoop)
172
173// Minimum field size to contain Dalvik v_reg number.
174#define VREG_NUM_WIDTH 16
175
176#define INVALID_SREG (-1)
177#define INVALID_VREG (0xFFFFU)
178#define INVALID_OFFSET (0xDEADF00FU)
179
180#define MIR_IGNORE_NULL_CHECK           (1 << kMIRIgnoreNullCheck)
181#define MIR_NULL_CHECK_ONLY             (1 << kMIRNullCheckOnly)
182#define MIR_IGNORE_RANGE_CHECK          (1 << kMIRIgnoreRangeCheck)
183#define MIR_RANGE_CHECK_ONLY            (1 << kMIRRangeCheckOnly)
184#define MIR_IGNORE_CLINIT_CHECK         (1 << kMIRIgnoreClInitCheck)
185#define MIR_INLINED                     (1 << kMIRInlined)
186#define MIR_INLINED_PRED                (1 << kMIRInlinedPred)
187#define MIR_CALLEE                      (1 << kMIRCallee)
188#define MIR_IGNORE_SUSPEND_CHECK        (1 << kMIRIgnoreSuspendCheck)
189#define MIR_DUP                         (1 << kMIRDup)
190
191#define BLOCK_NAME_LEN 80
192
193typedef uint16_t BasicBlockId;
194static const BasicBlockId NullBasicBlockId = 0;
195
196/*
197 * In general, vreg/sreg describe Dalvik registers that originated with dx.  However,
198 * it is useful to have compiler-generated temporary registers and have them treated
199 * in the same manner as dx-generated virtual registers.  This struct records the SSA
200 * name of compiler-introduced temporaries.
201 */
202struct CompilerTemp {
203  int32_t v_reg;      // Virtual register number for temporary.
204  int32_t s_reg_low;  // SSA name for low Dalvik word.
205};
206
207enum CompilerTempType {
208  kCompilerTempVR,                // A virtual register temporary.
209  kCompilerTempSpecialMethodPtr,  // Temporary that keeps track of current method pointer.
210};
211
212// When debug option enabled, records effectiveness of null and range check elimination.
213struct Checkstats {
214  int32_t null_checks;
215  int32_t null_checks_eliminated;
216  int32_t range_checks;
217  int32_t range_checks_eliminated;
218};
219
220// Dataflow attributes of a basic block.
221struct BasicBlockDataFlow {
222  ArenaBitVector* use_v;
223  ArenaBitVector* def_v;
224  ArenaBitVector* live_in_v;
225  ArenaBitVector* phi_v;
226  int32_t* vreg_to_ssa_map;
227  ArenaBitVector* ending_check_v;  // For null check and class init check elimination.
228};
229
230/*
231 * Normalized use/def for a MIR operation using SSA names rather than vregs.  Note that
232 * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
233 * vregs.  For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
234 * Following SSA renaming, this is the primary struct used by code generators to locate
235 * operand and result registers.  This is a somewhat confusing and unhelpful convention that
236 * we may want to revisit in the future.
237 */
238struct SSARepresentation {
239  int16_t num_uses;
240  int16_t num_defs;
241  int32_t* uses;
242  bool* fp_use;
243  int32_t* defs;
244  bool* fp_def;
245
246  static uint32_t GetStartUseIndex(Instruction::Code opcode);
247};
248
249/*
250 * The Midlevel Intermediate Representation node, which may be largely considered a
251 * wrapper around a Dalvik byte code.
252 */
253struct MIR {
254  /*
255   * TODO: remove embedded DecodedInstruction to save space, keeping only opcode.  Recover
256   * additional fields on as-needed basis.  Question: how to support MIR Pseudo-ops; probably
257   * need to carry aux data pointer.
258   */
259  struct DecodedInstruction {
260    uint32_t vA;
261    uint32_t vB;
262    uint64_t vB_wide;        /* for k51l */
263    uint32_t vC;
264    uint32_t arg[5];         /* vC/D/E/F/G in invoke or filled-new-array */
265    Instruction::Code opcode;
266
267    explicit DecodedInstruction():vA(0), vB(0), vB_wide(0), vC(0), opcode(Instruction::NOP) {
268    }
269  } dalvikInsn;
270
271  NarrowDexOffset offset;         // Offset of the instruction in code units.
272  uint16_t optimization_flags;
273  int16_t m_unit_index;           // From which method was this MIR included
274  BasicBlockId bb;
275  MIR* next;
276  SSARepresentation* ssa_rep;
277  union {
278    // Incoming edges for phi node.
279    BasicBlockId* phi_incoming;
280    // Establish link from check instruction (kMirOpCheck) to the actual throwing instruction.
281    MIR* throw_insn;
282    // Branch condition for fused cmp or select.
283    ConditionCode ccode;
284    // IGET/IPUT lowering info index, points to MIRGraph::ifield_lowering_infos_. Due to limit on
285    // the number of code points (64K) and size of IGET/IPUT insn (2), this will never exceed 32K.
286    uint32_t ifield_lowering_info;
287    // SGET/SPUT lowering info index, points to MIRGraph::sfield_lowering_infos_. Due to limit on
288    // the number of code points (64K) and size of SGET/SPUT insn (2), this will never exceed 32K.
289    uint32_t sfield_lowering_info;
290    // INVOKE data index, points to MIRGraph::method_lowering_infos_.
291    uint32_t method_lowering_info;
292  } meta;
293
294  explicit MIR():offset(0), optimization_flags(0), m_unit_index(0), bb(NullBasicBlockId),
295                 next(nullptr), ssa_rep(nullptr) {
296    memset(&meta, 0, sizeof(meta));
297  }
298
299  uint32_t GetStartUseIndex() const {
300    return SSARepresentation::GetStartUseIndex(dalvikInsn.opcode);
301  }
302
303  MIR* Copy(CompilationUnit *c_unit);
304  MIR* Copy(MIRGraph* mir_Graph);
305
306  static void* operator new(size_t size, ArenaAllocator* arena) {
307    return arena->Alloc(sizeof(MIR), kArenaAllocMIR);
308  }
309  static void operator delete(void* p) {}  // Nop.
310};
311
312struct SuccessorBlockInfo;
313
314struct BasicBlock {
315  BasicBlockId id;
316  BasicBlockId dfs_id;
317  NarrowDexOffset start_offset;     // Offset in code units.
318  BasicBlockId fall_through;
319  BasicBlockId taken;
320  BasicBlockId i_dom;               // Immediate dominator.
321  uint16_t nesting_depth;
322  BBType block_type:4;
323  BlockListType successor_block_list_type:4;
324  bool visited:1;
325  bool hidden:1;
326  bool catch_entry:1;
327  bool explicit_throw:1;
328  bool conditional_branch:1;
329  bool terminated_by_return:1;  // Block ends with a Dalvik return opcode.
330  bool dominates_return:1;      // Is a member of return extended basic block.
331  bool use_lvn:1;               // Run local value numbering on this block.
332  MIR* first_mir_insn;
333  MIR* last_mir_insn;
334  BasicBlockDataFlow* data_flow_info;
335  ArenaBitVector* dominators;
336  ArenaBitVector* i_dominated;      // Set nodes being immediately dominated.
337  ArenaBitVector* dom_frontier;     // Dominance frontier.
338  GrowableArray<BasicBlockId>* predecessors;
339  GrowableArray<SuccessorBlockInfo*>* successor_blocks;
340
341  void AppendMIR(MIR* mir);
342  void PrependMIR(MIR* mir);
343  void InsertMIRAfter(MIR* current_mir, MIR* new_mir);
344  void InsertMIRBefore(MIR* current_mir, MIR* new_mir);
345  MIR* FindPreviousMIR(MIR* mir);
346
347  /**
348   * @brief Used to obtain the next MIR that follows unconditionally.
349   * @details The implementation does not guarantee that a MIR does not
350   * follow even if this method returns nullptr.
351   * @param mir_graph the MIRGraph.
352   * @param current The MIR for which to find an unconditional follower.
353   * @return Returns the following MIR if one can be found.
354   */
355  MIR* GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current);
356  bool RemoveMIR(MIR* mir);
357};
358
359/*
360 * The "blocks" field in "successor_block_list" points to an array of elements with the type
361 * "SuccessorBlockInfo".  For catch blocks, key is type index for the exception.  For swtich
362 * blocks, key is the case value.
363 */
364struct SuccessorBlockInfo {
365  BasicBlockId block;
366  int key;
367};
368
369/**
370 * @class ChildBlockIterator
371 * @brief Enable an easy iteration of the children.
372 */
373class ChildBlockIterator {
374 public:
375  /**
376   * @brief Constructs a child iterator.
377   * @param bb The basic whose children we need to iterate through.
378   * @param mir_graph The MIRGraph used to get the basic block during iteration.
379   */
380  ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph);
381  BasicBlock* Next();
382
383 private:
384  BasicBlock* basic_block_;
385  MIRGraph* mir_graph_;
386  bool visited_fallthrough_;
387  bool visited_taken_;
388  bool have_successors_;
389  GrowableArray<SuccessorBlockInfo*>::Iterator successor_iter_;
390};
391
392/*
393 * Whereas a SSA name describes a definition of a Dalvik vreg, the RegLocation describes
394 * the type of an SSA name (and, can also be used by code generators to record where the
395 * value is located (i.e. - physical register, frame, spill, etc.).  For each SSA name (SReg)
396 * there is a RegLocation.
397 * A note on SSA names:
398 *   o SSA names for Dalvik vRegs v0..vN will be assigned 0..N.  These represent the "vN_0"
399 *     names.  Negative SSA names represent special values not present in the Dalvik byte code.
400 *     For example, SSA name -1 represents an invalid SSA name, and SSA name -2 represents the
401 *     the Method pointer.  SSA names < -2 are reserved for future use.
402 *   o The vN_0 names for non-argument Dalvik should in practice never be used (as they would
403 *     represent the read of an undefined local variable).  The first definition of the
404 *     underlying Dalvik vReg will result in a vN_1 name.
405 *
406 * FIXME: The orig_sreg field was added as a workaround for llvm bitcode generation.  With
407 * the latest restructuring, we should be able to remove it and rely on s_reg_low throughout.
408 */
409struct RegLocation {
410  RegLocationType location:3;
411  unsigned wide:1;
412  unsigned defined:1;   // Do we know the type?
413  unsigned is_const:1;  // Constant, value in mir_graph->constant_values[].
414  unsigned fp:1;        // Floating point?
415  unsigned core:1;      // Non-floating point?
416  unsigned ref:1;       // Something GC cares about.
417  unsigned high_word:1;  // High word of pair?
418  unsigned home:1;      // Does this represent the home location?
419  RegStorage reg;       // Encoded physical registers.
420  int16_t s_reg_low;    // SSA name for low Dalvik word.
421  int16_t orig_sreg;    // TODO: remove after Bitcode gen complete
422                        // and consolidate usage w/ s_reg_low.
423};
424
425/*
426 * Collection of information describing an invoke, and the destination of
427 * the subsequent MOVE_RESULT (if applicable).  Collected as a unit to enable
428 * more efficient invoke code generation.
429 */
430struct CallInfo {
431  int num_arg_words;    // Note: word count, not arg count.
432  RegLocation* args;    // One for each word of arguments.
433  RegLocation result;   // Eventual target of MOVE_RESULT.
434  int opt_flags;
435  InvokeType type;
436  uint32_t dex_idx;
437  uint32_t index;       // Method idx for invokes, type idx for FilledNewArray.
438  uintptr_t direct_code;
439  uintptr_t direct_method;
440  RegLocation target;    // Target of following move_result.
441  bool skip_this;
442  bool is_range;
443  DexOffset offset;      // Offset in code units.
444  MIR* mir;
445};
446
447
448const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, RegStorage(), INVALID_SREG,
449                             INVALID_SREG};
450
451class MIRGraph {
452 public:
453  MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
454  ~MIRGraph();
455
456  /*
457   * Examine the graph to determine whether it's worthwile to spend the time compiling
458   * this method.
459   */
460  bool SkipCompilation();
461
462  /*
463   * Should we skip the compilation of this method based on its name?
464   */
465  bool SkipCompilation(const std::string& methodname);
466
467  /*
468   * Parse dex method and add MIR at current insert point.  Returns id (which is
469   * actually the index of the method in the m_units_ array).
470   */
471  void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
472                    InvokeType invoke_type, uint16_t class_def_idx,
473                    uint32_t method_idx, jobject class_loader, const DexFile& dex_file);
474
475  /* Find existing block */
476  BasicBlock* FindBlock(DexOffset code_offset) {
477    return FindBlock(code_offset, false, false, NULL);
478  }
479
480  const uint16_t* GetCurrentInsns() const {
481    return current_code_item_->insns_;
482  }
483
484  const uint16_t* GetInsns(int m_unit_index) const {
485    return m_units_[m_unit_index]->GetCodeItem()->insns_;
486  }
487
488  int GetNumBlocks() const {
489    return num_blocks_;
490  }
491
492  size_t GetNumDalvikInsns() const {
493    return cu_->code_item->insns_size_in_code_units_;
494  }
495
496  ArenaBitVector* GetTryBlockAddr() const {
497    return try_block_addr_;
498  }
499
500  BasicBlock* GetEntryBlock() const {
501    return entry_block_;
502  }
503
504  BasicBlock* GetExitBlock() const {
505    return exit_block_;
506  }
507
508  BasicBlock* GetBasicBlock(int block_id) const {
509    return (block_id == NullBasicBlockId) ? NULL : block_list_.Get(block_id);
510  }
511
512  size_t GetBasicBlockListCount() const {
513    return block_list_.Size();
514  }
515
516  GrowableArray<BasicBlock*>* GetBlockList() {
517    return &block_list_;
518  }
519
520  GrowableArray<BasicBlockId>* GetDfsOrder() {
521    return dfs_order_;
522  }
523
524  GrowableArray<BasicBlockId>* GetDfsPostOrder() {
525    return dfs_post_order_;
526  }
527
528  GrowableArray<BasicBlockId>* GetDomPostOrder() {
529    return dom_post_order_traversal_;
530  }
531
532  int GetDefCount() const {
533    return def_count_;
534  }
535
536  ArenaAllocator* GetArena() {
537    return arena_;
538  }
539
540  void EnableOpcodeCounting() {
541    opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int),
542                                                    kArenaAllocMisc));
543  }
544
545  void ShowOpcodeStats();
546
547  DexCompilationUnit* GetCurrentDexCompilationUnit() const {
548    return m_units_[current_method_];
549  }
550
551  /**
552   * @brief Dump a CFG into a dot file format.
553   * @param dir_prefix the directory the file will be created in.
554   * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks.
555   * @param suffix does the filename require a suffix or not (default = nullptr).
556   */
557  void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr);
558
559  bool HasFieldAccess() const {
560    return (merged_df_flags_ & (DF_IFIELD | DF_SFIELD)) != 0u;
561  }
562
563  bool HasStaticFieldAccess() const {
564    return (merged_df_flags_ & DF_SFIELD) != 0u;
565  }
566
567  bool HasInvokes() const {
568    // NOTE: These formats include the rare filled-new-array/range.
569    return (merged_df_flags_ & (DF_FORMAT_35C | DF_FORMAT_3RC)) != 0u;
570  }
571
572  void DoCacheFieldLoweringInfo();
573
574  const MirIFieldLoweringInfo& GetIFieldLoweringInfo(MIR* mir) const {
575    DCHECK_LT(mir->meta.ifield_lowering_info, ifield_lowering_infos_.Size());
576    return ifield_lowering_infos_.GetRawStorage()[mir->meta.ifield_lowering_info];
577  }
578
579  const MirSFieldLoweringInfo& GetSFieldLoweringInfo(MIR* mir) const {
580    DCHECK_LT(mir->meta.sfield_lowering_info, sfield_lowering_infos_.Size());
581    return sfield_lowering_infos_.GetRawStorage()[mir->meta.sfield_lowering_info];
582  }
583
584  void DoCacheMethodLoweringInfo();
585
586  const MirMethodLoweringInfo& GetMethodLoweringInfo(MIR* mir) {
587    DCHECK_LT(mir->meta.method_lowering_info, method_lowering_infos_.Size());
588    return method_lowering_infos_.GetRawStorage()[mir->meta.method_lowering_info];
589  }
590
591  void ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput);
592
593  void InitRegLocations();
594
595  void RemapRegLocations();
596
597  void DumpRegLocTable(RegLocation* table, int count);
598
599  void BasicBlockOptimization();
600
601  bool IsConst(int32_t s_reg) const {
602    return is_constant_v_->IsBitSet(s_reg);
603  }
604
605  bool IsConst(RegLocation loc) const {
606    return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg);
607  }
608
609  int32_t ConstantValue(RegLocation loc) const {
610    DCHECK(IsConst(loc));
611    return constant_values_[loc.orig_sreg];
612  }
613
614  int32_t ConstantValue(int32_t s_reg) const {
615    DCHECK(IsConst(s_reg));
616    return constant_values_[s_reg];
617  }
618
619  int64_t ConstantValueWide(RegLocation loc) const {
620    DCHECK(IsConst(loc));
621    return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
622        Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
623  }
624
625  bool IsConstantNullRef(RegLocation loc) const {
626    return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
627  }
628
629  int GetNumSSARegs() const {
630    return num_ssa_regs_;
631  }
632
633  void SetNumSSARegs(int new_num) {
634     /*
635      * TODO: It's theoretically possible to exceed 32767, though any cases which did
636      * would be filtered out with current settings.  When orig_sreg field is removed
637      * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK().
638      */
639    DCHECK_EQ(new_num, static_cast<int16_t>(new_num));
640    num_ssa_regs_ = new_num;
641  }
642
643  unsigned int GetNumReachableBlocks() const {
644    return num_reachable_blocks_;
645  }
646
647  int GetUseCount(int vreg) const {
648    return use_counts_.Get(vreg);
649  }
650
651  int GetRawUseCount(int vreg) const {
652    return raw_use_counts_.Get(vreg);
653  }
654
655  int GetSSASubscript(int ssa_reg) const {
656    return ssa_subscripts_->Get(ssa_reg);
657  }
658
659  RegLocation GetRawSrc(MIR* mir, int num) {
660    DCHECK(num < mir->ssa_rep->num_uses);
661    RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
662    return res;
663  }
664
665  RegLocation GetRawDest(MIR* mir) {
666    DCHECK_GT(mir->ssa_rep->num_defs, 0);
667    RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
668    return res;
669  }
670
671  RegLocation GetDest(MIR* mir) {
672    RegLocation res = GetRawDest(mir);
673    DCHECK(!res.wide);
674    return res;
675  }
676
677  RegLocation GetSrc(MIR* mir, int num) {
678    RegLocation res = GetRawSrc(mir, num);
679    DCHECK(!res.wide);
680    return res;
681  }
682
683  RegLocation GetDestWide(MIR* mir) {
684    RegLocation res = GetRawDest(mir);
685    DCHECK(res.wide);
686    return res;
687  }
688
689  RegLocation GetSrcWide(MIR* mir, int low) {
690    RegLocation res = GetRawSrc(mir, low);
691    DCHECK(res.wide);
692    return res;
693  }
694
695  RegLocation GetBadLoc() {
696    return bad_loc;
697  }
698
699  int GetMethodSReg() const {
700    return method_sreg_;
701  }
702
703  /**
704   * @brief Used to obtain the number of compiler temporaries being used.
705   * @return Returns the number of compiler temporaries.
706   */
707  size_t GetNumUsedCompilerTemps() const {
708    size_t total_num_temps = compiler_temps_.Size();
709    DCHECK_LE(num_non_special_compiler_temps_, total_num_temps);
710    return total_num_temps;
711  }
712
713  /**
714   * @brief Used to obtain the number of non-special compiler temporaries being used.
715   * @return Returns the number of non-special compiler temporaries.
716   */
717  size_t GetNumNonSpecialCompilerTemps() const {
718    return num_non_special_compiler_temps_;
719  }
720
721  /**
722   * @brief Used to set the total number of available non-special compiler temporaries.
723   * @details Can fail setting the new max if there are more temps being used than the new_max.
724   * @param new_max The new maximum number of non-special compiler temporaries.
725   * @return Returns true if the max was set and false if failed to set.
726   */
727  bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) {
728    if (new_max < GetNumNonSpecialCompilerTemps()) {
729      return false;
730    } else {
731      max_available_non_special_compiler_temps_ = new_max;
732      return true;
733    }
734  }
735
736  /**
737   * @brief Provides the number of non-special compiler temps available.
738   * @details Even if this returns zero, special compiler temps are guaranteed to be available.
739   * @return Returns the number of available temps.
740   */
741  size_t GetNumAvailableNonSpecialCompilerTemps();
742
743  /**
744   * @brief Used to obtain an existing compiler temporary.
745   * @param index The index of the temporary which must be strictly less than the
746   * number of temporaries.
747   * @return Returns the temporary that was asked for.
748   */
749  CompilerTemp* GetCompilerTemp(size_t index) const {
750    return compiler_temps_.Get(index);
751  }
752
753  /**
754   * @brief Used to obtain the maximum number of compiler temporaries that can be requested.
755   * @return Returns the maximum number of compiler temporaries, whether used or not.
756   */
757  size_t GetMaxPossibleCompilerTemps() const {
758    return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_;
759  }
760
761  /**
762   * @brief Used to obtain a new unique compiler temporary.
763   * @param ct_type Type of compiler temporary requested.
764   * @param wide Whether we should allocate a wide temporary.
765   * @return Returns the newly created compiler temporary.
766   */
767  CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide);
768
769  bool MethodIsLeaf() {
770    return attributes_ & METHOD_IS_LEAF;
771  }
772
773  RegLocation GetRegLocation(int index) {
774    DCHECK((index >= 0) && (index < num_ssa_regs_));
775    return reg_location_[index];
776  }
777
778  RegLocation GetMethodLoc() {
779    return reg_location_[method_sreg_];
780  }
781
782  bool IsBackedge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
783    return ((target_bb_id != NullBasicBlockId) &&
784            (GetBasicBlock(target_bb_id)->start_offset <= branch_bb->start_offset));
785  }
786
787  bool IsBackwardsBranch(BasicBlock* branch_bb) {
788    return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through);
789  }
790
791  void CountBranch(DexOffset target_offset) {
792    if (target_offset <= current_offset_) {
793      backward_branches_++;
794    } else {
795      forward_branches_++;
796    }
797  }
798
799  int GetBranchCount() {
800    return backward_branches_ + forward_branches_;
801  }
802
803  bool IsPseudoMirOp(Instruction::Code opcode) {
804    return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst);
805  }
806
807  bool IsPseudoMirOp(int opcode) {
808    return opcode >= static_cast<int>(kMirOpFirst);
809  }
810
811  // Is this vreg in the in set?
812  bool IsInVReg(int vreg) {
813    return (vreg >= cu_->num_regs);
814  }
815
816  void DumpCheckStats();
817  MIR* FindMoveResult(BasicBlock* bb, MIR* mir);
818  int SRegToVReg(int ssa_reg) const;
819  void VerifyDataflow();
820  void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
821  void EliminateNullChecksAndInferTypesStart();
822  bool EliminateNullChecksAndInferTypes(BasicBlock *bb);
823  void EliminateNullChecksAndInferTypesEnd();
824  bool EliminateClassInitChecksGate();
825  bool EliminateClassInitChecks(BasicBlock* bb);
826  void EliminateClassInitChecksEnd();
827  /*
828   * Type inference handling helpers.  Because Dalvik's bytecode is not fully typed,
829   * we have to do some work to figure out the sreg type.  For some operations it is
830   * clear based on the opcode (i.e. ADD_FLOAT v0, v1, v2), but for others (MOVE), we
831   * may never know the "real" type.
832   *
833   * We perform the type inference operation by using an iterative  walk over
834   * the graph, propagating types "defined" by typed opcodes to uses and defs in
835   * non-typed opcodes (such as MOVE).  The Setxx(index) helpers are used to set defined
836   * types on typed opcodes (such as ADD_INT).  The Setxx(index, is_xx) form is used to
837   * propagate types through non-typed opcodes such as PHI and MOVE.  The is_xx flag
838   * tells whether our guess of the type is based on a previously typed definition.
839   * If so, the defined type takes precedence.  Note that it's possible to have the same sreg
840   * show multiple defined types because dx treats constants as untyped bit patterns.
841   * The return value of the Setxx() helpers says whether or not the Setxx() action changed
842   * the current guess, and is used to know when to terminate the iterative walk.
843   */
844  bool SetFp(int index, bool is_fp);
845  bool SetFp(int index);
846  bool SetCore(int index, bool is_core);
847  bool SetCore(int index);
848  bool SetRef(int index, bool is_ref);
849  bool SetRef(int index);
850  bool SetWide(int index, bool is_wide);
851  bool SetWide(int index);
852  bool SetHigh(int index, bool is_high);
853  bool SetHigh(int index);
854
855  char* GetDalvikDisassembly(const MIR* mir);
856  void ReplaceSpecialChars(std::string& str);
857  std::string GetSSAName(int ssa_reg);
858  std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
859  void GetBlockName(BasicBlock* bb, char* name);
860  const char* GetShortyFromTargetIdx(int);
861  void DumpMIRGraph();
862  CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
863  BasicBlock* NewMemBB(BBType block_type, int block_id);
864  MIR* NewMIR();
865  MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir);
866  BasicBlock* NextDominatedBlock(BasicBlock* bb);
867  bool LayoutBlocks(BasicBlock* bb);
868
869  bool InlineCallsGate();
870  void InlineCallsStart();
871  void InlineCalls(BasicBlock* bb);
872  void InlineCallsEnd();
873
874  /**
875   * @brief Perform the initial preparation for the Method Uses.
876   */
877  void InitializeMethodUses();
878
879  /**
880   * @brief Perform the initial preparation for the Constant Propagation.
881   */
882  void InitializeConstantPropagation();
883
884  /**
885   * @brief Perform the initial preparation for the SSA Transformation.
886   */
887  void InitializeSSATransformation();
888
889  /**
890   * @brief Insert a the operands for the Phi nodes.
891   * @param bb the considered BasicBlock.
892   * @return true
893   */
894  bool InsertPhiNodeOperands(BasicBlock* bb);
895
896  /**
897   * @brief Perform constant propagation on a BasicBlock.
898   * @param bb the considered BasicBlock.
899   */
900  void DoConstantPropagation(BasicBlock* bb);
901
902  /**
903   * @brief Count the uses in the BasicBlock
904   * @param bb the BasicBlock
905   */
906  void CountUses(struct BasicBlock* bb);
907
908  static uint64_t GetDataFlowAttributes(Instruction::Code opcode);
909  static uint64_t GetDataFlowAttributes(MIR* mir);
910
911  /**
912   * @brief Combine BasicBlocks
913   * @param the BasicBlock we are considering
914   */
915  void CombineBlocks(BasicBlock* bb);
916
917  void ClearAllVisitedFlags();
918  /*
919   * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
920   * we can verify that all catch entries have native PC entries.
921   */
922  std::set<uint32_t> catches_;
923
924  // TODO: make these private.
925  RegLocation* reg_location_;                         // Map SSA names to location.
926  SafeMap<unsigned int, unsigned int> block_id_map_;  // Block collapse lookup cache.
927
928  static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];
929  static const uint32_t analysis_attributes_[kMirOpLast];
930
931  void HandleSSADef(int* defs, int dalvik_reg, int reg_index);
932  bool InferTypeAndSize(BasicBlock* bb, MIR* mir, bool changed);
933  void ComputeDFSOrders();
934
935 protected:
936  int FindCommonParent(int block1, int block2);
937  void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
938                         const ArenaBitVector* src2);
939  void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
940                       ArenaBitVector* live_in_v, int dalvik_reg_id);
941  void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
942  void CompilerInitializeSSAConversion();
943  bool DoSSAConversion(BasicBlock* bb);
944  bool InvokeUsesMethodStar(MIR* mir);
945  int ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction);
946  bool ContentIsInsn(const uint16_t* code_ptr);
947  BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block,
948                         BasicBlock** immed_pred_block_p);
949  BasicBlock* FindBlock(DexOffset code_offset, bool split, bool create,
950                        BasicBlock** immed_pred_block_p);
951  void ProcessTryCatchBlocks();
952  BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
953                               int flags, const uint16_t* code_ptr, const uint16_t* code_end);
954  BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
955                               int flags);
956  BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
957                              int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
958                              const uint16_t* code_end);
959  int AddNewSReg(int v_reg);
960  void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
961  void DataFlowSSAFormat35C(MIR* mir);
962  void DataFlowSSAFormat3RC(MIR* mir);
963  bool FindLocalLiveIn(BasicBlock* bb);
964  bool VerifyPredInfo(BasicBlock* bb);
965  BasicBlock* NeedsVisit(BasicBlock* bb);
966  BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
967  void MarkPreOrder(BasicBlock* bb);
968  void RecordDFSOrders(BasicBlock* bb);
969  void ComputeDefBlockMatrix();
970  void ComputeDomPostOrderTraversal(BasicBlock* bb);
971  void ComputeDominators();
972  void InsertPhiNodes();
973  void DoDFSPreOrderSSARename(BasicBlock* block);
974  void SetConstant(int32_t ssa_reg, int value);
975  void SetConstantWide(int ssa_reg, int64_t value);
976  int GetSSAUseCount(int s_reg);
977  bool BasicBlockOpt(BasicBlock* bb);
978  bool BuildExtendedBBList(struct BasicBlock* bb);
979  bool FillDefBlockMatrix(BasicBlock* bb);
980  void InitializeDominationInfo(BasicBlock* bb);
981  bool ComputeblockIDom(BasicBlock* bb);
982  bool ComputeBlockDominators(BasicBlock* bb);
983  bool SetDominators(BasicBlock* bb);
984  bool ComputeBlockLiveIns(BasicBlock* bb);
985  bool ComputeDominanceFrontier(BasicBlock* bb);
986
987  void CountChecks(BasicBlock* bb);
988  void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats);
989  bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default);
990
991  CompilationUnit* const cu_;
992  GrowableArray<int>* ssa_base_vregs_;
993  GrowableArray<int>* ssa_subscripts_;
994  // Map original Dalvik virtual reg i to the current SSA name.
995  int* vreg_to_ssa_map_;            // length == method->registers_size
996  int* ssa_last_defs_;              // length == method->registers_size
997  ArenaBitVector* is_constant_v_;   // length == num_ssa_reg
998  int* constant_values_;            // length == num_ssa_reg
999  // Use counts of ssa names.
1000  GrowableArray<uint32_t> use_counts_;      // Weighted by nesting depth
1001  GrowableArray<uint32_t> raw_use_counts_;  // Not weighted
1002  unsigned int num_reachable_blocks_;
1003  GrowableArray<BasicBlockId>* dfs_order_;
1004  GrowableArray<BasicBlockId>* dfs_post_order_;
1005  GrowableArray<BasicBlockId>* dom_post_order_traversal_;
1006  int* i_dom_list_;
1007  ArenaBitVector** def_block_matrix_;    // num_dalvik_register x num_blocks.
1008  ArenaBitVector* temp_dalvik_register_v_;
1009  std::unique_ptr<ScopedArenaAllocator> temp_scoped_alloc_;
1010  uint16_t* temp_insn_data_;
1011  uint32_t temp_bit_vector_size_;
1012  ArenaBitVector* temp_bit_vector_;
1013  static const int kInvalidEntry = -1;
1014  GrowableArray<BasicBlock*> block_list_;
1015  ArenaBitVector* try_block_addr_;
1016  BasicBlock* entry_block_;
1017  BasicBlock* exit_block_;
1018  int num_blocks_;
1019  const DexFile::CodeItem* current_code_item_;
1020  GrowableArray<uint16_t> dex_pc_to_block_map_;  // FindBlock lookup cache.
1021  std::vector<DexCompilationUnit*> m_units_;     // List of methods included in this graph
1022  typedef std::pair<int, int> MIRLocation;       // Insert point, (m_unit_ index, offset)
1023  std::vector<MIRLocation> method_stack_;        // Include stack
1024  int current_method_;
1025  DexOffset current_offset_;                     // Offset in code units
1026  int def_count_;                                // Used to estimate size of ssa name storage.
1027  int* opcode_count_;                            // Dex opcode coverage stats.
1028  int num_ssa_regs_;                             // Number of names following SSA transformation.
1029  std::vector<BasicBlockId> extended_basic_blocks_;  // Heads of block "traces".
1030  int method_sreg_;
1031  unsigned int attributes_;
1032  Checkstats* checkstats_;
1033  ArenaAllocator* arena_;
1034  int backward_branches_;
1035  int forward_branches_;
1036  GrowableArray<CompilerTemp*> compiler_temps_;
1037  size_t num_non_special_compiler_temps_;
1038  size_t max_available_non_special_compiler_temps_;
1039  size_t max_available_special_compiler_temps_;
1040  bool punt_to_interpreter_;                    // Difficult or not worthwhile - just interpret.
1041  uint64_t merged_df_flags_;
1042  GrowableArray<MirIFieldLoweringInfo> ifield_lowering_infos_;
1043  GrowableArray<MirSFieldLoweringInfo> sfield_lowering_infos_;
1044  GrowableArray<MirMethodLoweringInfo> method_lowering_infos_;
1045  static const uint64_t oat_data_flow_attributes_[kMirOpLast];
1046
1047  friend class ClassInitCheckEliminationTest;
1048  friend class LocalValueNumberingTest;
1049};
1050
1051}  // namespace art
1052
1053#endif  // ART_COMPILER_DEX_MIR_GRAPH_H_
1054