mir_graph.h revision 4896d7b6fb75add25f2d6ba84346ac83d8ba9d51
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
18#define ART_COMPILER_DEX_MIR_GRAPH_H_
19
20#include <stdint.h>
21
22#include "dex_file.h"
23#include "dex_instruction.h"
24#include "compiler_ir.h"
25#include "invoke_type.h"
26#include "mir_field_info.h"
27#include "mir_method_info.h"
28#include "utils/arena_bit_vector.h"
29#include "utils/growable_array.h"
30#include "reg_storage.h"
31
32namespace art {
33
34enum InstructionAnalysisAttributePos {
35  kUninterestingOp = 0,
36  kArithmeticOp,
37  kFPOp,
38  kSingleOp,
39  kDoubleOp,
40  kIntOp,
41  kLongOp,
42  kBranchOp,
43  kInvokeOp,
44  kArrayOp,
45  kHeavyweightOp,
46  kSimpleConstOp,
47  kMoveOp,
48  kSwitch
49};
50
51#define AN_NONE (1 << kUninterestingOp)
52#define AN_MATH (1 << kArithmeticOp)
53#define AN_FP (1 << kFPOp)
54#define AN_LONG (1 << kLongOp)
55#define AN_INT (1 << kIntOp)
56#define AN_SINGLE (1 << kSingleOp)
57#define AN_DOUBLE (1 << kDoubleOp)
58#define AN_FLOATMATH (1 << kFPOp)
59#define AN_BRANCH (1 << kBranchOp)
60#define AN_INVOKE (1 << kInvokeOp)
61#define AN_ARRAYOP (1 << kArrayOp)
62#define AN_HEAVYWEIGHT (1 << kHeavyweightOp)
63#define AN_SIMPLECONST (1 << kSimpleConstOp)
64#define AN_MOVE (1 << kMoveOp)
65#define AN_SWITCH (1 << kSwitch)
66#define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST)
67
68enum DataFlowAttributePos {
69  kUA = 0,
70  kUB,
71  kUC,
72  kAWide,
73  kBWide,
74  kCWide,
75  kDA,
76  kIsMove,
77  kSetsConst,
78  kFormat35c,
79  kFormat3rc,
80  kNullCheckSrc0,        // Null check of uses[0].
81  kNullCheckSrc1,        // Null check of uses[1].
82  kNullCheckSrc2,        // Null check of uses[2].
83  kNullCheckOut0,        // Null check out outgoing arg0.
84  kDstNonNull,           // May assume dst is non-null.
85  kRetNonNull,           // May assume retval is non-null.
86  kNullTransferSrc0,     // Object copy src[0] -> dst.
87  kNullTransferSrcN,     // Phi null check state transfer.
88  kRangeCheckSrc1,       // Range check of uses[1].
89  kRangeCheckSrc2,       // Range check of uses[2].
90  kRangeCheckSrc3,       // Range check of uses[3].
91  kFPA,
92  kFPB,
93  kFPC,
94  kCoreA,
95  kCoreB,
96  kCoreC,
97  kRefA,
98  kRefB,
99  kRefC,
100  kUsesMethodStar,       // Implicit use of Method*.
101  kUsesIField,           // Accesses an instance field (IGET/IPUT).
102  kUsesSField,           // Accesses a static field (SGET/SPUT).
103  kDoLVN,                // Worth computing local value numbers.
104};
105
106#define DF_NOP                  UINT64_C(0)
107#define DF_UA                   (UINT64_C(1) << kUA)
108#define DF_UB                   (UINT64_C(1) << kUB)
109#define DF_UC                   (UINT64_C(1) << kUC)
110#define DF_A_WIDE               (UINT64_C(1) << kAWide)
111#define DF_B_WIDE               (UINT64_C(1) << kBWide)
112#define DF_C_WIDE               (UINT64_C(1) << kCWide)
113#define DF_DA                   (UINT64_C(1) << kDA)
114#define DF_IS_MOVE              (UINT64_C(1) << kIsMove)
115#define DF_SETS_CONST           (UINT64_C(1) << kSetsConst)
116#define DF_FORMAT_35C           (UINT64_C(1) << kFormat35c)
117#define DF_FORMAT_3RC           (UINT64_C(1) << kFormat3rc)
118#define DF_NULL_CHK_0           (UINT64_C(1) << kNullCheckSrc0)
119#define DF_NULL_CHK_1           (UINT64_C(1) << kNullCheckSrc1)
120#define DF_NULL_CHK_2           (UINT64_C(1) << kNullCheckSrc2)
121#define DF_NULL_CHK_OUT0        (UINT64_C(1) << kNullCheckOut0)
122#define DF_NON_NULL_DST         (UINT64_C(1) << kDstNonNull)
123#define DF_NON_NULL_RET         (UINT64_C(1) << kRetNonNull)
124#define DF_NULL_TRANSFER_0      (UINT64_C(1) << kNullTransferSrc0)
125#define DF_NULL_TRANSFER_N      (UINT64_C(1) << kNullTransferSrcN)
126#define DF_RANGE_CHK_1          (UINT64_C(1) << kRangeCheckSrc1)
127#define DF_RANGE_CHK_2          (UINT64_C(1) << kRangeCheckSrc2)
128#define DF_RANGE_CHK_3          (UINT64_C(1) << kRangeCheckSrc3)
129#define DF_FP_A                 (UINT64_C(1) << kFPA)
130#define DF_FP_B                 (UINT64_C(1) << kFPB)
131#define DF_FP_C                 (UINT64_C(1) << kFPC)
132#define DF_CORE_A               (UINT64_C(1) << kCoreA)
133#define DF_CORE_B               (UINT64_C(1) << kCoreB)
134#define DF_CORE_C               (UINT64_C(1) << kCoreC)
135#define DF_REF_A                (UINT64_C(1) << kRefA)
136#define DF_REF_B                (UINT64_C(1) << kRefB)
137#define DF_REF_C                (UINT64_C(1) << kRefC)
138#define DF_UMS                  (UINT64_C(1) << kUsesMethodStar)
139#define DF_IFIELD               (UINT64_C(1) << kUsesIField)
140#define DF_SFIELD               (UINT64_C(1) << kUsesSField)
141#define DF_LVN                  (UINT64_C(1) << kDoLVN)
142
143#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)
144
145#define DF_HAS_DEFS             (DF_DA)
146
147#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_0 | \
148                                 DF_NULL_CHK_1 | \
149                                 DF_NULL_CHK_2 | \
150                                 DF_NULL_CHK_OUT0)
151
152#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_1 | \
153                                 DF_RANGE_CHK_2 | \
154                                 DF_RANGE_CHK_3)
155
156#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
157                                 DF_HAS_RANGE_CHKS)
158
159#define DF_A_IS_REG             (DF_UA | DF_DA)
160#define DF_B_IS_REG             (DF_UB)
161#define DF_C_IS_REG             (DF_UC)
162#define DF_IS_GETTER_OR_SETTER  (DF_IS_GETTER | DF_IS_SETTER)
163#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
164#define DF_NULL_TRANSFER        (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)
165enum OatMethodAttributes {
166  kIsLeaf,            // Method is leaf.
167  kHasLoop,           // Method contains simple loop.
168};
169
170#define METHOD_IS_LEAF          (1 << kIsLeaf)
171#define METHOD_HAS_LOOP         (1 << kHasLoop)
172
173// Minimum field size to contain Dalvik v_reg number.
174#define VREG_NUM_WIDTH 16
175
176#define INVALID_SREG (-1)
177#define INVALID_VREG (0xFFFFU)
178#define INVALID_OFFSET (0xDEADF00FU)
179
180#define MIR_IGNORE_NULL_CHECK           (1 << kMIRIgnoreNullCheck)
181#define MIR_NULL_CHECK_ONLY             (1 << kMIRNullCheckOnly)
182#define MIR_IGNORE_RANGE_CHECK          (1 << kMIRIgnoreRangeCheck)
183#define MIR_RANGE_CHECK_ONLY            (1 << kMIRRangeCheckOnly)
184#define MIR_IGNORE_CLINIT_CHECK         (1 << kMIRIgnoreClInitCheck)
185#define MIR_INLINED                     (1 << kMIRInlined)
186#define MIR_INLINED_PRED                (1 << kMIRInlinedPred)
187#define MIR_CALLEE                      (1 << kMIRCallee)
188#define MIR_IGNORE_SUSPEND_CHECK        (1 << kMIRIgnoreSuspendCheck)
189#define MIR_DUP                         (1 << kMIRDup)
190
191#define BLOCK_NAME_LEN 80
192
193typedef uint16_t BasicBlockId;
194static const BasicBlockId NullBasicBlockId = 0;
195
196/*
197 * In general, vreg/sreg describe Dalvik registers that originated with dx.  However,
198 * it is useful to have compiler-generated temporary registers and have them treated
199 * in the same manner as dx-generated virtual registers.  This struct records the SSA
200 * name of compiler-introduced temporaries.
201 */
202struct CompilerTemp {
203  int32_t v_reg;      // Virtual register number for temporary.
204  int32_t s_reg_low;  // SSA name for low Dalvik word.
205};
206
207enum CompilerTempType {
208  kCompilerTempVR,                // A virtual register temporary.
209  kCompilerTempSpecialMethodPtr,  // Temporary that keeps track of current method pointer.
210};
211
212// When debug option enabled, records effectiveness of null and range check elimination.
213struct Checkstats {
214  int32_t null_checks;
215  int32_t null_checks_eliminated;
216  int32_t range_checks;
217  int32_t range_checks_eliminated;
218};
219
220// Dataflow attributes of a basic block.
221struct BasicBlockDataFlow {
222  ArenaBitVector* use_v;
223  ArenaBitVector* def_v;
224  ArenaBitVector* live_in_v;
225  ArenaBitVector* phi_v;
226  int32_t* vreg_to_ssa_map_exit;
227  ArenaBitVector* ending_check_v;  // For null check and class init check elimination.
228};
229
230/*
231 * Normalized use/def for a MIR operation using SSA names rather than vregs.  Note that
232 * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
233 * vregs.  For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
234 * Following SSA renaming, this is the primary struct used by code generators to locate
235 * operand and result registers.  This is a somewhat confusing and unhelpful convention that
236 * we may want to revisit in the future.
237 *
238 * TODO:
239 *  1. Add accessors for uses/defs and make data private
240 *  2. Change fp_use/fp_def to a bit array (could help memory usage)
241 *  3. Combine array storage into internal array and handled via accessors from 1.
242 */
243struct SSARepresentation {
244  int32_t* uses;
245  bool* fp_use;
246  int32_t* defs;
247  bool* fp_def;
248  int16_t num_uses_allocated;
249  int16_t num_defs_allocated;
250  int16_t num_uses;
251  int16_t num_defs;
252
253  static uint32_t GetStartUseIndex(Instruction::Code opcode);
254};
255
256/*
257 * The Midlevel Intermediate Representation node, which may be largely considered a
258 * wrapper around a Dalvik byte code.
259 */
260struct MIR {
261  /*
262   * TODO: remove embedded DecodedInstruction to save space, keeping only opcode.  Recover
263   * additional fields on as-needed basis.  Question: how to support MIR Pseudo-ops; probably
264   * need to carry aux data pointer.
265   */
266  struct DecodedInstruction {
267    uint32_t vA;
268    uint32_t vB;
269    uint64_t vB_wide;        /* for k51l */
270    uint32_t vC;
271    uint32_t arg[5];         /* vC/D/E/F/G in invoke or filled-new-array */
272    Instruction::Code opcode;
273
274    explicit DecodedInstruction():vA(0), vB(0), vB_wide(0), vC(0), opcode(Instruction::NOP) {
275    }
276
277    /*
278     * Given a decoded instruction representing a const bytecode, it updates
279     * the out arguments with proper values as dictated by the constant bytecode.
280     */
281    bool GetConstant(int64_t* ptr_value, bool* wide) const;
282
283    bool IsStore() const {
284      return ((Instruction::FlagsOf(opcode) & Instruction::kStore) == Instruction::kStore);
285    }
286
287    bool IsLoad() const {
288      return ((Instruction::FlagsOf(opcode) & Instruction::kLoad) == Instruction::kLoad);
289    }
290
291    bool IsConditionalBranch() const {
292      return (Instruction::FlagsOf(opcode) == (Instruction::kContinue | Instruction::kBranch));
293    }
294
295    /**
296     * @brief Is the register C component of the decoded instruction a constant?
297     */
298    bool IsCFieldOrConstant() const {
299      return ((Instruction::FlagsOf(opcode) & Instruction::kRegCFieldOrConstant) == Instruction::kRegCFieldOrConstant);
300    }
301
302    /**
303     * @brief Is the register C component of the decoded instruction a constant?
304     */
305    bool IsBFieldOrConstant() const {
306      return ((Instruction::FlagsOf(opcode) & Instruction::kRegBFieldOrConstant) == Instruction::kRegBFieldOrConstant);
307    }
308
309    bool IsCast() const {
310      return ((Instruction::FlagsOf(opcode) & Instruction::kCast) == Instruction::kCast);
311    }
312
313    /**
314     * @brief Does the instruction clobber memory?
315     * @details Clobber means that the instruction changes the memory not in a punctual way.
316     *          Therefore any supposition on memory aliasing or memory contents should be disregarded
317     *            when crossing such an instruction.
318     */
319    bool Clobbers() const {
320      return ((Instruction::FlagsOf(opcode) & Instruction::kClobber) == Instruction::kClobber);
321    }
322
323    bool IsLinear() const {
324      return (Instruction::FlagsOf(opcode) & (Instruction::kAdd | Instruction::kSubtract)) != 0;
325    }
326  } dalvikInsn;
327
328  NarrowDexOffset offset;         // Offset of the instruction in code units.
329  uint16_t optimization_flags;
330  int16_t m_unit_index;           // From which method was this MIR included
331  BasicBlockId bb;
332  MIR* next;
333  SSARepresentation* ssa_rep;
334  union {
335    // Incoming edges for phi node.
336    BasicBlockId* phi_incoming;
337    // Establish link from check instruction (kMirOpCheck) to the actual throwing instruction.
338    MIR* throw_insn;
339    // Branch condition for fused cmp or select.
340    ConditionCode ccode;
341    // IGET/IPUT lowering info index, points to MIRGraph::ifield_lowering_infos_. Due to limit on
342    // the number of code points (64K) and size of IGET/IPUT insn (2), this will never exceed 32K.
343    uint32_t ifield_lowering_info;
344    // SGET/SPUT lowering info index, points to MIRGraph::sfield_lowering_infos_. Due to limit on
345    // the number of code points (64K) and size of SGET/SPUT insn (2), this will never exceed 32K.
346    uint32_t sfield_lowering_info;
347    // INVOKE data index, points to MIRGraph::method_lowering_infos_.
348    uint32_t method_lowering_info;
349  } meta;
350
351  explicit MIR():offset(0), optimization_flags(0), m_unit_index(0), bb(NullBasicBlockId),
352                 next(nullptr), ssa_rep(nullptr) {
353    memset(&meta, 0, sizeof(meta));
354  }
355
356  uint32_t GetStartUseIndex() const {
357    return SSARepresentation::GetStartUseIndex(dalvikInsn.opcode);
358  }
359
360  MIR* Copy(CompilationUnit *c_unit);
361  MIR* Copy(MIRGraph* mir_Graph);
362
363  static void* operator new(size_t size, ArenaAllocator* arena) {
364    return arena->Alloc(sizeof(MIR), kArenaAllocMIR);
365  }
366  static void operator delete(void* p) {}  // Nop.
367};
368
369struct SuccessorBlockInfo;
370
371struct BasicBlock {
372  BasicBlockId id;
373  BasicBlockId dfs_id;
374  NarrowDexOffset start_offset;     // Offset in code units.
375  BasicBlockId fall_through;
376  BasicBlockId taken;
377  BasicBlockId i_dom;               // Immediate dominator.
378  uint16_t nesting_depth;
379  BBType block_type:4;
380  BlockListType successor_block_list_type:4;
381  bool visited:1;
382  bool hidden:1;
383  bool catch_entry:1;
384  bool explicit_throw:1;
385  bool conditional_branch:1;
386  bool terminated_by_return:1;  // Block ends with a Dalvik return opcode.
387  bool dominates_return:1;      // Is a member of return extended basic block.
388  bool use_lvn:1;               // Run local value numbering on this block.
389  MIR* first_mir_insn;
390  MIR* last_mir_insn;
391  BasicBlockDataFlow* data_flow_info;
392  ArenaBitVector* dominators;
393  ArenaBitVector* i_dominated;      // Set nodes being immediately dominated.
394  ArenaBitVector* dom_frontier;     // Dominance frontier.
395  GrowableArray<BasicBlockId>* predecessors;
396  GrowableArray<SuccessorBlockInfo*>* successor_blocks;
397
398  void AppendMIR(MIR* mir);
399  void AppendMIRList(MIR* first_list_mir, MIR* last_list_mir);
400  void AppendMIRList(const std::vector<MIR*>& insns);
401  void PrependMIR(MIR* mir);
402  void PrependMIRList(MIR* first_list_mir, MIR* last_list_mir);
403  void PrependMIRList(const std::vector<MIR*>& to_add);
404  void InsertMIRAfter(MIR* current_mir, MIR* new_mir);
405  void InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir);
406  MIR* FindPreviousMIR(MIR* mir);
407  void InsertMIRBefore(MIR* insert_before, MIR* list);
408  void InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir);
409  bool RemoveMIR(MIR* mir);
410  bool RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir);
411
412  BasicBlock* Copy(CompilationUnit* c_unit);
413  BasicBlock* Copy(MIRGraph* mir_graph);
414
415  /**
416   * @brief Reset the optimization_flags field of each MIR.
417   */
418  void ResetOptimizationFlags(uint16_t reset_flags);
419
420  /**
421   * @brief Hide the BasicBlock.
422   * @details Set it to kDalvikByteCode, set hidden to true, remove all MIRs,
423   *          remove itself from any predecessor edges, remove itself from any
424   *          child's predecessor growable array.
425   */
426  void Hide(CompilationUnit* c_unit);
427
428  /**
429   * @brief Is ssa_reg the last SSA definition of that VR in the block?
430   */
431  bool IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg);
432
433  /**
434   * @brief Replace the edge going to old_bb to now go towards new_bb.
435   */
436  bool ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb);
437
438  /**
439   * @brief Update the predecessor growable array from old_pred to new_pred.
440   */
441  void UpdatePredecessor(BasicBlockId old_pred, BasicBlockId new_pred);
442
443  /**
444   * @brief Used to obtain the next MIR that follows unconditionally.
445   * @details The implementation does not guarantee that a MIR does not
446   * follow even if this method returns nullptr.
447   * @param mir_graph the MIRGraph.
448   * @param current The MIR for which to find an unconditional follower.
449   * @return Returns the following MIR if one can be found.
450   */
451  MIR* GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current);
452  bool IsExceptionBlock() const;
453
454  static void* operator new(size_t size, ArenaAllocator* arena) {
455    return arena->Alloc(sizeof(BasicBlock), kArenaAllocBB);
456  }
457  static void operator delete(void* p) {}  // Nop.
458};
459
460/*
461 * The "blocks" field in "successor_block_list" points to an array of elements with the type
462 * "SuccessorBlockInfo".  For catch blocks, key is type index for the exception.  For switch
463 * blocks, key is the case value.
464 */
465struct SuccessorBlockInfo {
466  BasicBlockId block;
467  int key;
468};
469
470/**
471 * @class ChildBlockIterator
472 * @brief Enable an easy iteration of the children.
473 */
474class ChildBlockIterator {
475 public:
476  /**
477   * @brief Constructs a child iterator.
478   * @param bb The basic whose children we need to iterate through.
479   * @param mir_graph The MIRGraph used to get the basic block during iteration.
480   */
481  ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph);
482  BasicBlock* Next();
483
484 private:
485  BasicBlock* basic_block_;
486  MIRGraph* mir_graph_;
487  bool visited_fallthrough_;
488  bool visited_taken_;
489  bool have_successors_;
490  GrowableArray<SuccessorBlockInfo*>::Iterator successor_iter_;
491};
492
493/*
494 * Whereas a SSA name describes a definition of a Dalvik vreg, the RegLocation describes
495 * the type of an SSA name (and, can also be used by code generators to record where the
496 * value is located (i.e. - physical register, frame, spill, etc.).  For each SSA name (SReg)
497 * there is a RegLocation.
498 * A note on SSA names:
499 *   o SSA names for Dalvik vRegs v0..vN will be assigned 0..N.  These represent the "vN_0"
500 *     names.  Negative SSA names represent special values not present in the Dalvik byte code.
501 *     For example, SSA name -1 represents an invalid SSA name, and SSA name -2 represents the
502 *     the Method pointer.  SSA names < -2 are reserved for future use.
503 *   o The vN_0 names for non-argument Dalvik should in practice never be used (as they would
504 *     represent the read of an undefined local variable).  The first definition of the
505 *     underlying Dalvik vReg will result in a vN_1 name.
506 *
507 * FIXME: The orig_sreg field was added as a workaround for llvm bitcode generation.  With
508 * the latest restructuring, we should be able to remove it and rely on s_reg_low throughout.
509 */
510struct RegLocation {
511  RegLocationType location:3;
512  unsigned wide:1;
513  unsigned defined:1;   // Do we know the type?
514  unsigned is_const:1;  // Constant, value in mir_graph->constant_values[].
515  unsigned fp:1;        // Floating point?
516  unsigned core:1;      // Non-floating point?
517  unsigned ref:1;       // Something GC cares about.
518  unsigned high_word:1;  // High word of pair?
519  unsigned home:1;      // Does this represent the home location?
520  RegStorage reg;       // Encoded physical registers.
521  int16_t s_reg_low;    // SSA name for low Dalvik word.
522  int16_t orig_sreg;    // TODO: remove after Bitcode gen complete
523                        // and consolidate usage w/ s_reg_low.
524};
525
526/*
527 * Collection of information describing an invoke, and the destination of
528 * the subsequent MOVE_RESULT (if applicable).  Collected as a unit to enable
529 * more efficient invoke code generation.
530 */
531struct CallInfo {
532  int num_arg_words;    // Note: word count, not arg count.
533  RegLocation* args;    // One for each word of arguments.
534  RegLocation result;   // Eventual target of MOVE_RESULT.
535  int opt_flags;
536  InvokeType type;
537  uint32_t dex_idx;
538  uint32_t index;       // Method idx for invokes, type idx for FilledNewArray.
539  uintptr_t direct_code;
540  uintptr_t direct_method;
541  RegLocation target;    // Target of following move_result.
542  bool skip_this;
543  bool is_range;
544  DexOffset offset;      // Offset in code units.
545  MIR* mir;
546};
547
548
549const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, RegStorage(), INVALID_SREG,
550                             INVALID_SREG};
551
552class MIRGraph {
553 public:
554  MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
555  ~MIRGraph();
556
557  /*
558   * Examine the graph to determine whether it's worthwile to spend the time compiling
559   * this method.
560   */
561  bool SkipCompilation();
562
563  /*
564   * Should we skip the compilation of this method based on its name?
565   */
566  bool SkipCompilation(const std::string& methodname);
567
568  /*
569   * Parse dex method and add MIR at current insert point.  Returns id (which is
570   * actually the index of the method in the m_units_ array).
571   */
572  void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
573                    InvokeType invoke_type, uint16_t class_def_idx,
574                    uint32_t method_idx, jobject class_loader, const DexFile& dex_file);
575
576  /* Find existing block */
577  BasicBlock* FindBlock(DexOffset code_offset) {
578    return FindBlock(code_offset, false, false, NULL);
579  }
580
581  const uint16_t* GetCurrentInsns() const {
582    return current_code_item_->insns_;
583  }
584
585  const uint16_t* GetInsns(int m_unit_index) const {
586    return m_units_[m_unit_index]->GetCodeItem()->insns_;
587  }
588
589  int GetNumBlocks() const {
590    return num_blocks_;
591  }
592
593  size_t GetNumDalvikInsns() const {
594    return cu_->code_item->insns_size_in_code_units_;
595  }
596
597  ArenaBitVector* GetTryBlockAddr() const {
598    return try_block_addr_;
599  }
600
601  BasicBlock* GetEntryBlock() const {
602    return entry_block_;
603  }
604
605  BasicBlock* GetExitBlock() const {
606    return exit_block_;
607  }
608
609  BasicBlock* GetBasicBlock(int block_id) const {
610    return (block_id == NullBasicBlockId) ? NULL : block_list_.Get(block_id);
611  }
612
613  size_t GetBasicBlockListCount() const {
614    return block_list_.Size();
615  }
616
617  GrowableArray<BasicBlock*>* GetBlockList() {
618    return &block_list_;
619  }
620
621  GrowableArray<BasicBlockId>* GetDfsOrder() {
622    return dfs_order_;
623  }
624
625  GrowableArray<BasicBlockId>* GetDfsPostOrder() {
626    return dfs_post_order_;
627  }
628
629  GrowableArray<BasicBlockId>* GetDomPostOrder() {
630    return dom_post_order_traversal_;
631  }
632
633  int GetDefCount() const {
634    return def_count_;
635  }
636
637  ArenaAllocator* GetArena() {
638    return arena_;
639  }
640
641  void EnableOpcodeCounting() {
642    opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int),
643                                                    kArenaAllocMisc));
644  }
645
646  void ShowOpcodeStats();
647
648  DexCompilationUnit* GetCurrentDexCompilationUnit() const {
649    return m_units_[current_method_];
650  }
651
652  /**
653   * @brief Dump a CFG into a dot file format.
654   * @param dir_prefix the directory the file will be created in.
655   * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks.
656   * @param suffix does the filename require a suffix or not (default = nullptr).
657   */
658  void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr);
659
660  bool HasFieldAccess() const {
661    return (merged_df_flags_ & (DF_IFIELD | DF_SFIELD)) != 0u;
662  }
663
664  bool HasStaticFieldAccess() const {
665    return (merged_df_flags_ & DF_SFIELD) != 0u;
666  }
667
668  bool HasInvokes() const {
669    // NOTE: These formats include the rare filled-new-array/range.
670    return (merged_df_flags_ & (DF_FORMAT_35C | DF_FORMAT_3RC)) != 0u;
671  }
672
673  void DoCacheFieldLoweringInfo();
674
675  const MirIFieldLoweringInfo& GetIFieldLoweringInfo(MIR* mir) const {
676    DCHECK_LT(mir->meta.ifield_lowering_info, ifield_lowering_infos_.Size());
677    return ifield_lowering_infos_.GetRawStorage()[mir->meta.ifield_lowering_info];
678  }
679
680  const MirSFieldLoweringInfo& GetSFieldLoweringInfo(MIR* mir) const {
681    DCHECK_LT(mir->meta.sfield_lowering_info, sfield_lowering_infos_.Size());
682    return sfield_lowering_infos_.GetRawStorage()[mir->meta.sfield_lowering_info];
683  }
684
685  void DoCacheMethodLoweringInfo();
686
687  const MirMethodLoweringInfo& GetMethodLoweringInfo(MIR* mir) {
688    DCHECK_LT(mir->meta.method_lowering_info, method_lowering_infos_.Size());
689    return method_lowering_infos_.GetRawStorage()[mir->meta.method_lowering_info];
690  }
691
692  void ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput);
693
694  void InitRegLocations();
695
696  void RemapRegLocations();
697
698  void DumpRegLocTable(RegLocation* table, int count);
699
700  void BasicBlockOptimization();
701
702  GrowableArray<BasicBlockId>* GetTopologicalSortOrder() {
703    return topological_order_;
704  }
705
706  bool IsConst(int32_t s_reg) const {
707    return is_constant_v_->IsBitSet(s_reg);
708  }
709
710  bool IsConst(RegLocation loc) const {
711    return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg);
712  }
713
714  int32_t ConstantValue(RegLocation loc) const {
715    DCHECK(IsConst(loc));
716    return constant_values_[loc.orig_sreg];
717  }
718
719  int32_t ConstantValue(int32_t s_reg) const {
720    DCHECK(IsConst(s_reg));
721    return constant_values_[s_reg];
722  }
723
724  int64_t ConstantValueWide(RegLocation loc) const {
725    DCHECK(IsConst(loc));
726    return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
727        Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
728  }
729
730  bool IsConstantNullRef(RegLocation loc) const {
731    return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
732  }
733
734  int GetNumSSARegs() const {
735    return num_ssa_regs_;
736  }
737
738  void SetNumSSARegs(int new_num) {
739     /*
740      * TODO: It's theoretically possible to exceed 32767, though any cases which did
741      * would be filtered out with current settings.  When orig_sreg field is removed
742      * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK().
743      */
744    DCHECK_EQ(new_num, static_cast<int16_t>(new_num));
745    num_ssa_regs_ = new_num;
746  }
747
748  unsigned int GetNumReachableBlocks() const {
749    return num_reachable_blocks_;
750  }
751
752  int GetUseCount(int vreg) const {
753    return use_counts_.Get(vreg);
754  }
755
756  int GetRawUseCount(int vreg) const {
757    return raw_use_counts_.Get(vreg);
758  }
759
760  int GetSSASubscript(int ssa_reg) const {
761    return ssa_subscripts_->Get(ssa_reg);
762  }
763
764  RegLocation GetRawSrc(MIR* mir, int num) {
765    DCHECK(num < mir->ssa_rep->num_uses);
766    RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
767    return res;
768  }
769
770  RegLocation GetRawDest(MIR* mir) {
771    DCHECK_GT(mir->ssa_rep->num_defs, 0);
772    RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
773    return res;
774  }
775
776  RegLocation GetDest(MIR* mir) {
777    RegLocation res = GetRawDest(mir);
778    DCHECK(!res.wide);
779    return res;
780  }
781
782  RegLocation GetSrc(MIR* mir, int num) {
783    RegLocation res = GetRawSrc(mir, num);
784    DCHECK(!res.wide);
785    return res;
786  }
787
788  RegLocation GetDestWide(MIR* mir) {
789    RegLocation res = GetRawDest(mir);
790    DCHECK(res.wide);
791    return res;
792  }
793
794  RegLocation GetSrcWide(MIR* mir, int low) {
795    RegLocation res = GetRawSrc(mir, low);
796    DCHECK(res.wide);
797    return res;
798  }
799
800  RegLocation GetBadLoc() {
801    return bad_loc;
802  }
803
804  int GetMethodSReg() const {
805    return method_sreg_;
806  }
807
808  /**
809   * @brief Used to obtain the number of compiler temporaries being used.
810   * @return Returns the number of compiler temporaries.
811   */
812  size_t GetNumUsedCompilerTemps() const {
813    size_t total_num_temps = compiler_temps_.Size();
814    DCHECK_LE(num_non_special_compiler_temps_, total_num_temps);
815    return total_num_temps;
816  }
817
818  /**
819   * @brief Used to obtain the number of non-special compiler temporaries being used.
820   * @return Returns the number of non-special compiler temporaries.
821   */
822  size_t GetNumNonSpecialCompilerTemps() const {
823    return num_non_special_compiler_temps_;
824  }
825
826  /**
827   * @brief Used to set the total number of available non-special compiler temporaries.
828   * @details Can fail setting the new max if there are more temps being used than the new_max.
829   * @param new_max The new maximum number of non-special compiler temporaries.
830   * @return Returns true if the max was set and false if failed to set.
831   */
832  bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) {
833    if (new_max < GetNumNonSpecialCompilerTemps()) {
834      return false;
835    } else {
836      max_available_non_special_compiler_temps_ = new_max;
837      return true;
838    }
839  }
840
841  /**
842   * @brief Provides the number of non-special compiler temps available.
843   * @details Even if this returns zero, special compiler temps are guaranteed to be available.
844   * @return Returns the number of available temps.
845   */
846  size_t GetNumAvailableNonSpecialCompilerTemps();
847
848  /**
849   * @brief Used to obtain an existing compiler temporary.
850   * @param index The index of the temporary which must be strictly less than the
851   * number of temporaries.
852   * @return Returns the temporary that was asked for.
853   */
854  CompilerTemp* GetCompilerTemp(size_t index) const {
855    return compiler_temps_.Get(index);
856  }
857
858  /**
859   * @brief Used to obtain the maximum number of compiler temporaries that can be requested.
860   * @return Returns the maximum number of compiler temporaries, whether used or not.
861   */
862  size_t GetMaxPossibleCompilerTemps() const {
863    return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_;
864  }
865
866  /**
867   * @brief Used to obtain a new unique compiler temporary.
868   * @param ct_type Type of compiler temporary requested.
869   * @param wide Whether we should allocate a wide temporary.
870   * @return Returns the newly created compiler temporary.
871   */
872  CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide);
873
874  bool MethodIsLeaf() {
875    return attributes_ & METHOD_IS_LEAF;
876  }
877
878  RegLocation GetRegLocation(int index) {
879    DCHECK((index >= 0) && (index < num_ssa_regs_));
880    return reg_location_[index];
881  }
882
883  RegLocation GetMethodLoc() {
884    return reg_location_[method_sreg_];
885  }
886
887  bool IsBackedge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
888    return ((target_bb_id != NullBasicBlockId) &&
889            (GetBasicBlock(target_bb_id)->start_offset <= branch_bb->start_offset));
890  }
891
892  bool IsBackwardsBranch(BasicBlock* branch_bb) {
893    return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through);
894  }
895
896  void CountBranch(DexOffset target_offset) {
897    if (target_offset <= current_offset_) {
898      backward_branches_++;
899    } else {
900      forward_branches_++;
901    }
902  }
903
904  int GetBranchCount() {
905    return backward_branches_ + forward_branches_;
906  }
907
908  bool IsPseudoMirOp(Instruction::Code opcode) {
909    return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst);
910  }
911
912  bool IsPseudoMirOp(int opcode) {
913    return opcode >= static_cast<int>(kMirOpFirst);
914  }
915
916  // Is this vreg in the in set?
917  bool IsInVReg(int vreg) {
918    return (vreg >= cu_->num_regs);
919  }
920
921  void DumpCheckStats();
922  MIR* FindMoveResult(BasicBlock* bb, MIR* mir);
923  int SRegToVReg(int ssa_reg) const;
924  void VerifyDataflow();
925  void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
926  void EliminateNullChecksAndInferTypesStart();
927  bool EliminateNullChecksAndInferTypes(BasicBlock *bb);
928  void EliminateNullChecksAndInferTypesEnd();
929  bool EliminateClassInitChecksGate();
930  bool EliminateClassInitChecks(BasicBlock* bb);
931  void EliminateClassInitChecksEnd();
932  /*
933   * Type inference handling helpers.  Because Dalvik's bytecode is not fully typed,
934   * we have to do some work to figure out the sreg type.  For some operations it is
935   * clear based on the opcode (i.e. ADD_FLOAT v0, v1, v2), but for others (MOVE), we
936   * may never know the "real" type.
937   *
938   * We perform the type inference operation by using an iterative  walk over
939   * the graph, propagating types "defined" by typed opcodes to uses and defs in
940   * non-typed opcodes (such as MOVE).  The Setxx(index) helpers are used to set defined
941   * types on typed opcodes (such as ADD_INT).  The Setxx(index, is_xx) form is used to
942   * propagate types through non-typed opcodes such as PHI and MOVE.  The is_xx flag
943   * tells whether our guess of the type is based on a previously typed definition.
944   * If so, the defined type takes precedence.  Note that it's possible to have the same sreg
945   * show multiple defined types because dx treats constants as untyped bit patterns.
946   * The return value of the Setxx() helpers says whether or not the Setxx() action changed
947   * the current guess, and is used to know when to terminate the iterative walk.
948   */
949  bool SetFp(int index, bool is_fp);
950  bool SetFp(int index);
951  bool SetCore(int index, bool is_core);
952  bool SetCore(int index);
953  bool SetRef(int index, bool is_ref);
954  bool SetRef(int index);
955  bool SetWide(int index, bool is_wide);
956  bool SetWide(int index);
957  bool SetHigh(int index, bool is_high);
958  bool SetHigh(int index);
959
960  char* GetDalvikDisassembly(const MIR* mir);
961  void ReplaceSpecialChars(std::string& str);
962  std::string GetSSAName(int ssa_reg);
963  std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
964  void GetBlockName(BasicBlock* bb, char* name);
965  const char* GetShortyFromTargetIdx(int);
966  void DumpMIRGraph();
967  CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
968  BasicBlock* NewMemBB(BBType block_type, int block_id);
969  MIR* NewMIR();
970  MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir);
971  BasicBlock* NextDominatedBlock(BasicBlock* bb);
972  bool LayoutBlocks(BasicBlock* bb);
973  void ComputeTopologicalSortOrder();
974  BasicBlock* CreateNewBB(BBType block_type);
975
976  bool InlineCallsGate();
977  void InlineCallsStart();
978  void InlineCalls(BasicBlock* bb);
979  void InlineCallsEnd();
980
981  /**
982   * @brief Perform the initial preparation for the Method Uses.
983   */
984  void InitializeMethodUses();
985
986  /**
987   * @brief Perform the initial preparation for the Constant Propagation.
988   */
989  void InitializeConstantPropagation();
990
991  /**
992   * @brief Perform the initial preparation for the SSA Transformation.
993   */
994  void SSATransformationStart();
995
996  /**
997   * @brief Insert a the operands for the Phi nodes.
998   * @param bb the considered BasicBlock.
999   * @return true
1000   */
1001  bool InsertPhiNodeOperands(BasicBlock* bb);
1002
1003  /**
1004   * @brief Perform the cleanup after the SSA Transformation.
1005   */
1006  void SSATransformationEnd();
1007
1008  /**
1009   * @brief Perform constant propagation on a BasicBlock.
1010   * @param bb the considered BasicBlock.
1011   */
1012  void DoConstantPropagation(BasicBlock* bb);
1013
1014  /**
1015   * @brief Count the uses in the BasicBlock
1016   * @param bb the BasicBlock
1017   */
1018  void CountUses(struct BasicBlock* bb);
1019
1020  static uint64_t GetDataFlowAttributes(Instruction::Code opcode);
1021  static uint64_t GetDataFlowAttributes(MIR* mir);
1022
1023  /**
1024   * @brief Combine BasicBlocks
1025   * @param the BasicBlock we are considering
1026   */
1027  void CombineBlocks(BasicBlock* bb);
1028
1029  void ClearAllVisitedFlags();
1030
1031  void AllocateSSAUseData(MIR *mir, int num_uses);
1032  void AllocateSSADefData(MIR *mir, int num_defs);
1033
1034  /*
1035   * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
1036   * we can verify that all catch entries have native PC entries.
1037   */
1038  std::set<uint32_t> catches_;
1039
1040  // TODO: make these private.
1041  RegLocation* reg_location_;                         // Map SSA names to location.
1042  SafeMap<unsigned int, unsigned int> block_id_map_;  // Block collapse lookup cache.
1043
1044  static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];
1045  static const uint32_t analysis_attributes_[kMirOpLast];
1046
1047  void HandleSSADef(int* defs, int dalvik_reg, int reg_index);
1048  bool InferTypeAndSize(BasicBlock* bb, MIR* mir, bool changed);
1049  void ComputeDFSOrders();
1050
1051 protected:
1052  int FindCommonParent(int block1, int block2);
1053  void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
1054                         const ArenaBitVector* src2);
1055  void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
1056                       ArenaBitVector* live_in_v, int dalvik_reg_id);
1057  void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
1058  void CompilerInitializeSSAConversion();
1059  bool DoSSAConversion(BasicBlock* bb);
1060  bool InvokeUsesMethodStar(MIR* mir);
1061  int ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction);
1062  bool ContentIsInsn(const uint16_t* code_ptr);
1063  BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block,
1064                         BasicBlock** immed_pred_block_p);
1065  BasicBlock* FindBlock(DexOffset code_offset, bool split, bool create,
1066                        BasicBlock** immed_pred_block_p);
1067  void ProcessTryCatchBlocks();
1068  BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1069                               int flags, const uint16_t* code_ptr, const uint16_t* code_end);
1070  BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1071                               int flags);
1072  BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1073                              int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
1074                              const uint16_t* code_end);
1075  int AddNewSReg(int v_reg);
1076  void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
1077  void DataFlowSSAFormat35C(MIR* mir);
1078  void DataFlowSSAFormat3RC(MIR* mir);
1079  bool FindLocalLiveIn(BasicBlock* bb);
1080  bool VerifyPredInfo(BasicBlock* bb);
1081  BasicBlock* NeedsVisit(BasicBlock* bb);
1082  BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
1083  void MarkPreOrder(BasicBlock* bb);
1084  void RecordDFSOrders(BasicBlock* bb);
1085  void ComputeDefBlockMatrix();
1086  void ComputeDomPostOrderTraversal(BasicBlock* bb);
1087  void ComputeDominators();
1088  void InsertPhiNodes();
1089  void DoDFSPreOrderSSARename(BasicBlock* block);
1090  void SetConstant(int32_t ssa_reg, int value);
1091  void SetConstantWide(int ssa_reg, int64_t value);
1092  int GetSSAUseCount(int s_reg);
1093  bool BasicBlockOpt(BasicBlock* bb);
1094  bool BuildExtendedBBList(struct BasicBlock* bb);
1095  bool FillDefBlockMatrix(BasicBlock* bb);
1096  void InitializeDominationInfo(BasicBlock* bb);
1097  bool ComputeblockIDom(BasicBlock* bb);
1098  bool ComputeBlockDominators(BasicBlock* bb);
1099  bool SetDominators(BasicBlock* bb);
1100  bool ComputeBlockLiveIns(BasicBlock* bb);
1101  bool ComputeDominanceFrontier(BasicBlock* bb);
1102
1103  void CountChecks(BasicBlock* bb);
1104  void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats);
1105  bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default);
1106
1107  CompilationUnit* const cu_;
1108  GrowableArray<int>* ssa_base_vregs_;
1109  GrowableArray<int>* ssa_subscripts_;
1110  // Map original Dalvik virtual reg i to the current SSA name.
1111  int* vreg_to_ssa_map_;            // length == method->registers_size
1112  int* ssa_last_defs_;              // length == method->registers_size
1113  ArenaBitVector* is_constant_v_;   // length == num_ssa_reg
1114  int* constant_values_;            // length == num_ssa_reg
1115  // Use counts of ssa names.
1116  GrowableArray<uint32_t> use_counts_;      // Weighted by nesting depth
1117  GrowableArray<uint32_t> raw_use_counts_;  // Not weighted
1118  unsigned int num_reachable_blocks_;
1119  unsigned int max_num_reachable_blocks_;
1120  GrowableArray<BasicBlockId>* dfs_order_;
1121  GrowableArray<BasicBlockId>* dfs_post_order_;
1122  GrowableArray<BasicBlockId>* dom_post_order_traversal_;
1123  GrowableArray<BasicBlockId>* topological_order_;
1124  int* i_dom_list_;
1125  ArenaBitVector** def_block_matrix_;    // num_dalvik_register x num_blocks.
1126  std::unique_ptr<ScopedArenaAllocator> temp_scoped_alloc_;
1127  uint16_t* temp_insn_data_;
1128  uint32_t temp_bit_vector_size_;
1129  ArenaBitVector* temp_bit_vector_;
1130  static const int kInvalidEntry = -1;
1131  GrowableArray<BasicBlock*> block_list_;
1132  ArenaBitVector* try_block_addr_;
1133  BasicBlock* entry_block_;
1134  BasicBlock* exit_block_;
1135  int num_blocks_;
1136  const DexFile::CodeItem* current_code_item_;
1137  GrowableArray<uint16_t> dex_pc_to_block_map_;  // FindBlock lookup cache.
1138  std::vector<DexCompilationUnit*> m_units_;     // List of methods included in this graph
1139  typedef std::pair<int, int> MIRLocation;       // Insert point, (m_unit_ index, offset)
1140  std::vector<MIRLocation> method_stack_;        // Include stack
1141  int current_method_;
1142  DexOffset current_offset_;                     // Offset in code units
1143  int def_count_;                                // Used to estimate size of ssa name storage.
1144  int* opcode_count_;                            // Dex opcode coverage stats.
1145  int num_ssa_regs_;                             // Number of names following SSA transformation.
1146  std::vector<BasicBlockId> extended_basic_blocks_;  // Heads of block "traces".
1147  int method_sreg_;
1148  unsigned int attributes_;
1149  Checkstats* checkstats_;
1150  ArenaAllocator* arena_;
1151  int backward_branches_;
1152  int forward_branches_;
1153  GrowableArray<CompilerTemp*> compiler_temps_;
1154  size_t num_non_special_compiler_temps_;
1155  size_t max_available_non_special_compiler_temps_;
1156  size_t max_available_special_compiler_temps_;
1157  bool punt_to_interpreter_;                    // Difficult or not worthwhile - just interpret.
1158  uint64_t merged_df_flags_;
1159  GrowableArray<MirIFieldLoweringInfo> ifield_lowering_infos_;
1160  GrowableArray<MirSFieldLoweringInfo> sfield_lowering_infos_;
1161  GrowableArray<MirMethodLoweringInfo> method_lowering_infos_;
1162  static const uint64_t oat_data_flow_attributes_[kMirOpLast];
1163
1164  friend class ClassInitCheckEliminationTest;
1165  friend class LocalValueNumberingTest;
1166};
1167
1168}  // namespace art
1169
1170#endif  // ART_COMPILER_DEX_MIR_GRAPH_H_
1171