mir_graph.h revision 4e97c539408f47145526f0062c1c06df99146a73
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
18#define ART_COMPILER_DEX_MIR_GRAPH_H_
19
20#include "dex_file.h"
21#include "dex_instruction.h"
22#include "compiler_ir.h"
23#include "arena_bit_vector.h"
24#include "growable_array.h"
25
26namespace art {
27
28enum InstructionAnalysisAttributePos {
29  kUninterestingOp = 0,
30  kArithmeticOp,
31  kFPOp,
32  kSingleOp,
33  kDoubleOp,
34  kIntOp,
35  kLongOp,
36  kBranchOp,
37  kInvokeOp,
38  kArrayOp,
39  kHeavyweightOp,
40  kSimpleConstOp,
41  kMoveOp,
42  kSwitch
43};
44
45#define AN_NONE (1 << kUninterestingOp)
46#define AN_MATH (1 << kArithmeticOp)
47#define AN_FP (1 << kFPOp)
48#define AN_LONG (1 << kLongOp)
49#define AN_INT (1 << kIntOp)
50#define AN_SINGLE (1 << kSingleOp)
51#define AN_DOUBLE (1 << kDoubleOp)
52#define AN_FLOATMATH (1 << kFPOp)
53#define AN_BRANCH (1 << kBranchOp)
54#define AN_INVOKE (1 << kInvokeOp)
55#define AN_ARRAYOP (1 << kArrayOp)
56#define AN_HEAVYWEIGHT (1 << kHeavyweightOp)
57#define AN_SIMPLECONST (1 << kSimpleConstOp)
58#define AN_MOVE (1 << kMoveOp)
59#define AN_SWITCH (1 << kSwitch)
60#define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST)
61
62enum DataFlowAttributePos {
63  kUA = 0,
64  kUB,
65  kUC,
66  kAWide,
67  kBWide,
68  kCWide,
69  kDA,
70  kIsMove,
71  kSetsConst,
72  kFormat35c,
73  kFormat3rc,
74  kNullCheckSrc0,        // Null check of uses[0].
75  kNullCheckSrc1,        // Null check of uses[1].
76  kNullCheckSrc2,        // Null check of uses[2].
77  kNullCheckOut0,        // Null check out outgoing arg0.
78  kDstNonNull,           // May assume dst is non-null.
79  kRetNonNull,           // May assume retval is non-null.
80  kNullTransferSrc0,     // Object copy src[0] -> dst.
81  kNullTransferSrcN,     // Phi null check state transfer.
82  kRangeCheckSrc1,       // Range check of uses[1].
83  kRangeCheckSrc2,       // Range check of uses[2].
84  kRangeCheckSrc3,       // Range check of uses[3].
85  kFPA,
86  kFPB,
87  kFPC,
88  kCoreA,
89  kCoreB,
90  kCoreC,
91  kRefA,
92  kRefB,
93  kRefC,
94  kUsesMethodStar,       // Implicit use of Method*.
95  kDoLVN,                // Worth computing local value numbers.
96};
97
98#define DF_NOP                  0ULL
99#define DF_UA                   (1ULL << kUA)
100#define DF_UB                   (1ULL << kUB)
101#define DF_UC                   (1ULL << kUC)
102#define DF_A_WIDE               (1ULL << kAWide)
103#define DF_B_WIDE               (1ULL << kBWide)
104#define DF_C_WIDE               (1ULL << kCWide)
105#define DF_DA                   (1ULL << kDA)
106#define DF_IS_MOVE              (1ULL << kIsMove)
107#define DF_SETS_CONST           (1ULL << kSetsConst)
108#define DF_FORMAT_35C           (1ULL << kFormat35c)
109#define DF_FORMAT_3RC           (1ULL << kFormat3rc)
110#define DF_NULL_CHK_0           (1ULL << kNullCheckSrc0)
111#define DF_NULL_CHK_1           (1ULL << kNullCheckSrc1)
112#define DF_NULL_CHK_2           (1ULL << kNullCheckSrc2)
113#define DF_NULL_CHK_OUT0        (1ULL << kNullCheckOut0)
114#define DF_NON_NULL_DST         (1ULL << kDstNonNull)
115#define DF_NON_NULL_RET         (1ULL << kRetNonNull)
116#define DF_NULL_TRANSFER_0      (1ULL << kNullTransferSrc0)
117#define DF_NULL_TRANSFER_N      (1ULL << kNullTransferSrcN)
118#define DF_RANGE_CHK_1          (1ULL << kRangeCheckSrc1)
119#define DF_RANGE_CHK_2          (1ULL << kRangeCheckSrc2)
120#define DF_RANGE_CHK_3          (1ULL << kRangeCheckSrc3)
121#define DF_FP_A                 (1ULL << kFPA)
122#define DF_FP_B                 (1ULL << kFPB)
123#define DF_FP_C                 (1ULL << kFPC)
124#define DF_CORE_A               (1ULL << kCoreA)
125#define DF_CORE_B               (1ULL << kCoreB)
126#define DF_CORE_C               (1ULL << kCoreC)
127#define DF_REF_A                (1ULL << kRefA)
128#define DF_REF_B                (1ULL << kRefB)
129#define DF_REF_C                (1ULL << kRefC)
130#define DF_UMS                  (1ULL << kUsesMethodStar)
131#define DF_LVN                  (1ULL << kDoLVN)
132
133#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)
134
135#define DF_HAS_DEFS             (DF_DA)
136
137#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_0 | \
138                                 DF_NULL_CHK_1 | \
139                                 DF_NULL_CHK_2 | \
140                                 DF_NULL_CHK_OUT0)
141
142#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_1 | \
143                                 DF_RANGE_CHK_2 | \
144                                 DF_RANGE_CHK_3)
145
146#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
147                                 DF_HAS_RANGE_CHKS)
148
149#define DF_A_IS_REG             (DF_UA | DF_DA)
150#define DF_B_IS_REG             (DF_UB)
151#define DF_C_IS_REG             (DF_UC)
152#define DF_IS_GETTER_OR_SETTER  (DF_IS_GETTER | DF_IS_SETTER)
153#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
154#define DF_NULL_TRANSFER        (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)
155enum OatMethodAttributes {
156  kIsLeaf,            // Method is leaf.
157  kHasLoop,           // Method contains simple loop.
158};
159
160#define METHOD_IS_LEAF          (1 << kIsLeaf)
161#define METHOD_HAS_LOOP         (1 << kHasLoop)
162
163// Minimum field size to contain Dalvik v_reg number.
164#define VREG_NUM_WIDTH 16
165
166#define INVALID_SREG (-1)
167#define INVALID_VREG (0xFFFFU)
168#define INVALID_REG (0xFF)
169#define INVALID_OFFSET (0xDEADF00FU)
170
171/* SSA encodings for special registers */
172#define SSA_METHOD_BASEREG (-2)
173/* First compiler temp basereg, grows smaller */
174#define SSA_CTEMP_BASEREG (SSA_METHOD_BASEREG - 1)
175
176#define MIR_IGNORE_NULL_CHECK           (1 << kMIRIgnoreNullCheck)
177#define MIR_NULL_CHECK_ONLY             (1 << kMIRNullCheckOnly)
178#define MIR_IGNORE_RANGE_CHECK          (1 << kMIRIgnoreRangeCheck)
179#define MIR_RANGE_CHECK_ONLY            (1 << kMIRRangeCheckOnly)
180#define MIR_INLINED                     (1 << kMIRInlined)
181#define MIR_INLINED_PRED                (1 << kMIRInlinedPred)
182#define MIR_CALLEE                      (1 << kMIRCallee)
183#define MIR_IGNORE_SUSPEND_CHECK        (1 << kMIRIgnoreSuspendCheck)
184#define MIR_DUP                         (1 << kMIRDup)
185
186#define BLOCK_NAME_LEN 80
187
188typedef uint16_t BasicBlockId;
189static const BasicBlockId NullBasicBlockId = 0;
190
191/*
192 * In general, vreg/sreg describe Dalvik registers that originated with dx.  However,
193 * it is useful to have compiler-generated temporary registers and have them treated
194 * in the same manner as dx-generated virtual registers.  This struct records the SSA
195 * name of compiler-introduced temporaries.
196 */
197struct CompilerTemp {
198  int32_t s_reg;
199};
200
201// When debug option enabled, records effectiveness of null and range check elimination.
202struct Checkstats {
203  int32_t null_checks;
204  int32_t null_checks_eliminated;
205  int32_t range_checks;
206  int32_t range_checks_eliminated;
207};
208
209// Dataflow attributes of a basic block.
210struct BasicBlockDataFlow {
211  ArenaBitVector* use_v;
212  ArenaBitVector* def_v;
213  ArenaBitVector* live_in_v;
214  ArenaBitVector* phi_v;
215  int32_t* vreg_to_ssa_map;
216  ArenaBitVector* ending_null_check_v;
217};
218
219/*
220 * Normalized use/def for a MIR operation using SSA names rather than vregs.  Note that
221 * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
222 * vregs.  For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
223 * Following SSA renaming, this is the primary struct used by code generators to locate
224 * operand and result registers.  This is a somewhat confusing and unhelpful convention that
225 * we may want to revisit in the future.
226 */
227struct SSARepresentation {
228  int16_t num_uses;
229  int16_t num_defs;
230  int32_t* uses;
231  bool* fp_use;
232  int32_t* defs;
233  bool* fp_def;
234};
235
236/*
237 * The Midlevel Intermediate Representation node, which may be largely considered a
238 * wrapper around a Dalvik byte code.
239 */
240struct MIR {
241  /*
242   * TODO: remove embedded DecodedInstruction to save space, keeping only opcode.  Recover
243   * additional fields on as-needed basis.  Question: how to support MIR Pseudo-ops; probably
244   * need to carry aux data pointer.
245   */
246  DecodedInstruction dalvikInsn;
247  uint16_t width;                 // Note: width can include switch table or fill array data.
248  NarrowDexOffset offset;         // Offset of the instruction in code units.
249  uint16_t optimization_flags;
250  int16_t m_unit_index;           // From which method was this MIR included
251  MIR* next;
252  SSARepresentation* ssa_rep;
253  union {
254    // Incoming edges for phi node.
255    BasicBlockId* phi_incoming;
256    // Establish link between two halves of throwing instructions.
257    MIR* throw_insn;
258  } meta;
259};
260
261struct SuccessorBlockInfo;
262
263struct BasicBlock {
264  BasicBlockId id;
265  BasicBlockId dfs_id;
266  NarrowDexOffset start_offset;     // Offset in code units.
267  BasicBlockId fall_through;
268  BasicBlockId taken;
269  BasicBlockId i_dom;               // Immediate dominator.
270  uint16_t nesting_depth;
271  BBType block_type:4;
272  BlockListType successor_block_list_type:4;
273  bool visited:1;
274  bool hidden:1;
275  bool catch_entry:1;
276  bool explicit_throw:1;
277  bool conditional_branch:1;
278  bool terminated_by_return:1;  // Block ends with a Dalvik return opcode.
279  bool dominates_return:1;      // Is a member of return extended basic block.
280  bool use_lvn:1;               // Run local value numbering on this block.
281  MIR* first_mir_insn;
282  MIR* last_mir_insn;
283  BasicBlockDataFlow* data_flow_info;
284  ArenaBitVector* dominators;
285  ArenaBitVector* i_dominated;      // Set nodes being immediately dominated.
286  ArenaBitVector* dom_frontier;     // Dominance frontier.
287  GrowableArray<BasicBlockId>* predecessors;
288  GrowableArray<SuccessorBlockInfo*>* successor_blocks;
289};
290
291/*
292 * The "blocks" field in "successor_block_list" points to an array of elements with the type
293 * "SuccessorBlockInfo".  For catch blocks, key is type index for the exception.  For swtich
294 * blocks, key is the case value.
295 */
296struct SuccessorBlockInfo {
297  BasicBlockId block;
298  int key;
299};
300
301/*
302 * Whereas a SSA name describes a definition of a Dalvik vreg, the RegLocation describes
303 * the type of an SSA name (and, can also be used by code generators to record where the
304 * value is located (i.e. - physical register, frame, spill, etc.).  For each SSA name (SReg)
305 * there is a RegLocation.
306 * A note on SSA names:
307 *   o SSA names for Dalvik vRegs v0..vN will be assigned 0..N.  These represent the "vN_0"
308 *     names.  Negative SSA names represent special values not present in the Dalvik byte code.
309 *     For example, SSA name -1 represents an invalid SSA name, and SSA name -2 represents the
310 *     the Method pointer.  SSA names < -2 are reserved for future use.
311 *   o The vN_0 names for non-argument Dalvik should in practice never be used (as they would
312 *     represent the read of an undefined local variable).  The first definition of the
313 *     underlying Dalvik vReg will result in a vN_1 name.
314 *
315 * FIXME: The orig_sreg field was added as a workaround for llvm bitcode generation.  With
316 * the latest restructuring, we should be able to remove it and rely on s_reg_low throughout.
317 */
318struct RegLocation {
319  RegLocationType location:3;
320  unsigned wide:1;
321  unsigned defined:1;   // Do we know the type?
322  unsigned is_const:1;  // Constant, value in mir_graph->constant_values[].
323  unsigned fp:1;        // Floating point?
324  unsigned core:1;      // Non-floating point?
325  unsigned ref:1;       // Something GC cares about.
326  unsigned high_word:1;  // High word of pair?
327  unsigned home:1;      // Does this represent the home location?
328  VectorLengthType vec_len:3;  // Is this value in a vector register, and how big is it?
329  uint8_t low_reg;      // First physical register.
330  uint8_t high_reg;     // 2nd physical register (if wide).
331  int16_t s_reg_low;    // SSA name for low Dalvik word.
332  int16_t orig_sreg;    // TODO: remove after Bitcode gen complete
333                        // and consolidate usage w/ s_reg_low.
334
335  bool IsVectorScalar() const { return vec_len == kVectorLength4 || vec_len == kVectorLength8;}
336};
337
338/*
339 * Collection of information describing an invoke, and the destination of
340 * the subsequent MOVE_RESULT (if applicable).  Collected as a unit to enable
341 * more efficient invoke code generation.
342 */
343struct CallInfo {
344  int num_arg_words;    // Note: word count, not arg count.
345  RegLocation* args;    // One for each word of arguments.
346  RegLocation result;   // Eventual target of MOVE_RESULT.
347  int opt_flags;
348  InvokeType type;
349  uint32_t dex_idx;
350  uint32_t index;       // Method idx for invokes, type idx for FilledNewArray.
351  uintptr_t direct_code;
352  uintptr_t direct_method;
353  RegLocation target;    // Target of following move_result.
354  bool skip_this;
355  bool is_range;
356  DexOffset offset;      // Offset in code units.
357};
358
359
360const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, kVectorNotUsed,
361                             INVALID_REG, INVALID_REG, INVALID_SREG, INVALID_SREG};
362
363class MIRGraph {
364 public:
365  MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
366  ~MIRGraph();
367
368  /*
369   * Examine the graph to determine whether it's worthwile to spend the time compiling
370   * this method.
371   */
372  bool SkipCompilation(Runtime::CompilerFilter compiler_filter);
373
374  /*
375   * Parse dex method and add MIR at current insert point.  Returns id (which is
376   * actually the index of the method in the m_units_ array).
377   */
378  void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
379                    InvokeType invoke_type, uint16_t class_def_idx,
380                    uint32_t method_idx, jobject class_loader, const DexFile& dex_file);
381
382  /* Find existing block */
383  BasicBlock* FindBlock(DexOffset code_offset) {
384    return FindBlock(code_offset, false, false, NULL);
385  }
386
387  const uint16_t* GetCurrentInsns() const {
388    return current_code_item_->insns_;
389  }
390
391  const uint16_t* GetInsns(int m_unit_index) const {
392    return m_units_[m_unit_index]->GetCodeItem()->insns_;
393  }
394
395  int GetNumBlocks() const {
396    return num_blocks_;
397  }
398
399  size_t GetNumDalvikInsns() const {
400    return cu_->code_item->insns_size_in_code_units_;
401  }
402
403  ArenaBitVector* GetTryBlockAddr() const {
404    return try_block_addr_;
405  }
406
407  BasicBlock* GetEntryBlock() const {
408    return entry_block_;
409  }
410
411  BasicBlock* GetExitBlock() const {
412    return exit_block_;
413  }
414
415  BasicBlock* GetBasicBlock(int block_id) const {
416    return (block_id == NullBasicBlockId) ? NULL : block_list_.Get(block_id);
417  }
418
419  size_t GetBasicBlockListCount() const {
420    return block_list_.Size();
421  }
422
423  GrowableArray<BasicBlock*>* GetBlockList() {
424    return &block_list_;
425  }
426
427  GrowableArray<BasicBlockId>* GetDfsOrder() {
428    return dfs_order_;
429  }
430
431  GrowableArray<BasicBlockId>* GetDfsPostOrder() {
432    return dfs_post_order_;
433  }
434
435  GrowableArray<BasicBlockId>* GetDomPostOrder() {
436    return dom_post_order_traversal_;
437  }
438
439  int GetDefCount() const {
440    return def_count_;
441  }
442
443  ArenaAllocator* GetArena() {
444    return arena_;
445  }
446
447  void EnableOpcodeCounting() {
448    opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int),
449                                                    ArenaAllocator::kAllocMisc));
450  }
451
452  void ShowOpcodeStats();
453
454  DexCompilationUnit* GetCurrentDexCompilationUnit() const {
455    return m_units_[current_method_];
456  }
457
458  /**
459   * @brief Dump a CFG into a dot file format.
460   * @param dir_prefix the directory the file will be created in.
461   * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks.
462   * @param suffix does the filename require a suffix or not (default = nullptr).
463   */
464  void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr);
465
466  void InitRegLocations();
467
468  void RemapRegLocations();
469
470  void DumpRegLocTable(RegLocation* table, int count);
471
472  void BasicBlockOptimization();
473
474  bool IsConst(int32_t s_reg) const {
475    return is_constant_v_->IsBitSet(s_reg);
476  }
477
478  bool IsConst(RegLocation loc) const {
479    return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg);
480  }
481
482  int32_t ConstantValue(RegLocation loc) const {
483    DCHECK(IsConst(loc));
484    return constant_values_[loc.orig_sreg];
485  }
486
487  int32_t ConstantValue(int32_t s_reg) const {
488    DCHECK(IsConst(s_reg));
489    return constant_values_[s_reg];
490  }
491
492  int64_t ConstantValueWide(RegLocation loc) const {
493    DCHECK(IsConst(loc));
494    return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
495        Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
496  }
497
498  bool IsConstantNullRef(RegLocation loc) const {
499    return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
500  }
501
502  int GetNumSSARegs() const {
503    return num_ssa_regs_;
504  }
505
506  void SetNumSSARegs(int new_num) {
507     /*
508      * TODO: It's theoretically possible to exceed 32767, though any cases which did
509      * would be filtered out with current settings.  When orig_sreg field is removed
510      * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK().
511      */
512    DCHECK_EQ(new_num, static_cast<int16_t>(new_num));
513    num_ssa_regs_ = new_num;
514  }
515
516  unsigned int GetNumReachableBlocks() const {
517    return num_reachable_blocks_;
518  }
519
520  int GetUseCount(int vreg) const {
521    return use_counts_.Get(vreg);
522  }
523
524  int GetRawUseCount(int vreg) const {
525    return raw_use_counts_.Get(vreg);
526  }
527
528  int GetSSASubscript(int ssa_reg) const {
529    return ssa_subscripts_->Get(ssa_reg);
530  }
531
532  RegLocation GetRawSrc(MIR* mir, int num) {
533    DCHECK(num < mir->ssa_rep->num_uses);
534    RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
535    return res;
536  }
537
538  RegLocation GetRawDest(MIR* mir) {
539    DCHECK_GT(mir->ssa_rep->num_defs, 0);
540    RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
541    return res;
542  }
543
544  RegLocation GetDest(MIR* mir) {
545    RegLocation res = GetRawDest(mir);
546    DCHECK(!res.wide);
547    return res;
548  }
549
550  RegLocation GetSrc(MIR* mir, int num) {
551    RegLocation res = GetRawSrc(mir, num);
552    DCHECK(!res.wide);
553    return res;
554  }
555
556  RegLocation GetDestWide(MIR* mir) {
557    RegLocation res = GetRawDest(mir);
558    DCHECK(res.wide);
559    return res;
560  }
561
562  RegLocation GetSrcWide(MIR* mir, int low) {
563    RegLocation res = GetRawSrc(mir, low);
564    DCHECK(res.wide);
565    return res;
566  }
567
568  RegLocation GetBadLoc() {
569    return bad_loc;
570  }
571
572  int GetMethodSReg() {
573    return method_sreg_;
574  }
575
576  bool MethodIsLeaf() {
577    return attributes_ & METHOD_IS_LEAF;
578  }
579
580  RegLocation GetRegLocation(int index) {
581    DCHECK((index >= 0) && (index > num_ssa_regs_));
582    return reg_location_[index];
583  }
584
585  RegLocation GetMethodLoc() {
586    return reg_location_[method_sreg_];
587  }
588
589  bool IsBackedge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
590    return ((target_bb_id != NullBasicBlockId) &&
591            (GetBasicBlock(target_bb_id)->start_offset <= branch_bb->start_offset));
592  }
593
594  bool IsBackwardsBranch(BasicBlock* branch_bb) {
595    return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through);
596  }
597
598  void CountBranch(DexOffset target_offset) {
599    if (target_offset <= current_offset_) {
600      backward_branches_++;
601    } else {
602      forward_branches_++;
603    }
604  }
605
606  int GetBranchCount() {
607    return backward_branches_ + forward_branches_;
608  }
609
610  bool IsPseudoMirOp(Instruction::Code opcode) {
611    return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst);
612  }
613
614  bool IsPseudoMirOp(int opcode) {
615    return opcode >= static_cast<int>(kMirOpFirst);
616  }
617
618  void DumpCheckStats();
619  MIR* FindMoveResult(BasicBlock* bb, MIR* mir);
620  int SRegToVReg(int ssa_reg) const;
621  void VerifyDataflow();
622  void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
623  bool EliminateNullChecksAndInferTypes(BasicBlock *bb);
624  /*
625   * Type inference handling helpers.  Because Dalvik's bytecode is not fully typed,
626   * we have to do some work to figure out the sreg type.  For some operations it is
627   * clear based on the opcode (i.e. ADD_FLOAT v0, v1, v2), but for others (MOVE), we
628   * may never know the "real" type.
629   *
630   * We perform the type inference operation by using an iterative  walk over
631   * the graph, propagating types "defined" by typed opcodes to uses and defs in
632   * non-typed opcodes (such as MOVE).  The Setxx(index) helpers are used to set defined
633   * types on typed opcodes (such as ADD_INT).  The Setxx(index, is_xx) form is used to
634   * propagate types through non-typed opcodes such as PHI and MOVE.  The is_xx flag
635   * tells whether our guess of the type is based on a previously typed definition.
636   * If so, the defined type takes precedence.  Note that it's possible to have the same sreg
637   * show multiple defined types because dx treats constants as untyped bit patterns.
638   * The return value of the Setxx() helpers says whether or not the Setxx() action changed
639   * the current guess, and is used to know when to terminate the iterative walk.
640   */
641  bool SetFp(int index, bool is_fp);
642  bool SetFp(int index);
643  bool SetCore(int index, bool is_core);
644  bool SetCore(int index);
645  bool SetRef(int index, bool is_ref);
646  bool SetRef(int index);
647  bool SetWide(int index, bool is_wide);
648  bool SetWide(int index);
649  bool SetHigh(int index, bool is_high);
650  bool SetHigh(int index);
651
652  void AppendMIR(BasicBlock* bb, MIR* mir);
653  void PrependMIR(BasicBlock* bb, MIR* mir);
654  void InsertMIRAfter(BasicBlock* bb, MIR* current_mir, MIR* new_mir);
655  char* GetDalvikDisassembly(const MIR* mir);
656  void ReplaceSpecialChars(std::string& str);
657  std::string GetSSAName(int ssa_reg);
658  std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
659  void GetBlockName(BasicBlock* bb, char* name);
660  const char* GetShortyFromTargetIdx(int);
661  void DumpMIRGraph();
662  CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
663  BasicBlock* NewMemBB(BBType block_type, int block_id);
664  MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir);
665  BasicBlock* NextDominatedBlock(BasicBlock* bb);
666  bool LayoutBlocks(BasicBlock* bb);
667
668  /**
669   * @brief Perform the initial preparation for the Method Uses.
670   */
671  void InitializeMethodUses();
672
673  /**
674   * @brief Perform the initial preparation for the Constant Propagation.
675   */
676  void InitializeConstantPropagation();
677
678  /**
679   * @brief Perform the initial preparation for the SSA Transformation.
680   */
681  void InitializeSSATransformation();
682
683  /**
684   * @brief Insert a the operands for the Phi nodes.
685   * @param bb the considered BasicBlock.
686   * @return true
687   */
688  bool InsertPhiNodeOperands(BasicBlock* bb);
689
690  /**
691   * @brief Perform constant propagation on a BasicBlock.
692   * @param bb the considered BasicBlock.
693   */
694  void DoConstantPropagation(BasicBlock* bb);
695
696  /**
697   * @brief Count the uses in the BasicBlock
698   * @param bb the BasicBlock
699   */
700  void CountUses(struct BasicBlock* bb);
701
702  /**
703   * @brief Initialize the data structures with Null Check data
704   * @param bb the considered BasicBlock
705   */
706  void NullCheckEliminationInit(BasicBlock* bb);
707
708  /**
709   * @brief Check if the temporary ssa register vector is allocated
710   */
711  void CheckSSARegisterVector();
712
713  /**
714   * @brief Combine BasicBlocks
715   * @param the BasicBlock we are considering
716   */
717  void CombineBlocks(BasicBlock* bb);
718
719  void ClearAllVisitedFlags();
720  /*
721   * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
722   * we can verify that all catch entries have native PC entries.
723   */
724  std::set<uint32_t> catches_;
725
726  // TODO: make these private.
727  RegLocation* reg_location_;                         // Map SSA names to location.
728  GrowableArray<CompilerTemp*> compiler_temps_;
729  SafeMap<unsigned int, unsigned int> block_id_map_;  // Block collapse lookup cache.
730
731  static const uint64_t oat_data_flow_attributes_[kMirOpLast];
732  static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];
733  static const uint32_t analysis_attributes_[kMirOpLast];
734
735 private:
736  int FindCommonParent(int block1, int block2);
737  void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
738                         const ArenaBitVector* src2);
739  void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
740                       ArenaBitVector* live_in_v, int dalvik_reg_id);
741  void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
742  void CompilerInitializeSSAConversion();
743  bool DoSSAConversion(BasicBlock* bb);
744  bool InvokeUsesMethodStar(MIR* mir);
745  int ParseInsn(const uint16_t* code_ptr, DecodedInstruction* decoded_instruction);
746  bool ContentIsInsn(const uint16_t* code_ptr);
747  BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block,
748                         BasicBlock** immed_pred_block_p);
749  BasicBlock* FindBlock(DexOffset code_offset, bool split, bool create,
750                        BasicBlock** immed_pred_block_p);
751  void ProcessTryCatchBlocks();
752  BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
753                               int flags, const uint16_t* code_ptr, const uint16_t* code_end);
754  BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
755                               int flags);
756  BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
757                              int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
758                              const uint16_t* code_end);
759  int AddNewSReg(int v_reg);
760  void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
761  void HandleSSADef(int* defs, int dalvik_reg, int reg_index);
762  void DataFlowSSAFormat35C(MIR* mir);
763  void DataFlowSSAFormat3RC(MIR* mir);
764  bool FindLocalLiveIn(BasicBlock* bb);
765  bool InferTypeAndSize(BasicBlock* bb, MIR* mir, bool changed);
766  bool VerifyPredInfo(BasicBlock* bb);
767  BasicBlock* NeedsVisit(BasicBlock* bb);
768  BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
769  void MarkPreOrder(BasicBlock* bb);
770  void RecordDFSOrders(BasicBlock* bb);
771  void ComputeDFSOrders();
772  void ComputeDefBlockMatrix();
773  void ComputeDomPostOrderTraversal(BasicBlock* bb);
774  void ComputeDominators();
775  void InsertPhiNodes();
776  void DoDFSPreOrderSSARename(BasicBlock* block);
777  void SetConstant(int32_t ssa_reg, int value);
778  void SetConstantWide(int ssa_reg, int64_t value);
779  int GetSSAUseCount(int s_reg);
780  bool BasicBlockOpt(BasicBlock* bb);
781  bool BuildExtendedBBList(struct BasicBlock* bb);
782  bool FillDefBlockMatrix(BasicBlock* bb);
783  void InitializeDominationInfo(BasicBlock* bb);
784  bool ComputeblockIDom(BasicBlock* bb);
785  bool ComputeBlockDominators(BasicBlock* bb);
786  bool SetDominators(BasicBlock* bb);
787  bool ComputeBlockLiveIns(BasicBlock* bb);
788  bool ComputeDominanceFrontier(BasicBlock* bb);
789
790  void CountChecks(BasicBlock* bb);
791  void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats);
792  bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default);
793
794  CompilationUnit* const cu_;
795  GrowableArray<int>* ssa_base_vregs_;
796  GrowableArray<int>* ssa_subscripts_;
797  // Map original Dalvik virtual reg i to the current SSA name.
798  int* vreg_to_ssa_map_;            // length == method->registers_size
799  int* ssa_last_defs_;              // length == method->registers_size
800  ArenaBitVector* is_constant_v_;   // length == num_ssa_reg
801  int* constant_values_;            // length == num_ssa_reg
802  // Use counts of ssa names.
803  GrowableArray<uint32_t> use_counts_;      // Weighted by nesting depth
804  GrowableArray<uint32_t> raw_use_counts_;  // Not weighted
805  unsigned int num_reachable_blocks_;
806  GrowableArray<BasicBlockId>* dfs_order_;
807  GrowableArray<BasicBlockId>* dfs_post_order_;
808  GrowableArray<BasicBlockId>* dom_post_order_traversal_;
809  int* i_dom_list_;
810  ArenaBitVector** def_block_matrix_;    // num_dalvik_register x num_blocks.
811  ArenaBitVector* temp_block_v_;
812  ArenaBitVector* temp_dalvik_register_v_;
813  ArenaBitVector* temp_ssa_register_v_;  // num_ssa_regs.
814  static const int kInvalidEntry = -1;
815  GrowableArray<BasicBlock*> block_list_;
816  ArenaBitVector* try_block_addr_;
817  BasicBlock* entry_block_;
818  BasicBlock* exit_block_;
819  int num_blocks_;
820  const DexFile::CodeItem* current_code_item_;
821  GrowableArray<uint16_t> dex_pc_to_block_map_;  // FindBlock lookup cache.
822  std::vector<DexCompilationUnit*> m_units_;     // List of methods included in this graph
823  typedef std::pair<int, int> MIRLocation;       // Insert point, (m_unit_ index, offset)
824  std::vector<MIRLocation> method_stack_;        // Include stack
825  int current_method_;
826  DexOffset current_offset_;                     // Offset in code units
827  int def_count_;                                // Used to estimate size of ssa name storage.
828  int* opcode_count_;                            // Dex opcode coverage stats.
829  int num_ssa_regs_;                             // Number of names following SSA transformation.
830  std::vector<BasicBlockId> extended_basic_blocks_;  // Heads of block "traces".
831  int method_sreg_;
832  unsigned int attributes_;
833  Checkstats* checkstats_;
834  ArenaAllocator* arena_;
835  int backward_branches_;
836  int forward_branches_;
837};
838
839}  // namespace art
840
841#endif  // ART_COMPILER_DEX_MIR_GRAPH_H_
842