mir_graph.h revision 86ec520fc8b696ed6f164d7b756009ecd6e4aace
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
18#define ART_COMPILER_DEX_MIR_GRAPH_H_
19
20#include "dex_file.h"
21#include "dex_instruction.h"
22#include "compiler_ir.h"
23#include "arena_bit_vector.h"
24#include "utils/growable_array.h"
25
26namespace art {
27
28enum InstructionAnalysisAttributePos {
29  kUninterestingOp = 0,
30  kArithmeticOp,
31  kFPOp,
32  kSingleOp,
33  kDoubleOp,
34  kIntOp,
35  kLongOp,
36  kBranchOp,
37  kInvokeOp,
38  kArrayOp,
39  kHeavyweightOp,
40  kSimpleConstOp,
41  kMoveOp,
42  kSwitch
43};
44
45#define AN_NONE (1 << kUninterestingOp)
46#define AN_MATH (1 << kArithmeticOp)
47#define AN_FP (1 << kFPOp)
48#define AN_LONG (1 << kLongOp)
49#define AN_INT (1 << kIntOp)
50#define AN_SINGLE (1 << kSingleOp)
51#define AN_DOUBLE (1 << kDoubleOp)
52#define AN_FLOATMATH (1 << kFPOp)
53#define AN_BRANCH (1 << kBranchOp)
54#define AN_INVOKE (1 << kInvokeOp)
55#define AN_ARRAYOP (1 << kArrayOp)
56#define AN_HEAVYWEIGHT (1 << kHeavyweightOp)
57#define AN_SIMPLECONST (1 << kSimpleConstOp)
58#define AN_MOVE (1 << kMoveOp)
59#define AN_SWITCH (1 << kSwitch)
60#define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST)
61
62enum DataFlowAttributePos {
63  kUA = 0,
64  kUB,
65  kUC,
66  kAWide,
67  kBWide,
68  kCWide,
69  kDA,
70  kIsMove,
71  kSetsConst,
72  kFormat35c,
73  kFormat3rc,
74  kNullCheckSrc0,        // Null check of uses[0].
75  kNullCheckSrc1,        // Null check of uses[1].
76  kNullCheckSrc2,        // Null check of uses[2].
77  kNullCheckOut0,        // Null check out outgoing arg0.
78  kDstNonNull,           // May assume dst is non-null.
79  kRetNonNull,           // May assume retval is non-null.
80  kNullTransferSrc0,     // Object copy src[0] -> dst.
81  kNullTransferSrcN,     // Phi null check state transfer.
82  kRangeCheckSrc1,       // Range check of uses[1].
83  kRangeCheckSrc2,       // Range check of uses[2].
84  kRangeCheckSrc3,       // Range check of uses[3].
85  kFPA,
86  kFPB,
87  kFPC,
88  kCoreA,
89  kCoreB,
90  kCoreC,
91  kRefA,
92  kRefB,
93  kRefC,
94  kUsesMethodStar,       // Implicit use of Method*.
95  kDoLVN,                // Worth computing local value numbers.
96};
97
98#define DF_NOP                  0ULL
99#define DF_UA                   (1ULL << kUA)
100#define DF_UB                   (1ULL << kUB)
101#define DF_UC                   (1ULL << kUC)
102#define DF_A_WIDE               (1ULL << kAWide)
103#define DF_B_WIDE               (1ULL << kBWide)
104#define DF_C_WIDE               (1ULL << kCWide)
105#define DF_DA                   (1ULL << kDA)
106#define DF_IS_MOVE              (1ULL << kIsMove)
107#define DF_SETS_CONST           (1ULL << kSetsConst)
108#define DF_FORMAT_35C           (1ULL << kFormat35c)
109#define DF_FORMAT_3RC           (1ULL << kFormat3rc)
110#define DF_NULL_CHK_0           (1ULL << kNullCheckSrc0)
111#define DF_NULL_CHK_1           (1ULL << kNullCheckSrc1)
112#define DF_NULL_CHK_2           (1ULL << kNullCheckSrc2)
113#define DF_NULL_CHK_OUT0        (1ULL << kNullCheckOut0)
114#define DF_NON_NULL_DST         (1ULL << kDstNonNull)
115#define DF_NON_NULL_RET         (1ULL << kRetNonNull)
116#define DF_NULL_TRANSFER_0      (1ULL << kNullTransferSrc0)
117#define DF_NULL_TRANSFER_N      (1ULL << kNullTransferSrcN)
118#define DF_RANGE_CHK_1          (1ULL << kRangeCheckSrc1)
119#define DF_RANGE_CHK_2          (1ULL << kRangeCheckSrc2)
120#define DF_RANGE_CHK_3          (1ULL << kRangeCheckSrc3)
121#define DF_FP_A                 (1ULL << kFPA)
122#define DF_FP_B                 (1ULL << kFPB)
123#define DF_FP_C                 (1ULL << kFPC)
124#define DF_CORE_A               (1ULL << kCoreA)
125#define DF_CORE_B               (1ULL << kCoreB)
126#define DF_CORE_C               (1ULL << kCoreC)
127#define DF_REF_A                (1ULL << kRefA)
128#define DF_REF_B                (1ULL << kRefB)
129#define DF_REF_C                (1ULL << kRefC)
130#define DF_UMS                  (1ULL << kUsesMethodStar)
131#define DF_LVN                  (1ULL << kDoLVN)
132
133#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)
134
135#define DF_HAS_DEFS             (DF_DA)
136
137#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_0 | \
138                                 DF_NULL_CHK_1 | \
139                                 DF_NULL_CHK_2 | \
140                                 DF_NULL_CHK_OUT0)
141
142#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_1 | \
143                                 DF_RANGE_CHK_2 | \
144                                 DF_RANGE_CHK_3)
145
146#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
147                                 DF_HAS_RANGE_CHKS)
148
149#define DF_A_IS_REG             (DF_UA | DF_DA)
150#define DF_B_IS_REG             (DF_UB)
151#define DF_C_IS_REG             (DF_UC)
152#define DF_IS_GETTER_OR_SETTER  (DF_IS_GETTER | DF_IS_SETTER)
153#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
154#define DF_NULL_TRANSFER        (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)
155enum OatMethodAttributes {
156  kIsLeaf,            // Method is leaf.
157  kHasLoop,           // Method contains simple loop.
158};
159
160#define METHOD_IS_LEAF          (1 << kIsLeaf)
161#define METHOD_HAS_LOOP         (1 << kHasLoop)
162
163// Minimum field size to contain Dalvik v_reg number.
164#define VREG_NUM_WIDTH 16
165
166#define INVALID_SREG (-1)
167#define INVALID_VREG (0xFFFFU)
168#define INVALID_REG (0xFF)
169#define INVALID_OFFSET (0xDEADF00FU)
170
171#define MIR_IGNORE_NULL_CHECK           (1 << kMIRIgnoreNullCheck)
172#define MIR_NULL_CHECK_ONLY             (1 << kMIRNullCheckOnly)
173#define MIR_IGNORE_RANGE_CHECK          (1 << kMIRIgnoreRangeCheck)
174#define MIR_RANGE_CHECK_ONLY            (1 << kMIRRangeCheckOnly)
175#define MIR_INLINED                     (1 << kMIRInlined)
176#define MIR_INLINED_PRED                (1 << kMIRInlinedPred)
177#define MIR_CALLEE                      (1 << kMIRCallee)
178#define MIR_IGNORE_SUSPEND_CHECK        (1 << kMIRIgnoreSuspendCheck)
179#define MIR_DUP                         (1 << kMIRDup)
180
181#define BLOCK_NAME_LEN 80
182
183typedef uint16_t BasicBlockId;
184static const BasicBlockId NullBasicBlockId = 0;
185
186/*
187 * In general, vreg/sreg describe Dalvik registers that originated with dx.  However,
188 * it is useful to have compiler-generated temporary registers and have them treated
189 * in the same manner as dx-generated virtual registers.  This struct records the SSA
190 * name of compiler-introduced temporaries.
191 */
192struct CompilerTemp {
193  int32_t v_reg;      // Virtual register number for temporary.
194  int32_t s_reg_low;  // SSA name for low Dalvik word.
195};
196
197enum CompilerTempType {
198  kCompilerTempVR,                // A virtual register temporary.
199  kCompilerTempSpecialMethodPtr,  // Temporary that keeps track of current method pointer.
200};
201
202// When debug option enabled, records effectiveness of null and range check elimination.
203struct Checkstats {
204  int32_t null_checks;
205  int32_t null_checks_eliminated;
206  int32_t range_checks;
207  int32_t range_checks_eliminated;
208};
209
210// Dataflow attributes of a basic block.
211struct BasicBlockDataFlow {
212  ArenaBitVector* use_v;
213  ArenaBitVector* def_v;
214  ArenaBitVector* live_in_v;
215  ArenaBitVector* phi_v;
216  int32_t* vreg_to_ssa_map;
217  ArenaBitVector* ending_null_check_v;
218};
219
220/*
221 * Normalized use/def for a MIR operation using SSA names rather than vregs.  Note that
222 * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
223 * vregs.  For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
224 * Following SSA renaming, this is the primary struct used by code generators to locate
225 * operand and result registers.  This is a somewhat confusing and unhelpful convention that
226 * we may want to revisit in the future.
227 */
228struct SSARepresentation {
229  int16_t num_uses;
230  int16_t num_defs;
231  int32_t* uses;
232  bool* fp_use;
233  int32_t* defs;
234  bool* fp_def;
235};
236
237/*
238 * The Midlevel Intermediate Representation node, which may be largely considered a
239 * wrapper around a Dalvik byte code.
240 */
241struct MIR {
242  /*
243   * TODO: remove embedded DecodedInstruction to save space, keeping only opcode.  Recover
244   * additional fields on as-needed basis.  Question: how to support MIR Pseudo-ops; probably
245   * need to carry aux data pointer.
246   */
247  DecodedInstruction dalvikInsn;
248  uint16_t width;                 // Note: width can include switch table or fill array data.
249  NarrowDexOffset offset;         // Offset of the instruction in code units.
250  uint16_t optimization_flags;
251  int16_t m_unit_index;           // From which method was this MIR included
252  MIR* next;
253  SSARepresentation* ssa_rep;
254  union {
255    // Incoming edges for phi node.
256    BasicBlockId* phi_incoming;
257    // Establish link from check instruction (kMirOpCheck) to the actual throwing instruction.
258    MIR* throw_insn;
259    // Fused cmp branch condition.
260    ConditionCode ccode;
261  } meta;
262};
263
264struct SuccessorBlockInfo;
265
266struct BasicBlock {
267  BasicBlockId id;
268  BasicBlockId dfs_id;
269  NarrowDexOffset start_offset;     // Offset in code units.
270  BasicBlockId fall_through;
271  BasicBlockId taken;
272  BasicBlockId i_dom;               // Immediate dominator.
273  uint16_t nesting_depth;
274  BBType block_type:4;
275  BlockListType successor_block_list_type:4;
276  bool visited:1;
277  bool hidden:1;
278  bool catch_entry:1;
279  bool explicit_throw:1;
280  bool conditional_branch:1;
281  bool terminated_by_return:1;  // Block ends with a Dalvik return opcode.
282  bool dominates_return:1;      // Is a member of return extended basic block.
283  bool use_lvn:1;               // Run local value numbering on this block.
284  MIR* first_mir_insn;
285  MIR* last_mir_insn;
286  BasicBlockDataFlow* data_flow_info;
287  ArenaBitVector* dominators;
288  ArenaBitVector* i_dominated;      // Set nodes being immediately dominated.
289  ArenaBitVector* dom_frontier;     // Dominance frontier.
290  GrowableArray<BasicBlockId>* predecessors;
291  GrowableArray<SuccessorBlockInfo*>* successor_blocks;
292};
293
294/*
295 * The "blocks" field in "successor_block_list" points to an array of elements with the type
296 * "SuccessorBlockInfo".  For catch blocks, key is type index for the exception.  For swtich
297 * blocks, key is the case value.
298 */
299struct SuccessorBlockInfo {
300  BasicBlockId block;
301  int key;
302};
303
304/*
305 * Whereas a SSA name describes a definition of a Dalvik vreg, the RegLocation describes
306 * the type of an SSA name (and, can also be used by code generators to record where the
307 * value is located (i.e. - physical register, frame, spill, etc.).  For each SSA name (SReg)
308 * there is a RegLocation.
309 * A note on SSA names:
310 *   o SSA names for Dalvik vRegs v0..vN will be assigned 0..N.  These represent the "vN_0"
311 *     names.  Negative SSA names represent special values not present in the Dalvik byte code.
312 *     For example, SSA name -1 represents an invalid SSA name, and SSA name -2 represents the
313 *     the Method pointer.  SSA names < -2 are reserved for future use.
314 *   o The vN_0 names for non-argument Dalvik should in practice never be used (as they would
315 *     represent the read of an undefined local variable).  The first definition of the
316 *     underlying Dalvik vReg will result in a vN_1 name.
317 *
318 * FIXME: The orig_sreg field was added as a workaround for llvm bitcode generation.  With
319 * the latest restructuring, we should be able to remove it and rely on s_reg_low throughout.
320 */
321struct RegLocation {
322  RegLocationType location:3;
323  unsigned wide:1;
324  unsigned defined:1;   // Do we know the type?
325  unsigned is_const:1;  // Constant, value in mir_graph->constant_values[].
326  unsigned fp:1;        // Floating point?
327  unsigned core:1;      // Non-floating point?
328  unsigned ref:1;       // Something GC cares about.
329  unsigned high_word:1;  // High word of pair?
330  unsigned home:1;      // Does this represent the home location?
331  VectorLengthType vec_len:3;  // Is this value in a vector register, and how big is it?
332  uint8_t low_reg;      // First physical register.
333  uint8_t high_reg;     // 2nd physical register (if wide).
334  int16_t s_reg_low;    // SSA name for low Dalvik word.
335  int16_t orig_sreg;    // TODO: remove after Bitcode gen complete
336                        // and consolidate usage w/ s_reg_low.
337
338  bool IsVectorScalar() const { return vec_len == kVectorLength4 || vec_len == kVectorLength8;}
339};
340
341/*
342 * Collection of information describing an invoke, and the destination of
343 * the subsequent MOVE_RESULT (if applicable).  Collected as a unit to enable
344 * more efficient invoke code generation.
345 */
346struct CallInfo {
347  int num_arg_words;    // Note: word count, not arg count.
348  RegLocation* args;    // One for each word of arguments.
349  RegLocation result;   // Eventual target of MOVE_RESULT.
350  int opt_flags;
351  InvokeType type;
352  uint32_t dex_idx;
353  uint32_t index;       // Method idx for invokes, type idx for FilledNewArray.
354  uintptr_t direct_code;
355  uintptr_t direct_method;
356  RegLocation target;    // Target of following move_result.
357  bool skip_this;
358  bool is_range;
359  DexOffset offset;      // Offset in code units.
360};
361
362
363const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, kVectorNotUsed,
364                             INVALID_REG, INVALID_REG, INVALID_SREG, INVALID_SREG};
365
366class MIRGraph {
367 public:
368  MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
369  ~MIRGraph();
370
371  /*
372   * Examine the graph to determine whether it's worthwile to spend the time compiling
373   * this method.
374   */
375  bool SkipCompilation();
376
377  /*
378   * Parse dex method and add MIR at current insert point.  Returns id (which is
379   * actually the index of the method in the m_units_ array).
380   */
381  void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
382                    InvokeType invoke_type, uint16_t class_def_idx,
383                    uint32_t method_idx, jobject class_loader, const DexFile& dex_file);
384
385  /* Find existing block */
386  BasicBlock* FindBlock(DexOffset code_offset) {
387    return FindBlock(code_offset, false, false, NULL);
388  }
389
390  const uint16_t* GetCurrentInsns() const {
391    return current_code_item_->insns_;
392  }
393
394  const uint16_t* GetInsns(int m_unit_index) const {
395    return m_units_[m_unit_index]->GetCodeItem()->insns_;
396  }
397
398  int GetNumBlocks() const {
399    return num_blocks_;
400  }
401
402  size_t GetNumDalvikInsns() const {
403    return cu_->code_item->insns_size_in_code_units_;
404  }
405
406  ArenaBitVector* GetTryBlockAddr() const {
407    return try_block_addr_;
408  }
409
410  BasicBlock* GetEntryBlock() const {
411    return entry_block_;
412  }
413
414  BasicBlock* GetExitBlock() const {
415    return exit_block_;
416  }
417
418  BasicBlock* GetBasicBlock(int block_id) const {
419    return (block_id == NullBasicBlockId) ? NULL : block_list_.Get(block_id);
420  }
421
422  size_t GetBasicBlockListCount() const {
423    return block_list_.Size();
424  }
425
426  GrowableArray<BasicBlock*>* GetBlockList() {
427    return &block_list_;
428  }
429
430  GrowableArray<BasicBlockId>* GetDfsOrder() {
431    return dfs_order_;
432  }
433
434  GrowableArray<BasicBlockId>* GetDfsPostOrder() {
435    return dfs_post_order_;
436  }
437
438  GrowableArray<BasicBlockId>* GetDomPostOrder() {
439    return dom_post_order_traversal_;
440  }
441
442  int GetDefCount() const {
443    return def_count_;
444  }
445
446  ArenaAllocator* GetArena() {
447    return arena_;
448  }
449
450  void EnableOpcodeCounting() {
451    opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int),
452                                                    ArenaAllocator::kAllocMisc));
453  }
454
455  void ShowOpcodeStats();
456
457  DexCompilationUnit* GetCurrentDexCompilationUnit() const {
458    return m_units_[current_method_];
459  }
460
461  /**
462   * @brief Dump a CFG into a dot file format.
463   * @param dir_prefix the directory the file will be created in.
464   * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks.
465   * @param suffix does the filename require a suffix or not (default = nullptr).
466   */
467  void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr);
468
469  void InitRegLocations();
470
471  void RemapRegLocations();
472
473  void DumpRegLocTable(RegLocation* table, int count);
474
475  void BasicBlockOptimization();
476
477  bool IsConst(int32_t s_reg) const {
478    return is_constant_v_->IsBitSet(s_reg);
479  }
480
481  bool IsConst(RegLocation loc) const {
482    return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg);
483  }
484
485  int32_t ConstantValue(RegLocation loc) const {
486    DCHECK(IsConst(loc));
487    return constant_values_[loc.orig_sreg];
488  }
489
490  int32_t ConstantValue(int32_t s_reg) const {
491    DCHECK(IsConst(s_reg));
492    return constant_values_[s_reg];
493  }
494
495  int64_t ConstantValueWide(RegLocation loc) const {
496    DCHECK(IsConst(loc));
497    return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
498        Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
499  }
500
501  bool IsConstantNullRef(RegLocation loc) const {
502    return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
503  }
504
505  int GetNumSSARegs() const {
506    return num_ssa_regs_;
507  }
508
509  void SetNumSSARegs(int new_num) {
510     /*
511      * TODO: It's theoretically possible to exceed 32767, though any cases which did
512      * would be filtered out with current settings.  When orig_sreg field is removed
513      * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK().
514      */
515    DCHECK_EQ(new_num, static_cast<int16_t>(new_num));
516    num_ssa_regs_ = new_num;
517  }
518
519  unsigned int GetNumReachableBlocks() const {
520    return num_reachable_blocks_;
521  }
522
523  int GetUseCount(int vreg) const {
524    return use_counts_.Get(vreg);
525  }
526
527  int GetRawUseCount(int vreg) const {
528    return raw_use_counts_.Get(vreg);
529  }
530
531  int GetSSASubscript(int ssa_reg) const {
532    return ssa_subscripts_->Get(ssa_reg);
533  }
534
535  RegLocation GetRawSrc(MIR* mir, int num) {
536    DCHECK(num < mir->ssa_rep->num_uses);
537    RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
538    return res;
539  }
540
541  RegLocation GetRawDest(MIR* mir) {
542    DCHECK_GT(mir->ssa_rep->num_defs, 0);
543    RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
544    return res;
545  }
546
547  RegLocation GetDest(MIR* mir) {
548    RegLocation res = GetRawDest(mir);
549    DCHECK(!res.wide);
550    return res;
551  }
552
553  RegLocation GetSrc(MIR* mir, int num) {
554    RegLocation res = GetRawSrc(mir, num);
555    DCHECK(!res.wide);
556    return res;
557  }
558
559  RegLocation GetDestWide(MIR* mir) {
560    RegLocation res = GetRawDest(mir);
561    DCHECK(res.wide);
562    return res;
563  }
564
565  RegLocation GetSrcWide(MIR* mir, int low) {
566    RegLocation res = GetRawSrc(mir, low);
567    DCHECK(res.wide);
568    return res;
569  }
570
571  RegLocation GetBadLoc() {
572    return bad_loc;
573  }
574
575  int GetMethodSReg() const {
576    return method_sreg_;
577  }
578
579  /**
580   * @brief Used to obtain the number of compiler temporaries being used.
581   * @return Returns the number of compiler temporaries.
582   */
583  size_t GetNumUsedCompilerTemps() const {
584    size_t total_num_temps = compiler_temps_.Size();
585    DCHECK_LE(num_non_special_compiler_temps_, total_num_temps);
586    return total_num_temps;
587  }
588
589  /**
590   * @brief Used to obtain the number of non-special compiler temporaries being used.
591   * @return Returns the number of non-special compiler temporaries.
592   */
593  size_t GetNumNonSpecialCompilerTemps() const {
594    return num_non_special_compiler_temps_;
595  }
596
597  /**
598   * @brief Used to set the total number of available non-special compiler temporaries.
599   * @details Can fail setting the new max if there are more temps being used than the new_max.
600   * @param new_max The new maximum number of non-special compiler temporaries.
601   * @return Returns true if the max was set and false if failed to set.
602   */
603  bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) {
604    if (new_max < GetNumNonSpecialCompilerTemps()) {
605      return false;
606    } else {
607      max_available_non_special_compiler_temps_ = new_max;
608      return true;
609    }
610  }
611
612  /**
613   * @brief Provides the number of non-special compiler temps available.
614   * @details Even if this returns zero, special compiler temps are guaranteed to be available.
615   * @return Returns the number of available temps.
616   */
617  size_t GetNumAvailableNonSpecialCompilerTemps();
618
619  /**
620   * @brief Used to obtain an existing compiler temporary.
621   * @param index The index of the temporary which must be strictly less than the
622   * number of temporaries.
623   * @return Returns the temporary that was asked for.
624   */
625  CompilerTemp* GetCompilerTemp(size_t index) const {
626    return compiler_temps_.Get(index);
627  }
628
629  /**
630   * @brief Used to obtain the maximum number of compiler temporaries that can be requested.
631   * @return Returns the maximum number of compiler temporaries, whether used or not.
632   */
633  size_t GetMaxPossibleCompilerTemps() const {
634    return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_;
635  }
636
637  /**
638   * @brief Used to obtain a new unique compiler temporary.
639   * @param ct_type Type of compiler temporary requested.
640   * @param wide Whether we should allocate a wide temporary.
641   * @return Returns the newly created compiler temporary.
642   */
643  CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide);
644
645  bool MethodIsLeaf() {
646    return attributes_ & METHOD_IS_LEAF;
647  }
648
649  RegLocation GetRegLocation(int index) {
650    DCHECK((index >= 0) && (index < num_ssa_regs_));
651    return reg_location_[index];
652  }
653
654  RegLocation GetMethodLoc() {
655    return reg_location_[method_sreg_];
656  }
657
658  bool IsBackedge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
659    return ((target_bb_id != NullBasicBlockId) &&
660            (GetBasicBlock(target_bb_id)->start_offset <= branch_bb->start_offset));
661  }
662
663  bool IsBackwardsBranch(BasicBlock* branch_bb) {
664    return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through);
665  }
666
667  void CountBranch(DexOffset target_offset) {
668    if (target_offset <= current_offset_) {
669      backward_branches_++;
670    } else {
671      forward_branches_++;
672    }
673  }
674
675  int GetBranchCount() {
676    return backward_branches_ + forward_branches_;
677  }
678
679  bool IsPseudoMirOp(Instruction::Code opcode) {
680    return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst);
681  }
682
683  bool IsPseudoMirOp(int opcode) {
684    return opcode >= static_cast<int>(kMirOpFirst);
685  }
686
687  void DumpCheckStats();
688  MIR* FindMoveResult(BasicBlock* bb, MIR* mir);
689  int SRegToVReg(int ssa_reg) const;
690  void VerifyDataflow();
691  void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
692  bool EliminateNullChecksAndInferTypes(BasicBlock *bb);
693  /*
694   * Type inference handling helpers.  Because Dalvik's bytecode is not fully typed,
695   * we have to do some work to figure out the sreg type.  For some operations it is
696   * clear based on the opcode (i.e. ADD_FLOAT v0, v1, v2), but for others (MOVE), we
697   * may never know the "real" type.
698   *
699   * We perform the type inference operation by using an iterative  walk over
700   * the graph, propagating types "defined" by typed opcodes to uses and defs in
701   * non-typed opcodes (such as MOVE).  The Setxx(index) helpers are used to set defined
702   * types on typed opcodes (such as ADD_INT).  The Setxx(index, is_xx) form is used to
703   * propagate types through non-typed opcodes such as PHI and MOVE.  The is_xx flag
704   * tells whether our guess of the type is based on a previously typed definition.
705   * If so, the defined type takes precedence.  Note that it's possible to have the same sreg
706   * show multiple defined types because dx treats constants as untyped bit patterns.
707   * The return value of the Setxx() helpers says whether or not the Setxx() action changed
708   * the current guess, and is used to know when to terminate the iterative walk.
709   */
710  bool SetFp(int index, bool is_fp);
711  bool SetFp(int index);
712  bool SetCore(int index, bool is_core);
713  bool SetCore(int index);
714  bool SetRef(int index, bool is_ref);
715  bool SetRef(int index);
716  bool SetWide(int index, bool is_wide);
717  bool SetWide(int index);
718  bool SetHigh(int index, bool is_high);
719  bool SetHigh(int index);
720
721  void AppendMIR(BasicBlock* bb, MIR* mir);
722  void PrependMIR(BasicBlock* bb, MIR* mir);
723  void InsertMIRAfter(BasicBlock* bb, MIR* current_mir, MIR* new_mir);
724
725  /**
726   * @brief Used to obtain the next MIR that follows unconditionally.
727   * @details The implementation does not guarantee that a MIR does not
728   * follow even if this method returns nullptr.
729   * @param bb The basic block of "current" MIR.
730   * @param current The MIR for which to find an unconditional follower.
731   * @return Returns the following MIR if one can be found.
732   */
733  MIR* GetNextUnconditionalMir(BasicBlock* bb, MIR* current);
734
735  char* GetDalvikDisassembly(const MIR* mir);
736  void ReplaceSpecialChars(std::string& str);
737  std::string GetSSAName(int ssa_reg);
738  std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
739  void GetBlockName(BasicBlock* bb, char* name);
740  const char* GetShortyFromTargetIdx(int);
741  void DumpMIRGraph();
742  CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
743  BasicBlock* NewMemBB(BBType block_type, int block_id);
744  MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir);
745  BasicBlock* NextDominatedBlock(BasicBlock* bb);
746  bool LayoutBlocks(BasicBlock* bb);
747
748  /**
749   * @brief Perform the initial preparation for the Method Uses.
750   */
751  void InitializeMethodUses();
752
753  /**
754   * @brief Perform the initial preparation for the Constant Propagation.
755   */
756  void InitializeConstantPropagation();
757
758  /**
759   * @brief Perform the initial preparation for the SSA Transformation.
760   */
761  void InitializeSSATransformation();
762
763  /**
764   * @brief Insert a the operands for the Phi nodes.
765   * @param bb the considered BasicBlock.
766   * @return true
767   */
768  bool InsertPhiNodeOperands(BasicBlock* bb);
769
770  /**
771   * @brief Perform constant propagation on a BasicBlock.
772   * @param bb the considered BasicBlock.
773   */
774  void DoConstantPropagation(BasicBlock* bb);
775
776  /**
777   * @brief Count the uses in the BasicBlock
778   * @param bb the BasicBlock
779   */
780  void CountUses(struct BasicBlock* bb);
781
782  /**
783   * @brief Initialize the data structures with Null Check data
784   * @param bb the considered BasicBlock
785   */
786  void NullCheckEliminationInit(BasicBlock* bb);
787
788  /**
789   * @brief Check if the temporary ssa register vector is allocated
790   */
791  void CheckSSARegisterVector();
792
793  /**
794   * @brief Combine BasicBlocks
795   * @param the BasicBlock we are considering
796   */
797  void CombineBlocks(BasicBlock* bb);
798
799  void ClearAllVisitedFlags();
800  /*
801   * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
802   * we can verify that all catch entries have native PC entries.
803   */
804  std::set<uint32_t> catches_;
805
806  // TODO: make these private.
807  RegLocation* reg_location_;                         // Map SSA names to location.
808  SafeMap<unsigned int, unsigned int> block_id_map_;  // Block collapse lookup cache.
809
810  static const uint64_t oat_data_flow_attributes_[kMirOpLast];
811  static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];
812  static const uint32_t analysis_attributes_[kMirOpLast];
813
814 private:
815  int FindCommonParent(int block1, int block2);
816  void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
817                         const ArenaBitVector* src2);
818  void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
819                       ArenaBitVector* live_in_v, int dalvik_reg_id);
820  void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
821  void CompilerInitializeSSAConversion();
822  bool DoSSAConversion(BasicBlock* bb);
823  bool InvokeUsesMethodStar(MIR* mir);
824  int ParseInsn(const uint16_t* code_ptr, DecodedInstruction* decoded_instruction);
825  bool ContentIsInsn(const uint16_t* code_ptr);
826  BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block,
827                         BasicBlock** immed_pred_block_p);
828  BasicBlock* FindBlock(DexOffset code_offset, bool split, bool create,
829                        BasicBlock** immed_pred_block_p);
830  void ProcessTryCatchBlocks();
831  BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
832                               int flags, const uint16_t* code_ptr, const uint16_t* code_end);
833  BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
834                               int flags);
835  BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
836                              int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
837                              const uint16_t* code_end);
838  int AddNewSReg(int v_reg);
839  void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
840  void HandleSSADef(int* defs, int dalvik_reg, int reg_index);
841  void DataFlowSSAFormat35C(MIR* mir);
842  void DataFlowSSAFormat3RC(MIR* mir);
843  bool FindLocalLiveIn(BasicBlock* bb);
844  bool InferTypeAndSize(BasicBlock* bb, MIR* mir, bool changed);
845  bool VerifyPredInfo(BasicBlock* bb);
846  BasicBlock* NeedsVisit(BasicBlock* bb);
847  BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
848  void MarkPreOrder(BasicBlock* bb);
849  void RecordDFSOrders(BasicBlock* bb);
850  void ComputeDFSOrders();
851  void ComputeDefBlockMatrix();
852  void ComputeDomPostOrderTraversal(BasicBlock* bb);
853  void ComputeDominators();
854  void InsertPhiNodes();
855  void DoDFSPreOrderSSARename(BasicBlock* block);
856  void SetConstant(int32_t ssa_reg, int value);
857  void SetConstantWide(int ssa_reg, int64_t value);
858  int GetSSAUseCount(int s_reg);
859  bool BasicBlockOpt(BasicBlock* bb);
860  bool BuildExtendedBBList(struct BasicBlock* bb);
861  bool FillDefBlockMatrix(BasicBlock* bb);
862  void InitializeDominationInfo(BasicBlock* bb);
863  bool ComputeblockIDom(BasicBlock* bb);
864  bool ComputeBlockDominators(BasicBlock* bb);
865  bool SetDominators(BasicBlock* bb);
866  bool ComputeBlockLiveIns(BasicBlock* bb);
867  bool ComputeDominanceFrontier(BasicBlock* bb);
868
869  void CountChecks(BasicBlock* bb);
870  void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats);
871  bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default);
872
873  CompilationUnit* const cu_;
874  GrowableArray<int>* ssa_base_vregs_;
875  GrowableArray<int>* ssa_subscripts_;
876  // Map original Dalvik virtual reg i to the current SSA name.
877  int* vreg_to_ssa_map_;            // length == method->registers_size
878  int* ssa_last_defs_;              // length == method->registers_size
879  ArenaBitVector* is_constant_v_;   // length == num_ssa_reg
880  int* constant_values_;            // length == num_ssa_reg
881  // Use counts of ssa names.
882  GrowableArray<uint32_t> use_counts_;      // Weighted by nesting depth
883  GrowableArray<uint32_t> raw_use_counts_;  // Not weighted
884  unsigned int num_reachable_blocks_;
885  GrowableArray<BasicBlockId>* dfs_order_;
886  GrowableArray<BasicBlockId>* dfs_post_order_;
887  GrowableArray<BasicBlockId>* dom_post_order_traversal_;
888  int* i_dom_list_;
889  ArenaBitVector** def_block_matrix_;    // num_dalvik_register x num_blocks.
890  ArenaBitVector* temp_block_v_;
891  ArenaBitVector* temp_dalvik_register_v_;
892  ArenaBitVector* temp_ssa_register_v_;  // num_ssa_regs.
893  static const int kInvalidEntry = -1;
894  GrowableArray<BasicBlock*> block_list_;
895  ArenaBitVector* try_block_addr_;
896  BasicBlock* entry_block_;
897  BasicBlock* exit_block_;
898  int num_blocks_;
899  const DexFile::CodeItem* current_code_item_;
900  GrowableArray<uint16_t> dex_pc_to_block_map_;  // FindBlock lookup cache.
901  std::vector<DexCompilationUnit*> m_units_;     // List of methods included in this graph
902  typedef std::pair<int, int> MIRLocation;       // Insert point, (m_unit_ index, offset)
903  std::vector<MIRLocation> method_stack_;        // Include stack
904  int current_method_;
905  DexOffset current_offset_;                     // Offset in code units
906  int def_count_;                                // Used to estimate size of ssa name storage.
907  int* opcode_count_;                            // Dex opcode coverage stats.
908  int num_ssa_regs_;                             // Number of names following SSA transformation.
909  std::vector<BasicBlockId> extended_basic_blocks_;  // Heads of block "traces".
910  int method_sreg_;
911  unsigned int attributes_;
912  Checkstats* checkstats_;
913  ArenaAllocator* arena_;
914  int backward_branches_;
915  int forward_branches_;
916  GrowableArray<CompilerTemp*> compiler_temps_;
917  size_t num_non_special_compiler_temps_;
918  size_t max_available_non_special_compiler_temps_;
919  size_t max_available_special_compiler_temps_;
920
921  friend class LocalValueNumberingTest;
922};
923
924}  // namespace art
925
926#endif  // ART_COMPILER_DEX_MIR_GRAPH_H_
927