mir_graph.h revision cdacac4a8196bdc620185079ec9e886329606f3d
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
18#define ART_COMPILER_DEX_MIR_GRAPH_H_
19
20#include <stdint.h>
21
22#include "dex_file.h"
23#include "dex_instruction.h"
24#include "compiler_ir.h"
25#include "invoke_type.h"
26#include "mir_field_info.h"
27#include "mir_method_info.h"
28#include "utils/arena_bit_vector.h"
29#include "utils/growable_array.h"
30#include "reg_storage.h"
31
32namespace art {
33
34enum InstructionAnalysisAttributePos {
35  kUninterestingOp = 0,
36  kArithmeticOp,
37  kFPOp,
38  kSingleOp,
39  kDoubleOp,
40  kIntOp,
41  kLongOp,
42  kBranchOp,
43  kInvokeOp,
44  kArrayOp,
45  kHeavyweightOp,
46  kSimpleConstOp,
47  kMoveOp,
48  kSwitch
49};
50
51#define AN_NONE (1 << kUninterestingOp)
52#define AN_MATH (1 << kArithmeticOp)
53#define AN_FP (1 << kFPOp)
54#define AN_LONG (1 << kLongOp)
55#define AN_INT (1 << kIntOp)
56#define AN_SINGLE (1 << kSingleOp)
57#define AN_DOUBLE (1 << kDoubleOp)
58#define AN_FLOATMATH (1 << kFPOp)
59#define AN_BRANCH (1 << kBranchOp)
60#define AN_INVOKE (1 << kInvokeOp)
61#define AN_ARRAYOP (1 << kArrayOp)
62#define AN_HEAVYWEIGHT (1 << kHeavyweightOp)
63#define AN_SIMPLECONST (1 << kSimpleConstOp)
64#define AN_MOVE (1 << kMoveOp)
65#define AN_SWITCH (1 << kSwitch)
66#define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST)
67
68enum DataFlowAttributePos {
69  kUA = 0,
70  kUB,
71  kUC,
72  kAWide,
73  kBWide,
74  kCWide,
75  kDA,
76  kIsMove,
77  kSetsConst,
78  kFormat35c,
79  kFormat3rc,
80  kNullCheckSrc0,        // Null check of uses[0].
81  kNullCheckSrc1,        // Null check of uses[1].
82  kNullCheckSrc2,        // Null check of uses[2].
83  kNullCheckOut0,        // Null check out outgoing arg0.
84  kDstNonNull,           // May assume dst is non-null.
85  kRetNonNull,           // May assume retval is non-null.
86  kNullTransferSrc0,     // Object copy src[0] -> dst.
87  kNullTransferSrcN,     // Phi null check state transfer.
88  kRangeCheckSrc1,       // Range check of uses[1].
89  kRangeCheckSrc2,       // Range check of uses[2].
90  kRangeCheckSrc3,       // Range check of uses[3].
91  kFPA,
92  kFPB,
93  kFPC,
94  kCoreA,
95  kCoreB,
96  kCoreC,
97  kRefA,
98  kRefB,
99  kRefC,
100  kUsesMethodStar,       // Implicit use of Method*.
101  kUsesIField,           // Accesses an instance field (IGET/IPUT).
102  kUsesSField,           // Accesses a static field (SGET/SPUT).
103  kDoLVN,                // Worth computing local value numbers.
104};
105
106#define DF_NOP                  UINT64_C(0)
107#define DF_UA                   (UINT64_C(1) << kUA)
108#define DF_UB                   (UINT64_C(1) << kUB)
109#define DF_UC                   (UINT64_C(1) << kUC)
110#define DF_A_WIDE               (UINT64_C(1) << kAWide)
111#define DF_B_WIDE               (UINT64_C(1) << kBWide)
112#define DF_C_WIDE               (UINT64_C(1) << kCWide)
113#define DF_DA                   (UINT64_C(1) << kDA)
114#define DF_IS_MOVE              (UINT64_C(1) << kIsMove)
115#define DF_SETS_CONST           (UINT64_C(1) << kSetsConst)
116#define DF_FORMAT_35C           (UINT64_C(1) << kFormat35c)
117#define DF_FORMAT_3RC           (UINT64_C(1) << kFormat3rc)
118#define DF_NULL_CHK_0           (UINT64_C(1) << kNullCheckSrc0)
119#define DF_NULL_CHK_1           (UINT64_C(1) << kNullCheckSrc1)
120#define DF_NULL_CHK_2           (UINT64_C(1) << kNullCheckSrc2)
121#define DF_NULL_CHK_OUT0        (UINT64_C(1) << kNullCheckOut0)
122#define DF_NON_NULL_DST         (UINT64_C(1) << kDstNonNull)
123#define DF_NON_NULL_RET         (UINT64_C(1) << kRetNonNull)
124#define DF_NULL_TRANSFER_0      (UINT64_C(1) << kNullTransferSrc0)
125#define DF_NULL_TRANSFER_N      (UINT64_C(1) << kNullTransferSrcN)
126#define DF_RANGE_CHK_1          (UINT64_C(1) << kRangeCheckSrc1)
127#define DF_RANGE_CHK_2          (UINT64_C(1) << kRangeCheckSrc2)
128#define DF_RANGE_CHK_3          (UINT64_C(1) << kRangeCheckSrc3)
129#define DF_FP_A                 (UINT64_C(1) << kFPA)
130#define DF_FP_B                 (UINT64_C(1) << kFPB)
131#define DF_FP_C                 (UINT64_C(1) << kFPC)
132#define DF_CORE_A               (UINT64_C(1) << kCoreA)
133#define DF_CORE_B               (UINT64_C(1) << kCoreB)
134#define DF_CORE_C               (UINT64_C(1) << kCoreC)
135#define DF_REF_A                (UINT64_C(1) << kRefA)
136#define DF_REF_B                (UINT64_C(1) << kRefB)
137#define DF_REF_C                (UINT64_C(1) << kRefC)
138#define DF_UMS                  (UINT64_C(1) << kUsesMethodStar)
139#define DF_IFIELD               (UINT64_C(1) << kUsesIField)
140#define DF_SFIELD               (UINT64_C(1) << kUsesSField)
141#define DF_LVN                  (UINT64_C(1) << kDoLVN)
142
143#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)
144
145#define DF_HAS_DEFS             (DF_DA)
146
147#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_0 | \
148                                 DF_NULL_CHK_1 | \
149                                 DF_NULL_CHK_2 | \
150                                 DF_NULL_CHK_OUT0)
151
152#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_1 | \
153                                 DF_RANGE_CHK_2 | \
154                                 DF_RANGE_CHK_3)
155
156#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
157                                 DF_HAS_RANGE_CHKS)
158
159#define DF_A_IS_REG             (DF_UA | DF_DA)
160#define DF_B_IS_REG             (DF_UB)
161#define DF_C_IS_REG             (DF_UC)
162#define DF_IS_GETTER_OR_SETTER  (DF_IS_GETTER | DF_IS_SETTER)
163#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
164#define DF_NULL_TRANSFER        (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)
165enum OatMethodAttributes {
166  kIsLeaf,            // Method is leaf.
167  kHasLoop,           // Method contains simple loop.
168};
169
170#define METHOD_IS_LEAF          (1 << kIsLeaf)
171#define METHOD_HAS_LOOP         (1 << kHasLoop)
172
173// Minimum field size to contain Dalvik v_reg number.
174#define VREG_NUM_WIDTH 16
175
176#define INVALID_SREG (-1)
177#define INVALID_VREG (0xFFFFU)
178#define INVALID_REG (0x7F)
179#define INVALID_OFFSET (0xDEADF00FU)
180
181#define MIR_IGNORE_NULL_CHECK           (1 << kMIRIgnoreNullCheck)
182#define MIR_NULL_CHECK_ONLY             (1 << kMIRNullCheckOnly)
183#define MIR_IGNORE_RANGE_CHECK          (1 << kMIRIgnoreRangeCheck)
184#define MIR_RANGE_CHECK_ONLY            (1 << kMIRRangeCheckOnly)
185#define MIR_IGNORE_CLINIT_CHECK         (1 << kMIRIgnoreClInitCheck)
186#define MIR_INLINED                     (1 << kMIRInlined)
187#define MIR_INLINED_PRED                (1 << kMIRInlinedPred)
188#define MIR_CALLEE                      (1 << kMIRCallee)
189#define MIR_IGNORE_SUSPEND_CHECK        (1 << kMIRIgnoreSuspendCheck)
190#define MIR_DUP                         (1 << kMIRDup)
191
192#define BLOCK_NAME_LEN 80
193
194typedef uint16_t BasicBlockId;
195static const BasicBlockId NullBasicBlockId = 0;
196
197/*
198 * In general, vreg/sreg describe Dalvik registers that originated with dx.  However,
199 * it is useful to have compiler-generated temporary registers and have them treated
200 * in the same manner as dx-generated virtual registers.  This struct records the SSA
201 * name of compiler-introduced temporaries.
202 */
203struct CompilerTemp {
204  int32_t v_reg;      // Virtual register number for temporary.
205  int32_t s_reg_low;  // SSA name for low Dalvik word.
206};
207
208enum CompilerTempType {
209  kCompilerTempVR,                // A virtual register temporary.
210  kCompilerTempSpecialMethodPtr,  // Temporary that keeps track of current method pointer.
211};
212
213// When debug option enabled, records effectiveness of null and range check elimination.
214struct Checkstats {
215  int32_t null_checks;
216  int32_t null_checks_eliminated;
217  int32_t range_checks;
218  int32_t range_checks_eliminated;
219};
220
221// Dataflow attributes of a basic block.
222struct BasicBlockDataFlow {
223  ArenaBitVector* use_v;
224  ArenaBitVector* def_v;
225  ArenaBitVector* live_in_v;
226  ArenaBitVector* phi_v;
227  int32_t* vreg_to_ssa_map;
228  ArenaBitVector* ending_check_v;  // For null check and class init check elimination.
229};
230
231/*
232 * Normalized use/def for a MIR operation using SSA names rather than vregs.  Note that
233 * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
234 * vregs.  For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
235 * Following SSA renaming, this is the primary struct used by code generators to locate
236 * operand and result registers.  This is a somewhat confusing and unhelpful convention that
237 * we may want to revisit in the future.
238 */
239struct SSARepresentation {
240  int16_t num_uses;
241  int16_t num_defs;
242  int32_t* uses;
243  bool* fp_use;
244  int32_t* defs;
245  bool* fp_def;
246};
247
248/*
249 * The Midlevel Intermediate Representation node, which may be largely considered a
250 * wrapper around a Dalvik byte code.
251 */
252struct MIR {
253  /*
254   * TODO: remove embedded DecodedInstruction to save space, keeping only opcode.  Recover
255   * additional fields on as-needed basis.  Question: how to support MIR Pseudo-ops; probably
256   * need to carry aux data pointer.
257   */
258  DecodedInstruction dalvikInsn;
259  uint16_t width;                 // Note: width can include switch table or fill array data.
260  NarrowDexOffset offset;         // Offset of the instruction in code units.
261  uint16_t optimization_flags;
262  int16_t m_unit_index;           // From which method was this MIR included
263  MIR* next;
264  SSARepresentation* ssa_rep;
265  union {
266    // Incoming edges for phi node.
267    BasicBlockId* phi_incoming;
268    // Establish link from check instruction (kMirOpCheck) to the actual throwing instruction.
269    MIR* throw_insn;
270    // Branch condition for fused cmp or select.
271    ConditionCode ccode;
272    // IGET/IPUT lowering info index, points to MIRGraph::ifield_lowering_infos_. Due to limit on
273    // the number of code points (64K) and size of IGET/IPUT insn (2), this will never exceed 32K.
274    uint32_t ifield_lowering_info;
275    // SGET/SPUT lowering info index, points to MIRGraph::sfield_lowering_infos_. Due to limit on
276    // the number of code points (64K) and size of SGET/SPUT insn (2), this will never exceed 32K.
277    uint32_t sfield_lowering_info;
278    // INVOKE data index, points to MIRGraph::method_lowering_infos_.
279    uint32_t method_lowering_info;
280  } meta;
281};
282
283struct SuccessorBlockInfo;
284
285struct BasicBlock {
286  BasicBlockId id;
287  BasicBlockId dfs_id;
288  NarrowDexOffset start_offset;     // Offset in code units.
289  BasicBlockId fall_through;
290  BasicBlockId taken;
291  BasicBlockId i_dom;               // Immediate dominator.
292  uint16_t nesting_depth;
293  BBType block_type:4;
294  BlockListType successor_block_list_type:4;
295  bool visited:1;
296  bool hidden:1;
297  bool catch_entry:1;
298  bool explicit_throw:1;
299  bool conditional_branch:1;
300  bool terminated_by_return:1;  // Block ends with a Dalvik return opcode.
301  bool dominates_return:1;      // Is a member of return extended basic block.
302  bool use_lvn:1;               // Run local value numbering on this block.
303  MIR* first_mir_insn;
304  MIR* last_mir_insn;
305  BasicBlockDataFlow* data_flow_info;
306  ArenaBitVector* dominators;
307  ArenaBitVector* i_dominated;      // Set nodes being immediately dominated.
308  ArenaBitVector* dom_frontier;     // Dominance frontier.
309  GrowableArray<BasicBlockId>* predecessors;
310  GrowableArray<SuccessorBlockInfo*>* successor_blocks;
311
312  void AppendMIR(MIR* mir);
313  void PrependMIR(MIR* mir);
314  void InsertMIRAfter(MIR* current_mir, MIR* new_mir);
315
316  /**
317   * @brief Used to obtain the next MIR that follows unconditionally.
318   * @details The implementation does not guarantee that a MIR does not
319   * follow even if this method returns nullptr.
320   * @param mir_graph the MIRGraph.
321   * @param current The MIR for which to find an unconditional follower.
322   * @return Returns the following MIR if one can be found.
323   */
324  MIR* GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current);
325};
326
327/*
328 * The "blocks" field in "successor_block_list" points to an array of elements with the type
329 * "SuccessorBlockInfo".  For catch blocks, key is type index for the exception.  For swtich
330 * blocks, key is the case value.
331 */
332struct SuccessorBlockInfo {
333  BasicBlockId block;
334  int key;
335};
336
337/*
338 * Whereas a SSA name describes a definition of a Dalvik vreg, the RegLocation describes
339 * the type of an SSA name (and, can also be used by code generators to record where the
340 * value is located (i.e. - physical register, frame, spill, etc.).  For each SSA name (SReg)
341 * there is a RegLocation.
342 * A note on SSA names:
343 *   o SSA names for Dalvik vRegs v0..vN will be assigned 0..N.  These represent the "vN_0"
344 *     names.  Negative SSA names represent special values not present in the Dalvik byte code.
345 *     For example, SSA name -1 represents an invalid SSA name, and SSA name -2 represents the
346 *     the Method pointer.  SSA names < -2 are reserved for future use.
347 *   o The vN_0 names for non-argument Dalvik should in practice never be used (as they would
348 *     represent the read of an undefined local variable).  The first definition of the
349 *     underlying Dalvik vReg will result in a vN_1 name.
350 *
351 * FIXME: The orig_sreg field was added as a workaround for llvm bitcode generation.  With
352 * the latest restructuring, we should be able to remove it and rely on s_reg_low throughout.
353 */
354struct RegLocation {
355  RegLocationType location:3;
356  unsigned wide:1;
357  unsigned defined:1;   // Do we know the type?
358  unsigned is_const:1;  // Constant, value in mir_graph->constant_values[].
359  unsigned fp:1;        // Floating point?
360  unsigned core:1;      // Non-floating point?
361  unsigned ref:1;       // Something GC cares about.
362  unsigned high_word:1;  // High word of pair?
363  unsigned home:1;      // Does this represent the home location?
364  VectorLengthType vec_len:3;  // TODO: remove.  Is this value in a vector register, and how big is it?
365  RegStorage reg;       // Encoded physical registers.
366  int16_t s_reg_low;    // SSA name for low Dalvik word.
367  int16_t orig_sreg;    // TODO: remove after Bitcode gen complete
368                        // and consolidate usage w/ s_reg_low.
369
370  bool IsVectorScalar() const { return vec_len == kVectorLength4 || vec_len == kVectorLength8;}
371};
372
373/*
374 * Collection of information describing an invoke, and the destination of
375 * the subsequent MOVE_RESULT (if applicable).  Collected as a unit to enable
376 * more efficient invoke code generation.
377 */
378struct CallInfo {
379  int num_arg_words;    // Note: word count, not arg count.
380  RegLocation* args;    // One for each word of arguments.
381  RegLocation result;   // Eventual target of MOVE_RESULT.
382  int opt_flags;
383  InvokeType type;
384  uint32_t dex_idx;
385  uint32_t index;       // Method idx for invokes, type idx for FilledNewArray.
386  uintptr_t direct_code;
387  uintptr_t direct_method;
388  RegLocation target;    // Target of following move_result.
389  bool skip_this;
390  bool is_range;
391  DexOffset offset;      // Offset in code units.
392  MIR* mir;
393};
394
395
396const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, kVectorNotUsed,
397                             RegStorage(RegStorage::kInvalid), INVALID_SREG, INVALID_SREG};
398
399class MIRGraph {
400 public:
401  MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
402  ~MIRGraph();
403
404  /*
405   * Examine the graph to determine whether it's worthwile to spend the time compiling
406   * this method.
407   */
408  bool SkipCompilation();
409
410  /*
411   * Should we skip the compilation of this method based on its name?
412   */
413  bool SkipCompilation(const std::string& methodname);
414
415  /*
416   * Parse dex method and add MIR at current insert point.  Returns id (which is
417   * actually the index of the method in the m_units_ array).
418   */
419  void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
420                    InvokeType invoke_type, uint16_t class_def_idx,
421                    uint32_t method_idx, jobject class_loader, const DexFile& dex_file);
422
423  /* Find existing block */
424  BasicBlock* FindBlock(DexOffset code_offset) {
425    return FindBlock(code_offset, false, false, NULL);
426  }
427
428  const uint16_t* GetCurrentInsns() const {
429    return current_code_item_->insns_;
430  }
431
432  const uint16_t* GetInsns(int m_unit_index) const {
433    return m_units_[m_unit_index]->GetCodeItem()->insns_;
434  }
435
436  int GetNumBlocks() const {
437    return num_blocks_;
438  }
439
440  size_t GetNumDalvikInsns() const {
441    return cu_->code_item->insns_size_in_code_units_;
442  }
443
444  ArenaBitVector* GetTryBlockAddr() const {
445    return try_block_addr_;
446  }
447
448  BasicBlock* GetEntryBlock() const {
449    return entry_block_;
450  }
451
452  BasicBlock* GetExitBlock() const {
453    return exit_block_;
454  }
455
456  BasicBlock* GetBasicBlock(int block_id) const {
457    return (block_id == NullBasicBlockId) ? NULL : block_list_.Get(block_id);
458  }
459
460  size_t GetBasicBlockListCount() const {
461    return block_list_.Size();
462  }
463
464  GrowableArray<BasicBlock*>* GetBlockList() {
465    return &block_list_;
466  }
467
468  GrowableArray<BasicBlockId>* GetDfsOrder() {
469    return dfs_order_;
470  }
471
472  GrowableArray<BasicBlockId>* GetDfsPostOrder() {
473    return dfs_post_order_;
474  }
475
476  GrowableArray<BasicBlockId>* GetDomPostOrder() {
477    return dom_post_order_traversal_;
478  }
479
480  int GetDefCount() const {
481    return def_count_;
482  }
483
484  ArenaAllocator* GetArena() {
485    return arena_;
486  }
487
488  void EnableOpcodeCounting() {
489    opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int),
490                                                    kArenaAllocMisc));
491  }
492
493  void ShowOpcodeStats();
494
495  DexCompilationUnit* GetCurrentDexCompilationUnit() const {
496    return m_units_[current_method_];
497  }
498
499  /**
500   * @brief Dump a CFG into a dot file format.
501   * @param dir_prefix the directory the file will be created in.
502   * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks.
503   * @param suffix does the filename require a suffix or not (default = nullptr).
504   */
505  void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr);
506
507  bool HasFieldAccess() const {
508    return (merged_df_flags_ & (DF_IFIELD | DF_SFIELD)) != 0u;
509  }
510
511  bool HasStaticFieldAccess() const {
512    return (merged_df_flags_ & DF_SFIELD) != 0u;
513  }
514
515  bool HasInvokes() const {
516    // NOTE: These formats include the rare filled-new-array/range.
517    return (merged_df_flags_ & (DF_FORMAT_35C | DF_FORMAT_3RC)) != 0u;
518  }
519
520  void DoCacheFieldLoweringInfo();
521
522  const MirIFieldLoweringInfo& GetIFieldLoweringInfo(MIR* mir) const {
523    DCHECK_LT(mir->meta.ifield_lowering_info, ifield_lowering_infos_.Size());
524    return ifield_lowering_infos_.GetRawStorage()[mir->meta.ifield_lowering_info];
525  }
526
527  const MirSFieldLoweringInfo& GetSFieldLoweringInfo(MIR* mir) const {
528    DCHECK_LT(mir->meta.sfield_lowering_info, sfield_lowering_infos_.Size());
529    return sfield_lowering_infos_.GetRawStorage()[mir->meta.sfield_lowering_info];
530  }
531
532  void DoCacheMethodLoweringInfo();
533
534  const MirMethodLoweringInfo& GetMethodLoweringInfo(MIR* mir) {
535    DCHECK_LT(mir->meta.method_lowering_info, method_lowering_infos_.Size());
536    return method_lowering_infos_.GetRawStorage()[mir->meta.method_lowering_info];
537  }
538
539  void ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput);
540
541  void InitRegLocations();
542
543  void RemapRegLocations();
544
545  void DumpRegLocTable(RegLocation* table, int count);
546
547  void BasicBlockOptimization();
548
549  bool IsConst(int32_t s_reg) const {
550    return is_constant_v_->IsBitSet(s_reg);
551  }
552
553  bool IsConst(RegLocation loc) const {
554    return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg);
555  }
556
557  int32_t ConstantValue(RegLocation loc) const {
558    DCHECK(IsConst(loc));
559    return constant_values_[loc.orig_sreg];
560  }
561
562  int32_t ConstantValue(int32_t s_reg) const {
563    DCHECK(IsConst(s_reg));
564    return constant_values_[s_reg];
565  }
566
567  int64_t ConstantValueWide(RegLocation loc) const {
568    DCHECK(IsConst(loc));
569    return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
570        Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
571  }
572
573  bool IsConstantNullRef(RegLocation loc) const {
574    return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
575  }
576
577  int GetNumSSARegs() const {
578    return num_ssa_regs_;
579  }
580
581  void SetNumSSARegs(int new_num) {
582     /*
583      * TODO: It's theoretically possible to exceed 32767, though any cases which did
584      * would be filtered out with current settings.  When orig_sreg field is removed
585      * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK().
586      */
587    DCHECK_EQ(new_num, static_cast<int16_t>(new_num));
588    num_ssa_regs_ = new_num;
589  }
590
591  unsigned int GetNumReachableBlocks() const {
592    return num_reachable_blocks_;
593  }
594
595  int GetUseCount(int vreg) const {
596    return use_counts_.Get(vreg);
597  }
598
599  int GetRawUseCount(int vreg) const {
600    return raw_use_counts_.Get(vreg);
601  }
602
603  int GetSSASubscript(int ssa_reg) const {
604    return ssa_subscripts_->Get(ssa_reg);
605  }
606
607  RegLocation GetRawSrc(MIR* mir, int num) {
608    DCHECK(num < mir->ssa_rep->num_uses);
609    RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
610    return res;
611  }
612
613  RegLocation GetRawDest(MIR* mir) {
614    DCHECK_GT(mir->ssa_rep->num_defs, 0);
615    RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
616    return res;
617  }
618
619  RegLocation GetDest(MIR* mir) {
620    RegLocation res = GetRawDest(mir);
621    DCHECK(!res.wide);
622    return res;
623  }
624
625  RegLocation GetSrc(MIR* mir, int num) {
626    RegLocation res = GetRawSrc(mir, num);
627    DCHECK(!res.wide);
628    return res;
629  }
630
631  RegLocation GetDestWide(MIR* mir) {
632    RegLocation res = GetRawDest(mir);
633    DCHECK(res.wide);
634    return res;
635  }
636
637  RegLocation GetSrcWide(MIR* mir, int low) {
638    RegLocation res = GetRawSrc(mir, low);
639    DCHECK(res.wide);
640    return res;
641  }
642
643  RegLocation GetBadLoc() {
644    return bad_loc;
645  }
646
647  int GetMethodSReg() const {
648    return method_sreg_;
649  }
650
651  /**
652   * @brief Used to obtain the number of compiler temporaries being used.
653   * @return Returns the number of compiler temporaries.
654   */
655  size_t GetNumUsedCompilerTemps() const {
656    size_t total_num_temps = compiler_temps_.Size();
657    DCHECK_LE(num_non_special_compiler_temps_, total_num_temps);
658    return total_num_temps;
659  }
660
661  /**
662   * @brief Used to obtain the number of non-special compiler temporaries being used.
663   * @return Returns the number of non-special compiler temporaries.
664   */
665  size_t GetNumNonSpecialCompilerTemps() const {
666    return num_non_special_compiler_temps_;
667  }
668
669  /**
670   * @brief Used to set the total number of available non-special compiler temporaries.
671   * @details Can fail setting the new max if there are more temps being used than the new_max.
672   * @param new_max The new maximum number of non-special compiler temporaries.
673   * @return Returns true if the max was set and false if failed to set.
674   */
675  bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) {
676    if (new_max < GetNumNonSpecialCompilerTemps()) {
677      return false;
678    } else {
679      max_available_non_special_compiler_temps_ = new_max;
680      return true;
681    }
682  }
683
684  /**
685   * @brief Provides the number of non-special compiler temps available.
686   * @details Even if this returns zero, special compiler temps are guaranteed to be available.
687   * @return Returns the number of available temps.
688   */
689  size_t GetNumAvailableNonSpecialCompilerTemps();
690
691  /**
692   * @brief Used to obtain an existing compiler temporary.
693   * @param index The index of the temporary which must be strictly less than the
694   * number of temporaries.
695   * @return Returns the temporary that was asked for.
696   */
697  CompilerTemp* GetCompilerTemp(size_t index) const {
698    return compiler_temps_.Get(index);
699  }
700
701  /**
702   * @brief Used to obtain the maximum number of compiler temporaries that can be requested.
703   * @return Returns the maximum number of compiler temporaries, whether used or not.
704   */
705  size_t GetMaxPossibleCompilerTemps() const {
706    return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_;
707  }
708
709  /**
710   * @brief Used to obtain a new unique compiler temporary.
711   * @param ct_type Type of compiler temporary requested.
712   * @param wide Whether we should allocate a wide temporary.
713   * @return Returns the newly created compiler temporary.
714   */
715  CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide);
716
717  bool MethodIsLeaf() {
718    return attributes_ & METHOD_IS_LEAF;
719  }
720
721  RegLocation GetRegLocation(int index) {
722    DCHECK((index >= 0) && (index < num_ssa_regs_));
723    return reg_location_[index];
724  }
725
726  RegLocation GetMethodLoc() {
727    return reg_location_[method_sreg_];
728  }
729
730  bool IsBackedge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
731    return ((target_bb_id != NullBasicBlockId) &&
732            (GetBasicBlock(target_bb_id)->start_offset <= branch_bb->start_offset));
733  }
734
735  bool IsBackwardsBranch(BasicBlock* branch_bb) {
736    return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through);
737  }
738
739  void CountBranch(DexOffset target_offset) {
740    if (target_offset <= current_offset_) {
741      backward_branches_++;
742    } else {
743      forward_branches_++;
744    }
745  }
746
747  int GetBranchCount() {
748    return backward_branches_ + forward_branches_;
749  }
750
751  bool IsPseudoMirOp(Instruction::Code opcode) {
752    return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst);
753  }
754
755  bool IsPseudoMirOp(int opcode) {
756    return opcode >= static_cast<int>(kMirOpFirst);
757  }
758
759  // Is this vreg in the in set?
760  bool IsInVReg(int vreg) {
761    return (vreg >= cu_->num_regs);
762  }
763
764  void DumpCheckStats();
765  MIR* FindMoveResult(BasicBlock* bb, MIR* mir);
766  int SRegToVReg(int ssa_reg) const;
767  void VerifyDataflow();
768  void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
769  void EliminateNullChecksAndInferTypesStart();
770  bool EliminateNullChecksAndInferTypes(BasicBlock *bb);
771  void EliminateNullChecksAndInferTypesEnd();
772  bool EliminateClassInitChecksGate();
773  bool EliminateClassInitChecks(BasicBlock* bb);
774  void EliminateClassInitChecksEnd();
775  /*
776   * Type inference handling helpers.  Because Dalvik's bytecode is not fully typed,
777   * we have to do some work to figure out the sreg type.  For some operations it is
778   * clear based on the opcode (i.e. ADD_FLOAT v0, v1, v2), but for others (MOVE), we
779   * may never know the "real" type.
780   *
781   * We perform the type inference operation by using an iterative  walk over
782   * the graph, propagating types "defined" by typed opcodes to uses and defs in
783   * non-typed opcodes (such as MOVE).  The Setxx(index) helpers are used to set defined
784   * types on typed opcodes (such as ADD_INT).  The Setxx(index, is_xx) form is used to
785   * propagate types through non-typed opcodes such as PHI and MOVE.  The is_xx flag
786   * tells whether our guess of the type is based on a previously typed definition.
787   * If so, the defined type takes precedence.  Note that it's possible to have the same sreg
788   * show multiple defined types because dx treats constants as untyped bit patterns.
789   * The return value of the Setxx() helpers says whether or not the Setxx() action changed
790   * the current guess, and is used to know when to terminate the iterative walk.
791   */
792  bool SetFp(int index, bool is_fp);
793  bool SetFp(int index);
794  bool SetCore(int index, bool is_core);
795  bool SetCore(int index);
796  bool SetRef(int index, bool is_ref);
797  bool SetRef(int index);
798  bool SetWide(int index, bool is_wide);
799  bool SetWide(int index);
800  bool SetHigh(int index, bool is_high);
801  bool SetHigh(int index);
802
803  char* GetDalvikDisassembly(const MIR* mir);
804  void ReplaceSpecialChars(std::string& str);
805  std::string GetSSAName(int ssa_reg);
806  std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
807  void GetBlockName(BasicBlock* bb, char* name);
808  const char* GetShortyFromTargetIdx(int);
809  void DumpMIRGraph();
810  CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
811  BasicBlock* NewMemBB(BBType block_type, int block_id);
812  MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir);
813  BasicBlock* NextDominatedBlock(BasicBlock* bb);
814  bool LayoutBlocks(BasicBlock* bb);
815
816  bool InlineCallsGate();
817  void InlineCallsStart();
818  void InlineCalls(BasicBlock* bb);
819  void InlineCallsEnd();
820
821  /**
822   * @brief Perform the initial preparation for the Method Uses.
823   */
824  void InitializeMethodUses();
825
826  /**
827   * @brief Perform the initial preparation for the Constant Propagation.
828   */
829  void InitializeConstantPropagation();
830
831  /**
832   * @brief Perform the initial preparation for the SSA Transformation.
833   */
834  void InitializeSSATransformation();
835
836  /**
837   * @brief Insert a the operands for the Phi nodes.
838   * @param bb the considered BasicBlock.
839   * @return true
840   */
841  bool InsertPhiNodeOperands(BasicBlock* bb);
842
843  /**
844   * @brief Perform constant propagation on a BasicBlock.
845   * @param bb the considered BasicBlock.
846   */
847  void DoConstantPropagation(BasicBlock* bb);
848
849  /**
850   * @brief Count the uses in the BasicBlock
851   * @param bb the BasicBlock
852   */
853  void CountUses(struct BasicBlock* bb);
854
855  /**
856   * @brief Combine BasicBlocks
857   * @param the BasicBlock we are considering
858   */
859  void CombineBlocks(BasicBlock* bb);
860
861  void ClearAllVisitedFlags();
862  /*
863   * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
864   * we can verify that all catch entries have native PC entries.
865   */
866  std::set<uint32_t> catches_;
867
868  // TODO: make these private.
869  RegLocation* reg_location_;                         // Map SSA names to location.
870  SafeMap<unsigned int, unsigned int> block_id_map_;  // Block collapse lookup cache.
871
872  static const uint64_t oat_data_flow_attributes_[kMirOpLast];
873  static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];
874  static const uint32_t analysis_attributes_[kMirOpLast];
875
876 private:
877  int FindCommonParent(int block1, int block2);
878  void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
879                         const ArenaBitVector* src2);
880  void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
881                       ArenaBitVector* live_in_v, int dalvik_reg_id);
882  void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
883  void CompilerInitializeSSAConversion();
884  bool DoSSAConversion(BasicBlock* bb);
885  bool InvokeUsesMethodStar(MIR* mir);
886  int ParseInsn(const uint16_t* code_ptr, DecodedInstruction* decoded_instruction);
887  bool ContentIsInsn(const uint16_t* code_ptr);
888  BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block,
889                         BasicBlock** immed_pred_block_p);
890  BasicBlock* FindBlock(DexOffset code_offset, bool split, bool create,
891                        BasicBlock** immed_pred_block_p);
892  void ProcessTryCatchBlocks();
893  BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
894                               int flags, const uint16_t* code_ptr, const uint16_t* code_end);
895  BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
896                               int flags);
897  BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
898                              int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
899                              const uint16_t* code_end);
900  int AddNewSReg(int v_reg);
901  void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
902  void HandleSSADef(int* defs, int dalvik_reg, int reg_index);
903  void DataFlowSSAFormat35C(MIR* mir);
904  void DataFlowSSAFormat3RC(MIR* mir);
905  bool FindLocalLiveIn(BasicBlock* bb);
906  bool InferTypeAndSize(BasicBlock* bb, MIR* mir, bool changed);
907  bool VerifyPredInfo(BasicBlock* bb);
908  BasicBlock* NeedsVisit(BasicBlock* bb);
909  BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
910  void MarkPreOrder(BasicBlock* bb);
911  void RecordDFSOrders(BasicBlock* bb);
912  void ComputeDFSOrders();
913  void ComputeDefBlockMatrix();
914  void ComputeDomPostOrderTraversal(BasicBlock* bb);
915  void ComputeDominators();
916  void InsertPhiNodes();
917  void DoDFSPreOrderSSARename(BasicBlock* block);
918  void SetConstant(int32_t ssa_reg, int value);
919  void SetConstantWide(int ssa_reg, int64_t value);
920  int GetSSAUseCount(int s_reg);
921  bool BasicBlockOpt(BasicBlock* bb);
922  bool BuildExtendedBBList(struct BasicBlock* bb);
923  bool FillDefBlockMatrix(BasicBlock* bb);
924  void InitializeDominationInfo(BasicBlock* bb);
925  bool ComputeblockIDom(BasicBlock* bb);
926  bool ComputeBlockDominators(BasicBlock* bb);
927  bool SetDominators(BasicBlock* bb);
928  bool ComputeBlockLiveIns(BasicBlock* bb);
929  bool ComputeDominanceFrontier(BasicBlock* bb);
930
931  void CountChecks(BasicBlock* bb);
932  void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats);
933  bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default);
934
935  CompilationUnit* const cu_;
936  GrowableArray<int>* ssa_base_vregs_;
937  GrowableArray<int>* ssa_subscripts_;
938  // Map original Dalvik virtual reg i to the current SSA name.
939  int* vreg_to_ssa_map_;            // length == method->registers_size
940  int* ssa_last_defs_;              // length == method->registers_size
941  ArenaBitVector* is_constant_v_;   // length == num_ssa_reg
942  int* constant_values_;            // length == num_ssa_reg
943  // Use counts of ssa names.
944  GrowableArray<uint32_t> use_counts_;      // Weighted by nesting depth
945  GrowableArray<uint32_t> raw_use_counts_;  // Not weighted
946  unsigned int num_reachable_blocks_;
947  GrowableArray<BasicBlockId>* dfs_order_;
948  GrowableArray<BasicBlockId>* dfs_post_order_;
949  GrowableArray<BasicBlockId>* dom_post_order_traversal_;
950  int* i_dom_list_;
951  ArenaBitVector** def_block_matrix_;    // num_dalvik_register x num_blocks.
952  ArenaBitVector* temp_dalvik_register_v_;
953  UniquePtr<ScopedArenaAllocator> temp_scoped_alloc_;
954  uint16_t* temp_insn_data_;
955  uint32_t temp_bit_vector_size_;
956  ArenaBitVector* temp_bit_vector_;
957  static const int kInvalidEntry = -1;
958  GrowableArray<BasicBlock*> block_list_;
959  ArenaBitVector* try_block_addr_;
960  BasicBlock* entry_block_;
961  BasicBlock* exit_block_;
962  int num_blocks_;
963  const DexFile::CodeItem* current_code_item_;
964  GrowableArray<uint16_t> dex_pc_to_block_map_;  // FindBlock lookup cache.
965  std::vector<DexCompilationUnit*> m_units_;     // List of methods included in this graph
966  typedef std::pair<int, int> MIRLocation;       // Insert point, (m_unit_ index, offset)
967  std::vector<MIRLocation> method_stack_;        // Include stack
968  int current_method_;
969  DexOffset current_offset_;                     // Offset in code units
970  int def_count_;                                // Used to estimate size of ssa name storage.
971  int* opcode_count_;                            // Dex opcode coverage stats.
972  int num_ssa_regs_;                             // Number of names following SSA transformation.
973  std::vector<BasicBlockId> extended_basic_blocks_;  // Heads of block "traces".
974  int method_sreg_;
975  unsigned int attributes_;
976  Checkstats* checkstats_;
977  ArenaAllocator* arena_;
978  int backward_branches_;
979  int forward_branches_;
980  GrowableArray<CompilerTemp*> compiler_temps_;
981  size_t num_non_special_compiler_temps_;
982  size_t max_available_non_special_compiler_temps_;
983  size_t max_available_special_compiler_temps_;
984  bool punt_to_interpreter_;                    // Difficult or not worthwhile - just interpret.
985  uint64_t merged_df_flags_;
986  GrowableArray<MirIFieldLoweringInfo> ifield_lowering_infos_;
987  GrowableArray<MirSFieldLoweringInfo> sfield_lowering_infos_;
988  GrowableArray<MirMethodLoweringInfo> method_lowering_infos_;
989
990  friend class ClassInitCheckEliminationTest;
991  friend class LocalValueNumberingTest;
992};
993
994}  // namespace art
995
996#endif  // ART_COMPILER_DEX_MIR_GRAPH_H_
997