mir_graph.h revision e8ae81453e1d6c19d7db2001a1e7b1849f74241c
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_MIR_GRAPH_H_
18#define ART_COMPILER_DEX_MIR_GRAPH_H_
19
20#include <stdint.h>
21
22#include "dex_file.h"
23#include "dex_instruction.h"
24#include "compiler_ir.h"
25#include "invoke_type.h"
26#include "mir_field_info.h"
27#include "mir_method_info.h"
28#include "utils/arena_bit_vector.h"
29#include "utils/growable_array.h"
30#include "reg_location.h"
31#include "reg_storage.h"
32
33namespace art {
34
35enum InstructionAnalysisAttributePos {
36  kUninterestingOp = 0,
37  kArithmeticOp,
38  kFPOp,
39  kSingleOp,
40  kDoubleOp,
41  kIntOp,
42  kLongOp,
43  kBranchOp,
44  kInvokeOp,
45  kArrayOp,
46  kHeavyweightOp,
47  kSimpleConstOp,
48  kMoveOp,
49  kSwitch
50};
51
52#define AN_NONE (1 << kUninterestingOp)
53#define AN_MATH (1 << kArithmeticOp)
54#define AN_FP (1 << kFPOp)
55#define AN_LONG (1 << kLongOp)
56#define AN_INT (1 << kIntOp)
57#define AN_SINGLE (1 << kSingleOp)
58#define AN_DOUBLE (1 << kDoubleOp)
59#define AN_FLOATMATH (1 << kFPOp)
60#define AN_BRANCH (1 << kBranchOp)
61#define AN_INVOKE (1 << kInvokeOp)
62#define AN_ARRAYOP (1 << kArrayOp)
63#define AN_HEAVYWEIGHT (1 << kHeavyweightOp)
64#define AN_SIMPLECONST (1 << kSimpleConstOp)
65#define AN_MOVE (1 << kMoveOp)
66#define AN_SWITCH (1 << kSwitch)
67#define AN_COMPUTATIONAL (AN_MATH | AN_ARRAYOP | AN_MOVE | AN_SIMPLECONST)
68
69enum DataFlowAttributePos {
70  kUA = 0,
71  kUB,
72  kUC,
73  kAWide,
74  kBWide,
75  kCWide,
76  kDA,
77  kIsMove,
78  kSetsConst,
79  kFormat35c,
80  kFormat3rc,
81  kNullCheckSrc0,        // Null check of uses[0].
82  kNullCheckSrc1,        // Null check of uses[1].
83  kNullCheckSrc2,        // Null check of uses[2].
84  kNullCheckOut0,        // Null check out outgoing arg0.
85  kDstNonNull,           // May assume dst is non-null.
86  kRetNonNull,           // May assume retval is non-null.
87  kNullTransferSrc0,     // Object copy src[0] -> dst.
88  kNullTransferSrcN,     // Phi null check state transfer.
89  kRangeCheckSrc1,       // Range check of uses[1].
90  kRangeCheckSrc2,       // Range check of uses[2].
91  kRangeCheckSrc3,       // Range check of uses[3].
92  kFPA,
93  kFPB,
94  kFPC,
95  kCoreA,
96  kCoreB,
97  kCoreC,
98  kRefA,
99  kRefB,
100  kRefC,
101  kUsesMethodStar,       // Implicit use of Method*.
102  kUsesIField,           // Accesses an instance field (IGET/IPUT).
103  kUsesSField,           // Accesses a static field (SGET/SPUT).
104  kDoLVN,                // Worth computing local value numbers.
105};
106
107#define DF_NOP                  UINT64_C(0)
108#define DF_UA                   (UINT64_C(1) << kUA)
109#define DF_UB                   (UINT64_C(1) << kUB)
110#define DF_UC                   (UINT64_C(1) << kUC)
111#define DF_A_WIDE               (UINT64_C(1) << kAWide)
112#define DF_B_WIDE               (UINT64_C(1) << kBWide)
113#define DF_C_WIDE               (UINT64_C(1) << kCWide)
114#define DF_DA                   (UINT64_C(1) << kDA)
115#define DF_IS_MOVE              (UINT64_C(1) << kIsMove)
116#define DF_SETS_CONST           (UINT64_C(1) << kSetsConst)
117#define DF_FORMAT_35C           (UINT64_C(1) << kFormat35c)
118#define DF_FORMAT_3RC           (UINT64_C(1) << kFormat3rc)
119#define DF_NULL_CHK_0           (UINT64_C(1) << kNullCheckSrc0)
120#define DF_NULL_CHK_1           (UINT64_C(1) << kNullCheckSrc1)
121#define DF_NULL_CHK_2           (UINT64_C(1) << kNullCheckSrc2)
122#define DF_NULL_CHK_OUT0        (UINT64_C(1) << kNullCheckOut0)
123#define DF_NON_NULL_DST         (UINT64_C(1) << kDstNonNull)
124#define DF_NON_NULL_RET         (UINT64_C(1) << kRetNonNull)
125#define DF_NULL_TRANSFER_0      (UINT64_C(1) << kNullTransferSrc0)
126#define DF_NULL_TRANSFER_N      (UINT64_C(1) << kNullTransferSrcN)
127#define DF_RANGE_CHK_1          (UINT64_C(1) << kRangeCheckSrc1)
128#define DF_RANGE_CHK_2          (UINT64_C(1) << kRangeCheckSrc2)
129#define DF_RANGE_CHK_3          (UINT64_C(1) << kRangeCheckSrc3)
130#define DF_FP_A                 (UINT64_C(1) << kFPA)
131#define DF_FP_B                 (UINT64_C(1) << kFPB)
132#define DF_FP_C                 (UINT64_C(1) << kFPC)
133#define DF_CORE_A               (UINT64_C(1) << kCoreA)
134#define DF_CORE_B               (UINT64_C(1) << kCoreB)
135#define DF_CORE_C               (UINT64_C(1) << kCoreC)
136#define DF_REF_A                (UINT64_C(1) << kRefA)
137#define DF_REF_B                (UINT64_C(1) << kRefB)
138#define DF_REF_C                (UINT64_C(1) << kRefC)
139#define DF_UMS                  (UINT64_C(1) << kUsesMethodStar)
140#define DF_IFIELD               (UINT64_C(1) << kUsesIField)
141#define DF_SFIELD               (UINT64_C(1) << kUsesSField)
142#define DF_LVN                  (UINT64_C(1) << kDoLVN)
143
144#define DF_HAS_USES             (DF_UA | DF_UB | DF_UC)
145
146#define DF_HAS_DEFS             (DF_DA)
147
148#define DF_HAS_NULL_CHKS        (DF_NULL_CHK_0 | \
149                                 DF_NULL_CHK_1 | \
150                                 DF_NULL_CHK_2 | \
151                                 DF_NULL_CHK_OUT0)
152
153#define DF_HAS_RANGE_CHKS       (DF_RANGE_CHK_1 | \
154                                 DF_RANGE_CHK_2 | \
155                                 DF_RANGE_CHK_3)
156
157#define DF_HAS_NR_CHKS          (DF_HAS_NULL_CHKS | \
158                                 DF_HAS_RANGE_CHKS)
159
160#define DF_A_IS_REG             (DF_UA | DF_DA)
161#define DF_B_IS_REG             (DF_UB)
162#define DF_C_IS_REG             (DF_UC)
163#define DF_IS_GETTER_OR_SETTER  (DF_IS_GETTER | DF_IS_SETTER)
164#define DF_USES_FP              (DF_FP_A | DF_FP_B | DF_FP_C)
165#define DF_NULL_TRANSFER        (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)
166enum OatMethodAttributes {
167  kIsLeaf,            // Method is leaf.
168  kHasLoop,           // Method contains simple loop.
169};
170
171#define METHOD_IS_LEAF          (1 << kIsLeaf)
172#define METHOD_HAS_LOOP         (1 << kHasLoop)
173
174// Minimum field size to contain Dalvik v_reg number.
175#define VREG_NUM_WIDTH 16
176
177#define INVALID_SREG (-1)
178#define INVALID_VREG (0xFFFFU)
179#define INVALID_OFFSET (0xDEADF00FU)
180
181#define MIR_IGNORE_NULL_CHECK           (1 << kMIRIgnoreNullCheck)
182#define MIR_NULL_CHECK_ONLY             (1 << kMIRNullCheckOnly)
183#define MIR_IGNORE_RANGE_CHECK          (1 << kMIRIgnoreRangeCheck)
184#define MIR_RANGE_CHECK_ONLY            (1 << kMIRRangeCheckOnly)
185#define MIR_IGNORE_CLINIT_CHECK         (1 << kMIRIgnoreClInitCheck)
186#define MIR_INLINED                     (1 << kMIRInlined)
187#define MIR_INLINED_PRED                (1 << kMIRInlinedPred)
188#define MIR_CALLEE                      (1 << kMIRCallee)
189#define MIR_IGNORE_SUSPEND_CHECK        (1 << kMIRIgnoreSuspendCheck)
190#define MIR_DUP                         (1 << kMIRDup)
191
192#define BLOCK_NAME_LEN 80
193
194typedef uint16_t BasicBlockId;
195static const BasicBlockId NullBasicBlockId = 0;
196static constexpr bool kLeafOptimization = false;
197
198/*
199 * In general, vreg/sreg describe Dalvik registers that originated with dx.  However,
200 * it is useful to have compiler-generated temporary registers and have them treated
201 * in the same manner as dx-generated virtual registers.  This struct records the SSA
202 * name of compiler-introduced temporaries.
203 */
204struct CompilerTemp {
205  int32_t v_reg;      // Virtual register number for temporary.
206  int32_t s_reg_low;  // SSA name for low Dalvik word.
207};
208
209enum CompilerTempType {
210  kCompilerTempVR,                // A virtual register temporary.
211  kCompilerTempSpecialMethodPtr,  // Temporary that keeps track of current method pointer.
212};
213
214// When debug option enabled, records effectiveness of null and range check elimination.
215struct Checkstats {
216  int32_t null_checks;
217  int32_t null_checks_eliminated;
218  int32_t range_checks;
219  int32_t range_checks_eliminated;
220};
221
222// Dataflow attributes of a basic block.
223struct BasicBlockDataFlow {
224  ArenaBitVector* use_v;
225  ArenaBitVector* def_v;
226  ArenaBitVector* live_in_v;
227  ArenaBitVector* phi_v;
228  int32_t* vreg_to_ssa_map_exit;
229  ArenaBitVector* ending_check_v;  // For null check and class init check elimination.
230};
231
232/*
233 * Normalized use/def for a MIR operation using SSA names rather than vregs.  Note that
234 * uses/defs retain the Dalvik convention that long operations operate on a pair of 32-bit
235 * vregs.  For example, "ADD_LONG v0, v2, v3" would have 2 defs (v0/v1) and 4 uses (v2/v3, v4/v5).
236 * Following SSA renaming, this is the primary struct used by code generators to locate
237 * operand and result registers.  This is a somewhat confusing and unhelpful convention that
238 * we may want to revisit in the future.
239 *
240 * TODO:
241 *  1. Add accessors for uses/defs and make data private
242 *  2. Change fp_use/fp_def to a bit array (could help memory usage)
243 *  3. Combine array storage into internal array and handled via accessors from 1.
244 */
245struct SSARepresentation {
246  int32_t* uses;
247  bool* fp_use;
248  int32_t* defs;
249  bool* fp_def;
250  int16_t num_uses_allocated;
251  int16_t num_defs_allocated;
252  int16_t num_uses;
253  int16_t num_defs;
254
255  static uint32_t GetStartUseIndex(Instruction::Code opcode);
256};
257
258/*
259 * The Midlevel Intermediate Representation node, which may be largely considered a
260 * wrapper around a Dalvik byte code.
261 */
262struct MIR {
263  /*
264   * TODO: remove embedded DecodedInstruction to save space, keeping only opcode.  Recover
265   * additional fields on as-needed basis.  Question: how to support MIR Pseudo-ops; probably
266   * need to carry aux data pointer.
267   */
268  struct DecodedInstruction {
269    uint32_t vA;
270    uint32_t vB;
271    uint64_t vB_wide;        /* for k51l */
272    uint32_t vC;
273    uint32_t arg[5];         /* vC/D/E/F/G in invoke or filled-new-array */
274    Instruction::Code opcode;
275
276    explicit DecodedInstruction():vA(0), vB(0), vB_wide(0), vC(0), opcode(Instruction::NOP) {
277    }
278
279    /*
280     * Given a decoded instruction representing a const bytecode, it updates
281     * the out arguments with proper values as dictated by the constant bytecode.
282     */
283    bool GetConstant(int64_t* ptr_value, bool* wide) const;
284
285    bool IsStore() const {
286      return ((Instruction::FlagsOf(opcode) & Instruction::kStore) == Instruction::kStore);
287    }
288
289    bool IsLoad() const {
290      return ((Instruction::FlagsOf(opcode) & Instruction::kLoad) == Instruction::kLoad);
291    }
292
293    bool IsConditionalBranch() const {
294      return (Instruction::FlagsOf(opcode) == (Instruction::kContinue | Instruction::kBranch));
295    }
296
297    /**
298     * @brief Is the register C component of the decoded instruction a constant?
299     */
300    bool IsCFieldOrConstant() const {
301      return ((Instruction::FlagsOf(opcode) & Instruction::kRegCFieldOrConstant) == Instruction::kRegCFieldOrConstant);
302    }
303
304    /**
305     * @brief Is the register C component of the decoded instruction a constant?
306     */
307    bool IsBFieldOrConstant() const {
308      return ((Instruction::FlagsOf(opcode) & Instruction::kRegBFieldOrConstant) == Instruction::kRegBFieldOrConstant);
309    }
310
311    bool IsCast() const {
312      return ((Instruction::FlagsOf(opcode) & Instruction::kCast) == Instruction::kCast);
313    }
314
315    /**
316     * @brief Does the instruction clobber memory?
317     * @details Clobber means that the instruction changes the memory not in a punctual way.
318     *          Therefore any supposition on memory aliasing or memory contents should be disregarded
319     *            when crossing such an instruction.
320     */
321    bool Clobbers() const {
322      return ((Instruction::FlagsOf(opcode) & Instruction::kClobber) == Instruction::kClobber);
323    }
324
325    bool IsLinear() const {
326      return (Instruction::FlagsOf(opcode) & (Instruction::kAdd | Instruction::kSubtract)) != 0;
327    }
328  } dalvikInsn;
329
330  NarrowDexOffset offset;         // Offset of the instruction in code units.
331  uint16_t optimization_flags;
332  int16_t m_unit_index;           // From which method was this MIR included
333  BasicBlockId bb;
334  MIR* next;
335  SSARepresentation* ssa_rep;
336  union {
337    // Incoming edges for phi node.
338    BasicBlockId* phi_incoming;
339    // Establish link from check instruction (kMirOpCheck) to the actual throwing instruction.
340    MIR* throw_insn;
341    // Branch condition for fused cmp or select.
342    ConditionCode ccode;
343    // IGET/IPUT lowering info index, points to MIRGraph::ifield_lowering_infos_. Due to limit on
344    // the number of code points (64K) and size of IGET/IPUT insn (2), this will never exceed 32K.
345    uint32_t ifield_lowering_info;
346    // SGET/SPUT lowering info index, points to MIRGraph::sfield_lowering_infos_. Due to limit on
347    // the number of code points (64K) and size of SGET/SPUT insn (2), this will never exceed 32K.
348    uint32_t sfield_lowering_info;
349    // INVOKE data index, points to MIRGraph::method_lowering_infos_.
350    uint32_t method_lowering_info;
351  } meta;
352
353  explicit MIR():offset(0), optimization_flags(0), m_unit_index(0), bb(NullBasicBlockId),
354                 next(nullptr), ssa_rep(nullptr) {
355    memset(&meta, 0, sizeof(meta));
356  }
357
358  uint32_t GetStartUseIndex() const {
359    return SSARepresentation::GetStartUseIndex(dalvikInsn.opcode);
360  }
361
362  MIR* Copy(CompilationUnit *c_unit);
363  MIR* Copy(MIRGraph* mir_Graph);
364
365  static void* operator new(size_t size, ArenaAllocator* arena) {
366    return arena->Alloc(sizeof(MIR), kArenaAllocMIR);
367  }
368  static void operator delete(void* p) {}  // Nop.
369};
370
371struct SuccessorBlockInfo;
372
373struct BasicBlock {
374  BasicBlockId id;
375  BasicBlockId dfs_id;
376  NarrowDexOffset start_offset;     // Offset in code units.
377  BasicBlockId fall_through;
378  BasicBlockId taken;
379  BasicBlockId i_dom;               // Immediate dominator.
380  uint16_t nesting_depth;
381  BBType block_type:4;
382  BlockListType successor_block_list_type:4;
383  bool visited:1;
384  bool hidden:1;
385  bool catch_entry:1;
386  bool explicit_throw:1;
387  bool conditional_branch:1;
388  bool terminated_by_return:1;  // Block ends with a Dalvik return opcode.
389  bool dominates_return:1;      // Is a member of return extended basic block.
390  bool use_lvn:1;               // Run local value numbering on this block.
391  MIR* first_mir_insn;
392  MIR* last_mir_insn;
393  BasicBlockDataFlow* data_flow_info;
394  ArenaBitVector* dominators;
395  ArenaBitVector* i_dominated;      // Set nodes being immediately dominated.
396  ArenaBitVector* dom_frontier;     // Dominance frontier.
397  GrowableArray<BasicBlockId>* predecessors;
398  GrowableArray<SuccessorBlockInfo*>* successor_blocks;
399
400  void AppendMIR(MIR* mir);
401  void AppendMIRList(MIR* first_list_mir, MIR* last_list_mir);
402  void AppendMIRList(const std::vector<MIR*>& insns);
403  void PrependMIR(MIR* mir);
404  void PrependMIRList(MIR* first_list_mir, MIR* last_list_mir);
405  void PrependMIRList(const std::vector<MIR*>& to_add);
406  void InsertMIRAfter(MIR* current_mir, MIR* new_mir);
407  void InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir);
408  MIR* FindPreviousMIR(MIR* mir);
409  void InsertMIRBefore(MIR* insert_before, MIR* list);
410  void InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir);
411  bool RemoveMIR(MIR* mir);
412  bool RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir);
413
414  BasicBlock* Copy(CompilationUnit* c_unit);
415  BasicBlock* Copy(MIRGraph* mir_graph);
416
417  /**
418   * @brief Reset the optimization_flags field of each MIR.
419   */
420  void ResetOptimizationFlags(uint16_t reset_flags);
421
422  /**
423   * @brief Hide the BasicBlock.
424   * @details Set it to kDalvikByteCode, set hidden to true, remove all MIRs,
425   *          remove itself from any predecessor edges, remove itself from any
426   *          child's predecessor growable array.
427   */
428  void Hide(CompilationUnit* c_unit);
429
430  /**
431   * @brief Is ssa_reg the last SSA definition of that VR in the block?
432   */
433  bool IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg);
434
435  /**
436   * @brief Replace the edge going to old_bb to now go towards new_bb.
437   */
438  bool ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb);
439
440  /**
441   * @brief Update the predecessor growable array from old_pred to new_pred.
442   */
443  void UpdatePredecessor(BasicBlockId old_pred, BasicBlockId new_pred);
444
445  /**
446   * @brief Used to obtain the next MIR that follows unconditionally.
447   * @details The implementation does not guarantee that a MIR does not
448   * follow even if this method returns nullptr.
449   * @param mir_graph the MIRGraph.
450   * @param current The MIR for which to find an unconditional follower.
451   * @return Returns the following MIR if one can be found.
452   */
453  MIR* GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current);
454  bool IsExceptionBlock() const;
455
456  static void* operator new(size_t size, ArenaAllocator* arena) {
457    return arena->Alloc(sizeof(BasicBlock), kArenaAllocBB);
458  }
459  static void operator delete(void* p) {}  // Nop.
460};
461
462/*
463 * The "blocks" field in "successor_block_list" points to an array of elements with the type
464 * "SuccessorBlockInfo".  For catch blocks, key is type index for the exception.  For switch
465 * blocks, key is the case value.
466 */
467struct SuccessorBlockInfo {
468  BasicBlockId block;
469  int key;
470};
471
472/**
473 * @class ChildBlockIterator
474 * @brief Enable an easy iteration of the children.
475 */
476class ChildBlockIterator {
477 public:
478  /**
479   * @brief Constructs a child iterator.
480   * @param bb The basic whose children we need to iterate through.
481   * @param mir_graph The MIRGraph used to get the basic block during iteration.
482   */
483  ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph);
484  BasicBlock* Next();
485
486 private:
487  BasicBlock* basic_block_;
488  MIRGraph* mir_graph_;
489  bool visited_fallthrough_;
490  bool visited_taken_;
491  bool have_successors_;
492  GrowableArray<SuccessorBlockInfo*>::Iterator successor_iter_;
493};
494
495/*
496 * Collection of information describing an invoke, and the destination of
497 * the subsequent MOVE_RESULT (if applicable).  Collected as a unit to enable
498 * more efficient invoke code generation.
499 */
500struct CallInfo {
501  int num_arg_words;    // Note: word count, not arg count.
502  RegLocation* args;    // One for each word of arguments.
503  RegLocation result;   // Eventual target of MOVE_RESULT.
504  int opt_flags;
505  InvokeType type;
506  uint32_t dex_idx;
507  uint32_t index;       // Method idx for invokes, type idx for FilledNewArray.
508  uintptr_t direct_code;
509  uintptr_t direct_method;
510  RegLocation target;    // Target of following move_result.
511  bool skip_this;
512  bool is_range;
513  DexOffset offset;      // Offset in code units.
514  MIR* mir;
515};
516
517
518const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, RegStorage(), INVALID_SREG,
519                             INVALID_SREG};
520
521class MIRGraph {
522 public:
523  MIRGraph(CompilationUnit* cu, ArenaAllocator* arena);
524  ~MIRGraph();
525
526  /*
527   * Examine the graph to determine whether it's worthwile to spend the time compiling
528   * this method.
529   */
530  bool SkipCompilation(std::string* skip_message);
531
532  /*
533   * Should we skip the compilation of this method based on its name?
534   */
535  bool SkipCompilationByName(const std::string& methodname);
536
537  /*
538   * Parse dex method and add MIR at current insert point.  Returns id (which is
539   * actually the index of the method in the m_units_ array).
540   */
541  void InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
542                    InvokeType invoke_type, uint16_t class_def_idx,
543                    uint32_t method_idx, jobject class_loader, const DexFile& dex_file);
544
545  /* Find existing block */
546  BasicBlock* FindBlock(DexOffset code_offset) {
547    return FindBlock(code_offset, false, false, NULL);
548  }
549
550  const uint16_t* GetCurrentInsns() const {
551    return current_code_item_->insns_;
552  }
553
554  const uint16_t* GetInsns(int m_unit_index) const {
555    return m_units_[m_unit_index]->GetCodeItem()->insns_;
556  }
557
558  unsigned int GetNumBlocks() const {
559    return num_blocks_;
560  }
561
562  size_t GetNumDalvikInsns() const {
563    return cu_->code_item->insns_size_in_code_units_;
564  }
565
566  ArenaBitVector* GetTryBlockAddr() const {
567    return try_block_addr_;
568  }
569
570  BasicBlock* GetEntryBlock() const {
571    return entry_block_;
572  }
573
574  BasicBlock* GetExitBlock() const {
575    return exit_block_;
576  }
577
578  BasicBlock* GetBasicBlock(unsigned int block_id) const {
579    return (block_id == NullBasicBlockId) ? NULL : block_list_.Get(block_id);
580  }
581
582  size_t GetBasicBlockListCount() const {
583    return block_list_.Size();
584  }
585
586  GrowableArray<BasicBlock*>* GetBlockList() {
587    return &block_list_;
588  }
589
590  GrowableArray<BasicBlockId>* GetDfsOrder() {
591    return dfs_order_;
592  }
593
594  GrowableArray<BasicBlockId>* GetDfsPostOrder() {
595    return dfs_post_order_;
596  }
597
598  GrowableArray<BasicBlockId>* GetDomPostOrder() {
599    return dom_post_order_traversal_;
600  }
601
602  int GetDefCount() const {
603    return def_count_;
604  }
605
606  ArenaAllocator* GetArena() {
607    return arena_;
608  }
609
610  void EnableOpcodeCounting() {
611    opcode_count_ = static_cast<int*>(arena_->Alloc(kNumPackedOpcodes * sizeof(int),
612                                                    kArenaAllocMisc));
613  }
614
615  void ShowOpcodeStats();
616
617  DexCompilationUnit* GetCurrentDexCompilationUnit() const {
618    return m_units_[current_method_];
619  }
620
621  /**
622   * @brief Dump a CFG into a dot file format.
623   * @param dir_prefix the directory the file will be created in.
624   * @param all_blocks does the dumper use all the basic blocks or use the reachable blocks.
625   * @param suffix does the filename require a suffix or not (default = nullptr).
626   */
627  void DumpCFG(const char* dir_prefix, bool all_blocks, const char* suffix = nullptr);
628
629  bool HasFieldAccess() const {
630    return (merged_df_flags_ & (DF_IFIELD | DF_SFIELD)) != 0u;
631  }
632
633  bool HasStaticFieldAccess() const {
634    return (merged_df_flags_ & DF_SFIELD) != 0u;
635  }
636
637  bool HasInvokes() const {
638    // NOTE: These formats include the rare filled-new-array/range.
639    return (merged_df_flags_ & (DF_FORMAT_35C | DF_FORMAT_3RC)) != 0u;
640  }
641
642  void DoCacheFieldLoweringInfo();
643
644  const MirIFieldLoweringInfo& GetIFieldLoweringInfo(MIR* mir) const {
645    DCHECK_LT(mir->meta.ifield_lowering_info, ifield_lowering_infos_.Size());
646    return ifield_lowering_infos_.GetRawStorage()[mir->meta.ifield_lowering_info];
647  }
648
649  const MirSFieldLoweringInfo& GetSFieldLoweringInfo(MIR* mir) const {
650    DCHECK_LT(mir->meta.sfield_lowering_info, sfield_lowering_infos_.Size());
651    return sfield_lowering_infos_.GetRawStorage()[mir->meta.sfield_lowering_info];
652  }
653
654  void DoCacheMethodLoweringInfo();
655
656  const MirMethodLoweringInfo& GetMethodLoweringInfo(MIR* mir) {
657    DCHECK_LT(mir->meta.method_lowering_info, method_lowering_infos_.Size());
658    return method_lowering_infos_.GetRawStorage()[mir->meta.method_lowering_info];
659  }
660
661  void ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput);
662
663  void InitRegLocations();
664
665  void RemapRegLocations();
666
667  void DumpRegLocTable(RegLocation* table, int count);
668
669  void BasicBlockOptimization();
670
671  GrowableArray<BasicBlockId>* GetTopologicalSortOrder() {
672    DCHECK(topological_order_ != nullptr);
673    return topological_order_;
674  }
675
676  bool IsConst(int32_t s_reg) const {
677    return is_constant_v_->IsBitSet(s_reg);
678  }
679
680  bool IsConst(RegLocation loc) const {
681    return loc.orig_sreg < 0 ? false : IsConst(loc.orig_sreg);
682  }
683
684  int32_t ConstantValue(RegLocation loc) const {
685    DCHECK(IsConst(loc));
686    return constant_values_[loc.orig_sreg];
687  }
688
689  int32_t ConstantValue(int32_t s_reg) const {
690    DCHECK(IsConst(s_reg));
691    return constant_values_[s_reg];
692  }
693
694  int64_t ConstantValueWide(RegLocation loc) const {
695    DCHECK(IsConst(loc));
696    return (static_cast<int64_t>(constant_values_[loc.orig_sreg + 1]) << 32) |
697        Low32Bits(static_cast<int64_t>(constant_values_[loc.orig_sreg]));
698  }
699
700  bool IsConstantNullRef(RegLocation loc) const {
701    return loc.ref && loc.is_const && (ConstantValue(loc) == 0);
702  }
703
704  int GetNumSSARegs() const {
705    return num_ssa_regs_;
706  }
707
708  void SetNumSSARegs(int new_num) {
709     /*
710      * TODO: It's theoretically possible to exceed 32767, though any cases which did
711      * would be filtered out with current settings.  When orig_sreg field is removed
712      * from RegLocation, expand s_reg_low to handle all possible cases and remove DCHECK().
713      */
714    DCHECK_EQ(new_num, static_cast<int16_t>(new_num));
715    num_ssa_regs_ = new_num;
716  }
717
718  unsigned int GetNumReachableBlocks() const {
719    return num_reachable_blocks_;
720  }
721
722  int GetUseCount(int vreg) const {
723    return use_counts_.Get(vreg);
724  }
725
726  int GetRawUseCount(int vreg) const {
727    return raw_use_counts_.Get(vreg);
728  }
729
730  int GetSSASubscript(int ssa_reg) const {
731    return ssa_subscripts_->Get(ssa_reg);
732  }
733
734  RegLocation GetRawSrc(MIR* mir, int num) {
735    DCHECK(num < mir->ssa_rep->num_uses);
736    RegLocation res = reg_location_[mir->ssa_rep->uses[num]];
737    return res;
738  }
739
740  RegLocation GetRawDest(MIR* mir) {
741    DCHECK_GT(mir->ssa_rep->num_defs, 0);
742    RegLocation res = reg_location_[mir->ssa_rep->defs[0]];
743    return res;
744  }
745
746  RegLocation GetDest(MIR* mir) {
747    RegLocation res = GetRawDest(mir);
748    DCHECK(!res.wide);
749    return res;
750  }
751
752  RegLocation GetSrc(MIR* mir, int num) {
753    RegLocation res = GetRawSrc(mir, num);
754    DCHECK(!res.wide);
755    return res;
756  }
757
758  RegLocation GetDestWide(MIR* mir) {
759    RegLocation res = GetRawDest(mir);
760    DCHECK(res.wide);
761    return res;
762  }
763
764  RegLocation GetSrcWide(MIR* mir, int low) {
765    RegLocation res = GetRawSrc(mir, low);
766    DCHECK(res.wide);
767    return res;
768  }
769
770  RegLocation GetBadLoc() {
771    return bad_loc;
772  }
773
774  int GetMethodSReg() const {
775    return method_sreg_;
776  }
777
778  /**
779   * @brief Used to obtain the number of compiler temporaries being used.
780   * @return Returns the number of compiler temporaries.
781   */
782  size_t GetNumUsedCompilerTemps() const {
783    size_t total_num_temps = compiler_temps_.Size();
784    DCHECK_LE(num_non_special_compiler_temps_, total_num_temps);
785    return total_num_temps;
786  }
787
788  /**
789   * @brief Used to obtain the number of non-special compiler temporaries being used.
790   * @return Returns the number of non-special compiler temporaries.
791   */
792  size_t GetNumNonSpecialCompilerTemps() const {
793    return num_non_special_compiler_temps_;
794  }
795
796  /**
797   * @brief Used to set the total number of available non-special compiler temporaries.
798   * @details Can fail setting the new max if there are more temps being used than the new_max.
799   * @param new_max The new maximum number of non-special compiler temporaries.
800   * @return Returns true if the max was set and false if failed to set.
801   */
802  bool SetMaxAvailableNonSpecialCompilerTemps(size_t new_max) {
803    if (new_max < GetNumNonSpecialCompilerTemps()) {
804      return false;
805    } else {
806      max_available_non_special_compiler_temps_ = new_max;
807      return true;
808    }
809  }
810
811  /**
812   * @brief Provides the number of non-special compiler temps available.
813   * @details Even if this returns zero, special compiler temps are guaranteed to be available.
814   * @return Returns the number of available temps.
815   */
816  size_t GetNumAvailableNonSpecialCompilerTemps();
817
818  /**
819   * @brief Used to obtain an existing compiler temporary.
820   * @param index The index of the temporary which must be strictly less than the
821   * number of temporaries.
822   * @return Returns the temporary that was asked for.
823   */
824  CompilerTemp* GetCompilerTemp(size_t index) const {
825    return compiler_temps_.Get(index);
826  }
827
828  /**
829   * @brief Used to obtain the maximum number of compiler temporaries that can be requested.
830   * @return Returns the maximum number of compiler temporaries, whether used or not.
831   */
832  size_t GetMaxPossibleCompilerTemps() const {
833    return max_available_special_compiler_temps_ + max_available_non_special_compiler_temps_;
834  }
835
836  /**
837   * @brief Used to obtain a new unique compiler temporary.
838   * @param ct_type Type of compiler temporary requested.
839   * @param wide Whether we should allocate a wide temporary.
840   * @return Returns the newly created compiler temporary.
841   */
842  CompilerTemp* GetNewCompilerTemp(CompilerTempType ct_type, bool wide);
843
844  bool MethodIsLeaf() {
845    return attributes_ & METHOD_IS_LEAF;
846  }
847
848  RegLocation GetRegLocation(int index) {
849    DCHECK((index >= 0) && (index < num_ssa_regs_));
850    return reg_location_[index];
851  }
852
853  RegLocation GetMethodLoc() {
854    return reg_location_[method_sreg_];
855  }
856
857  bool IsBackedge(BasicBlock* branch_bb, BasicBlockId target_bb_id) {
858    return ((target_bb_id != NullBasicBlockId) &&
859            (GetBasicBlock(target_bb_id)->start_offset <= branch_bb->start_offset));
860  }
861
862  bool IsBackwardsBranch(BasicBlock* branch_bb) {
863    return IsBackedge(branch_bb, branch_bb->taken) || IsBackedge(branch_bb, branch_bb->fall_through);
864  }
865
866  void CountBranch(DexOffset target_offset) {
867    if (target_offset <= current_offset_) {
868      backward_branches_++;
869    } else {
870      forward_branches_++;
871    }
872  }
873
874  int GetBranchCount() {
875    return backward_branches_ + forward_branches_;
876  }
877
878  static bool IsPseudoMirOp(Instruction::Code opcode) {
879    return static_cast<int>(opcode) >= static_cast<int>(kMirOpFirst);
880  }
881
882  static bool IsPseudoMirOp(int opcode) {
883    return opcode >= static_cast<int>(kMirOpFirst);
884  }
885
886  // Is this vreg in the in set?
887  bool IsInVReg(int vreg) {
888    return (vreg >= cu_->num_regs);
889  }
890
891  void DumpCheckStats();
892  MIR* FindMoveResult(BasicBlock* bb, MIR* mir);
893  int SRegToVReg(int ssa_reg) const;
894  void VerifyDataflow();
895  void CheckForDominanceFrontier(BasicBlock* dom_bb, const BasicBlock* succ_bb);
896  void EliminateNullChecksAndInferTypesStart();
897  bool EliminateNullChecksAndInferTypes(BasicBlock* bb);
898  void EliminateNullChecksAndInferTypesEnd();
899  bool EliminateClassInitChecksGate();
900  bool EliminateClassInitChecks(BasicBlock* bb);
901  void EliminateClassInitChecksEnd();
902  /*
903   * Type inference handling helpers.  Because Dalvik's bytecode is not fully typed,
904   * we have to do some work to figure out the sreg type.  For some operations it is
905   * clear based on the opcode (i.e. ADD_FLOAT v0, v1, v2), but for others (MOVE), we
906   * may never know the "real" type.
907   *
908   * We perform the type inference operation by using an iterative  walk over
909   * the graph, propagating types "defined" by typed opcodes to uses and defs in
910   * non-typed opcodes (such as MOVE).  The Setxx(index) helpers are used to set defined
911   * types on typed opcodes (such as ADD_INT).  The Setxx(index, is_xx) form is used to
912   * propagate types through non-typed opcodes such as PHI and MOVE.  The is_xx flag
913   * tells whether our guess of the type is based on a previously typed definition.
914   * If so, the defined type takes precedence.  Note that it's possible to have the same sreg
915   * show multiple defined types because dx treats constants as untyped bit patterns.
916   * The return value of the Setxx() helpers says whether or not the Setxx() action changed
917   * the current guess, and is used to know when to terminate the iterative walk.
918   */
919  bool SetFp(int index, bool is_fp);
920  bool SetFp(int index);
921  bool SetCore(int index, bool is_core);
922  bool SetCore(int index);
923  bool SetRef(int index, bool is_ref);
924  bool SetRef(int index);
925  bool SetWide(int index, bool is_wide);
926  bool SetWide(int index);
927  bool SetHigh(int index, bool is_high);
928  bool SetHigh(int index);
929
930  bool PuntToInterpreter() {
931    return punt_to_interpreter_;
932  }
933
934  void SetPuntToInterpreter(bool val) {
935    punt_to_interpreter_ = val;
936  }
937
938  char* GetDalvikDisassembly(const MIR* mir);
939  void ReplaceSpecialChars(std::string& str);
940  std::string GetSSAName(int ssa_reg);
941  std::string GetSSANameWithConst(int ssa_reg, bool singles_only);
942  void GetBlockName(BasicBlock* bb, char* name);
943  const char* GetShortyFromTargetIdx(int);
944  void DumpMIRGraph();
945  CallInfo* NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range);
946  BasicBlock* NewMemBB(BBType block_type, int block_id);
947  MIR* NewMIR();
948  MIR* AdvanceMIR(BasicBlock** p_bb, MIR* mir);
949  BasicBlock* NextDominatedBlock(BasicBlock* bb);
950  bool LayoutBlocks(BasicBlock* bb);
951  void ComputeTopologicalSortOrder();
952  BasicBlock* CreateNewBB(BBType block_type);
953
954  bool InlineCallsGate();
955  void InlineCallsStart();
956  void InlineCalls(BasicBlock* bb);
957  void InlineCallsEnd();
958
959  /**
960   * @brief Perform the initial preparation for the Method Uses.
961   */
962  void InitializeMethodUses();
963
964  /**
965   * @brief Perform the initial preparation for the Constant Propagation.
966   */
967  void InitializeConstantPropagation();
968
969  /**
970   * @brief Perform the initial preparation for the SSA Transformation.
971   */
972  void SSATransformationStart();
973
974  /**
975   * @brief Insert a the operands for the Phi nodes.
976   * @param bb the considered BasicBlock.
977   * @return true
978   */
979  bool InsertPhiNodeOperands(BasicBlock* bb);
980
981  /**
982   * @brief Perform the cleanup after the SSA Transformation.
983   */
984  void SSATransformationEnd();
985
986  /**
987   * @brief Perform constant propagation on a BasicBlock.
988   * @param bb the considered BasicBlock.
989   */
990  void DoConstantPropagation(BasicBlock* bb);
991
992  /**
993   * @brief Count the uses in the BasicBlock
994   * @param bb the BasicBlock
995   */
996  void CountUses(struct BasicBlock* bb);
997
998  static uint64_t GetDataFlowAttributes(Instruction::Code opcode);
999  static uint64_t GetDataFlowAttributes(MIR* mir);
1000
1001  /**
1002   * @brief Combine BasicBlocks
1003   * @param the BasicBlock we are considering
1004   */
1005  void CombineBlocks(BasicBlock* bb);
1006
1007  void ClearAllVisitedFlags();
1008
1009  void AllocateSSAUseData(MIR *mir, int num_uses);
1010  void AllocateSSADefData(MIR *mir, int num_defs);
1011  void CalculateBasicBlockInformation();
1012  void InitializeBasicBlockData();
1013  void ComputeDFSOrders();
1014  void ComputeDefBlockMatrix();
1015  void ComputeDominators();
1016  void CompilerInitializeSSAConversion();
1017  void InsertPhiNodes();
1018  void DoDFSPreOrderSSARename(BasicBlock* block);
1019
1020  /*
1021   * IsDebugBuild sanity check: keep track of the Dex PCs for catch entries so that later on
1022   * we can verify that all catch entries have native PC entries.
1023   */
1024  std::set<uint32_t> catches_;
1025
1026  // TODO: make these private.
1027  RegLocation* reg_location_;                         // Map SSA names to location.
1028  SafeMap<unsigned int, unsigned int> block_id_map_;  // Block collapse lookup cache.
1029
1030  static const char* extended_mir_op_names_[kMirOpLast - kMirOpFirst];
1031  static const uint32_t analysis_attributes_[kMirOpLast];
1032
1033  void HandleSSADef(int* defs, int dalvik_reg, int reg_index);
1034  bool InferTypeAndSize(BasicBlock* bb, MIR* mir, bool changed);
1035
1036  // Used for removing redudant suspend tests
1037  void AppendGenSuspendTestList(BasicBlock* bb) {
1038    if (gen_suspend_test_list_.Size() == 0 ||
1039        gen_suspend_test_list_.Get(gen_suspend_test_list_.Size() - 1) != bb) {
1040      gen_suspend_test_list_.Insert(bb);
1041    }
1042  }
1043
1044  /* This is used to check if there is already a method call dominating the
1045   * source basic block of a backedge and being dominated by the target basic
1046   * block of the backedge.
1047   */
1048  bool HasSuspendTestBetween(BasicBlock* source, BasicBlockId target_id);
1049
1050 protected:
1051  int FindCommonParent(int block1, int block2);
1052  void ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
1053                         const ArenaBitVector* src2);
1054  void HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
1055                       ArenaBitVector* live_in_v, int dalvik_reg_id);
1056  void HandleDef(ArenaBitVector* def_v, int dalvik_reg_id);
1057  bool DoSSAConversion(BasicBlock* bb);
1058  bool InvokeUsesMethodStar(MIR* mir);
1059  int ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction);
1060  bool ContentIsInsn(const uint16_t* code_ptr);
1061  BasicBlock* SplitBlock(DexOffset code_offset, BasicBlock* orig_block,
1062                         BasicBlock** immed_pred_block_p);
1063  BasicBlock* FindBlock(DexOffset code_offset, bool split, bool create,
1064                        BasicBlock** immed_pred_block_p);
1065  void ProcessTryCatchBlocks();
1066  bool IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset, NarrowDexOffset catch_offset);
1067  BasicBlock* ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1068                               int flags, const uint16_t* code_ptr, const uint16_t* code_end);
1069  BasicBlock* ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1070                               int flags);
1071  BasicBlock* ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, int width,
1072                              int flags, ArenaBitVector* try_block_addr, const uint16_t* code_ptr,
1073                              const uint16_t* code_end);
1074  int AddNewSReg(int v_reg);
1075  void HandleSSAUse(int* uses, int dalvik_reg, int reg_index);
1076  void DataFlowSSAFormat35C(MIR* mir);
1077  void DataFlowSSAFormat3RC(MIR* mir);
1078  bool FindLocalLiveIn(BasicBlock* bb);
1079  bool VerifyPredInfo(BasicBlock* bb);
1080  BasicBlock* NeedsVisit(BasicBlock* bb);
1081  BasicBlock* NextUnvisitedSuccessor(BasicBlock* bb);
1082  void MarkPreOrder(BasicBlock* bb);
1083  void RecordDFSOrders(BasicBlock* bb);
1084  void ComputeDomPostOrderTraversal(BasicBlock* bb);
1085  void SetConstant(int32_t ssa_reg, int value);
1086  void SetConstantWide(int ssa_reg, int64_t value);
1087  int GetSSAUseCount(int s_reg);
1088  bool BasicBlockOpt(BasicBlock* bb);
1089  bool BuildExtendedBBList(struct BasicBlock* bb);
1090  bool FillDefBlockMatrix(BasicBlock* bb);
1091  void InitializeDominationInfo(BasicBlock* bb);
1092  bool ComputeblockIDom(BasicBlock* bb);
1093  bool ComputeBlockDominators(BasicBlock* bb);
1094  bool SetDominators(BasicBlock* bb);
1095  bool ComputeBlockLiveIns(BasicBlock* bb);
1096  bool ComputeDominanceFrontier(BasicBlock* bb);
1097
1098  void CountChecks(BasicBlock* bb);
1099  void AnalyzeBlock(BasicBlock* bb, struct MethodStats* stats);
1100  bool ComputeSkipCompilation(struct MethodStats* stats, bool skip_default,
1101                              std::string* skip_message);
1102
1103  CompilationUnit* const cu_;
1104  GrowableArray<int>* ssa_base_vregs_;
1105  GrowableArray<int>* ssa_subscripts_;
1106  // Map original Dalvik virtual reg i to the current SSA name.
1107  int* vreg_to_ssa_map_;            // length == method->registers_size
1108  int* ssa_last_defs_;              // length == method->registers_size
1109  ArenaBitVector* is_constant_v_;   // length == num_ssa_reg
1110  int* constant_values_;            // length == num_ssa_reg
1111  // Use counts of ssa names.
1112  GrowableArray<uint32_t> use_counts_;      // Weighted by nesting depth
1113  GrowableArray<uint32_t> raw_use_counts_;  // Not weighted
1114  unsigned int num_reachable_blocks_;
1115  unsigned int max_num_reachable_blocks_;
1116  GrowableArray<BasicBlockId>* dfs_order_;
1117  GrowableArray<BasicBlockId>* dfs_post_order_;
1118  GrowableArray<BasicBlockId>* dom_post_order_traversal_;
1119  GrowableArray<BasicBlockId>* topological_order_;
1120  int* i_dom_list_;
1121  ArenaBitVector** def_block_matrix_;    // num_dalvik_register x num_blocks.
1122  std::unique_ptr<ScopedArenaAllocator> temp_scoped_alloc_;
1123  uint16_t* temp_insn_data_;
1124  uint32_t temp_bit_vector_size_;
1125  ArenaBitVector* temp_bit_vector_;
1126  static const int kInvalidEntry = -1;
1127  GrowableArray<BasicBlock*> block_list_;
1128  ArenaBitVector* try_block_addr_;
1129  BasicBlock* entry_block_;
1130  BasicBlock* exit_block_;
1131  unsigned int num_blocks_;
1132  const DexFile::CodeItem* current_code_item_;
1133  GrowableArray<uint16_t> dex_pc_to_block_map_;  // FindBlock lookup cache.
1134  std::vector<DexCompilationUnit*> m_units_;     // List of methods included in this graph
1135  typedef std::pair<int, int> MIRLocation;       // Insert point, (m_unit_ index, offset)
1136  std::vector<MIRLocation> method_stack_;        // Include stack
1137  int current_method_;
1138  DexOffset current_offset_;                     // Offset in code units
1139  int def_count_;                                // Used to estimate size of ssa name storage.
1140  int* opcode_count_;                            // Dex opcode coverage stats.
1141  int num_ssa_regs_;                             // Number of names following SSA transformation.
1142  std::vector<BasicBlockId> extended_basic_blocks_;  // Heads of block "traces".
1143  int method_sreg_;
1144  unsigned int attributes_;
1145  Checkstats* checkstats_;
1146  ArenaAllocator* arena_;
1147  int backward_branches_;
1148  int forward_branches_;
1149  GrowableArray<CompilerTemp*> compiler_temps_;
1150  size_t num_non_special_compiler_temps_;
1151  size_t max_available_non_special_compiler_temps_;
1152  size_t max_available_special_compiler_temps_;
1153  bool punt_to_interpreter_;                    // Difficult or not worthwhile - just interpret.
1154  uint64_t merged_df_flags_;
1155  GrowableArray<MirIFieldLoweringInfo> ifield_lowering_infos_;
1156  GrowableArray<MirSFieldLoweringInfo> sfield_lowering_infos_;
1157  GrowableArray<MirMethodLoweringInfo> method_lowering_infos_;
1158  static const uint64_t oat_data_flow_attributes_[kMirOpLast];
1159  GrowableArray<BasicBlock*> gen_suspend_test_list_;  // List of blocks containing suspend tests
1160
1161  friend class ClassInitCheckEliminationTest;
1162  friend class LocalValueNumberingTest;
1163};
1164
1165}  // namespace art
1166
1167#endif  // ART_COMPILER_DEX_MIR_GRAPH_H_
1168