mir_graph.h revision d4750f202170a448119c1813a964574bfea0dded
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
18#define ART_COMPILER_DEX_MIR_GRAPH_H_
19
20#include <stdint.h>
21
22#include "dex_file.h"
23#include "dex_instruction.h"
24#include "compiler_ir.h"
25#include "invoke_type.h"
26#include "mir_field_info.h"
27#include "mir_method_info.h"
28#include "utils/arena_bit_vector.h"
29#include "utils/growable_array.h"
30#include "reg_storage.h"
31
32namespace art {
33
34enum InstructionAnalysisAttributePos {
35  kUninterestingOp = 0,
36  kArithmeticOp,
37  kFPOp,
38  kSingleOp,
39  kDoubleOp,
40  kIntOp,
41  kLongOp,
42  kBranchOp,
43  kInvokeOp,
44  kArrayOp,
45  kHeavyweightOp,
46  kSimpleConstOp,
47  kMoveOp,
48  kSwitch
49};
50
51#define AN_NONE (1 << kUninterestingOp)
52#define AN_MATH (1 << kArithmeticOp)
53#define AN_FP (1 << kFPOp)
54#define AN_LONG (1 << kLongOp)
55#define AN_INT (1 << kIntOp)
56#define AN_SINGLE (1 << kSingleOp)
57#define AN_DOUBLE (1 << kDoubleOp)
58#define AN_FLOATMATH (1 << kFPOp)
59#define AN_BRANCH (1 << kBranchOp)
60#define AN_INVOKE (1 << kInvokeOp)
61#define AN_ARRAYOP (1 << kArrayOp)
62#define AN_HEAVYWEIGHT (1 << kHeavyweightOp)
63#define AN_SIMPLECONST (1 << kSimpleConstOp)
64#define AN_MOVE (1 << kMoveOp)
65#define AN_SWITCH (1 << kSwitch)
66#define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST)
67
68enum DataFlowAttributePos {
69  kUA = 0,
70  kUB,
71  kUC,
72  kAWide,
73  kBWide,
74  kCWide,
75  kDA,
76  kIsMove,
77  kSetsConst,
78  kFormat35c,
79  kFormat3rc,
80  kNullCheckSrc0,        // Null check of uses[0].
81  kNullCheckSrc1,        // Null check of uses[1].
82  kNullCheckSrc2,        // Null check of uses[2].
83  kNullCheckOut0,        // Null check out outgoing arg0.
84  kDstNonNull,           // May assume dst is non-null.
85  kRetNonNull,           // May assume retval is non-null.
86  kNullTransferSrc0,     // Object copy src[0] -> dst.
87  kNullTransferSrcN,     // Phi null check state transfer.
88  kRangeCheckSrc1,       // Range check of uses[1].
89  kRangeCheckSrc2,       // Range check of uses[2].
90  kRangeCheckSrc3,       // Range check of uses[3].
91  kFPA,
92  kFPB,
93  kFPC,
94  kCoreA,
95  kCoreB,
96  kCoreC,
97  kRefA,
98  kRefB,
99  kRefC,
100  kUsesMethodStar,       // Implicit use of Method*.
101  kUsesIField,           // Accesses an instance field (IGET/IPUT).
102  kUsesSField,           // Accesses a static field (SGET/SPUT).
103  kDoLVN,                // Worth computing local value numbers.
104};
105
106#define DF_NOP                  UINT64_C(0)
107#define DF_UA                   (UINT64_C(1) << kUA)
108#define DF_UB                   (UINT64_C(1) << kUB)
109#define DF_UC                   (UINT64_C(1) << kUC)
110#define DF_A_WIDE               (UINT64_C(1) << kAWide)
111#define DF_B_WIDE               (UINT64_C(1) << kBWide)
112#define DF_C_WIDE               (UINT64_C(1) << kCWide)
113#define DF_DA                   (UINT64_C(1) << kDA)
114#define DF_IS_MOVE              (UINT64_C(1) << kIsMove)
115#define DF_SETS_CONST           (UINT64_C(1) << kSetsConst)
116#define DF_FORMAT_35C           (UINT64_C(1) << kFormat35c)
117#define DF_FORMAT_3RC           (UINT64_C(1) << kFormat3rc)
118#define DF_NULL_CHK_0           (UINT64_C(1) << kNullCheckSrc0)
119#define DF_NULL_CHK_1           (UINT64_C(1) << kNullCheckSrc1)
120#define DF_NULL_CHK_2           (UINT64_C(1) << kNullCheckSrc2)
121#define DF_NULL_CHK_OUT0        (UINT64_C(1) << kNullCheckOut0)
122#define DF_NON_NULL_DST         (UINT64_C(1) << kDstNonNull)
123#define DF_NON_NULL_RET         (UINT64_C(1) << kRetNonNull)
124#define DF_NULL_TRANSFER_0      (UINT64_C(1) << kNullTransferSrc0)
125#define DF_NULL_TRANSFER_N      (UINT64_C(1) << kNullTransferSrcN)
126#define DF_RANGE_CHK_1          (UINT64_C(1) << kRangeCheckSrc1)
127#define DF_RANGE_CHK_2          (UINT64_C(1) << kRangeCheckSrc2)
128#define DF_RANGE_CHK_3          (UINT64_C(1) << kRangeCheckSrc3)
129#define DF_FP_A                 (UINT64_C(1) << kFPA)
130#define DF_FP_B                 (UINT64_C(1) << kFPB)
131#define DF_FP_C                 (UINT64_C(1) << kFPC)
132#define DF_CORE_A               (UINT64_C(1) << kCoreA)
133#define DF_CORE_B               (UINT64_C(1) << kCoreB)
134#define DF_CORE_C               (UINT64_C(1) << kCoreC)
135#define DF_REF_A                (UINT64_C(1) << kRefA)
136#define DF_REF_B                (UINT64_C(1) << kRefB)
137#define DF_REF_C                (UINT64_C(1) << kRefC)
138#define DF_UMS                  (UINT64_C(1) << kUsesMethodStar)
139#define DF_IFIELD               (UINT64_C(1) << kUsesIField)
140#define DF_SFIELD               (UINT64_C(1) << kUsesSField)
141#define DF_LVN                  (UINT64_C(1) << kDoLVN)
142
143#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)
144
145#define DF_HAS_DEFS             (DF_DA)
146
147#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_0 | \
148                                 DF_NULL_CHK_1 | \
149                                 DF_NULL_CHK_2 | \
150                                 DF_NULL_CHK_OUT0)
151
152#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_1 | \
153                                 DF_RANGE_CHK_2 | \
154                                 DF_RANGE_CHK_3)
155
156#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
157                                 DF_HAS_RANGE_CHKS)
158
159#define DF_A_IS_REG             (DF_UA | DF_DA)
160#define DF_B_IS_REG             (DF_UB)
161#define DF_C_IS_REG             (DF_UC)
162#define DF_IS_GETTER_OR_SETTER  (DF_IS_GETTER | DF_IS_SETTER)
163#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
164#define DF_NULL_TRANSFER        (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)
165enum OatMethodAttributes {
166  kIsLeaf,            // Method is leaf.
167  kHasLoop,           // Method contains simple loop.
168};
169
170#define METHOD_IS_LEAF          (1 << kIsLeaf)
171#define METHOD_HAS_LOOP         (1 << kHasLoop)
172
173// Minimum field size to contain Dalvik v_reg number.
174#define VREG_NUM_WIDTH 16
175
176#define INVALID_SREG (-1)
177#define INVALID_VREG (0xFFFFU)
178#define INVALID_OFFSET (0xDEADF00FU)
179
180#define MIR_IGNORE_NULL_CHECK           (1 << kMIRIgnoreNullCheck)
181#define MIR_NULL_CHECK_ONLY             (1 << kMIRNullCheckOnly)
182#define MIR_IGNORE_RANGE_CHECK          (1 << kMIRIgnoreRangeCheck)
183#define MIR_RANGE_CHECK_ONLY            (1 << kMIRRangeCheckOnly)
184#define MIR_IGNORE_CLINIT_CHECK         (1 << kMIRIgnoreClInitCheck)
185#define MIR_INLINED                     (1 << kMIRInlined)
186#define MIR_INLINED_PRED                (1 << kMIRInlinedPred)
187#define MIR_CALLEE                      (1 << kMIRCallee)
188#define MIR_IGNORE_SUSPEND_CHECK        (1 << kMIRIgnoreSuspendCheck)
189#define MIR_DUP                         (1 << kMIRDup)
190
191#define BLOCK_NAME_LEN 80
192
193typedef uint16_t BasicBlockId;
194static const BasicBlockId NullBasicBlockId = 0;
195
196/*
197 * In general, vreg/sreg describe Dalvik registers that originated with dx.  However,
198 * it is useful to have compiler-generated temporary registers and have them treated
199 * in the same manner as dx-generated virtual registers.  This struct records the SSA
200 * name of compiler-introduced temporaries.
201 */
202struct CompilerTemp {
203  int32_t v_reg;      // Virtual register number for temporary.
204  int32_t s_reg_low;  // SSA name for low Dalvik word.
205};
206
207enum CompilerTempType {
208  kCompilerTempVR,                // A virtual register temporary.
209  kCompilerTempSpecialMethodPtr,  // Temporary that keeps track of current method pointer.
210};
211
212// When debug option enabled, records effectiveness of null and range check elimination.
213struct Checkstats {
214  int32_t null_checks;
215  int32_t null_checks_eliminated;
216  int32_t range_checks;
217  int32_t range_checks_eliminated;
218};
219
220// Dataflow attributes of a basic block.
221struct BasicBlockDataFlow {
222  ArenaBitVector* use_v;
223  ArenaBitVector* def_v;
224  ArenaBitVector* live_in_v;
225  ArenaBitVector* phi_v;
226  int32_t* vreg_to_ssa_map;
227  ArenaBitVector* ending_check_v;  // For null check and class init check elimination.
228};
229
230/*
231 * Normalized use/def for a MIR operation using SSA names rather than vregs.  Note that
232 * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
233 * vregs.  For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
234 * Following SSA renaming, this is the primary struct used by code generators to locate
235 * operand and result registers.  This is a somewhat confusing and unhelpful convention that
236 * we may want to revisit in the future.
237 */
238struct SSARepresentation {
239  int16_t num_uses;
240  int16_t num_defs;
241  int32_t* uses;
242  bool* fp_use;
243  int32_t* defs;
244  bool* fp_def;
245};
246
247/*
248 * The Midlevel Intermediate Representation node, which may be largely considered a
249 * wrapper around a Dalvik byte code.
250 */
251struct MIR {
252  /*
253   * TODO: remove embedded DecodedInstruction to save space, keeping only opcode.  Recover
254   * additional fields on as-needed basis.  Question: how to support MIR Pseudo-ops; probably
255   * need to carry aux data pointer.
256   */
257  DecodedInstruction dalvikInsn;
258  uint16_t width;                 // Note: width can include switch table or fill array data.
259  NarrowDexOffset offset;         // Offset of the instruction in code units.
260  uint16_t optimization_flags;
261  int16_t m_unit_index;           // From which method was this MIR included
262  MIR* next;
263  SSARepresentation* ssa_rep;
264  union {
265    // Incoming edges for phi node.
266    BasicBlockId* phi_incoming;
267    // Establish link from check instruction (kMirOpCheck) to the actual throwing instruction.
268    MIR* throw_insn;
269    // Branch condition for fused cmp or select.
270    ConditionCode ccode;
271    // IGET/IPUT lowering info index, points to MIRGraph::ifield_lowering_infos_. Due to limit on
272    // the number of code points (64K) and size of IGET/IPUT insn (2), this will never exceed 32K.
273    uint32_t ifield_lowering_info;
274    // SGET/SPUT lowering info index, points to MIRGraph::sfield_lowering_infos_. Due to limit on
275    // the number of code points (64K) and size of SGET/SPUT insn (2), this will never exceed 32K.
276    uint32_t sfield_lowering_info;
277    // INVOKE data index, points to MIRGraph::method_lowering_infos_.
278    uint32_t method_lowering_info;
279  } meta;
280};
281
282struct SuccessorBlockInfo;
283
284struct BasicBlock {
285  BasicBlockId id;
286  BasicBlockId dfs_id;
287  NarrowDexOffset start_offset;     // Offset in code units.
288  BasicBlockId fall_through;
289  BasicBlockId taken;
290  BasicBlockId i_dom;               // Immediate dominator.
291  uint16_t nesting_depth;
292  BBType block_type:4;
293  BlockListType successor_block_list_type:4;
294  bool visited:1;
295  bool hidden:1;
296  bool catch_entry:1;
297  bool explicit_throw:1;
298  bool conditional_branch:1;
299  bool terminated_by_return:1;  // Block ends with a Dalvik return opcode.
300  bool dominates_return:1;      // Is a member of return extended basic block.
301  bool use_lvn:1;               // Run local value numbering on this block.
302  MIR* first_mir_insn;
303  MIR* last_mir_insn;
304  BasicBlockDataFlow* data_flow_info;
305  ArenaBitVector* dominators;
306  ArenaBitVector* i_dominated;      // Set nodes being immediately dominated.
307  ArenaBitVector* dom_frontier;     // Dominance frontier.
308  GrowableArray<BasicBlockId>* predecessors;
309  GrowableArray<SuccessorBlockInfo*>* successor_blocks;
310
311  void AppendMIR(MIR* mir);
312  void PrependMIR(MIR* mir);
313  void InsertMIRAfter(MIR* current_mir, MIR* new_mir);
314
315  /**
316   * @brief Used to obtain the next MIR that follows unconditionally.
317   * @details The implementation does not guarantee that a MIR does not
318   * follow even if this method returns nullptr.
319   * @param mir_graph the MIRGraph.
320   * @param current The MIR for which to find an unconditional follower.
321   * @return Returns the following MIR if one can be found.
322   */
323  MIR* GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current);
324};
325
326/*
327 * The "blocks" field in "successor_block_list" points to an array of elements with the type
328 * "SuccessorBlockInfo".  For catch blocks, key is type index for the exception.  For swtich
329 * blocks, key is the case value.
330 */
331struct SuccessorBlockInfo {
332  BasicBlockId block;
333  int key;
334};
335
336/*
337 * Whereas a SSA name describes a definition of a Dalvik vreg, the RegLocation describes
338 * the type of an SSA name (and, can also be used by code generators to record where the
339 * value is located (i.e. - physical register, frame, spill, etc.).  For each SSA name (SReg)
340 * there is a RegLocation.
341 * A note on SSA names:
342 *   o SSA names for Dalvik vRegs v0..vN will be assigned 0..N.  These represent the "vN_0"
343 *     names.  Negative SSA names represent special values not present in the Dalvik byte code.
344 *     For example, SSA name -1 represents an invalid SSA name, and SSA name -2 represents the
345 *     the Method pointer.  SSA names < -2 are reserved for future use.
346 *   o The vN_0 names for non-argument Dalvik should in practice never be used (as they would
347 *     represent the read of an undefined local variable).  The first definition of the
348 *     underlying Dalvik vReg will result in a vN_1 name.
349 *
350 * FIXME: The orig_sreg field was added as a workaround for llvm bitcode generation.  With
351 * the latest restructuring, we should be able to remove it and rely on s_reg_low throughout.
352 */
353struct RegLocation {
354  RegLocationType location:3;
355  unsigned wide:1;
356  unsigned defined:1;   // Do we know the type?
357  unsigned is_const:1;  // Constant, value in mir_graph->constant_values[].
358  unsigned fp:1;        // Floating point?
359  unsigned core:1;      // Non-floating point?
360  unsigned ref:1;       // Something GC cares about.
361  unsigned high_word:1;  // High word of pair?
362  unsigned home:1;      // Does this represent the home location?
363  VectorLengthType vec_len:3;  // TODO: remove.  Is this value in a vector register, and how big is it?
364  RegStorage reg;       // Encoded physical registers.
365  int16_t s_reg_low;    // SSA name for low Dalvik word.
366  int16_t orig_sreg;    // TODO: remove after Bitcode gen complete
367                        // and consolidate usage w/ s_reg_low.
368
369  bool IsVectorScalar() const { return vec_len == kVectorLength4 || vec_len == kVectorLength8;}
370};
371
372/*
373 * Collection of information describing an invoke, and the destination of
374 * the subsequent MOVE_RESULT (if applicable).  Collected as a unit to enable
375 * more efficient invoke code generation.
376 */
377struct CallInfo {
378  int num_arg_words;    // Note: word count, not arg count.
379  RegLocation* args;    // One for each word of arguments.
380  RegLocation result;   // Eventual target of MOVE_RESULT.
381  int opt_flags;
382  InvokeType type;
383  uint32_t dex_idx;
384  uint32_t index;       // Method idx for invokes, type idx for FilledNewArray.
385  uintptr_t direct_code;
386  uintptr_t direct_method;
387  RegLocation target;    // Target of following move_result.
388  bool skip_this;
389  bool is_range;
390  DexOffset offset;      // Offset in code units.
391  MIR* mir;
392};
393
394
395const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, kVectorNotUsed,
396                             RegStorage(RegStorage::kInvalid), INVALID_SREG, INVALID_SREG};
397
398class MIRGraph {
399 public:
400  MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
401  ~MIRGraph();
402
403  /*
404   * Examine the graph to determine whether it's worthwile to spend the time compiling
405   * this method.
406   */
407  bool SkipCompilation();
408
409  /*
410   * Should we skip the compilation of this method based on its name?
411   */
412  bool SkipCompilation(const std::string& methodname);
413
414  /*
415   * Parse dex method and add MIR at current insert point.  Returns id (which is
416   * actually the index of the method in the m_units_ array).
417   */
418  void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
419                    InvokeType invoke_type, uint16_t class_def_idx,
420                    uint32_t method_idx, jobject class_loader, const DexFile& dex_file);
421
422  /* Find existing block */
423  BasicBlock* FindBlock(DexOffset code_offset) {
424    return FindBlock(code_offset, false, false, NULL);
425  }
426
427  const uint16_t* GetCurrentInsns() const {
428    return current_code_item_->insns_;
429  }
430
431  const uint16_t* GetInsns(int m_unit_index) const {
432    return m_units_[m_unit_index]->GetCodeItem()->insns_;
433  }
434
435  int GetNumBlocks() const {
436    return num_blocks_;
437  }
438
439  size_t GetNumDalvikInsns() const {
440    return cu_->code_item->insns_size_in_code_units_;
441  }
442
443  ArenaBitVector* GetTryBlockAddr() const {
444    return try_block_addr_;
445  }
446
447  BasicBlock* GetEntryBlock() const {
448    return entry_block_;
449  }
450
451  BasicBlock* GetExitBlock() const {
452    return exit_block_;
453  }
454
455  BasicBlock* GetBasicBlock(int block_id) const {
456    return (block_id == NullBasicBlockId) ? NULL : block_list_.Get(block_id);
457  }
458
459  size_t GetBasicBlockListCount() const {
460    return block_list_.Size();
461  }
462
463  GrowableArray<BasicBlock*>* GetBlockList() {
464    return &block_list_;
465  }
466
467  GrowableArray<BasicBlockId>* GetDfsOrder() {
468    return dfs_order_;
469  }
470
471  GrowableArray<BasicBlockId>* GetDfsPostOrder() {
472    return dfs_post_order_;
473  }
474
475  GrowableArray<BasicBlockId>* GetDomPostOrder() {
476    return dom_post_order_traversal_;
477  }
478
479  int GetDefCount() const {
480    return def_count_;
481  }
482
483  ArenaAllocator* GetArena() {
484    return arena_;
485  }
486
487  void EnableOpcodeCounting() {
488    opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int),
489                                                    kArenaAllocMisc));
490  }
491
492  void ShowOpcodeStats();
493
494  DexCompilationUnit* GetCurrentDexCompilationUnit() const {
495    return m_units_[current_method_];
496  }
497
498  /**
499   * @brief Dump a CFG into a dot file format.
500   * @param dir_prefix the directory the file will be created in.
501   * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks.
502   * @param suffix does the filename require a suffix or not (default = nullptr).
503   */
504  void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr);
505
506  bool HasFieldAccess() const {
507    return (merged_df_flags_ & (DF_IFIELD | DF_SFIELD)) != 0u;
508  }
509
510  bool HasStaticFieldAccess() const {
511    return (merged_df_flags_ & DF_SFIELD) != 0u;
512  }
513
514  bool HasInvokes() const {
515    // NOTE: These formats include the rare filled-new-array/range.
516    return (merged_df_flags_ & (DF_FORMAT_35C | DF_FORMAT_3RC)) != 0u;
517  }
518
519  void DoCacheFieldLoweringInfo();
520
521  const MirIFieldLoweringInfo& GetIFieldLoweringInfo(MIR* mir) const {
522    DCHECK_LT(mir->meta.ifield_lowering_info, ifield_lowering_infos_.Size());
523    return ifield_lowering_infos_.GetRawStorage()[mir->meta.ifield_lowering_info];
524  }
525
526  const MirSFieldLoweringInfo& GetSFieldLoweringInfo(MIR* mir) const {
527    DCHECK_LT(mir->meta.sfield_lowering_info, sfield_lowering_infos_.Size());
528    return sfield_lowering_infos_.GetRawStorage()[mir->meta.sfield_lowering_info];
529  }
530
531  void DoCacheMethodLoweringInfo();
532
533  const MirMethodLoweringInfo& GetMethodLoweringInfo(MIR* mir) {
534    DCHECK_LT(mir->meta.method_lowering_info, method_lowering_infos_.Size());
535    return method_lowering_infos_.GetRawStorage()[mir->meta.method_lowering_info];
536  }
537
538  void ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput);
539
540  void InitRegLocations();
541
542  void RemapRegLocations();
543
544  void DumpRegLocTable(RegLocation* table, int count);
545
546  void BasicBlockOptimization();
547
548  bool IsConst(int32_t s_reg) const {
549    return is_constant_v_->IsBitSet(s_reg);
550  }
551
552  bool IsConst(RegLocation loc) const {
553    return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg);
554  }
555
556  int32_t ConstantValue(RegLocation loc) const {
557    DCHECK(IsConst(loc));
558    return constant_values_[loc.orig_sreg];
559  }
560
561  int32_t ConstantValue(int32_t s_reg) const {
562    DCHECK(IsConst(s_reg));
563    return constant_values_[s_reg];
564  }
565
566  int64_t ConstantValueWide(RegLocation loc) const {
567    DCHECK(IsConst(loc));
568    return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
569        Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
570  }
571
572  bool IsConstantNullRef(RegLocation loc) const {
573    return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
574  }
575
576  int GetNumSSARegs() const {
577    return num_ssa_regs_;
578  }
579
580  void SetNumSSARegs(int new_num) {
581     /*
582      * TODO: It's theoretically possible to exceed 32767, though any cases which did
583      * would be filtered out with current settings.  When orig_sreg field is removed
584      * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK().
585      */
586    DCHECK_EQ(new_num, static_cast<int16_t>(new_num));
587    num_ssa_regs_ = new_num;
588  }
589
590  unsigned int GetNumReachableBlocks() const {
591    return num_reachable_blocks_;
592  }
593
594  int GetUseCount(int vreg) const {
595    return use_counts_.Get(vreg);
596  }
597
598  int GetRawUseCount(int vreg) const {
599    return raw_use_counts_.Get(vreg);
600  }
601
602  int GetSSASubscript(int ssa_reg) const {
603    return ssa_subscripts_->Get(ssa_reg);
604  }
605
606  RegLocation GetRawSrc(MIR* mir, int num) {
607    DCHECK(num < mir->ssa_rep->num_uses);
608    RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
609    return res;
610  }
611
612  RegLocation GetRawDest(MIR* mir) {
613    DCHECK_GT(mir->ssa_rep->num_defs, 0);
614    RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
615    return res;
616  }
617
618  RegLocation GetDest(MIR* mir) {
619    RegLocation res = GetRawDest(mir);
620    DCHECK(!res.wide);
621    return res;
622  }
623
624  RegLocation GetSrc(MIR* mir, int num) {
625    RegLocation res = GetRawSrc(mir, num);
626    DCHECK(!res.wide);
627    return res;
628  }
629
630  RegLocation GetDestWide(MIR* mir) {
631    RegLocation res = GetRawDest(mir);
632    DCHECK(res.wide);
633    return res;
634  }
635
636  RegLocation GetSrcWide(MIR* mir, int low) {
637    RegLocation res = GetRawSrc(mir, low);
638    DCHECK(res.wide);
639    return res;
640  }
641
642  RegLocation GetBadLoc() {
643    return bad_loc;
644  }
645
646  int GetMethodSReg() const {
647    return method_sreg_;
648  }
649
650  /**
651   * @brief Used to obtain the number of compiler temporaries being used.
652   * @return Returns the number of compiler temporaries.
653   */
654  size_t GetNumUsedCompilerTemps() const {
655    size_t total_num_temps = compiler_temps_.Size();
656    DCHECK_LE(num_non_special_compiler_temps_, total_num_temps);
657    return total_num_temps;
658  }
659
660  /**
661   * @brief Used to obtain the number of non-special compiler temporaries being used.
662   * @return Returns the number of non-special compiler temporaries.
663   */
664  size_t GetNumNonSpecialCompilerTemps() const {
665    return num_non_special_compiler_temps_;
666  }
667
668  /**
669   * @brief Used to set the total number of available non-special compiler temporaries.
670   * @details Can fail setting the new max if there are more temps being used than the new_max.
671   * @param new_max The new maximum number of non-special compiler temporaries.
672   * @return Returns true if the max was set and false if failed to set.
673   */
674  bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) {
675    if (new_max < GetNumNonSpecialCompilerTemps()) {
676      return false;
677    } else {
678      max_available_non_special_compiler_temps_ = new_max;
679      return true;
680    }
681  }
682
683  /**
684   * @brief Provides the number of non-special compiler temps available.
685   * @details Even if this returns zero, special compiler temps are guaranteed to be available.
686   * @return Returns the number of available temps.
687   */
688  size_t GetNumAvailableNonSpecialCompilerTemps();
689
690  /**
691   * @brief Used to obtain an existing compiler temporary.
692   * @param index The index of the temporary which must be strictly less than the
693   * number of temporaries.
694   * @return Returns the temporary that was asked for.
695   */
696  CompilerTemp* GetCompilerTemp(size_t index) const {
697    return compiler_temps_.Get(index);
698  }
699
700  /**
701   * @brief Used to obtain the maximum number of compiler temporaries that can be requested.
702   * @return Returns the maximum number of compiler temporaries, whether used or not.
703   */
704  size_t GetMaxPossibleCompilerTemps() const {
705    return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_;
706  }
707
708  /**
709   * @brief Used to obtain a new unique compiler temporary.
710   * @param ct_type Type of compiler temporary requested.
711   * @param wide Whether we should allocate a wide temporary.
712   * @return Returns the newly created compiler temporary.
713   */
714  CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide);
715
716  bool MethodIsLeaf() {
717    return attributes_ & METHOD_IS_LEAF;
718  }
719
720  RegLocation GetRegLocation(int index) {
721    DCHECK((index >= 0) && (index < num_ssa_regs_));
722    return reg_location_[index];
723  }
724
725  RegLocation GetMethodLoc() {
726    return reg_location_[method_sreg_];
727  }
728
729  bool IsBackedge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
730    return ((target_bb_id != NullBasicBlockId) &&
731            (GetBasicBlock(target_bb_id)->start_offset <= branch_bb->start_offset));
732  }
733
734  bool IsBackwardsBranch(BasicBlock* branch_bb) {
735    return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through);
736  }
737
738  void CountBranch(DexOffset target_offset) {
739    if (target_offset <= current_offset_) {
740      backward_branches_++;
741    } else {
742      forward_branches_++;
743    }
744  }
745
746  int GetBranchCount() {
747    return backward_branches_ + forward_branches_;
748  }
749
750  bool IsPseudoMirOp(Instruction::Code opcode) {
751    return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst);
752  }
753
754  bool IsPseudoMirOp(int opcode) {
755    return opcode >= static_cast<int>(kMirOpFirst);
756  }
757
758  // Is this vreg in the in set?
759  bool IsInVReg(int vreg) {
760    return (vreg >= cu_->num_regs);
761  }
762
763  void DumpCheckStats();
764  MIR* FindMoveResult(BasicBlock* bb, MIR* mir);
765  int SRegToVReg(int ssa_reg) const;
766  void VerifyDataflow();
767  void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
768  void EliminateNullChecksAndInferTypesStart();
769  bool EliminateNullChecksAndInferTypes(BasicBlock *bb);
770  void EliminateNullChecksAndInferTypesEnd();
771  bool EliminateClassInitChecksGate();
772  bool EliminateClassInitChecks(BasicBlock* bb);
773  void EliminateClassInitChecksEnd();
774  /*
775   * Type inference handling helpers.  Because Dalvik's bytecode is not fully typed,
776   * we have to do some work to figure out the sreg type.  For some operations it is
777   * clear based on the opcode (i.e. ADD_FLOAT v0, v1, v2), but for others (MOVE), we
778   * may never know the "real" type.
779   *
780   * We perform the type inference operation by using an iterative  walk over
781   * the graph, propagating types "defined" by typed opcodes to uses and defs in
782   * non-typed opcodes (such as MOVE).  The Setxx(index) helpers are used to set defined
783   * types on typed opcodes (such as ADD_INT).  The Setxx(index, is_xx) form is used to
784   * propagate types through non-typed opcodes such as PHI and MOVE.  The is_xx flag
785   * tells whether our guess of the type is based on a previously typed definition.
786   * If so, the defined type takes precedence.  Note that it's possible to have the same sreg
787   * show multiple defined types because dx treats constants as untyped bit patterns.
788   * The return value of the Setxx() helpers says whether or not the Setxx() action changed
789   * the current guess, and is used to know when to terminate the iterative walk.
790   */
791  bool SetFp(int index, bool is_fp);
792  bool SetFp(int index);
793  bool SetCore(int index, bool is_core);
794  bool SetCore(int index);
795  bool SetRef(int index, bool is_ref);
796  bool SetRef(int index);
797  bool SetWide(int index, bool is_wide);
798  bool SetWide(int index);
799  bool SetHigh(int index, bool is_high);
800  bool SetHigh(int index);
801
802  char* GetDalvikDisassembly(const MIR* mir);
803  void ReplaceSpecialChars(std::string& str);
804  std::string GetSSAName(int ssa_reg);
805  std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
806  void GetBlockName(BasicBlock* bb, char* name);
807  const char* GetShortyFromTargetIdx(int);
808  void DumpMIRGraph();
809  CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
810  BasicBlock* NewMemBB(BBType block_type, int block_id);
811  MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir);
812  BasicBlock* NextDominatedBlock(BasicBlock* bb);
813  bool LayoutBlocks(BasicBlock* bb);
814
815  bool InlineCallsGate();
816  void InlineCallsStart();
817  void InlineCalls(BasicBlock* bb);
818  void InlineCallsEnd();
819
820  /**
821   * @brief Perform the initial preparation for the Method Uses.
822   */
823  void InitializeMethodUses();
824
825  /**
826   * @brief Perform the initial preparation for the Constant Propagation.
827   */
828  void InitializeConstantPropagation();
829
830  /**
831   * @brief Perform the initial preparation for the SSA Transformation.
832   */
833  void InitializeSSATransformation();
834
835  /**
836   * @brief Insert a the operands for the Phi nodes.
837   * @param bb the considered BasicBlock.
838   * @return true
839   */
840  bool InsertPhiNodeOperands(BasicBlock* bb);
841
842  /**
843   * @brief Perform constant propagation on a BasicBlock.
844   * @param bb the considered BasicBlock.
845   */
846  void DoConstantPropagation(BasicBlock* bb);
847
848  /**
849   * @brief Count the uses in the BasicBlock
850   * @param bb the BasicBlock
851   */
852  void CountUses(struct BasicBlock* bb);
853
854  /**
855   * @brief Combine BasicBlocks
856   * @param the BasicBlock we are considering
857   */
858  void CombineBlocks(BasicBlock* bb);
859
860  void ClearAllVisitedFlags();
861  /*
862   * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
863   * we can verify that all catch entries have native PC entries.
864   */
865  std::set<uint32_t> catches_;
866
867  // TODO: make these private.
868  RegLocation* reg_location_;                         // Map SSA names to location.
869  SafeMap<unsigned int, unsigned int> block_id_map_;  // Block collapse lookup cache.
870
871  static const uint64_t oat_data_flow_attributes_[kMirOpLast];
872  static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];
873  static const uint32_t analysis_attributes_[kMirOpLast];
874
875 private:
876  int FindCommonParent(int block1, int block2);
877  void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
878                         const ArenaBitVector* src2);
879  void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
880                       ArenaBitVector* live_in_v, int dalvik_reg_id);
881  void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
882  void CompilerInitializeSSAConversion();
883  bool DoSSAConversion(BasicBlock* bb);
884  bool InvokeUsesMethodStar(MIR* mir);
885  int ParseInsn(const uint16_t* code_ptr, DecodedInstruction* decoded_instruction);
886  bool ContentIsInsn(const uint16_t* code_ptr);
887  BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block,
888                         BasicBlock** immed_pred_block_p);
889  BasicBlock* FindBlock(DexOffset code_offset, bool split, bool create,
890                        BasicBlock** immed_pred_block_p);
891  void ProcessTryCatchBlocks();
892  BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
893                               int flags, const uint16_t* code_ptr, const uint16_t* code_end);
894  BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
895                               int flags);
896  BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
897                              int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
898                              const uint16_t* code_end);
899  int AddNewSReg(int v_reg);
900  void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
901  void HandleSSADef(int* defs, int dalvik_reg, int reg_index);
902  void DataFlowSSAFormat35C(MIR* mir);
903  void DataFlowSSAFormat3RC(MIR* mir);
904  bool FindLocalLiveIn(BasicBlock* bb);
905  bool InferTypeAndSize(BasicBlock* bb, MIR* mir, bool changed);
906  bool VerifyPredInfo(BasicBlock* bb);
907  BasicBlock* NeedsVisit(BasicBlock* bb);
908  BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
909  void MarkPreOrder(BasicBlock* bb);
910  void RecordDFSOrders(BasicBlock* bb);
911  void ComputeDFSOrders();
912  void ComputeDefBlockMatrix();
913  void ComputeDomPostOrderTraversal(BasicBlock* bb);
914  void ComputeDominators();
915  void InsertPhiNodes();
916  void DoDFSPreOrderSSARename(BasicBlock* block);
917  void SetConstant(int32_t ssa_reg, int value);
918  void SetConstantWide(int ssa_reg, int64_t value);
919  int GetSSAUseCount(int s_reg);
920  bool BasicBlockOpt(BasicBlock* bb);
921  bool BuildExtendedBBList(struct BasicBlock* bb);
922  bool FillDefBlockMatrix(BasicBlock* bb);
923  void InitializeDominationInfo(BasicBlock* bb);
924  bool ComputeblockIDom(BasicBlock* bb);
925  bool ComputeBlockDominators(BasicBlock* bb);
926  bool SetDominators(BasicBlock* bb);
927  bool ComputeBlockLiveIns(BasicBlock* bb);
928  bool ComputeDominanceFrontier(BasicBlock* bb);
929
930  void CountChecks(BasicBlock* bb);
931  void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats);
932  bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default);
933
934  CompilationUnit* const cu_;
935  GrowableArray<int>* ssa_base_vregs_;
936  GrowableArray<int>* ssa_subscripts_;
937  // Map original Dalvik virtual reg i to the current SSA name.
938  int* vreg_to_ssa_map_;            // length == method->registers_size
939  int* ssa_last_defs_;              // length == method->registers_size
940  ArenaBitVector* is_constant_v_;   // length == num_ssa_reg
941  int* constant_values_;            // length == num_ssa_reg
942  // Use counts of ssa names.
943  GrowableArray<uint32_t> use_counts_;      // Weighted by nesting depth
944  GrowableArray<uint32_t> raw_use_counts_;  // Not weighted
945  unsigned int num_reachable_blocks_;
946  GrowableArray<BasicBlockId>* dfs_order_;
947  GrowableArray<BasicBlockId>* dfs_post_order_;
948  GrowableArray<BasicBlockId>* dom_post_order_traversal_;
949  int* i_dom_list_;
950  ArenaBitVector** def_block_matrix_;    // num_dalvik_register x num_blocks.
951  ArenaBitVector* temp_dalvik_register_v_;
952  UniquePtr<ScopedArenaAllocator> temp_scoped_alloc_;
953  uint16_t* temp_insn_data_;
954  uint32_t temp_bit_vector_size_;
955  ArenaBitVector* temp_bit_vector_;
956  static const int kInvalidEntry = -1;
957  GrowableArray<BasicBlock*> block_list_;
958  ArenaBitVector* try_block_addr_;
959  BasicBlock* entry_block_;
960  BasicBlock* exit_block_;
961  int num_blocks_;
962  const DexFile::CodeItem* current_code_item_;
963  GrowableArray<uint16_t> dex_pc_to_block_map_;  // FindBlock lookup cache.
964  std::vector<DexCompilationUnit*> m_units_;     // List of methods included in this graph
965  typedef std::pair<int, int> MIRLocation;       // Insert point, (m_unit_ index, offset)
966  std::vector<MIRLocation> method_stack_;        // Include stack
967  int current_method_;
968  DexOffset current_offset_;                     // Offset in code units
969  int def_count_;                                // Used to estimate size of ssa name storage.
970  int* opcode_count_;                            // Dex opcode coverage stats.
971  int num_ssa_regs_;                             // Number of names following SSA transformation.
972  std::vector<BasicBlockId> extended_basic_blocks_;  // Heads of block "traces".
973  int method_sreg_;
974  unsigned int attributes_;
975  Checkstats* checkstats_;
976  ArenaAllocator* arena_;
977  int backward_branches_;
978  int forward_branches_;
979  GrowableArray<CompilerTemp*> compiler_temps_;
980  size_t num_non_special_compiler_temps_;
981  size_t max_available_non_special_compiler_temps_;
982  size_t max_available_special_compiler_temps_;
983  bool punt_to_interpreter_;                    // Difficult or not worthwhile - just interpret.
984  uint64_t merged_df_flags_;
985  GrowableArray<MirIFieldLoweringInfo> ifield_lowering_infos_;
986  GrowableArray<MirSFieldLoweringInfo> sfield_lowering_infos_;
987  GrowableArray<MirMethodLoweringInfo> method_lowering_infos_;
988
989  friend class ClassInitCheckEliminationTest;
990  friend class LocalValueNumberingTest;
991};
992
993}  // namespace art
994
995#endif  // ART_COMPILER_DEX_MIR_GRAPH_H_
996