mir_optimization.cc revision 69f08baaa4b70ce32a258f3da43cf12f2a034696
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "compiler_internals.h"
18#include "local_value_numbering.h"
19#include "dataflow_iterator-inl.h"
20#include "dex/quick/dex_file_method_inliner.h"
21#include "dex/quick/dex_file_to_method_inliner_map.h"
22#include "utils/scoped_arena_containers.h"
23
24namespace art {
25
26static unsigned int Predecessors(BasicBlock* bb) {
27  return bb->predecessors->Size();
28}
29
30/* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */
31void MIRGraph::SetConstant(int32_t ssa_reg, int value) {
32  is_constant_v_->SetBit(ssa_reg);
33  constant_values_[ssa_reg] = value;
34}
35
36void MIRGraph::SetConstantWide(int ssa_reg, int64_t value) {
37  is_constant_v_->SetBit(ssa_reg);
38  constant_values_[ssa_reg] = Low32Bits(value);
39  constant_values_[ssa_reg + 1] = High32Bits(value);
40}
41
42void MIRGraph::DoConstantPropagation(BasicBlock* bb) {
43  MIR* mir;
44
45  for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
46    // Skip pass if BB has MIR without SSA representation.
47    if (mir->ssa_rep == nullptr) {
48       return;
49    }
50
51    uint64_t df_attributes = GetDataFlowAttributes(mir);
52
53    MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
54
55    if (!(df_attributes & DF_HAS_DEFS)) continue;
56
57    /* Handle instructions that set up constants directly */
58    if (df_attributes & DF_SETS_CONST) {
59      if (df_attributes & DF_DA) {
60        int32_t vB = static_cast<int32_t>(d_insn->vB);
61        switch (d_insn->opcode) {
62          case Instruction::CONST_4:
63          case Instruction::CONST_16:
64          case Instruction::CONST:
65            SetConstant(mir->ssa_rep->defs[0], vB);
66            break;
67          case Instruction::CONST_HIGH16:
68            SetConstant(mir->ssa_rep->defs[0], vB << 16);
69            break;
70          case Instruction::CONST_WIDE_16:
71          case Instruction::CONST_WIDE_32:
72            SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB));
73            break;
74          case Instruction::CONST_WIDE:
75            SetConstantWide(mir->ssa_rep->defs[0], d_insn->vB_wide);
76            break;
77          case Instruction::CONST_WIDE_HIGH16:
78            SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB) << 48);
79            break;
80          default:
81            break;
82        }
83      }
84      /* Handle instructions that set up constants directly */
85    } else if (df_attributes & DF_IS_MOVE) {
86      int i;
87
88      for (i = 0; i < mir->ssa_rep->num_uses; i++) {
89        if (!is_constant_v_->IsBitSet(mir->ssa_rep->uses[i])) break;
90      }
91      /* Move a register holding a constant to another register */
92      if (i == mir->ssa_rep->num_uses) {
93        SetConstant(mir->ssa_rep->defs[0], constant_values_[mir->ssa_rep->uses[0]]);
94        if (df_attributes & DF_A_WIDE) {
95          SetConstant(mir->ssa_rep->defs[1], constant_values_[mir->ssa_rep->uses[1]]);
96        }
97      }
98    }
99  }
100  /* TODO: implement code to handle arithmetic operations */
101}
102
103/* Advance to next strictly dominated MIR node in an extended basic block */
104MIR* MIRGraph::AdvanceMIR(BasicBlock** p_bb, MIR* mir) {
105  BasicBlock* bb = *p_bb;
106  if (mir != NULL) {
107    mir = mir->next;
108    if (mir == NULL) {
109      bb = GetBasicBlock(bb->fall_through);
110      if ((bb == NULL) || Predecessors(bb) != 1) {
111        mir = NULL;
112      } else {
113      *p_bb = bb;
114      mir = bb->first_mir_insn;
115      }
116    }
117  }
118  return mir;
119}
120
121/*
122 * To be used at an invoke mir.  If the logically next mir node represents
123 * a move-result, return it.  Else, return NULL.  If a move-result exists,
124 * it is required to immediately follow the invoke with no intervening
125 * opcodes or incoming arcs.  However, if the result of the invoke is not
126 * used, a move-result may not be present.
127 */
128MIR* MIRGraph::FindMoveResult(BasicBlock* bb, MIR* mir) {
129  BasicBlock* tbb = bb;
130  mir = AdvanceMIR(&tbb, mir);
131  while (mir != NULL) {
132    int opcode = mir->dalvikInsn.opcode;
133    if ((mir->dalvikInsn.opcode == Instruction::MOVE_RESULT) ||
134        (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) ||
135        (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_WIDE)) {
136      break;
137    }
138    // Keep going if pseudo op, otherwise terminate
139    if (opcode < kNumPackedOpcodes) {
140      mir = NULL;
141    } else {
142      mir = AdvanceMIR(&tbb, mir);
143    }
144  }
145  return mir;
146}
147
148BasicBlock* MIRGraph::NextDominatedBlock(BasicBlock* bb) {
149  if (bb->block_type == kDead) {
150    return NULL;
151  }
152  DCHECK((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
153      || (bb->block_type == kExitBlock));
154  BasicBlock* bb_taken = GetBasicBlock(bb->taken);
155  BasicBlock* bb_fall_through = GetBasicBlock(bb->fall_through);
156  if (((bb_fall_through == NULL) && (bb_taken != NULL)) &&
157      ((bb_taken->block_type == kDalvikByteCode) || (bb_taken->block_type == kExitBlock))) {
158    // Follow simple unconditional branches.
159    bb = bb_taken;
160  } else {
161    // Follow simple fallthrough
162    bb = (bb_taken != NULL) ? NULL : bb_fall_through;
163  }
164  if (bb == NULL || (Predecessors(bb) != 1)) {
165    return NULL;
166  }
167  DCHECK((bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock));
168  return bb;
169}
170
171static MIR* FindPhi(BasicBlock* bb, int ssa_name) {
172  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
173    if (static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) {
174      for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
175        if (mir->ssa_rep->uses[i] == ssa_name) {
176          return mir;
177        }
178      }
179    }
180  }
181  return NULL;
182}
183
184static SelectInstructionKind SelectKind(MIR* mir) {
185  switch (mir->dalvikInsn.opcode) {
186    case Instruction::MOVE:
187    case Instruction::MOVE_OBJECT:
188    case Instruction::MOVE_16:
189    case Instruction::MOVE_OBJECT_16:
190    case Instruction::MOVE_FROM16:
191    case Instruction::MOVE_OBJECT_FROM16:
192      return kSelectMove;
193    case Instruction::CONST:
194    case Instruction::CONST_4:
195    case Instruction::CONST_16:
196      return kSelectConst;
197    case Instruction::GOTO:
198    case Instruction::GOTO_16:
199    case Instruction::GOTO_32:
200      return kSelectGoto;
201    default:
202      return kSelectNone;
203  }
204}
205
206static constexpr ConditionCode kIfCcZConditionCodes[] = {
207    kCondEq, kCondNe, kCondLt, kCondGe, kCondGt, kCondLe
208};
209
210COMPILE_ASSERT(arraysize(kIfCcZConditionCodes) == Instruction::IF_LEZ - Instruction::IF_EQZ + 1,
211               if_ccz_ccodes_size1);
212
213static constexpr bool IsInstructionIfCcZ(Instruction::Code opcode) {
214  return Instruction::IF_EQZ <= opcode && opcode <= Instruction::IF_LEZ;
215}
216
217static constexpr ConditionCode ConditionCodeForIfCcZ(Instruction::Code opcode) {
218  return kIfCcZConditionCodes[opcode - Instruction::IF_EQZ];
219}
220
221COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_EQZ) == kCondEq, check_if_eqz_ccode);
222COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_NEZ) == kCondNe, check_if_nez_ccode);
223COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LTZ) == kCondLt, check_if_ltz_ccode);
224COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GEZ) == kCondGe, check_if_gez_ccode);
225COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GTZ) == kCondGt, check_if_gtz_ccode);
226COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LEZ) == kCondLe, check_if_lez_ccode);
227
228int MIRGraph::GetSSAUseCount(int s_reg) {
229  return raw_use_counts_.Get(s_reg);
230}
231
232size_t MIRGraph::GetNumAvailableNonSpecialCompilerTemps() {
233  if (num_non_special_compiler_temps_ >= max_available_non_special_compiler_temps_) {
234    return 0;
235  } else {
236    return max_available_non_special_compiler_temps_ - num_non_special_compiler_temps_;
237  }
238}
239
240
241// FIXME - will probably need to revisit all uses of this, as type not defined.
242static const RegLocation temp_loc = {kLocCompilerTemp,
243                                     0, 1 /*defined*/, 0, 0, 0, 0, 0, 1 /*home*/,
244                                     RegStorage(), INVALID_SREG, INVALID_SREG};
245
246CompilerTemp* MIRGraph::GetNewCompilerTemp(CompilerTempType ct_type, bool wide) {
247  // There is a limit to the number of non-special temps so check to make sure it wasn't exceeded.
248  if (ct_type == kCompilerTempVR) {
249    size_t available_temps = GetNumAvailableNonSpecialCompilerTemps();
250    if (available_temps <= 0 || (available_temps <= 1 && wide)) {
251      return 0;
252    }
253  }
254
255  CompilerTemp *compiler_temp = static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp),
256                                                            kArenaAllocRegAlloc));
257
258  // Create the type of temp requested. Special temps need special handling because
259  // they have a specific virtual register assignment.
260  if (ct_type == kCompilerTempSpecialMethodPtr) {
261    DCHECK_EQ(wide, false);
262    compiler_temp->v_reg = static_cast<int>(kVRegMethodPtrBaseReg);
263    compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
264
265    // The MIR graph keeps track of the sreg for method pointer specially, so record that now.
266    method_sreg_ = compiler_temp->s_reg_low;
267  } else {
268    DCHECK_EQ(ct_type, kCompilerTempVR);
269
270    // The new non-special compiler temp must receive a unique v_reg with a negative value.
271    compiler_temp->v_reg = static_cast<int>(kVRegNonSpecialTempBaseReg) - num_non_special_compiler_temps_;
272    compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
273    num_non_special_compiler_temps_++;
274
275    if (wide) {
276      // Ensure that the two registers are consecutive. Since the virtual registers used for temps grow in a
277      // negative fashion, we need the smaller to refer to the low part. Thus, we redefine the v_reg and s_reg_low.
278      compiler_temp->v_reg--;
279      int ssa_reg_high = compiler_temp->s_reg_low;
280      compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
281      int ssa_reg_low = compiler_temp->s_reg_low;
282
283      // If needed initialize the register location for the high part.
284      // The low part is handled later in this method on a common path.
285      if (reg_location_ != nullptr) {
286        reg_location_[ssa_reg_high] = temp_loc;
287        reg_location_[ssa_reg_high].high_word = 1;
288        reg_location_[ssa_reg_high].s_reg_low = ssa_reg_low;
289        reg_location_[ssa_reg_high].wide = true;
290      }
291
292      num_non_special_compiler_temps_++;
293    }
294  }
295
296  // Have we already allocated the register locations?
297  if (reg_location_ != nullptr) {
298    int ssa_reg_low = compiler_temp->s_reg_low;
299    reg_location_[ssa_reg_low] = temp_loc;
300    reg_location_[ssa_reg_low].s_reg_low = ssa_reg_low;
301    reg_location_[ssa_reg_low].wide = wide;
302  }
303
304  compiler_temps_.Insert(compiler_temp);
305  return compiler_temp;
306}
307
308/* Do some MIR-level extended basic block optimizations */
309bool MIRGraph::BasicBlockOpt(BasicBlock* bb) {
310  if (bb->block_type == kDead) {
311    return true;
312  }
313  bool use_lvn = bb->use_lvn;
314  UniquePtr<LocalValueNumbering> local_valnum;
315  if (use_lvn) {
316    local_valnum.reset(LocalValueNumbering::Create(cu_));
317  }
318  while (bb != NULL) {
319    for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
320      // TUNING: use the returned value number for CSE.
321      if (use_lvn) {
322        local_valnum->GetValueNumber(mir);
323      }
324      // Look for interesting opcodes, skip otherwise
325      Instruction::Code opcode = mir->dalvikInsn.opcode;
326      switch (opcode) {
327        case Instruction::CMPL_FLOAT:
328        case Instruction::CMPL_DOUBLE:
329        case Instruction::CMPG_FLOAT:
330        case Instruction::CMPG_DOUBLE:
331        case Instruction::CMP_LONG:
332          if ((cu_->disable_opt & (1 << kBranchFusing)) != 0) {
333            // Bitcode doesn't allow this optimization.
334            break;
335          }
336          if (mir->next != NULL) {
337            MIR* mir_next = mir->next;
338            // Make sure result of cmp is used by next insn and nowhere else
339            if (IsInstructionIfCcZ(mir->next->dalvikInsn.opcode) &&
340                (mir->ssa_rep->defs[0] == mir_next->ssa_rep->uses[0]) &&
341                (GetSSAUseCount(mir->ssa_rep->defs[0]) == 1)) {
342              mir_next->meta.ccode = ConditionCodeForIfCcZ(mir_next->dalvikInsn.opcode);
343              switch (opcode) {
344                case Instruction::CMPL_FLOAT:
345                  mir_next->dalvikInsn.opcode =
346                      static_cast<Instruction::Code>(kMirOpFusedCmplFloat);
347                  break;
348                case Instruction::CMPL_DOUBLE:
349                  mir_next->dalvikInsn.opcode =
350                      static_cast<Instruction::Code>(kMirOpFusedCmplDouble);
351                  break;
352                case Instruction::CMPG_FLOAT:
353                  mir_next->dalvikInsn.opcode =
354                      static_cast<Instruction::Code>(kMirOpFusedCmpgFloat);
355                  break;
356                case Instruction::CMPG_DOUBLE:
357                  mir_next->dalvikInsn.opcode =
358                      static_cast<Instruction::Code>(kMirOpFusedCmpgDouble);
359                  break;
360                case Instruction::CMP_LONG:
361                  mir_next->dalvikInsn.opcode =
362                      static_cast<Instruction::Code>(kMirOpFusedCmpLong);
363                  break;
364                default: LOG(ERROR) << "Unexpected opcode: " << opcode;
365              }
366              mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
367              mir_next->ssa_rep->num_uses = mir->ssa_rep->num_uses;
368              mir_next->ssa_rep->uses = mir->ssa_rep->uses;
369              mir_next->ssa_rep->fp_use = mir->ssa_rep->fp_use;
370              mir_next->ssa_rep->num_defs = 0;
371              mir->ssa_rep->num_uses = 0;
372              mir->ssa_rep->num_defs = 0;
373            }
374          }
375          break;
376        case Instruction::GOTO:
377        case Instruction::GOTO_16:
378        case Instruction::GOTO_32:
379        case Instruction::IF_EQ:
380        case Instruction::IF_NE:
381        case Instruction::IF_LT:
382        case Instruction::IF_GE:
383        case Instruction::IF_GT:
384        case Instruction::IF_LE:
385        case Instruction::IF_EQZ:
386        case Instruction::IF_NEZ:
387        case Instruction::IF_LTZ:
388        case Instruction::IF_GEZ:
389        case Instruction::IF_GTZ:
390        case Instruction::IF_LEZ:
391          // If we've got a backwards branch to return, no need to suspend check.
392          if ((IsBackedge(bb, bb->taken) && GetBasicBlock(bb->taken)->dominates_return) ||
393              (IsBackedge(bb, bb->fall_through) &&
394                          GetBasicBlock(bb->fall_through)->dominates_return)) {
395            mir->optimization_flags |= MIR_IGNORE_SUSPEND_CHECK;
396            if (cu_->verbose) {
397              LOG(INFO) << "Suppressed suspend check on branch to return at 0x" << std::hex
398                        << mir->offset;
399            }
400          }
401          break;
402        default:
403          break;
404      }
405      // Is this the select pattern?
406      // TODO: flesh out support for Mips.  NOTE: llvm's select op doesn't quite work here.
407      // TUNING: expand to support IF_xx compare & branches
408      if (!cu_->compiler->IsPortable() &&
409          (cu_->instruction_set == kThumb2 || cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) &&
410          IsInstructionIfCcZ(mir->dalvikInsn.opcode)) {
411        BasicBlock* ft = GetBasicBlock(bb->fall_through);
412        DCHECK(ft != NULL);
413        BasicBlock* ft_ft = GetBasicBlock(ft->fall_through);
414        BasicBlock* ft_tk = GetBasicBlock(ft->taken);
415
416        BasicBlock* tk = GetBasicBlock(bb->taken);
417        DCHECK(tk != NULL);
418        BasicBlock* tk_ft = GetBasicBlock(tk->fall_through);
419        BasicBlock* tk_tk = GetBasicBlock(tk->taken);
420
421        /*
422         * In the select pattern, the taken edge goes to a block that unconditionally
423         * transfers to the rejoin block and the fall_though edge goes to a block that
424         * unconditionally falls through to the rejoin block.
425         */
426        if ((tk_ft == NULL) && (ft_tk == NULL) && (tk_tk == ft_ft) &&
427            (Predecessors(tk) == 1) && (Predecessors(ft) == 1)) {
428          /*
429           * Okay - we have the basic diamond shape.  At the very least, we can eliminate the
430           * suspend check on the taken-taken branch back to the join point.
431           */
432          if (SelectKind(tk->last_mir_insn) == kSelectGoto) {
433              tk->last_mir_insn->optimization_flags |= (MIR_IGNORE_SUSPEND_CHECK);
434          }
435          // Are the block bodies something we can handle?
436          if ((ft->first_mir_insn == ft->last_mir_insn) &&
437              (tk->first_mir_insn != tk->last_mir_insn) &&
438              (tk->first_mir_insn->next == tk->last_mir_insn) &&
439              ((SelectKind(ft->first_mir_insn) == kSelectMove) ||
440              (SelectKind(ft->first_mir_insn) == kSelectConst)) &&
441              (SelectKind(ft->first_mir_insn) == SelectKind(tk->first_mir_insn)) &&
442              (SelectKind(tk->last_mir_insn) == kSelectGoto)) {
443            // Almost there.  Are the instructions targeting the same vreg?
444            MIR* if_true = tk->first_mir_insn;
445            MIR* if_false = ft->first_mir_insn;
446            // It's possible that the target of the select isn't used - skip those (rare) cases.
447            MIR* phi = FindPhi(tk_tk, if_true->ssa_rep->defs[0]);
448            if ((phi != NULL) && (if_true->dalvikInsn.vA == if_false->dalvikInsn.vA)) {
449              /*
450               * We'll convert the IF_EQZ/IF_NEZ to a SELECT.  We need to find the
451               * Phi node in the merge block and delete it (while using the SSA name
452               * of the merge as the target of the SELECT.  Delete both taken and
453               * fallthrough blocks, and set fallthrough to merge block.
454               * NOTE: not updating other dataflow info (no longer used at this point).
455               * If this changes, need to update i_dom, etc. here (and in CombineBlocks).
456               */
457              mir->meta.ccode = ConditionCodeForIfCcZ(mir->dalvikInsn.opcode);
458              mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpSelect);
459              bool const_form = (SelectKind(if_true) == kSelectConst);
460              if ((SelectKind(if_true) == kSelectMove)) {
461                if (IsConst(if_true->ssa_rep->uses[0]) &&
462                    IsConst(if_false->ssa_rep->uses[0])) {
463                    const_form = true;
464                    if_true->dalvikInsn.vB = ConstantValue(if_true->ssa_rep->uses[0]);
465                    if_false->dalvikInsn.vB = ConstantValue(if_false->ssa_rep->uses[0]);
466                }
467              }
468              if (const_form) {
469                /*
470                 * TODO: If both constants are the same value, then instead of generating
471                 * a select, we should simply generate a const bytecode. This should be
472                 * considered after inlining which can lead to CFG of this form.
473                 */
474                // "true" set val in vB
475                mir->dalvikInsn.vB = if_true->dalvikInsn.vB;
476                // "false" set val in vC
477                mir->dalvikInsn.vC = if_false->dalvikInsn.vB;
478              } else {
479                DCHECK_EQ(SelectKind(if_true), kSelectMove);
480                DCHECK_EQ(SelectKind(if_false), kSelectMove);
481                int* src_ssa =
482                    static_cast<int*>(arena_->Alloc(sizeof(int) * 3, kArenaAllocDFInfo));
483                src_ssa[0] = mir->ssa_rep->uses[0];
484                src_ssa[1] = if_true->ssa_rep->uses[0];
485                src_ssa[2] = if_false->ssa_rep->uses[0];
486                mir->ssa_rep->uses = src_ssa;
487                mir->ssa_rep->num_uses = 3;
488              }
489              mir->ssa_rep->num_defs = 1;
490              mir->ssa_rep->defs =
491                  static_cast<int*>(arena_->Alloc(sizeof(int) * 1, kArenaAllocDFInfo));
492              mir->ssa_rep->fp_def =
493                  static_cast<bool*>(arena_->Alloc(sizeof(bool) * 1, kArenaAllocDFInfo));
494              mir->ssa_rep->fp_def[0] = if_true->ssa_rep->fp_def[0];
495              // Match type of uses to def.
496              mir->ssa_rep->fp_use =
497                  static_cast<bool*>(arena_->Alloc(sizeof(bool) * mir->ssa_rep->num_uses,
498                                                   kArenaAllocDFInfo));
499              for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
500                mir->ssa_rep->fp_use[i] = mir->ssa_rep->fp_def[0];
501              }
502              /*
503               * There is usually a Phi node in the join block for our two cases.  If the
504               * Phi node only contains our two cases as input, we will use the result
505               * SSA name of the Phi node as our select result and delete the Phi.  If
506               * the Phi node has more than two operands, we will arbitrarily use the SSA
507               * name of the "true" path, delete the SSA name of the "false" path from the
508               * Phi node (and fix up the incoming arc list).
509               */
510              if (phi->ssa_rep->num_uses == 2) {
511                mir->ssa_rep->defs[0] = phi->ssa_rep->defs[0];
512                phi->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
513              } else {
514                int dead_def = if_false->ssa_rep->defs[0];
515                int live_def = if_true->ssa_rep->defs[0];
516                mir->ssa_rep->defs[0] = live_def;
517                BasicBlockId* incoming = phi->meta.phi_incoming;
518                for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
519                  if (phi->ssa_rep->uses[i] == live_def) {
520                    incoming[i] = bb->id;
521                  }
522                }
523                for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
524                  if (phi->ssa_rep->uses[i] == dead_def) {
525                    int last_slot = phi->ssa_rep->num_uses - 1;
526                    phi->ssa_rep->uses[i] = phi->ssa_rep->uses[last_slot];
527                    incoming[i] = incoming[last_slot];
528                  }
529                }
530              }
531              phi->ssa_rep->num_uses--;
532              bb->taken = NullBasicBlockId;
533              tk->block_type = kDead;
534              for (MIR* tmir = ft->first_mir_insn; tmir != NULL; tmir = tmir->next) {
535                tmir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
536              }
537            }
538          }
539        }
540      }
541    }
542    bb = ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) ? NextDominatedBlock(bb) : NULL;
543  }
544
545  return true;
546}
547
548/* Collect stats on number of checks removed */
549void MIRGraph::CountChecks(struct BasicBlock* bb) {
550  if (bb->data_flow_info != NULL) {
551    for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
552      if (mir->ssa_rep == NULL) {
553        continue;
554      }
555      uint64_t df_attributes = GetDataFlowAttributes(mir);
556      if (df_attributes & DF_HAS_NULL_CHKS) {
557        checkstats_->null_checks++;
558        if (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) {
559          checkstats_->null_checks_eliminated++;
560        }
561      }
562      if (df_attributes & DF_HAS_RANGE_CHKS) {
563        checkstats_->range_checks++;
564        if (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) {
565          checkstats_->range_checks_eliminated++;
566        }
567      }
568    }
569  }
570}
571
572/* Try to make common case the fallthrough path */
573bool MIRGraph::LayoutBlocks(BasicBlock* bb) {
574  // TODO: For now, just looking for direct throws.  Consider generalizing for profile feedback
575  if (!bb->explicit_throw) {
576    return false;
577  }
578  BasicBlock* walker = bb;
579  while (true) {
580    // Check termination conditions
581    if ((walker->block_type == kEntryBlock) || (Predecessors(walker) != 1)) {
582      break;
583    }
584    BasicBlock* prev = GetBasicBlock(walker->predecessors->Get(0));
585    if (prev->conditional_branch) {
586      if (GetBasicBlock(prev->fall_through) == walker) {
587        // Already done - return
588        break;
589      }
590      DCHECK_EQ(walker, GetBasicBlock(prev->taken));
591      // Got one.  Flip it and exit
592      Instruction::Code opcode = prev->last_mir_insn->dalvikInsn.opcode;
593      switch (opcode) {
594        case Instruction::IF_EQ: opcode = Instruction::IF_NE; break;
595        case Instruction::IF_NE: opcode = Instruction::IF_EQ; break;
596        case Instruction::IF_LT: opcode = Instruction::IF_GE; break;
597        case Instruction::IF_GE: opcode = Instruction::IF_LT; break;
598        case Instruction::IF_GT: opcode = Instruction::IF_LE; break;
599        case Instruction::IF_LE: opcode = Instruction::IF_GT; break;
600        case Instruction::IF_EQZ: opcode = Instruction::IF_NEZ; break;
601        case Instruction::IF_NEZ: opcode = Instruction::IF_EQZ; break;
602        case Instruction::IF_LTZ: opcode = Instruction::IF_GEZ; break;
603        case Instruction::IF_GEZ: opcode = Instruction::IF_LTZ; break;
604        case Instruction::IF_GTZ: opcode = Instruction::IF_LEZ; break;
605        case Instruction::IF_LEZ: opcode = Instruction::IF_GTZ; break;
606        default: LOG(FATAL) << "Unexpected opcode " << opcode;
607      }
608      prev->last_mir_insn->dalvikInsn.opcode = opcode;
609      BasicBlockId t_bb = prev->taken;
610      prev->taken = prev->fall_through;
611      prev->fall_through = t_bb;
612      break;
613    }
614    walker = prev;
615  }
616  return false;
617}
618
619/* Combine any basic blocks terminated by instructions that we now know can't throw */
620void MIRGraph::CombineBlocks(struct BasicBlock* bb) {
621  // Loop here to allow combining a sequence of blocks
622  while (true) {
623    // Check termination conditions
624    if ((bb->first_mir_insn == NULL)
625        || (bb->data_flow_info == NULL)
626        || (bb->block_type == kExceptionHandling)
627        || (bb->block_type == kExitBlock)
628        || (bb->block_type == kDead)
629        || (bb->taken == NullBasicBlockId)
630        || (GetBasicBlock(bb->taken)->block_type != kExceptionHandling)
631        || (bb->successor_block_list_type != kNotUsed)
632        || (static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) != kMirOpCheck)) {
633      break;
634    }
635
636    // Test the kMirOpCheck instruction
637    MIR* mir = bb->last_mir_insn;
638    // Grab the attributes from the paired opcode
639    MIR* throw_insn = mir->meta.throw_insn;
640    uint64_t df_attributes = GetDataFlowAttributes(throw_insn);
641    bool can_combine = true;
642    if (df_attributes & DF_HAS_NULL_CHKS) {
643      can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0);
644    }
645    if (df_attributes & DF_HAS_RANGE_CHKS) {
646      can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0);
647    }
648    if (!can_combine) {
649      break;
650    }
651    // OK - got one.  Combine
652    BasicBlock* bb_next = GetBasicBlock(bb->fall_through);
653    DCHECK(!bb_next->catch_entry);
654    DCHECK_EQ(Predecessors(bb_next), 1U);
655    // Overwrite the kOpCheck insn with the paired opcode
656    DCHECK_EQ(bb_next->first_mir_insn, throw_insn);
657    *bb->last_mir_insn = *throw_insn;
658    // Use the successor info from the next block
659    bb->successor_block_list_type = bb_next->successor_block_list_type;
660    bb->successor_blocks = bb_next->successor_blocks;
661    // Use the ending block linkage from the next block
662    bb->fall_through = bb_next->fall_through;
663    GetBasicBlock(bb->taken)->block_type = kDead;  // Kill the unused exception block
664    bb->taken = bb_next->taken;
665    // Include the rest of the instructions
666    bb->last_mir_insn = bb_next->last_mir_insn;
667    /*
668     * If lower-half of pair of blocks to combine contained a return, move the flag
669     * to the newly combined block.
670     */
671    bb->terminated_by_return = bb_next->terminated_by_return;
672
673    /*
674     * NOTE: we aren't updating all dataflow info here.  Should either make sure this pass
675     * happens after uses of i_dominated, dom_frontier or update the dataflow info here.
676     */
677
678    // Kill bb_next and remap now-dead id to parent
679    bb_next->block_type = kDead;
680    block_id_map_.Overwrite(bb_next->id, bb->id);
681
682    // Now, loop back and see if we can keep going
683  }
684}
685
686void MIRGraph::EliminateNullChecksAndInferTypesStart() {
687  if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) {
688    if (kIsDebugBuild) {
689      AllNodesIterator iter(this);
690      for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
691        CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr);
692      }
693    }
694
695    DCHECK(temp_scoped_alloc_.get() == nullptr);
696    temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
697    temp_bit_vector_size_ = GetNumSSARegs();
698    temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
699        temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapTempSSARegisterV);
700  }
701}
702
703/*
704 * Eliminate unnecessary null checks for a basic block.   Also, while we're doing
705 * an iterative walk go ahead and perform type and size inference.
706 */
707bool MIRGraph::EliminateNullChecksAndInferTypes(BasicBlock* bb) {
708  if (bb->data_flow_info == NULL) return false;
709  bool infer_changed = false;
710  bool do_nce = ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0);
711
712  ArenaBitVector* ssa_regs_to_check = temp_bit_vector_;
713  if (do_nce) {
714    /*
715     * Set initial state.  Be conservative with catch
716     * blocks and start with no assumptions about null check
717     * status (except for "this").
718     */
719    if ((bb->block_type == kEntryBlock) | bb->catch_entry) {
720      ssa_regs_to_check->ClearAllBits();
721      // Assume all ins are objects.
722      for (uint16_t in_reg = cu_->num_dalvik_registers - cu_->num_ins;
723           in_reg < cu_->num_dalvik_registers; in_reg++) {
724        ssa_regs_to_check->SetBit(in_reg);
725      }
726      if ((cu_->access_flags & kAccStatic) == 0) {
727        // If non-static method, mark "this" as non-null
728        int this_reg = cu_->num_dalvik_registers - cu_->num_ins;
729        ssa_regs_to_check->ClearBit(this_reg);
730      }
731    } else if (bb->predecessors->Size() == 1) {
732      BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0));
733      // pred_bb must have already been processed at least once.
734      DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr);
735      ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
736      if (pred_bb->block_type == kDalvikByteCode) {
737        // Check to see if predecessor had an explicit null-check.
738        MIR* last_insn = pred_bb->last_mir_insn;
739        if (last_insn != nullptr) {
740          Instruction::Code last_opcode = last_insn->dalvikInsn.opcode;
741          if (last_opcode == Instruction::IF_EQZ) {
742            if (pred_bb->fall_through == bb->id) {
743              // The fall-through of a block following a IF_EQZ, set the vA of the IF_EQZ to show that
744              // it can't be null.
745              ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]);
746            }
747          } else if (last_opcode == Instruction::IF_NEZ) {
748            if (pred_bb->taken == bb->id) {
749              // The taken block following a IF_NEZ, set the vA of the IF_NEZ to show that it can't be
750              // null.
751              ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]);
752            }
753          }
754        }
755      }
756    } else {
757      // Starting state is union of all incoming arcs
758      GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
759      BasicBlock* pred_bb = GetBasicBlock(iter.Next());
760      CHECK(pred_bb != NULL);
761      while (pred_bb->data_flow_info->ending_check_v == nullptr) {
762        pred_bb = GetBasicBlock(iter.Next());
763        // At least one predecessor must have been processed before this bb.
764        DCHECK(pred_bb != nullptr);
765        DCHECK(pred_bb->data_flow_info != nullptr);
766      }
767      ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
768      while (true) {
769        pred_bb = GetBasicBlock(iter.Next());
770        if (!pred_bb) break;
771        DCHECK(pred_bb->data_flow_info != nullptr);
772        if (pred_bb->data_flow_info->ending_check_v == nullptr) {
773          continue;
774        }
775        ssa_regs_to_check->Union(pred_bb->data_flow_info->ending_check_v);
776      }
777    }
778    // At this point, ssa_regs_to_check shows which sregs have an object definition with
779    // no intervening uses.
780  }
781
782  // Walk through the instruction in the block, updating as necessary
783  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
784    if (mir->ssa_rep == NULL) {
785        continue;
786    }
787
788    // Propagate type info.
789    infer_changed = InferTypeAndSize(bb, mir, infer_changed);
790    if (!do_nce) {
791      continue;
792    }
793
794    uint64_t df_attributes = GetDataFlowAttributes(mir);
795
796    // Might need a null check?
797    if (df_attributes & DF_HAS_NULL_CHKS) {
798      int src_idx;
799      if (df_attributes & DF_NULL_CHK_1) {
800        src_idx = 1;
801      } else if (df_attributes & DF_NULL_CHK_2) {
802        src_idx = 2;
803      } else {
804        src_idx = 0;
805      }
806      int src_sreg = mir->ssa_rep->uses[src_idx];
807      if (!ssa_regs_to_check->IsBitSet(src_sreg)) {
808        // Eliminate the null check.
809        mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
810      } else {
811        // Do the null check.
812        mir->optimization_flags &= ~MIR_IGNORE_NULL_CHECK;
813        // Mark s_reg as null-checked
814        ssa_regs_to_check->ClearBit(src_sreg);
815      }
816    }
817
818    if ((df_attributes & DF_A_WIDE) ||
819        (df_attributes & (DF_REF_A | DF_SETS_CONST | DF_NULL_TRANSFER)) == 0) {
820      continue;
821    }
822
823    /*
824     * First, mark all object definitions as requiring null check.
825     * Note: we can't tell if a CONST definition might be used as an object, so treat
826     * them all as object definitions.
827     */
828    if (((df_attributes & (DF_DA | DF_REF_A)) == (DF_DA | DF_REF_A)) ||
829        (df_attributes & DF_SETS_CONST))  {
830      ssa_regs_to_check->SetBit(mir->ssa_rep->defs[0]);
831    }
832
833    // Now, remove mark from all object definitions we know are non-null.
834    if (df_attributes & DF_NON_NULL_DST) {
835      // Mark target of NEW* as non-null
836      ssa_regs_to_check->ClearBit(mir->ssa_rep->defs[0]);
837    }
838
839    // Mark non-null returns from invoke-style NEW*
840    if (df_attributes & DF_NON_NULL_RET) {
841      MIR* next_mir = mir->next;
842      // Next should be an MOVE_RESULT_OBJECT
843      if (next_mir &&
844          next_mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
845        // Mark as null checked
846        ssa_regs_to_check->ClearBit(next_mir->ssa_rep->defs[0]);
847      } else {
848        if (next_mir) {
849          LOG(WARNING) << "Unexpected opcode following new: " << next_mir->dalvikInsn.opcode;
850        } else if (bb->fall_through != NullBasicBlockId) {
851          // Look in next basic block
852          struct BasicBlock* next_bb = GetBasicBlock(bb->fall_through);
853          for (MIR* tmir = next_bb->first_mir_insn; tmir != NULL;
854            tmir =tmir->next) {
855            if (static_cast<int>(tmir->dalvikInsn.opcode) >= static_cast<int>(kMirOpFirst)) {
856              continue;
857            }
858            // First non-pseudo should be MOVE_RESULT_OBJECT
859            if (tmir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
860              // Mark as null checked
861              ssa_regs_to_check->ClearBit(tmir->ssa_rep->defs[0]);
862            } else {
863              LOG(WARNING) << "Unexpected op after new: " << tmir->dalvikInsn.opcode;
864            }
865            break;
866          }
867        }
868      }
869    }
870
871    /*
872     * Propagate nullcheck state on register copies (including
873     * Phi pseudo copies.  For the latter, nullcheck state is
874     * the "or" of all the Phi's operands.
875     */
876    if (df_attributes & (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)) {
877      int tgt_sreg = mir->ssa_rep->defs[0];
878      int operands = (df_attributes & DF_NULL_TRANSFER_0) ? 1 :
879          mir->ssa_rep->num_uses;
880      bool needs_null_check = false;
881      for (int i = 0; i < operands; i++) {
882        needs_null_check |= ssa_regs_to_check->IsBitSet(mir->ssa_rep->uses[i]);
883      }
884      if (needs_null_check) {
885        ssa_regs_to_check->SetBit(tgt_sreg);
886      } else {
887        ssa_regs_to_check->ClearBit(tgt_sreg);
888      }
889    }
890  }
891
892  // Did anything change?
893  bool nce_changed = false;
894  if (do_nce) {
895    if (bb->data_flow_info->ending_check_v == nullptr) {
896      DCHECK(temp_scoped_alloc_.get() != nullptr);
897      bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector(
898          temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapNullCheck);
899      nce_changed = ssa_regs_to_check->GetHighestBitSet() != -1;
900      bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check);
901    } else if (!ssa_regs_to_check->SameBitsSet(bb->data_flow_info->ending_check_v)) {
902      nce_changed = true;
903      bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check);
904    }
905  }
906  return infer_changed | nce_changed;
907}
908
909void MIRGraph::EliminateNullChecksAndInferTypesEnd() {
910  if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) {
911    // Clean up temporaries.
912    temp_bit_vector_size_ = 0u;
913    temp_bit_vector_ = nullptr;
914    AllNodesIterator iter(this);
915    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
916      if (bb->data_flow_info != nullptr) {
917        bb->data_flow_info->ending_check_v = nullptr;
918      }
919    }
920    DCHECK(temp_scoped_alloc_.get() != nullptr);
921    temp_scoped_alloc_.reset();
922  }
923}
924
925bool MIRGraph::EliminateClassInitChecksGate() {
926  if ((cu_->disable_opt & (1 << kClassInitCheckElimination)) != 0 ||
927      !cu_->mir_graph->HasStaticFieldAccess()) {
928    return false;
929  }
930
931  if (kIsDebugBuild) {
932    AllNodesIterator iter(this);
933    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
934      CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr);
935    }
936  }
937
938  DCHECK(temp_scoped_alloc_.get() == nullptr);
939  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
940
941  // Each insn we use here has at least 2 code units, offset/2 will be a unique index.
942  const size_t end = (cu_->code_item->insns_size_in_code_units_ + 1u) / 2u;
943  temp_insn_data_ = static_cast<uint16_t*>(
944      temp_scoped_alloc_->Alloc(end * sizeof(*temp_insn_data_), kArenaAllocGrowableArray));
945
946  uint32_t unique_class_count = 0u;
947  {
948    // Get unique_class_count and store indexes in temp_insn_data_ using a map on a nested
949    // ScopedArenaAllocator.
950
951    // Embed the map value in the entry to save space.
952    struct MapEntry {
953      // Map key: the class identified by the declaring dex file and type index.
954      const DexFile* declaring_dex_file;
955      uint16_t declaring_class_idx;
956      // Map value: index into bit vectors of classes requiring initialization checks.
957      uint16_t index;
958    };
959    struct MapEntryComparator {
960      bool operator()(const MapEntry& lhs, const MapEntry& rhs) const {
961        if (lhs.declaring_class_idx != rhs.declaring_class_idx) {
962          return lhs.declaring_class_idx < rhs.declaring_class_idx;
963        }
964        return lhs.declaring_dex_file < rhs.declaring_dex_file;
965      }
966    };
967
968    ScopedArenaAllocator allocator(&cu_->arena_stack);
969    ScopedArenaSet<MapEntry, MapEntryComparator> class_to_index_map(MapEntryComparator(),
970                                                                    allocator.Adapter());
971
972    // First, find all SGET/SPUTs that may need class initialization checks, record INVOKE_STATICs.
973    AllNodesIterator iter(this);
974    for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
975      for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
976        DCHECK(bb->data_flow_info != nullptr);
977        if (mir->dalvikInsn.opcode >= Instruction::SGET &&
978            mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
979          const MirSFieldLoweringInfo& field_info = GetSFieldLoweringInfo(mir);
980          uint16_t index = 0xffffu;
981          if (field_info.IsResolved() && !field_info.IsInitialized()) {
982            DCHECK_LT(class_to_index_map.size(), 0xffffu);
983            MapEntry entry = {
984                field_info.DeclaringDexFile(),
985                field_info.DeclaringClassIndex(),
986                static_cast<uint16_t>(class_to_index_map.size())
987            };
988            index = class_to_index_map.insert(entry).first->index;
989          }
990          // Using offset/2 for index into temp_insn_data_.
991          temp_insn_data_[mir->offset / 2u] = index;
992        }
993      }
994    }
995    unique_class_count = static_cast<uint32_t>(class_to_index_map.size());
996  }
997
998  if (unique_class_count == 0u) {
999    // All SGET/SPUTs refer to initialized classes. Nothing to do.
1000    temp_insn_data_ = nullptr;
1001    temp_scoped_alloc_.reset();
1002    return false;
1003  }
1004
1005  temp_bit_vector_size_ = unique_class_count;
1006  temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1007      temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck);
1008  DCHECK_GT(temp_bit_vector_size_, 0u);
1009  return true;
1010}
1011
1012/*
1013 * Eliminate unnecessary class initialization checks for a basic block.
1014 */
1015bool MIRGraph::EliminateClassInitChecks(BasicBlock* bb) {
1016  DCHECK_EQ((cu_->disable_opt & (1 << kClassInitCheckElimination)), 0u);
1017  if (bb->data_flow_info == NULL) {
1018    return false;
1019  }
1020
1021  /*
1022   * Set initial state.  Be conservative with catch
1023   * blocks and start with no assumptions about class init check status.
1024   */
1025  ArenaBitVector* classes_to_check = temp_bit_vector_;
1026  DCHECK(classes_to_check != nullptr);
1027  if ((bb->block_type == kEntryBlock) | bb->catch_entry) {
1028    classes_to_check->SetInitialBits(temp_bit_vector_size_);
1029  } else if (bb->predecessors->Size() == 1) {
1030    BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0));
1031    // pred_bb must have already been processed at least once.
1032    DCHECK(pred_bb != nullptr);
1033    DCHECK(pred_bb->data_flow_info != nullptr);
1034    DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr);
1035    classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
1036  } else {
1037    // Starting state is union of all incoming arcs
1038    GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
1039    BasicBlock* pred_bb = GetBasicBlock(iter.Next());
1040    DCHECK(pred_bb != NULL);
1041    DCHECK(pred_bb->data_flow_info != NULL);
1042    while (pred_bb->data_flow_info->ending_check_v == nullptr) {
1043      pred_bb = GetBasicBlock(iter.Next());
1044      // At least one predecessor must have been processed before this bb.
1045      DCHECK(pred_bb != nullptr);
1046      DCHECK(pred_bb->data_flow_info != nullptr);
1047    }
1048    classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
1049    while (true) {
1050      pred_bb = GetBasicBlock(iter.Next());
1051      if (!pred_bb) break;
1052      DCHECK(pred_bb->data_flow_info != nullptr);
1053      if (pred_bb->data_flow_info->ending_check_v == nullptr) {
1054        continue;
1055      }
1056      classes_to_check->Union(pred_bb->data_flow_info->ending_check_v);
1057    }
1058  }
1059  // At this point, classes_to_check shows which classes need clinit checks.
1060
1061  // Walk through the instruction in the block, updating as necessary
1062  for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1063    if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1064        mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1065      uint16_t index = temp_insn_data_[mir->offset / 2u];
1066      if (index != 0xffffu) {
1067        if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1068            mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1069          if (!classes_to_check->IsBitSet(index)) {
1070            // Eliminate the class init check.
1071            mir->optimization_flags |= MIR_IGNORE_CLINIT_CHECK;
1072          } else {
1073            // Do the class init check.
1074            mir->optimization_flags &= ~MIR_IGNORE_CLINIT_CHECK;
1075          }
1076        }
1077        // Mark the class as initialized.
1078        classes_to_check->ClearBit(index);
1079      }
1080    }
1081  }
1082
1083  // Did anything change?
1084  bool changed = false;
1085  if (bb->data_flow_info->ending_check_v == nullptr) {
1086    DCHECK(temp_scoped_alloc_.get() != nullptr);
1087    DCHECK(bb->data_flow_info != nullptr);
1088    bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector(
1089        temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck);
1090    changed = classes_to_check->GetHighestBitSet() != -1;
1091    bb->data_flow_info->ending_check_v->Copy(classes_to_check);
1092  } else if (!classes_to_check->Equal(bb->data_flow_info->ending_check_v)) {
1093    changed = true;
1094    bb->data_flow_info->ending_check_v->Copy(classes_to_check);
1095  }
1096  return changed;
1097}
1098
1099void MIRGraph::EliminateClassInitChecksEnd() {
1100  // Clean up temporaries.
1101  temp_bit_vector_size_ = 0u;
1102  temp_bit_vector_ = nullptr;
1103  AllNodesIterator iter(this);
1104  for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1105    if (bb->data_flow_info != nullptr) {
1106      bb->data_flow_info->ending_check_v = nullptr;
1107    }
1108  }
1109
1110  DCHECK(temp_insn_data_ != nullptr);
1111  temp_insn_data_ = nullptr;
1112  DCHECK(temp_scoped_alloc_.get() != nullptr);
1113  temp_scoped_alloc_.reset();
1114}
1115
1116void MIRGraph::ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput) {
1117  uint32_t method_index = invoke->meta.method_lowering_info;
1118  if (temp_bit_vector_->IsBitSet(method_index)) {
1119    iget_or_iput->meta.ifield_lowering_info = temp_insn_data_[method_index];
1120    DCHECK_EQ(field_idx, GetIFieldLoweringInfo(iget_or_iput).FieldIndex());
1121    return;
1122  }
1123
1124  const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(invoke);
1125  MethodReference target = method_info.GetTargetMethod();
1126  DexCompilationUnit inlined_unit(
1127      cu_, cu_->class_loader, cu_->class_linker, *target.dex_file,
1128      nullptr /* code_item not used */, 0u /* class_def_idx not used */, target.dex_method_index,
1129      0u /* access_flags not used */, nullptr /* verified_method not used */);
1130  MirIFieldLoweringInfo inlined_field_info(field_idx);
1131  MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, &inlined_unit, &inlined_field_info, 1u);
1132  DCHECK(inlined_field_info.IsResolved());
1133
1134  uint32_t field_info_index = ifield_lowering_infos_.Size();
1135  ifield_lowering_infos_.Insert(inlined_field_info);
1136  temp_bit_vector_->SetBit(method_index);
1137  temp_insn_data_[method_index] = field_info_index;
1138  iget_or_iput->meta.ifield_lowering_info = field_info_index;
1139}
1140
1141bool MIRGraph::InlineCallsGate() {
1142  if ((cu_->disable_opt & (1 << kSuppressMethodInlining)) != 0 ||
1143      method_lowering_infos_.Size() == 0u) {
1144    return false;
1145  }
1146  if (cu_->compiler_driver->GetMethodInlinerMap() == nullptr) {
1147    // This isn't the Quick compiler.
1148    return false;
1149  }
1150  return true;
1151}
1152
1153void MIRGraph::InlineCallsStart() {
1154  // Prepare for inlining getters/setters. Since we're inlining at most 1 IGET/IPUT from
1155  // each INVOKE, we can index the data by the MIR::meta::method_lowering_info index.
1156
1157  DCHECK(temp_scoped_alloc_.get() == nullptr);
1158  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1159  temp_bit_vector_size_ = method_lowering_infos_.Size();
1160  temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1161      temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapMisc);
1162  temp_bit_vector_->ClearAllBits();
1163  temp_insn_data_ = static_cast<uint16_t*>(temp_scoped_alloc_->Alloc(
1164      temp_bit_vector_size_ * sizeof(*temp_insn_data_), kArenaAllocGrowableArray));
1165}
1166
1167void MIRGraph::InlineCalls(BasicBlock* bb) {
1168  if (bb->block_type != kDalvikByteCode) {
1169    return;
1170  }
1171  for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
1172    if (!(Instruction::FlagsOf(mir->dalvikInsn.opcode) & Instruction::kInvoke)) {
1173      continue;
1174    }
1175    const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(mir);
1176    if (!method_info.FastPath()) {
1177      continue;
1178    }
1179    InvokeType sharp_type = method_info.GetSharpType();
1180    if ((sharp_type != kDirect) &&
1181        (sharp_type != kStatic || method_info.NeedsClassInitialization())) {
1182      continue;
1183    }
1184    DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1185    MethodReference target = method_info.GetTargetMethod();
1186    if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(target.dex_file)
1187            ->GenInline(this, bb, mir, target.dex_method_index)) {
1188      if (cu_->verbose) {
1189        LOG(INFO) << "In \"" << PrettyMethod(cu_->method_idx, *cu_->dex_file)
1190            << "\" @0x" << std::hex << mir->offset
1191            << " inlined " << method_info.GetInvokeType() << " (" << sharp_type << ") call to \""
1192            << PrettyMethod(target.dex_method_index, *target.dex_file) << "\"";
1193      }
1194    }
1195  }
1196}
1197
1198void MIRGraph::InlineCallsEnd() {
1199  DCHECK(temp_insn_data_ != nullptr);
1200  temp_insn_data_ = nullptr;
1201  DCHECK(temp_bit_vector_ != nullptr);
1202  temp_bit_vector_ = nullptr;
1203  DCHECK(temp_scoped_alloc_.get() != nullptr);
1204  temp_scoped_alloc_.reset();
1205}
1206
1207void MIRGraph::DumpCheckStats() {
1208  Checkstats* stats =
1209      static_cast<Checkstats*>(arena_->Alloc(sizeof(Checkstats), kArenaAllocDFInfo));
1210  checkstats_ = stats;
1211  AllNodesIterator iter(this);
1212  for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1213    CountChecks(bb);
1214  }
1215  if (stats->null_checks > 0) {
1216    float eliminated = static_cast<float>(stats->null_checks_eliminated);
1217    float checks = static_cast<float>(stats->null_checks);
1218    LOG(INFO) << "Null Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
1219              << stats->null_checks_eliminated << " of " << stats->null_checks << " -> "
1220              << (eliminated/checks) * 100.0 << "%";
1221    }
1222  if (stats->range_checks > 0) {
1223    float eliminated = static_cast<float>(stats->range_checks_eliminated);
1224    float checks = static_cast<float>(stats->range_checks);
1225    LOG(INFO) << "Range Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
1226              << stats->range_checks_eliminated << " of " << stats->range_checks << " -> "
1227              << (eliminated/checks) * 100.0 << "%";
1228  }
1229}
1230
1231bool MIRGraph::BuildExtendedBBList(struct BasicBlock* bb) {
1232  if (bb->visited) return false;
1233  if (!((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
1234      || (bb->block_type == kExitBlock))) {
1235    // Ignore special blocks
1236    bb->visited = true;
1237    return false;
1238  }
1239  // Must be head of extended basic block.
1240  BasicBlock* start_bb = bb;
1241  extended_basic_blocks_.push_back(bb->id);
1242  bool terminated_by_return = false;
1243  bool do_local_value_numbering = false;
1244  // Visit blocks strictly dominated by this head.
1245  while (bb != NULL) {
1246    bb->visited = true;
1247    terminated_by_return |= bb->terminated_by_return;
1248    do_local_value_numbering |= bb->use_lvn;
1249    bb = NextDominatedBlock(bb);
1250  }
1251  if (terminated_by_return || do_local_value_numbering) {
1252    // Do lvn for all blocks in this extended set.
1253    bb = start_bb;
1254    while (bb != NULL) {
1255      bb->use_lvn = do_local_value_numbering;
1256      bb->dominates_return = terminated_by_return;
1257      bb = NextDominatedBlock(bb);
1258    }
1259  }
1260  return false;  // Not iterative - return value will be ignored
1261}
1262
1263void MIRGraph::BasicBlockOptimization() {
1264  if ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) {
1265    ClearAllVisitedFlags();
1266    PreOrderDfsIterator iter2(this);
1267    for (BasicBlock* bb = iter2.Next(); bb != NULL; bb = iter2.Next()) {
1268      BuildExtendedBBList(bb);
1269    }
1270    // Perform extended basic block optimizations.
1271    for (unsigned int i = 0; i < extended_basic_blocks_.size(); i++) {
1272      BasicBlockOpt(GetBasicBlock(extended_basic_blocks_[i]));
1273    }
1274  } else {
1275    PreOrderDfsIterator iter(this);
1276    for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1277      BasicBlockOpt(bb);
1278    }
1279  }
1280}
1281
1282}  // namespace art
1283