mir_graph.h revision c3db20b7e6f847339d6ecbd89846c173a7ccc967
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
18#define ART_COMPILER_DEX_MIR_GRAPH_H_
19
20#include <stdint.h>
21
22#include "dex_file.h"
23#include "dex_instruction.h"
24#include "compiler_ir.h"
25#include "invoke_type.h"
26#include "mir_field_info.h"
27#include "mir_method_info.h"
28#include "utils/arena_bit_vector.h"
29#include "utils/growable_array.h"
30#include "reg_storage.h"
31
32namespace art {
33
34enum InstructionAnalysisAttributePos {
35  kUninterestingOp = 0,
36  kArithmeticOp,
37  kFPOp,
38  kSingleOp,
39  kDoubleOp,
40  kIntOp,
41  kLongOp,
42  kBranchOp,
43  kInvokeOp,
44  kArrayOp,
45  kHeavyweightOp,
46  kSimpleConstOp,
47  kMoveOp,
48  kSwitch
49};
50
51#define AN_NONE (1 << kUninterestingOp)
52#define AN_MATH (1 << kArithmeticOp)
53#define AN_FP (1 << kFPOp)
54#define AN_LONG (1 << kLongOp)
55#define AN_INT (1 << kIntOp)
56#define AN_SINGLE (1 << kSingleOp)
57#define AN_DOUBLE (1 << kDoubleOp)
58#define AN_FLOATMATH (1 << kFPOp)
59#define AN_BRANCH (1 << kBranchOp)
60#define AN_INVOKE (1 << kInvokeOp)
61#define AN_ARRAYOP (1 << kArrayOp)
62#define AN_HEAVYWEIGHT (1 << kHeavyweightOp)
63#define AN_SIMPLECONST (1 << kSimpleConstOp)
64#define AN_MOVE (1 << kMoveOp)
65#define AN_SWITCH (1 << kSwitch)
66#define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST)
67
68enum DataFlowAttributePos {
69  kUA = 0,
70  kUB,
71  kUC,
72  kAWide,
73  kBWide,
74  kCWide,
75  kDA,
76  kIsMove,
77  kSetsConst,
78  kFormat35c,
79  kFormat3rc,
80  kNullCheckSrc0,        // Null check of uses[0].
81  kNullCheckSrc1,        // Null check of uses[1].
82  kNullCheckSrc2,        // Null check of uses[2].
83  kNullCheckOut0,        // Null check out outgoing arg0.
84  kDstNonNull,           // May assume dst is non-null.
85  kRetNonNull,           // May assume retval is non-null.
86  kNullTransferSrc0,     // Object copy src[0] -> dst.
87  kNullTransferSrcN,     // Phi null check state transfer.
88  kRangeCheckSrc1,       // Range check of uses[1].
89  kRangeCheckSrc2,       // Range check of uses[2].
90  kRangeCheckSrc3,       // Range check of uses[3].
91  kFPA,
92  kFPB,
93  kFPC,
94  kCoreA,
95  kCoreB,
96  kCoreC,
97  kRefA,
98  kRefB,
99  kRefC,
100  kUsesMethodStar,       // Implicit use of Method*.
101  kUsesIField,           // Accesses an instance field (IGET/IPUT).
102  kUsesSField,           // Accesses a static field (SGET/SPUT).
103  kDoLVN,                // Worth computing local value numbers.
104};
105
106#define DF_NOP                  UINT64_C(0)
107#define DF_UA                   (UINT64_C(1) << kUA)
108#define DF_UB                   (UINT64_C(1) << kUB)
109#define DF_UC                   (UINT64_C(1) << kUC)
110#define DF_A_WIDE               (UINT64_C(1) << kAWide)
111#define DF_B_WIDE               (UINT64_C(1) << kBWide)
112#define DF_C_WIDE               (UINT64_C(1) << kCWide)
113#define DF_DA                   (UINT64_C(1) << kDA)
114#define DF_IS_MOVE              (UINT64_C(1) << kIsMove)
115#define DF_SETS_CONST           (UINT64_C(1) << kSetsConst)
116#define DF_FORMAT_35C           (UINT64_C(1) << kFormat35c)
117#define DF_FORMAT_3RC           (UINT64_C(1) << kFormat3rc)
118#define DF_NULL_CHK_0           (UINT64_C(1) << kNullCheckSrc0)
119#define DF_NULL_CHK_1           (UINT64_C(1) << kNullCheckSrc1)
120#define DF_NULL_CHK_2           (UINT64_C(1) << kNullCheckSrc2)
121#define DF_NULL_CHK_OUT0        (UINT64_C(1) << kNullCheckOut0)
122#define DF_NON_NULL_DST         (UINT64_C(1) << kDstNonNull)
123#define DF_NON_NULL_RET         (UINT64_C(1) << kRetNonNull)
124#define DF_NULL_TRANSFER_0      (UINT64_C(1) << kNullTransferSrc0)
125#define DF_NULL_TRANSFER_N      (UINT64_C(1) << kNullTransferSrcN)
126#define DF_RANGE_CHK_1          (UINT64_C(1) << kRangeCheckSrc1)
127#define DF_RANGE_CHK_2          (UINT64_C(1) << kRangeCheckSrc2)
128#define DF_RANGE_CHK_3          (UINT64_C(1) << kRangeCheckSrc3)
129#define DF_FP_A                 (UINT64_C(1) << kFPA)
130#define DF_FP_B                 (UINT64_C(1) << kFPB)
131#define DF_FP_C                 (UINT64_C(1) << kFPC)
132#define DF_CORE_A               (UINT64_C(1) << kCoreA)
133#define DF_CORE_B               (UINT64_C(1) << kCoreB)
134#define DF_CORE_C               (UINT64_C(1) << kCoreC)
135#define DF_REF_A                (UINT64_C(1) << kRefA)
136#define DF_REF_B                (UINT64_C(1) << kRefB)
137#define DF_REF_C                (UINT64_C(1) << kRefC)
138#define DF_UMS                  (UINT64_C(1) << kUsesMethodStar)
139#define DF_IFIELD               (UINT64_C(1) << kUsesIField)
140#define DF_SFIELD               (UINT64_C(1) << kUsesSField)
141#define DF_LVN                  (UINT64_C(1) << kDoLVN)
142
143#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)
144
145#define DF_HAS_DEFS             (DF_DA)
146
147#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_0 | \
148                                 DF_NULL_CHK_1 | \
149                                 DF_NULL_CHK_2 | \
150                                 DF_NULL_CHK_OUT0)
151
152#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_1 | \
153                                 DF_RANGE_CHK_2 | \
154                                 DF_RANGE_CHK_3)
155
156#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
157                                 DF_HAS_RANGE_CHKS)
158
159#define DF_A_IS_REG             (DF_UA | DF_DA)
160#define DF_B_IS_REG             (DF_UB)
161#define DF_C_IS_REG             (DF_UC)
162#define DF_IS_GETTER_OR_SETTER  (DF_IS_GETTER | DF_IS_SETTER)
163#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
164#define DF_NULL_TRANSFER        (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)
165enum OatMethodAttributes {
166  kIsLeaf,            // Method is leaf.
167  kHasLoop,           // Method contains simple loop.
168};
169
170#define METHOD_IS_LEAF          (1 << kIsLeaf)
171#define METHOD_HAS_LOOP         (1 << kHasLoop)
172
173// Minimum field size to contain Dalvik v_reg number.
174#define VREG_NUM_WIDTH 16
175
176#define INVALID_SREG (-1)
177#define INVALID_VREG (0xFFFFU)
178#define INVALID_OFFSET (0xDEADF00FU)
179
180#define MIR_IGNORE_NULL_CHECK           (1 << kMIRIgnoreNullCheck)
181#define MIR_NULL_CHECK_ONLY             (1 << kMIRNullCheckOnly)
182#define MIR_IGNORE_RANGE_CHECK          (1 << kMIRIgnoreRangeCheck)
183#define MIR_RANGE_CHECK_ONLY            (1 << kMIRRangeCheckOnly)
184#define MIR_IGNORE_CLINIT_CHECK         (1 << kMIRIgnoreClInitCheck)
185#define MIR_INLINED                     (1 << kMIRInlined)
186#define MIR_INLINED_PRED                (1 << kMIRInlinedPred)
187#define MIR_CALLEE                      (1 << kMIRCallee)
188#define MIR_IGNORE_SUSPEND_CHECK        (1 << kMIRIgnoreSuspendCheck)
189#define MIR_DUP                         (1 << kMIRDup)
190
191#define BLOCK_NAME_LEN 80
192
193typedef uint16_t BasicBlockId;
194static const BasicBlockId NullBasicBlockId = 0;
195
196/*
197 * In general, vreg/sreg describe Dalvik registers that originated with dx.  However,
198 * it is useful to have compiler-generated temporary registers and have them treated
199 * in the same manner as dx-generated virtual registers.  This struct records the SSA
200 * name of compiler-introduced temporaries.
201 */
202struct CompilerTemp {
203  int32_t v_reg;      // Virtual register number for temporary.
204  int32_t s_reg_low;  // SSA name for low Dalvik word.
205};
206
207enum CompilerTempType {
208  kCompilerTempVR,                // A virtual register temporary.
209  kCompilerTempSpecialMethodPtr,  // Temporary that keeps track of current method pointer.
210};
211
212// When debug option enabled, records effectiveness of null and range check elimination.
213struct Checkstats {
214  int32_t null_checks;
215  int32_t null_checks_eliminated;
216  int32_t range_checks;
217  int32_t range_checks_eliminated;
218};
219
220// Dataflow attributes of a basic block.
221struct BasicBlockDataFlow {
222  ArenaBitVector* use_v;
223  ArenaBitVector* def_v;
224  ArenaBitVector* live_in_v;
225  ArenaBitVector* phi_v;
226  int32_t* vreg_to_ssa_map;
227  ArenaBitVector* ending_check_v;  // For null check and class init check elimination.
228};
229
230/*
231 * Normalized use/def for a MIR operation using SSA names rather than vregs.  Note that
232 * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
233 * vregs.  For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
234 * Following SSA renaming, this is the primary struct used by code generators to locate
235 * operand and result registers.  This is a somewhat confusing and unhelpful convention that
236 * we may want to revisit in the future.
237 */
238struct SSARepresentation {
239  int16_t num_uses;
240  int16_t num_defs;
241  int32_t* uses;
242  bool* fp_use;
243  int32_t* defs;
244  bool* fp_def;
245
246  static uint32_t GetStartUseIndex(Instruction::Code opcode);
247};
248
249/*
250 * The Midlevel Intermediate Representation node, which may be largely considered a
251 * wrapper around a Dalvik byte code.
252 */
253struct MIR {
254  /*
255   * TODO: remove embedded DecodedInstruction to save space, keeping only opcode.  Recover
256   * additional fields on as-needed basis.  Question: how to support MIR Pseudo-ops; probably
257   * need to carry aux data pointer.
258   */
259  struct DecodedInstruction {
260    uint32_t vA;
261    uint32_t vB;
262    uint64_t vB_wide;        /* for k51l */
263    uint32_t vC;
264    uint32_t arg[5];         /* vC/D/E/F/G in invoke or filled-new-array */
265    Instruction::Code opcode;
266
267    explicit DecodedInstruction():vA(0), vB(0), vB_wide(0), vC(0), opcode(Instruction::NOP) {
268    }
269
270    /*
271     * Given a decoded instruction representing a const bytecode, it updates
272     * the out arguments with proper values as dictated by the constant bytecode.
273     */
274    bool GetConstant(int64_t* ptr_value, bool* wide) const;
275
276    bool IsStore() const {
277      return ((Instruction::FlagsOf(opcode) & Instruction::kStore) == Instruction::kStore);
278    }
279
280    bool IsLoad() const {
281      return ((Instruction::FlagsOf(opcode) & Instruction::kLoad) == Instruction::kLoad);
282    }
283
284    bool IsConditionalBranch() const {
285      return (Instruction::FlagsOf(opcode) == (Instruction::kContinue | Instruction::kBranch));
286    }
287
288    /**
289     * @brief Is the register C component of the decoded instruction a constant?
290     */
291    bool IsCFieldOrConstant() const {
292      return ((Instruction::FlagsOf(opcode) & Instruction::kRegCFieldOrConstant) == Instruction::kRegCFieldOrConstant);
293    }
294
295    /**
296     * @brief Is the register C component of the decoded instruction a constant?
297     */
298    bool IsBFieldOrConstant() const {
299      return ((Instruction::FlagsOf(opcode) & Instruction::kRegBFieldOrConstant) == Instruction::kRegBFieldOrConstant);
300    }
301
302    bool IsCast() const {
303      return ((Instruction::FlagsOf(opcode) & Instruction::kCast) == Instruction::kCast);
304    }
305
306    /**
307     * @brief Does the instruction clobber memory?
308     * @details Clobber means that the instruction changes the memory not in a punctual way.
309     *          Therefore any supposition on memory aliasing or memory contents should be disregarded
310     *            when crossing such an instruction.
311     */
312    bool Clobbers() const {
313      return ((Instruction::FlagsOf(opcode) & Instruction::kClobber) == Instruction::kClobber);
314    }
315
316    bool IsLinear() const {
317      return (Instruction::FlagsOf(opcode) & (Instruction::kAdd | Instruction::kSubtract)) != 0;
318    }
319  } dalvikInsn;
320
321  NarrowDexOffset offset;         // Offset of the instruction in code units.
322  uint16_t optimization_flags;
323  int16_t m_unit_index;           // From which method was this MIR included
324  BasicBlockId bb;
325  MIR* next;
326  SSARepresentation* ssa_rep;
327  union {
328    // Incoming edges for phi node.
329    BasicBlockId* phi_incoming;
330    // Establish link from check instruction (kMirOpCheck) to the actual throwing instruction.
331    MIR* throw_insn;
332    // Branch condition for fused cmp or select.
333    ConditionCode ccode;
334    // IGET/IPUT lowering info index, points to MIRGraph::ifield_lowering_infos_. Due to limit on
335    // the number of code points (64K) and size of IGET/IPUT insn (2), this will never exceed 32K.
336    uint32_t ifield_lowering_info;
337    // SGET/SPUT lowering info index, points to MIRGraph::sfield_lowering_infos_. Due to limit on
338    // the number of code points (64K) and size of SGET/SPUT insn (2), this will never exceed 32K.
339    uint32_t sfield_lowering_info;
340    // INVOKE data index, points to MIRGraph::method_lowering_infos_.
341    uint32_t method_lowering_info;
342  } meta;
343
344  explicit MIR():offset(0), optimization_flags(0), m_unit_index(0), bb(NullBasicBlockId),
345                 next(nullptr), ssa_rep(nullptr) {
346    memset(&meta, 0, sizeof(meta));
347  }
348
349  uint32_t GetStartUseIndex() const {
350    return SSARepresentation::GetStartUseIndex(dalvikInsn.opcode);
351  }
352
353  MIR* Copy(CompilationUnit *c_unit);
354  MIR* Copy(MIRGraph* mir_Graph);
355
356  static void* operator new(size_t size, ArenaAllocator* arena) {
357    return arena->Alloc(sizeof(MIR), kArenaAllocMIR);
358  }
359  static void operator delete(void* p) {}  // Nop.
360};
361
362struct SuccessorBlockInfo;
363
364struct BasicBlock {
365  BasicBlockId id;
366  BasicBlockId dfs_id;
367  NarrowDexOffset start_offset;     // Offset in code units.
368  BasicBlockId fall_through;
369  BasicBlockId taken;
370  BasicBlockId i_dom;               // Immediate dominator.
371  uint16_t nesting_depth;
372  BBType block_type:4;
373  BlockListType successor_block_list_type:4;
374  bool visited:1;
375  bool hidden:1;
376  bool catch_entry:1;
377  bool explicit_throw:1;
378  bool conditional_branch:1;
379  bool terminated_by_return:1;  // Block ends with a Dalvik return opcode.
380  bool dominates_return:1;      // Is a member of return extended basic block.
381  bool use_lvn:1;               // Run local value numbering on this block.
382  MIR* first_mir_insn;
383  MIR* last_mir_insn;
384  BasicBlockDataFlow* data_flow_info;
385  ArenaBitVector* dominators;
386  ArenaBitVector* i_dominated;      // Set nodes being immediately dominated.
387  ArenaBitVector* dom_frontier;     // Dominance frontier.
388  GrowableArray<BasicBlockId>* predecessors;
389  GrowableArray<SuccessorBlockInfo*>* successor_blocks;
390
391  void AppendMIR(MIR* mir);
392  void PrependMIR(MIR* mir);
393  void InsertMIRAfter(MIR* current_mir, MIR* new_mir);
394  void InsertMIRBefore(MIR* current_mir, MIR* new_mir);
395  MIR* FindPreviousMIR(MIR* mir);
396
397  /**
398   * @brief Used to obtain the next MIR that follows unconditionally.
399   * @details The implementation does not guarantee that a MIR does not
400   * follow even if this method returns nullptr.
401   * @param mir_graph the MIRGraph.
402   * @param current The MIR for which to find an unconditional follower.
403   * @return Returns the following MIR if one can be found.
404   */
405  MIR* GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current);
406  bool RemoveMIR(MIR* mir);
407};
408
409/*
410 * The "blocks" field in "successor_block_list" points to an array of elements with the type
411 * "SuccessorBlockInfo".  For catch blocks, key is type index for the exception.  For swtich
412 * blocks, key is the case value.
413 */
414struct SuccessorBlockInfo {
415  BasicBlockId block;
416  int key;
417};
418
419/**
420 * @class ChildBlockIterator
421 * @brief Enable an easy iteration of the children.
422 */
423class ChildBlockIterator {
424 public:
425  /**
426   * @brief Constructs a child iterator.
427   * @param bb The basic whose children we need to iterate through.
428   * @param mir_graph The MIRGraph used to get the basic block during iteration.
429   */
430  ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph);
431  BasicBlock* Next();
432
433 private:
434  BasicBlock* basic_block_;
435  MIRGraph* mir_graph_;
436  bool visited_fallthrough_;
437  bool visited_taken_;
438  bool have_successors_;
439  GrowableArray<SuccessorBlockInfo*>::Iterator successor_iter_;
440};
441
442/*
443 * Whereas a SSA name describes a definition of a Dalvik vreg, the RegLocation describes
444 * the type of an SSA name (and, can also be used by code generators to record where the
445 * value is located (i.e. - physical register, frame, spill, etc.).  For each SSA name (SReg)
446 * there is a RegLocation.
447 * A note on SSA names:
448 *   o SSA names for Dalvik vRegs v0..vN will be assigned 0..N.  These represent the "vN_0"
449 *     names.  Negative SSA names represent special values not present in the Dalvik byte code.
450 *     For example, SSA name -1 represents an invalid SSA name, and SSA name -2 represents the
451 *     the Method pointer.  SSA names < -2 are reserved for future use.
452 *   o The vN_0 names for non-argument Dalvik should in practice never be used (as they would
453 *     represent the read of an undefined local variable).  The first definition of the
454 *     underlying Dalvik vReg will result in a vN_1 name.
455 *
456 * FIXME: The orig_sreg field was added as a workaround for llvm bitcode generation.  With
457 * the latest restructuring, we should be able to remove it and rely on s_reg_low throughout.
458 */
459struct RegLocation {
460  RegLocationType location:3;
461  unsigned wide:1;
462  unsigned defined:1;   // Do we know the type?
463  unsigned is_const:1;  // Constant, value in mir_graph->constant_values[].
464  unsigned fp:1;        // Floating point?
465  unsigned core:1;      // Non-floating point?
466  unsigned ref:1;       // Something GC cares about.
467  unsigned high_word:1;  // High word of pair?
468  unsigned home:1;      // Does this represent the home location?
469  RegStorage reg;       // Encoded physical registers.
470  int16_t s_reg_low;    // SSA name for low Dalvik word.
471  int16_t orig_sreg;    // TODO: remove after Bitcode gen complete
472                        // and consolidate usage w/ s_reg_low.
473};
474
475/*
476 * Collection of information describing an invoke, and the destination of
477 * the subsequent MOVE_RESULT (if applicable).  Collected as a unit to enable
478 * more efficient invoke code generation.
479 */
480struct CallInfo {
481  int num_arg_words;    // Note: word count, not arg count.
482  RegLocation* args;    // One for each word of arguments.
483  RegLocation result;   // Eventual target of MOVE_RESULT.
484  int opt_flags;
485  InvokeType type;
486  uint32_t dex_idx;
487  uint32_t index;       // Method idx for invokes, type idx for FilledNewArray.
488  uintptr_t direct_code;
489  uintptr_t direct_method;
490  RegLocation target;    // Target of following move_result.
491  bool skip_this;
492  bool is_range;
493  DexOffset offset;      // Offset in code units.
494  MIR* mir;
495};
496
497
498const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, RegStorage(), INVALID_SREG,
499                             INVALID_SREG};
500
501class MIRGraph {
502 public:
503  MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
504  ~MIRGraph();
505
506  /*
507   * Examine the graph to determine whether it's worthwile to spend the time compiling
508   * this method.
509   */
510  bool SkipCompilation();
511
512  /*
513   * Should we skip the compilation of this method based on its name?
514   */
515  bool SkipCompilation(const std::string& methodname);
516
517  /*
518   * Parse dex method and add MIR at current insert point.  Returns id (which is
519   * actually the index of the method in the m_units_ array).
520   */
521  void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
522                    InvokeType invoke_type, uint16_t class_def_idx,
523                    uint32_t method_idx, jobject class_loader, const DexFile& dex_file);
524
525  /* Find existing block */
526  BasicBlock* FindBlock(DexOffset code_offset) {
527    return FindBlock(code_offset, false, false, NULL);
528  }
529
530  const uint16_t* GetCurrentInsns() const {
531    return current_code_item_->insns_;
532  }
533
534  const uint16_t* GetInsns(int m_unit_index) const {
535    return m_units_[m_unit_index]->GetCodeItem()->insns_;
536  }
537
538  int GetNumBlocks() const {
539    return num_blocks_;
540  }
541
542  size_t GetNumDalvikInsns() const {
543    return cu_->code_item->insns_size_in_code_units_;
544  }
545
546  ArenaBitVector* GetTryBlockAddr() const {
547    return try_block_addr_;
548  }
549
550  BasicBlock* GetEntryBlock() const {
551    return entry_block_;
552  }
553
554  BasicBlock* GetExitBlock() const {
555    return exit_block_;
556  }
557
558  BasicBlock* GetBasicBlock(int block_id) const {
559    return (block_id == NullBasicBlockId) ? NULL : block_list_.Get(block_id);
560  }
561
562  size_t GetBasicBlockListCount() const {
563    return block_list_.Size();
564  }
565
566  GrowableArray<BasicBlock*>* GetBlockList() {
567    return &block_list_;
568  }
569
570  GrowableArray<BasicBlockId>* GetDfsOrder() {
571    return dfs_order_;
572  }
573
574  GrowableArray<BasicBlockId>* GetDfsPostOrder() {
575    return dfs_post_order_;
576  }
577
578  GrowableArray<BasicBlockId>* GetDomPostOrder() {
579    return dom_post_order_traversal_;
580  }
581
582  int GetDefCount() const {
583    return def_count_;
584  }
585
586  ArenaAllocator* GetArena() {
587    return arena_;
588  }
589
590  void EnableOpcodeCounting() {
591    opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int),
592                                                    kArenaAllocMisc));
593  }
594
595  void ShowOpcodeStats();
596
597  DexCompilationUnit* GetCurrentDexCompilationUnit() const {
598    return m_units_[current_method_];
599  }
600
601  /**
602   * @brief Dump a CFG into a dot file format.
603   * @param dir_prefix the directory the file will be created in.
604   * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks.
605   * @param suffix does the filename require a suffix or not (default = nullptr).
606   */
607  void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr);
608
609  bool HasFieldAccess() const {
610    return (merged_df_flags_ & (DF_IFIELD | DF_SFIELD)) != 0u;
611  }
612
613  bool HasStaticFieldAccess() const {
614    return (merged_df_flags_ & DF_SFIELD) != 0u;
615  }
616
617  bool HasInvokes() const {
618    // NOTE: These formats include the rare filled-new-array/range.
619    return (merged_df_flags_ & (DF_FORMAT_35C | DF_FORMAT_3RC)) != 0u;
620  }
621
622  void DoCacheFieldLoweringInfo();
623
624  const MirIFieldLoweringInfo& GetIFieldLoweringInfo(MIR* mir) const {
625    DCHECK_LT(mir->meta.ifield_lowering_info, ifield_lowering_infos_.Size());
626    return ifield_lowering_infos_.GetRawStorage()[mir->meta.ifield_lowering_info];
627  }
628
629  const MirSFieldLoweringInfo& GetSFieldLoweringInfo(MIR* mir) const {
630    DCHECK_LT(mir->meta.sfield_lowering_info, sfield_lowering_infos_.Size());
631    return sfield_lowering_infos_.GetRawStorage()[mir->meta.sfield_lowering_info];
632  }
633
634  void DoCacheMethodLoweringInfo();
635
636  const MirMethodLoweringInfo& GetMethodLoweringInfo(MIR* mir) {
637    DCHECK_LT(mir->meta.method_lowering_info, method_lowering_infos_.Size());
638    return method_lowering_infos_.GetRawStorage()[mir->meta.method_lowering_info];
639  }
640
641  void ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput);
642
643  void InitRegLocations();
644
645  void RemapRegLocations();
646
647  void DumpRegLocTable(RegLocation* table, int count);
648
649  void BasicBlockOptimization();
650
651  bool IsConst(int32_t s_reg) const {
652    return is_constant_v_->IsBitSet(s_reg);
653  }
654
655  bool IsConst(RegLocation loc) const {
656    return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg);
657  }
658
659  int32_t ConstantValue(RegLocation loc) const {
660    DCHECK(IsConst(loc));
661    return constant_values_[loc.orig_sreg];
662  }
663
664  int32_t ConstantValue(int32_t s_reg) const {
665    DCHECK(IsConst(s_reg));
666    return constant_values_[s_reg];
667  }
668
669  int64_t ConstantValueWide(RegLocation loc) const {
670    DCHECK(IsConst(loc));
671    return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
672        Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
673  }
674
675  bool IsConstantNullRef(RegLocation loc) const {
676    return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
677  }
678
679  int GetNumSSARegs() const {
680    return num_ssa_regs_;
681  }
682
683  void SetNumSSARegs(int new_num) {
684     /*
685      * TODO: It's theoretically possible to exceed 32767, though any cases which did
686      * would be filtered out with current settings.  When orig_sreg field is removed
687      * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK().
688      */
689    DCHECK_EQ(new_num, static_cast<int16_t>(new_num));
690    num_ssa_regs_ = new_num;
691  }
692
693  unsigned int GetNumReachableBlocks() const {
694    return num_reachable_blocks_;
695  }
696
697  int GetUseCount(int vreg) const {
698    return use_counts_.Get(vreg);
699  }
700
701  int GetRawUseCount(int vreg) const {
702    return raw_use_counts_.Get(vreg);
703  }
704
705  int GetSSASubscript(int ssa_reg) const {
706    return ssa_subscripts_->Get(ssa_reg);
707  }
708
709  RegLocation GetRawSrc(MIR* mir, int num) {
710    DCHECK(num < mir->ssa_rep->num_uses);
711    RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
712    return res;
713  }
714
715  RegLocation GetRawDest(MIR* mir) {
716    DCHECK_GT(mir->ssa_rep->num_defs, 0);
717    RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
718    return res;
719  }
720
721  RegLocation GetDest(MIR* mir) {
722    RegLocation res = GetRawDest(mir);
723    DCHECK(!res.wide);
724    return res;
725  }
726
727  RegLocation GetSrc(MIR* mir, int num) {
728    RegLocation res = GetRawSrc(mir, num);
729    DCHECK(!res.wide);
730    return res;
731  }
732
733  RegLocation GetDestWide(MIR* mir) {
734    RegLocation res = GetRawDest(mir);
735    DCHECK(res.wide);
736    return res;
737  }
738
739  RegLocation GetSrcWide(MIR* mir, int low) {
740    RegLocation res = GetRawSrc(mir, low);
741    DCHECK(res.wide);
742    return res;
743  }
744
745  RegLocation GetBadLoc() {
746    return bad_loc;
747  }
748
749  int GetMethodSReg() const {
750    return method_sreg_;
751  }
752
753  /**
754   * @brief Used to obtain the number of compiler temporaries being used.
755   * @return Returns the number of compiler temporaries.
756   */
757  size_t GetNumUsedCompilerTemps() const {
758    size_t total_num_temps = compiler_temps_.Size();
759    DCHECK_LE(num_non_special_compiler_temps_, total_num_temps);
760    return total_num_temps;
761  }
762
763  /**
764   * @brief Used to obtain the number of non-special compiler temporaries being used.
765   * @return Returns the number of non-special compiler temporaries.
766   */
767  size_t GetNumNonSpecialCompilerTemps() const {
768    return num_non_special_compiler_temps_;
769  }
770
771  /**
772   * @brief Used to set the total number of available non-special compiler temporaries.
773   * @details Can fail setting the new max if there are more temps being used than the new_max.
774   * @param new_max The new maximum number of non-special compiler temporaries.
775   * @return Returns true if the max was set and false if failed to set.
776   */
777  bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) {
778    if (new_max < GetNumNonSpecialCompilerTemps()) {
779      return false;
780    } else {
781      max_available_non_special_compiler_temps_ = new_max;
782      return true;
783    }
784  }
785
786  /**
787   * @brief Provides the number of non-special compiler temps available.
788   * @details Even if this returns zero, special compiler temps are guaranteed to be available.
789   * @return Returns the number of available temps.
790   */
791  size_t GetNumAvailableNonSpecialCompilerTemps();
792
793  /**
794   * @brief Used to obtain an existing compiler temporary.
795   * @param index The index of the temporary which must be strictly less than the
796   * number of temporaries.
797   * @return Returns the temporary that was asked for.
798   */
799  CompilerTemp* GetCompilerTemp(size_t index) const {
800    return compiler_temps_.Get(index);
801  }
802
803  /**
804   * @brief Used to obtain the maximum number of compiler temporaries that can be requested.
805   * @return Returns the maximum number of compiler temporaries, whether used or not.
806   */
807  size_t GetMaxPossibleCompilerTemps() const {
808    return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_;
809  }
810
811  /**
812   * @brief Used to obtain a new unique compiler temporary.
813   * @param ct_type Type of compiler temporary requested.
814   * @param wide Whether we should allocate a wide temporary.
815   * @return Returns the newly created compiler temporary.
816   */
817  CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide);
818
819  bool MethodIsLeaf() {
820    return attributes_ & METHOD_IS_LEAF;
821  }
822
823  RegLocation GetRegLocation(int index) {
824    DCHECK((index >= 0) && (index < num_ssa_regs_));
825    return reg_location_[index];
826  }
827
828  RegLocation GetMethodLoc() {
829    return reg_location_[method_sreg_];
830  }
831
832  bool IsBackedge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
833    return ((target_bb_id != NullBasicBlockId) &&
834            (GetBasicBlock(target_bb_id)->start_offset <= branch_bb->start_offset));
835  }
836
837  bool IsBackwardsBranch(BasicBlock* branch_bb) {
838    return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through);
839  }
840
841  void CountBranch(DexOffset target_offset) {
842    if (target_offset <= current_offset_) {
843      backward_branches_++;
844    } else {
845      forward_branches_++;
846    }
847  }
848
849  int GetBranchCount() {
850    return backward_branches_ + forward_branches_;
851  }
852
853  bool IsPseudoMirOp(Instruction::Code opcode) {
854    return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst);
855  }
856
857  bool IsPseudoMirOp(int opcode) {
858    return opcode >= static_cast<int>(kMirOpFirst);
859  }
860
861  // Is this vreg in the in set?
862  bool IsInVReg(int vreg) {
863    return (vreg >= cu_->num_regs);
864  }
865
866  void DumpCheckStats();
867  MIR* FindMoveResult(BasicBlock* bb, MIR* mir);
868  int SRegToVReg(int ssa_reg) const;
869  void VerifyDataflow();
870  void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
871  void EliminateNullChecksAndInferTypesStart();
872  bool EliminateNullChecksAndInferTypes(BasicBlock *bb);
873  void EliminateNullChecksAndInferTypesEnd();
874  bool EliminateClassInitChecksGate();
875  bool EliminateClassInitChecks(BasicBlock* bb);
876  void EliminateClassInitChecksEnd();
877  /*
878   * Type inference handling helpers.  Because Dalvik's bytecode is not fully typed,
879   * we have to do some work to figure out the sreg type.  For some operations it is
880   * clear based on the opcode (i.e. ADD_FLOAT v0, v1, v2), but for others (MOVE), we
881   * may never know the "real" type.
882   *
883   * We perform the type inference operation by using an iterative  walk over
884   * the graph, propagating types "defined" by typed opcodes to uses and defs in
885   * non-typed opcodes (such as MOVE).  The Setxx(index) helpers are used to set defined
886   * types on typed opcodes (such as ADD_INT).  The Setxx(index, is_xx) form is used to
887   * propagate types through non-typed opcodes such as PHI and MOVE.  The is_xx flag
888   * tells whether our guess of the type is based on a previously typed definition.
889   * If so, the defined type takes precedence.  Note that it's possible to have the same sreg
890   * show multiple defined types because dx treats constants as untyped bit patterns.
891   * The return value of the Setxx() helpers says whether or not the Setxx() action changed
892   * the current guess, and is used to know when to terminate the iterative walk.
893   */
894  bool SetFp(int index, bool is_fp);
895  bool SetFp(int index);
896  bool SetCore(int index, bool is_core);
897  bool SetCore(int index);
898  bool SetRef(int index, bool is_ref);
899  bool SetRef(int index);
900  bool SetWide(int index, bool is_wide);
901  bool SetWide(int index);
902  bool SetHigh(int index, bool is_high);
903  bool SetHigh(int index);
904
905  char* GetDalvikDisassembly(const MIR* mir);
906  void ReplaceSpecialChars(std::string& str);
907  std::string GetSSAName(int ssa_reg);
908  std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
909  void GetBlockName(BasicBlock* bb, char* name);
910  const char* GetShortyFromTargetIdx(int);
911  void DumpMIRGraph();
912  CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
913  BasicBlock* NewMemBB(BBType block_type, int block_id);
914  MIR* NewMIR();
915  MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir);
916  BasicBlock* NextDominatedBlock(BasicBlock* bb);
917  bool LayoutBlocks(BasicBlock* bb);
918
919  bool InlineCallsGate();
920  void InlineCallsStart();
921  void InlineCalls(BasicBlock* bb);
922  void InlineCallsEnd();
923
924  /**
925   * @brief Perform the initial preparation for the Method Uses.
926   */
927  void InitializeMethodUses();
928
929  /**
930   * @brief Perform the initial preparation for the Constant Propagation.
931   */
932  void InitializeConstantPropagation();
933
934  /**
935   * @brief Perform the initial preparation for the SSA Transformation.
936   */
937  void InitializeSSATransformation();
938
939  /**
940   * @brief Insert a the operands for the Phi nodes.
941   * @param bb the considered BasicBlock.
942   * @return true
943   */
944  bool InsertPhiNodeOperands(BasicBlock* bb);
945
946  /**
947   * @brief Perform constant propagation on a BasicBlock.
948   * @param bb the considered BasicBlock.
949   */
950  void DoConstantPropagation(BasicBlock* bb);
951
952  /**
953   * @brief Count the uses in the BasicBlock
954   * @param bb the BasicBlock
955   */
956  void CountUses(struct BasicBlock* bb);
957
958  static uint64_t GetDataFlowAttributes(Instruction::Code opcode);
959  static uint64_t GetDataFlowAttributes(MIR* mir);
960
961  /**
962   * @brief Combine BasicBlocks
963   * @param the BasicBlock we are considering
964   */
965  void CombineBlocks(BasicBlock* bb);
966
967  void ClearAllVisitedFlags();
968  /*
969   * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
970   * we can verify that all catch entries have native PC entries.
971   */
972  std::set<uint32_t> catches_;
973
974  // TODO: make these private.
975  RegLocation* reg_location_;                         // Map SSA names to location.
976  SafeMap<unsigned int, unsigned int> block_id_map_;  // Block collapse lookup cache.
977
978  static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];
979  static const uint32_t analysis_attributes_[kMirOpLast];
980
981  void HandleSSADef(int* defs, int dalvik_reg, int reg_index);
982  bool InferTypeAndSize(BasicBlock* bb, MIR* mir, bool changed);
983  void ComputeDFSOrders();
984
985 protected:
986  int FindCommonParent(int block1, int block2);
987  void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
988                         const ArenaBitVector* src2);
989  void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
990                       ArenaBitVector* live_in_v, int dalvik_reg_id);
991  void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
992  void CompilerInitializeSSAConversion();
993  bool DoSSAConversion(BasicBlock* bb);
994  bool InvokeUsesMethodStar(MIR* mir);
995  int ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction);
996  bool ContentIsInsn(const uint16_t* code_ptr);
997  BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block,
998                         BasicBlock** immed_pred_block_p);
999  BasicBlock* FindBlock(DexOffset code_offset, bool split, bool create,
1000                        BasicBlock** immed_pred_block_p);
1001  void ProcessTryCatchBlocks();
1002  BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1003                               int flags, const uint16_t* code_ptr, const uint16_t* code_end);
1004  BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1005                               int flags);
1006  BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1007                              int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
1008                              const uint16_t* code_end);
1009  int AddNewSReg(int v_reg);
1010  void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
1011  void DataFlowSSAFormat35C(MIR* mir);
1012  void DataFlowSSAFormat3RC(MIR* mir);
1013  bool FindLocalLiveIn(BasicBlock* bb);
1014  bool VerifyPredInfo(BasicBlock* bb);
1015  BasicBlock* NeedsVisit(BasicBlock* bb);
1016  BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
1017  void MarkPreOrder(BasicBlock* bb);
1018  void RecordDFSOrders(BasicBlock* bb);
1019  void ComputeDefBlockMatrix();
1020  void ComputeDomPostOrderTraversal(BasicBlock* bb);
1021  void ComputeDominators();
1022  void InsertPhiNodes();
1023  void DoDFSPreOrderSSARename(BasicBlock* block);
1024  void SetConstant(int32_t ssa_reg, int value);
1025  void SetConstantWide(int ssa_reg, int64_t value);
1026  int GetSSAUseCount(int s_reg);
1027  bool BasicBlockOpt(BasicBlock* bb);
1028  bool BuildExtendedBBList(struct BasicBlock* bb);
1029  bool FillDefBlockMatrix(BasicBlock* bb);
1030  void InitializeDominationInfo(BasicBlock* bb);
1031  bool ComputeblockIDom(BasicBlock* bb);
1032  bool ComputeBlockDominators(BasicBlock* bb);
1033  bool SetDominators(BasicBlock* bb);
1034  bool ComputeBlockLiveIns(BasicBlock* bb);
1035  bool ComputeDominanceFrontier(BasicBlock* bb);
1036
1037  void CountChecks(BasicBlock* bb);
1038  void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats);
1039  bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default);
1040
1041  CompilationUnit* const cu_;
1042  GrowableArray<int>* ssa_base_vregs_;
1043  GrowableArray<int>* ssa_subscripts_;
1044  // Map original Dalvik virtual reg i to the current SSA name.
1045  int* vreg_to_ssa_map_;            // length == method->registers_size
1046  int* ssa_last_defs_;              // length == method->registers_size
1047  ArenaBitVector* is_constant_v_;   // length == num_ssa_reg
1048  int* constant_values_;            // length == num_ssa_reg
1049  // Use counts of ssa names.
1050  GrowableArray<uint32_t> use_counts_;      // Weighted by nesting depth
1051  GrowableArray<uint32_t> raw_use_counts_;  // Not weighted
1052  unsigned int num_reachable_blocks_;
1053  GrowableArray<BasicBlockId>* dfs_order_;
1054  GrowableArray<BasicBlockId>* dfs_post_order_;
1055  GrowableArray<BasicBlockId>* dom_post_order_traversal_;
1056  int* i_dom_list_;
1057  ArenaBitVector** def_block_matrix_;    // num_dalvik_register x num_blocks.
1058  ArenaBitVector* temp_dalvik_register_v_;
1059  std::unique_ptr<ScopedArenaAllocator> temp_scoped_alloc_;
1060  uint16_t* temp_insn_data_;
1061  uint32_t temp_bit_vector_size_;
1062  ArenaBitVector* temp_bit_vector_;
1063  static const int kInvalidEntry = -1;
1064  GrowableArray<BasicBlock*> block_list_;
1065  ArenaBitVector* try_block_addr_;
1066  BasicBlock* entry_block_;
1067  BasicBlock* exit_block_;
1068  int num_blocks_;
1069  const DexFile::CodeItem* current_code_item_;
1070  GrowableArray<uint16_t> dex_pc_to_block_map_;  // FindBlock lookup cache.
1071  std::vector<DexCompilationUnit*> m_units_;     // List of methods included in this graph
1072  typedef std::pair<int, int> MIRLocation;       // Insert point, (m_unit_ index, offset)
1073  std::vector<MIRLocation> method_stack_;        // Include stack
1074  int current_method_;
1075  DexOffset current_offset_;                     // Offset in code units
1076  int def_count_;                                // Used to estimate size of ssa name storage.
1077  int* opcode_count_;                            // Dex opcode coverage stats.
1078  int num_ssa_regs_;                             // Number of names following SSA transformation.
1079  std::vector<BasicBlockId> extended_basic_blocks_;  // Heads of block "traces".
1080  int method_sreg_;
1081  unsigned int attributes_;
1082  Checkstats* checkstats_;
1083  ArenaAllocator* arena_;
1084  int backward_branches_;
1085  int forward_branches_;
1086  GrowableArray<CompilerTemp*> compiler_temps_;
1087  size_t num_non_special_compiler_temps_;
1088  size_t max_available_non_special_compiler_temps_;
1089  size_t max_available_special_compiler_temps_;
1090  bool punt_to_interpreter_;                    // Difficult or not worthwhile - just interpret.
1091  uint64_t merged_df_flags_;
1092  GrowableArray<MirIFieldLoweringInfo> ifield_lowering_infos_;
1093  GrowableArray<MirSFieldLoweringInfo> sfield_lowering_infos_;
1094  GrowableArray<MirMethodLoweringInfo> method_lowering_infos_;
1095  static const uint64_t oat_data_flow_attributes_[kMirOpLast];
1096
1097  friend class ClassInitCheckEliminationTest;
1098  friend class LocalValueNumberingTest;
1099};
1100
1101}  // namespace art
1102
1103#endif  // ART_COMPILER_DEX_MIR_GRAPH_H_
1104