int_arm.cc revision 56e7666fe0df2c1a16b2cc6d12562c3e82199c0d
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the Thumb2 ISA. */
18
19#include "arm_lir.h"
20#include "codegen_arm.h"
21#include "dex/quick/mir_to_lir-inl.h"
22#include "dex/reg_storage_eq.h"
23#include "entrypoints/quick/quick_entrypoints.h"
24#include "mirror/array.h"
25
26namespace art {
27
28LIR* ArmMir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
29  OpRegReg(kOpCmp, src1, src2);
30  return OpCondBranch(cond, target);
31}
32
33/*
34 * Generate a Thumb2 IT instruction, which can nullify up to
35 * four subsequent instructions based on a condition and its
36 * inverse.  The condition applies to the first instruction, which
37 * is executed if the condition is met.  The string "guide" consists
38 * of 0 to 3 chars, and applies to the 2nd through 4th instruction.
39 * A "T" means the instruction is executed if the condition is
40 * met, and an "E" means the instruction is executed if the condition
41 * is not met.
42 */
43LIR* ArmMir2Lir::OpIT(ConditionCode ccode, const char* guide) {
44  int mask;
45  int mask3 = 0;
46  int mask2 = 0;
47  int mask1 = 0;
48  ArmConditionCode code = ArmConditionEncoding(ccode);
49  int cond_bit = code & 1;
50  int alt_bit = cond_bit ^ 1;
51
52  // Note: case fallthroughs intentional
53  switch (strlen(guide)) {
54    case 3:
55      mask1 = (guide[2] == 'T') ? cond_bit : alt_bit;
56    case 2:
57      mask2 = (guide[1] == 'T') ? cond_bit : alt_bit;
58    case 1:
59      mask3 = (guide[0] == 'T') ? cond_bit : alt_bit;
60      break;
61    case 0:
62      break;
63    default:
64      LOG(FATAL) << "OAT: bad case in OpIT";
65  }
66  mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) |
67       (1 << (3 - strlen(guide)));
68  return NewLIR2(kThumb2It, code, mask);
69}
70
71void ArmMir2Lir::UpdateIT(LIR* it, const char* new_guide) {
72  int mask;
73  int mask3 = 0;
74  int mask2 = 0;
75  int mask1 = 0;
76  ArmConditionCode code = static_cast<ArmConditionCode>(it->operands[0]);
77  int cond_bit = code & 1;
78  int alt_bit = cond_bit ^ 1;
79
80  // Note: case fallthroughs intentional
81  switch (strlen(new_guide)) {
82    case 3:
83      mask1 = (new_guide[2] == 'T') ? cond_bit : alt_bit;
84    case 2:
85      mask2 = (new_guide[1] == 'T') ? cond_bit : alt_bit;
86    case 1:
87      mask3 = (new_guide[0] == 'T') ? cond_bit : alt_bit;
88      break;
89    case 0:
90      break;
91    default:
92      LOG(FATAL) << "OAT: bad case in UpdateIT";
93  }
94  mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) |
95      (1 << (3 - strlen(new_guide)));
96  it->operands[1] = mask;
97}
98
99void ArmMir2Lir::OpEndIT(LIR* it) {
100  // TODO: use the 'it' pointer to do some checks with the LIR, for example
101  //       we could check that the number of instructions matches the mask
102  //       in the IT instruction.
103  CHECK(it != nullptr);
104  GenBarrier();
105}
106
107/*
108 * 64-bit 3way compare function.
109 *     mov   rX, #-1
110 *     cmp   op1hi, op2hi
111 *     blt   done
112 *     bgt   flip
113 *     sub   rX, op1lo, op2lo (treat as unsigned)
114 *     beq   done
115 *     ite   hi
116 *     mov(hi)   rX, #-1
117 *     mov(!hi)  rX, #1
118 * flip:
119 *     neg   rX
120 * done:
121 */
122void ArmMir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
123  LIR* target1;
124  LIR* target2;
125  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
126  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
127  RegStorage t_reg = AllocTemp();
128  LoadConstant(t_reg, -1);
129  OpRegReg(kOpCmp, rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
130  LIR* branch1 = OpCondBranch(kCondLt, NULL);
131  LIR* branch2 = OpCondBranch(kCondGt, NULL);
132  OpRegRegReg(kOpSub, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
133  LIR* branch3 = OpCondBranch(kCondEq, NULL);
134
135  LIR* it = OpIT(kCondHi, "E");
136  NewLIR2(kThumb2MovI8M, t_reg.GetReg(), ModifiedImmediate(-1));
137  LoadConstant(t_reg, 1);
138  OpEndIT(it);
139
140  target2 = NewLIR0(kPseudoTargetLabel);
141  OpRegReg(kOpNeg, t_reg, t_reg);
142
143  target1 = NewLIR0(kPseudoTargetLabel);
144
145  RegLocation rl_temp = LocCReturn();  // Just using as template, will change
146  rl_temp.reg.SetReg(t_reg.GetReg());
147  StoreValue(rl_dest, rl_temp);
148  FreeTemp(t_reg);
149
150  branch1->target = target1;
151  branch2->target = target2;
152  branch3->target = branch1->target;
153}
154
155void ArmMir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
156                                          int64_t val, ConditionCode ccode) {
157  int32_t val_lo = Low32Bits(val);
158  int32_t val_hi = High32Bits(val);
159  DCHECK_GE(ModifiedImmediate(val_lo), 0);
160  DCHECK_GE(ModifiedImmediate(val_hi), 0);
161  LIR* taken = &block_label_list_[bb->taken];
162  LIR* not_taken = &block_label_list_[bb->fall_through];
163  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
164  RegStorage low_reg = rl_src1.reg.GetLow();
165  RegStorage high_reg = rl_src1.reg.GetHigh();
166
167  if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
168    RegStorage t_reg = AllocTemp();
169    NewLIR4(kThumb2OrrRRRs, t_reg.GetReg(), low_reg.GetReg(), high_reg.GetReg(), 0);
170    FreeTemp(t_reg);
171    OpCondBranch(ccode, taken);
172    return;
173  }
174
175  switch (ccode) {
176    case kCondEq:
177    case kCondNe:
178      OpCmpImmBranch(kCondNe, high_reg, val_hi, (ccode == kCondEq) ? not_taken : taken);
179      break;
180    case kCondLt:
181      OpCmpImmBranch(kCondLt, high_reg, val_hi, taken);
182      OpCmpImmBranch(kCondGt, high_reg, val_hi, not_taken);
183      ccode = kCondUlt;
184      break;
185    case kCondLe:
186      OpCmpImmBranch(kCondLt, high_reg, val_hi, taken);
187      OpCmpImmBranch(kCondGt, high_reg, val_hi, not_taken);
188      ccode = kCondLs;
189      break;
190    case kCondGt:
191      OpCmpImmBranch(kCondGt, high_reg, val_hi, taken);
192      OpCmpImmBranch(kCondLt, high_reg, val_hi, not_taken);
193      ccode = kCondHi;
194      break;
195    case kCondGe:
196      OpCmpImmBranch(kCondGt, high_reg, val_hi, taken);
197      OpCmpImmBranch(kCondLt, high_reg, val_hi, not_taken);
198      ccode = kCondUge;
199      break;
200    default:
201      LOG(FATAL) << "Unexpected ccode: " << ccode;
202  }
203  OpCmpImmBranch(ccode, low_reg, val_lo, taken);
204}
205
206void ArmMir2Lir::GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
207                                  int32_t true_val, int32_t false_val, RegStorage rs_dest,
208                                  int dest_reg_class) {
209  // TODO: Generalize the IT below to accept more than one-instruction loads.
210  DCHECK(InexpensiveConstantInt(true_val));
211  DCHECK(InexpensiveConstantInt(false_val));
212
213  if ((true_val == 0 && code == kCondEq) ||
214      (false_val == 0 && code == kCondNe)) {
215    OpRegRegReg(kOpSub, rs_dest, left_op, right_op);
216    DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
217    LIR* it = OpIT(kCondNe, "");
218    LoadConstant(rs_dest, code == kCondEq ? false_val : true_val);
219    OpEndIT(it);
220    return;
221  }
222
223  OpRegReg(kOpCmp, left_op, right_op);  // Same?
224  LIR* it = OpIT(code, "E");   // if-convert the test
225  LoadConstant(rs_dest, true_val);      // .eq case - load true
226  LoadConstant(rs_dest, false_val);     // .eq case - load true
227  OpEndIT(it);
228}
229
230void ArmMir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
231  RegLocation rl_result;
232  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
233  RegLocation rl_dest = mir_graph_->GetDest(mir);
234  // Avoid using float regs here.
235  RegisterClass src_reg_class = rl_src.ref ? kRefReg : kCoreReg;
236  RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg;
237  rl_src = LoadValue(rl_src, src_reg_class);
238  ConditionCode ccode = mir->meta.ccode;
239  if (mir->ssa_rep->num_uses == 1) {
240    // CONST case
241    int true_val = mir->dalvikInsn.vB;
242    int false_val = mir->dalvikInsn.vC;
243    rl_result = EvalLoc(rl_dest, result_reg_class, true);
244    // Change kCondNe to kCondEq for the special cases below.
245    if (ccode == kCondNe) {
246      ccode = kCondEq;
247      std::swap(true_val, false_val);
248    }
249    bool cheap_false_val = InexpensiveConstantInt(false_val);
250    if (cheap_false_val && ccode == kCondEq && (true_val == 0 || true_val == -1)) {
251      OpRegRegImm(kOpSub, rl_result.reg, rl_src.reg, -true_val);
252      DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
253      LIR* it = OpIT(true_val == 0 ? kCondNe : kCondUge, "");
254      LoadConstant(rl_result.reg, false_val);
255      OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
256    } else if (cheap_false_val && ccode == kCondEq && true_val == 1) {
257      OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, 1);
258      DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
259      LIR* it = OpIT(kCondLs, "");
260      LoadConstant(rl_result.reg, false_val);
261      OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
262    } else if (cheap_false_val && InexpensiveConstantInt(true_val)) {
263      OpRegImm(kOpCmp, rl_src.reg, 0);
264      LIR* it = OpIT(ccode, "E");
265      LoadConstant(rl_result.reg, true_val);
266      LoadConstant(rl_result.reg, false_val);
267      OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
268    } else {
269      // Unlikely case - could be tuned.
270      RegStorage t_reg1 = AllocTypedTemp(false, result_reg_class);
271      RegStorage t_reg2 = AllocTypedTemp(false, result_reg_class);
272      LoadConstant(t_reg1, true_val);
273      LoadConstant(t_reg2, false_val);
274      OpRegImm(kOpCmp, rl_src.reg, 0);
275      LIR* it = OpIT(ccode, "E");
276      OpRegCopy(rl_result.reg, t_reg1);
277      OpRegCopy(rl_result.reg, t_reg2);
278      OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
279    }
280  } else {
281    // MOVE case
282    RegLocation rl_true = mir_graph_->reg_location_[mir->ssa_rep->uses[1]];
283    RegLocation rl_false = mir_graph_->reg_location_[mir->ssa_rep->uses[2]];
284    rl_true = LoadValue(rl_true, result_reg_class);
285    rl_false = LoadValue(rl_false, result_reg_class);
286    rl_result = EvalLoc(rl_dest, result_reg_class, true);
287    OpRegImm(kOpCmp, rl_src.reg, 0);
288    LIR* it = nullptr;
289    if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {  // Is the "true" case already in place?
290      it = OpIT(NegateComparison(ccode), "");
291      OpRegCopy(rl_result.reg, rl_false.reg);
292    } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {  // False case in place?
293      it = OpIT(ccode, "");
294      OpRegCopy(rl_result.reg, rl_true.reg);
295    } else {  // Normal - select between the two.
296      it = OpIT(ccode, "E");
297      OpRegCopy(rl_result.reg, rl_true.reg);
298      OpRegCopy(rl_result.reg, rl_false.reg);
299    }
300    OpEndIT(it);  // Add a scheduling barrier to keep the IT shadow intact
301  }
302  StoreValue(rl_dest, rl_result);
303}
304
305void ArmMir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
306  RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
307  RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
308  // Normalize such that if either operand is constant, src2 will be constant.
309  ConditionCode ccode = mir->meta.ccode;
310  if (rl_src1.is_const) {
311    std::swap(rl_src1, rl_src2);
312    ccode = FlipComparisonOrder(ccode);
313  }
314  if (rl_src2.is_const) {
315    rl_src2 = UpdateLocWide(rl_src2);
316    // Do special compare/branch against simple const operand if not already in registers.
317    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
318    if ((rl_src2.location != kLocPhysReg) &&
319        ((ModifiedImmediate(Low32Bits(val)) >= 0) && (ModifiedImmediate(High32Bits(val)) >= 0))) {
320      GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
321      return;
322    }
323  }
324  LIR* taken = &block_label_list_[bb->taken];
325  LIR* not_taken = &block_label_list_[bb->fall_through];
326  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
327  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
328  OpRegReg(kOpCmp, rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
329  switch (ccode) {
330    case kCondEq:
331      OpCondBranch(kCondNe, not_taken);
332      break;
333    case kCondNe:
334      OpCondBranch(kCondNe, taken);
335      break;
336    case kCondLt:
337      OpCondBranch(kCondLt, taken);
338      OpCondBranch(kCondGt, not_taken);
339      ccode = kCondUlt;
340      break;
341    case kCondLe:
342      OpCondBranch(kCondLt, taken);
343      OpCondBranch(kCondGt, not_taken);
344      ccode = kCondLs;
345      break;
346    case kCondGt:
347      OpCondBranch(kCondGt, taken);
348      OpCondBranch(kCondLt, not_taken);
349      ccode = kCondHi;
350      break;
351    case kCondGe:
352      OpCondBranch(kCondGt, taken);
353      OpCondBranch(kCondLt, not_taken);
354      ccode = kCondUge;
355      break;
356    default:
357      LOG(FATAL) << "Unexpected ccode: " << ccode;
358  }
359  OpRegReg(kOpCmp, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
360  OpCondBranch(ccode, taken);
361}
362
363/*
364 * Generate a register comparison to an immediate and branch.  Caller
365 * is responsible for setting branch target field.
366 */
367LIR* ArmMir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target) {
368  LIR* branch = nullptr;
369  ArmConditionCode arm_cond = ArmConditionEncoding(cond);
370  /*
371   * A common use of OpCmpImmBranch is for null checks, and using the Thumb 16-bit
372   * compare-and-branch if zero is ideal if it will reach.  However, because null checks
373   * branch forward to a slow path, they will frequently not reach - and thus have to
374   * be converted to a long form during assembly (which will trigger another assembly
375   * pass).  Here we estimate the branch distance for checks, and if large directly
376   * generate the long form in an attempt to avoid an extra assembly pass.
377   * TODO: consider interspersing slowpaths in code following unconditional branches.
378   */
379  bool skip = ((target != NULL) && (target->opcode == kPseudoThrowTarget));
380  skip &= ((cu_->code_item->insns_size_in_code_units_ - current_dalvik_offset_) > 64);
381  if (!skip && reg.Low8() && (check_value == 0)) {
382    if (arm_cond == kArmCondEq || arm_cond == kArmCondNe) {
383      branch = NewLIR2((arm_cond == kArmCondEq) ? kThumb2Cbz : kThumb2Cbnz,
384                       reg.GetReg(), 0);
385    } else if (arm_cond == kArmCondLs) {
386      // kArmCondLs is an unsigned less or equal. A comparison r <= 0 is then the same as cbz.
387      // This case happens for a bounds check of array[0].
388      branch = NewLIR2(kThumb2Cbz, reg.GetReg(), 0);
389    }
390  }
391
392  if (branch == nullptr) {
393    OpRegImm(kOpCmp, reg, check_value);
394    branch = NewLIR2(kThumbBCond, 0, arm_cond);
395  }
396
397  branch->target = target;
398  return branch;
399}
400
401LIR* ArmMir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
402  LIR* res;
403  int opcode;
404  // If src or dest is a pair, we'll be using low reg.
405  if (r_dest.IsPair()) {
406    r_dest = r_dest.GetLow();
407  }
408  if (r_src.IsPair()) {
409    r_src = r_src.GetLow();
410  }
411  if (r_dest.IsFloat() || r_src.IsFloat())
412    return OpFpRegCopy(r_dest, r_src);
413  if (r_dest.Low8() && r_src.Low8())
414    opcode = kThumbMovRR;
415  else if (!r_dest.Low8() && !r_src.Low8())
416     opcode = kThumbMovRR_H2H;
417  else if (r_dest.Low8())
418     opcode = kThumbMovRR_H2L;
419  else
420     opcode = kThumbMovRR_L2H;
421  res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
422  if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
423    res->flags.is_nop = true;
424  }
425  return res;
426}
427
428void ArmMir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
429  if (r_dest != r_src) {
430    LIR* res = OpRegCopyNoInsert(r_dest, r_src);
431    AppendLIR(res);
432  }
433}
434
435void ArmMir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
436  if (r_dest != r_src) {
437    bool dest_fp = r_dest.IsFloat();
438    bool src_fp = r_src.IsFloat();
439    DCHECK(r_dest.Is64Bit());
440    DCHECK(r_src.Is64Bit());
441    if (dest_fp) {
442      if (src_fp) {
443        OpRegCopy(r_dest, r_src);
444      } else {
445        NewLIR3(kThumb2Fmdrr, r_dest.GetReg(), r_src.GetLowReg(), r_src.GetHighReg());
446      }
447    } else {
448      if (src_fp) {
449        NewLIR3(kThumb2Fmrrd, r_dest.GetLowReg(), r_dest.GetHighReg(), r_src.GetReg());
450      } else {
451        // Handle overlap
452        if (r_src.GetHighReg() == r_dest.GetLowReg()) {
453          DCHECK_NE(r_src.GetLowReg(), r_dest.GetHighReg());
454          OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
455          OpRegCopy(r_dest.GetLow(), r_src.GetLow());
456        } else {
457          OpRegCopy(r_dest.GetLow(), r_src.GetLow());
458          OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
459        }
460      }
461    }
462  }
463}
464
465// Table of magic divisors
466struct MagicTable {
467  uint32_t magic;
468  uint32_t shift;
469  DividePattern pattern;
470};
471
472static const MagicTable magic_table[] = {
473  {0, 0, DivideNone},        // 0
474  {0, 0, DivideNone},        // 1
475  {0, 0, DivideNone},        // 2
476  {0x55555556, 0, Divide3},  // 3
477  {0, 0, DivideNone},        // 4
478  {0x66666667, 1, Divide5},  // 5
479  {0x2AAAAAAB, 0, Divide3},  // 6
480  {0x92492493, 2, Divide7},  // 7
481  {0, 0, DivideNone},        // 8
482  {0x38E38E39, 1, Divide5},  // 9
483  {0x66666667, 2, Divide5},  // 10
484  {0x2E8BA2E9, 1, Divide5},  // 11
485  {0x2AAAAAAB, 1, Divide5},  // 12
486  {0x4EC4EC4F, 2, Divide5},  // 13
487  {0x92492493, 3, Divide7},  // 14
488  {0x88888889, 3, Divide7},  // 15
489};
490
491// Integer division by constant via reciprocal multiply (Hacker's Delight, 10-4)
492bool ArmMir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
493                                    RegLocation rl_src, RegLocation rl_dest, int lit) {
494  if ((lit < 0) || (lit >= static_cast<int>(sizeof(magic_table)/sizeof(magic_table[0])))) {
495    return false;
496  }
497  DividePattern pattern = magic_table[lit].pattern;
498  if (pattern == DivideNone) {
499    return false;
500  }
501
502  RegStorage r_magic = AllocTemp();
503  LoadConstant(r_magic, magic_table[lit].magic);
504  rl_src = LoadValue(rl_src, kCoreReg);
505  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
506  RegStorage r_hi = AllocTemp();
507  RegStorage r_lo = AllocTemp();
508
509  // rl_dest and rl_src might overlap.
510  // Reuse r_hi to save the div result for reminder case.
511  RegStorage r_div_result = is_div ? rl_result.reg : r_hi;
512
513  NewLIR4(kThumb2Smull, r_lo.GetReg(), r_hi.GetReg(), r_magic.GetReg(), rl_src.reg.GetReg());
514  switch (pattern) {
515    case Divide3:
516      OpRegRegRegShift(kOpSub, r_div_result, r_hi, rl_src.reg, EncodeShift(kArmAsr, 31));
517      break;
518    case Divide5:
519      OpRegRegImm(kOpAsr, r_lo, rl_src.reg, 31);
520      OpRegRegRegShift(kOpRsub, r_div_result, r_lo, r_hi,
521                       EncodeShift(kArmAsr, magic_table[lit].shift));
522      break;
523    case Divide7:
524      OpRegReg(kOpAdd, r_hi, rl_src.reg);
525      OpRegRegImm(kOpAsr, r_lo, rl_src.reg, 31);
526      OpRegRegRegShift(kOpRsub, r_div_result, r_lo, r_hi,
527                       EncodeShift(kArmAsr, magic_table[lit].shift));
528      break;
529    default:
530      LOG(FATAL) << "Unexpected pattern: " << pattern;
531  }
532
533  if (!is_div) {
534    // div_result = src / lit
535    // tmp1 = div_result * lit
536    // dest = src - tmp1
537    RegStorage tmp1 = r_lo;
538    EasyMultiplyOp ops[2];
539
540    bool canEasyMultiply = GetEasyMultiplyTwoOps(lit, ops);
541    DCHECK_NE(canEasyMultiply, false);
542
543    GenEasyMultiplyTwoOps(tmp1, r_div_result, ops);
544    OpRegRegReg(kOpSub, rl_result.reg, rl_src.reg, tmp1);
545  }
546
547  StoreValue(rl_dest, rl_result);
548  return true;
549}
550
551// Try to convert *lit to 1 RegRegRegShift/RegRegShift form.
552bool ArmMir2Lir::GetEasyMultiplyOp(int lit, ArmMir2Lir::EasyMultiplyOp* op) {
553  if (lit == 0) {
554    // Special case for *divide-by-zero*. The ops won't actually be used to generate code, as
555    // GenArithOpIntLit will directly generate exception-throwing code, and multiply-by-zero will
556    // have been optimized away earlier.
557    op->op = kOpInvalid;
558    return true;
559  }
560
561  if (IsPowerOfTwo(lit)) {
562    op->op = kOpLsl;
563    op->shift = LowestSetBit(lit);
564    return true;
565  }
566
567  if (IsPowerOfTwo(lit - 1)) {
568    op->op = kOpAdd;
569    op->shift = LowestSetBit(lit - 1);
570    return true;
571  }
572
573  if (IsPowerOfTwo(lit + 1)) {
574    op->op = kOpRsub;
575    op->shift = LowestSetBit(lit + 1);
576    return true;
577  }
578
579  op->op = kOpInvalid;
580  op->shift = 0;
581  return false;
582}
583
584// Try to convert *lit to 1~2 RegRegRegShift/RegRegShift forms.
585bool ArmMir2Lir::GetEasyMultiplyTwoOps(int lit, EasyMultiplyOp* ops) {
586  GetEasyMultiplyOp(lit, &ops[0]);
587  if (GetEasyMultiplyOp(lit, &ops[0])) {
588    ops[1].op = kOpInvalid;
589    ops[1].shift = 0;
590    return true;
591  }
592
593  int lit1 = lit;
594  uint32_t shift = LowestSetBit(lit1);
595  if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) {
596    ops[1].op = kOpLsl;
597    ops[1].shift = shift;
598    return true;
599  }
600
601  lit1 = lit - 1;
602  shift = LowestSetBit(lit1);
603  if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) {
604    ops[1].op = kOpAdd;
605    ops[1].shift = shift;
606    return true;
607  }
608
609  lit1 = lit + 1;
610  shift = LowestSetBit(lit1);
611  if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) {
612    ops[1].op = kOpRsub;
613    ops[1].shift = shift;
614    return true;
615  }
616
617  return false;
618}
619
620// Generate instructions to do multiply.
621// Additional temporary register is required,
622// if it need to generate 2 instructions and src/dest overlap.
623void ArmMir2Lir::GenEasyMultiplyTwoOps(RegStorage r_dest, RegStorage r_src, EasyMultiplyOp* ops) {
624  // tmp1 = ( src << shift1) + [ src | -src | 0 ]
625  // dest = (tmp1 << shift2) + [ src | -src | 0 ]
626
627  RegStorage r_tmp1;
628  if (ops[1].op == kOpInvalid) {
629    r_tmp1 = r_dest;
630  } else if (r_dest.GetReg() != r_src.GetReg()) {
631    r_tmp1 = r_dest;
632  } else {
633    r_tmp1 = AllocTemp();
634  }
635
636  switch (ops[0].op) {
637    case kOpLsl:
638      OpRegRegImm(kOpLsl, r_tmp1, r_src, ops[0].shift);
639      break;
640    case kOpAdd:
641      OpRegRegRegShift(kOpAdd, r_tmp1, r_src, r_src, EncodeShift(kArmLsl, ops[0].shift));
642      break;
643    case kOpRsub:
644      OpRegRegRegShift(kOpRsub, r_tmp1, r_src, r_src, EncodeShift(kArmLsl, ops[0].shift));
645      break;
646    default:
647      DCHECK_EQ(ops[0].op, kOpInvalid);
648      break;
649  }
650
651  switch (ops[1].op) {
652    case kOpInvalid:
653      return;
654    case kOpLsl:
655      OpRegRegImm(kOpLsl, r_dest, r_tmp1, ops[1].shift);
656      break;
657    case kOpAdd:
658      OpRegRegRegShift(kOpAdd, r_dest, r_src, r_tmp1, EncodeShift(kArmLsl, ops[1].shift));
659      break;
660    case kOpRsub:
661      OpRegRegRegShift(kOpRsub, r_dest, r_src, r_tmp1, EncodeShift(kArmLsl, ops[1].shift));
662      break;
663    default:
664      LOG(FATAL) << "Unexpected opcode passed to GenEasyMultiplyTwoOps";
665      break;
666  }
667}
668
669bool ArmMir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
670  EasyMultiplyOp ops[2];
671
672  if (!GetEasyMultiplyTwoOps(lit, ops)) {
673    return false;
674  }
675
676  rl_src = LoadValue(rl_src, kCoreReg);
677  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
678
679  GenEasyMultiplyTwoOps(rl_result.reg, rl_src.reg, ops);
680  StoreValue(rl_dest, rl_result);
681  return true;
682}
683
684RegLocation ArmMir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
685                      RegLocation rl_src2, bool is_div, bool check_zero) {
686  LOG(FATAL) << "Unexpected use of GenDivRem for Arm";
687  return rl_dest;
688}
689
690RegLocation ArmMir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit, bool is_div) {
691  LOG(FATAL) << "Unexpected use of GenDivRemLit for Arm";
692  return rl_dest;
693}
694
695RegLocation ArmMir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg1, int lit, bool is_div) {
696  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
697
698  // Put the literal in a temp.
699  RegStorage lit_temp = AllocTemp();
700  LoadConstant(lit_temp, lit);
701  // Use the generic case for div/rem with arg2 in a register.
702  // TODO: The literal temp can be freed earlier during a modulus to reduce reg pressure.
703  rl_result = GenDivRem(rl_result, reg1, lit_temp, is_div);
704  FreeTemp(lit_temp);
705
706  return rl_result;
707}
708
709RegLocation ArmMir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg1, RegStorage reg2,
710                                  bool is_div) {
711  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
712  if (is_div) {
713    // Simple case, use sdiv instruction.
714    OpRegRegReg(kOpDiv, rl_result.reg, reg1, reg2);
715  } else {
716    // Remainder case, use the following code:
717    // temp = reg1 / reg2      - integer division
718    // temp = temp * reg2
719    // dest = reg1 - temp
720
721    RegStorage temp = AllocTemp();
722    OpRegRegReg(kOpDiv, temp, reg1, reg2);
723    OpRegReg(kOpMul, temp, reg2);
724    OpRegRegReg(kOpSub, rl_result.reg, reg1, temp);
725    FreeTemp(temp);
726  }
727
728  return rl_result;
729}
730
731bool ArmMir2Lir::GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) {
732  DCHECK_EQ(cu_->instruction_set, kThumb2);
733  if (is_long) {
734    return false;
735  }
736  RegLocation rl_src1 = info->args[0];
737  RegLocation rl_src2 = info->args[1];
738  rl_src1 = LoadValue(rl_src1, kCoreReg);
739  rl_src2 = LoadValue(rl_src2, kCoreReg);
740  RegLocation rl_dest = InlineTarget(info);
741  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
742  OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
743  LIR* it = OpIT((is_min) ? kCondGt : kCondLt, "E");
744  OpRegReg(kOpMov, rl_result.reg, rl_src2.reg);
745  OpRegReg(kOpMov, rl_result.reg, rl_src1.reg);
746  OpEndIT(it);
747  StoreValue(rl_dest, rl_result);
748  return true;
749}
750
751bool ArmMir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
752  RegLocation rl_src_address = info->args[0];  // long address
753  rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
754  RegLocation rl_dest = InlineTarget(info);
755  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
756  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
757  if (size == k64) {
758    // Fake unaligned LDRD by two unaligned LDR instructions on ARMv7 with SCTLR.A set to 0.
759    if (rl_address.reg.GetReg() != rl_result.reg.GetLowReg()) {
760      Load32Disp(rl_address.reg, 0, rl_result.reg.GetLow());
761      Load32Disp(rl_address.reg, 4, rl_result.reg.GetHigh());
762    } else {
763      Load32Disp(rl_address.reg, 4, rl_result.reg.GetHigh());
764      Load32Disp(rl_address.reg, 0, rl_result.reg.GetLow());
765    }
766    StoreValueWide(rl_dest, rl_result);
767  } else {
768    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
769    // Unaligned load with LDR and LDRSH is allowed on ARMv7 with SCTLR.A set to 0.
770    LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, kNotVolatile);
771    StoreValue(rl_dest, rl_result);
772  }
773  return true;
774}
775
776bool ArmMir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
777  RegLocation rl_src_address = info->args[0];  // long address
778  rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
779  RegLocation rl_src_value = info->args[2];  // [size] value
780  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
781  if (size == k64) {
782    // Fake unaligned STRD by two unaligned STR instructions on ARMv7 with SCTLR.A set to 0.
783    RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
784    StoreBaseDisp(rl_address.reg, 0, rl_value.reg.GetLow(), k32, kNotVolatile);
785    StoreBaseDisp(rl_address.reg, 4, rl_value.reg.GetHigh(), k32, kNotVolatile);
786  } else {
787    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
788    // Unaligned store with STR and STRSH is allowed on ARMv7 with SCTLR.A set to 0.
789    RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
790    StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile);
791  }
792  return true;
793}
794
795// Generate a CAS with memory_order_seq_cst semantics.
796bool ArmMir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
797  DCHECK_EQ(cu_->instruction_set, kThumb2);
798  // Unused - RegLocation rl_src_unsafe = info->args[0];
799  RegLocation rl_src_obj = info->args[1];  // Object - known non-null
800  RegLocation rl_src_offset = info->args[2];  // long low
801  rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
802  RegLocation rl_src_expected = info->args[4];  // int, long or Object
803  // If is_long, high half is in info->args[5]
804  RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
805  // If is_long, high half is in info->args[7]
806  RegLocation rl_dest = InlineTarget(info);  // boolean place for result
807
808  // We have only 5 temporary registers available and actually only 4 if the InlineTarget
809  // above locked one of the temps. For a straightforward CAS64 we need 7 registers:
810  // r_ptr (1), new_value (2), expected(2) and ldrexd result (2). If neither expected nor
811  // new_value is in a non-temp core register we shall reload them in the ldrex/strex loop
812  // into the same temps, reducing the number of required temps down to 5. We shall work
813  // around the potentially locked temp by using LR for r_ptr, unconditionally.
814  // TODO: Pass information about the need for more temps to the stack frame generation
815  // code so that we can rely on being able to allocate enough temps.
816  DCHECK(!GetRegInfo(rs_rARM_LR)->IsTemp());
817  MarkTemp(rs_rARM_LR);
818  FreeTemp(rs_rARM_LR);
819  LockTemp(rs_rARM_LR);
820  bool load_early = true;
821  if (is_long) {
822    RegStorage expected_reg = rl_src_expected.reg.IsPair() ? rl_src_expected.reg.GetLow() :
823        rl_src_expected.reg;
824    RegStorage new_val_reg = rl_src_new_value.reg.IsPair() ? rl_src_new_value.reg.GetLow() :
825        rl_src_new_value.reg;
826    bool expected_is_core_reg = rl_src_expected.location == kLocPhysReg && !expected_reg.IsFloat();
827    bool new_value_is_core_reg = rl_src_new_value.location == kLocPhysReg && !new_val_reg.IsFloat();
828    bool expected_is_good_reg = expected_is_core_reg && !IsTemp(expected_reg);
829    bool new_value_is_good_reg = new_value_is_core_reg && !IsTemp(new_val_reg);
830
831    if (!expected_is_good_reg && !new_value_is_good_reg) {
832      // None of expected/new_value is non-temp reg, need to load both late
833      load_early = false;
834      // Make sure they are not in the temp regs and the load will not be skipped.
835      if (expected_is_core_reg) {
836        FlushRegWide(rl_src_expected.reg);
837        ClobberSReg(rl_src_expected.s_reg_low);
838        ClobberSReg(GetSRegHi(rl_src_expected.s_reg_low));
839        rl_src_expected.location = kLocDalvikFrame;
840      }
841      if (new_value_is_core_reg) {
842        FlushRegWide(rl_src_new_value.reg);
843        ClobberSReg(rl_src_new_value.s_reg_low);
844        ClobberSReg(GetSRegHi(rl_src_new_value.s_reg_low));
845        rl_src_new_value.location = kLocDalvikFrame;
846      }
847    }
848  }
849
850  // Prevent reordering with prior memory operations.
851  GenMemBarrier(kAnyStore);
852
853  RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
854  RegLocation rl_new_value;
855  if (!is_long) {
856    rl_new_value = LoadValue(rl_src_new_value);
857  } else if (load_early) {
858    rl_new_value = LoadValueWide(rl_src_new_value, kCoreReg);
859  }
860
861  if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
862    // Mark card for object assuming new value is stored.
863    MarkGCCard(rl_new_value.reg, rl_object.reg);
864  }
865
866  RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
867
868  RegStorage r_ptr = rs_rARM_LR;
869  OpRegRegReg(kOpAdd, r_ptr, rl_object.reg, rl_offset.reg);
870
871  // Free now unneeded rl_object and rl_offset to give more temps.
872  ClobberSReg(rl_object.s_reg_low);
873  FreeTemp(rl_object.reg);
874  ClobberSReg(rl_offset.s_reg_low);
875  FreeTemp(rl_offset.reg);
876
877  RegLocation rl_expected;
878  if (!is_long) {
879    rl_expected = LoadValue(rl_src_expected);
880  } else if (load_early) {
881    rl_expected = LoadValueWide(rl_src_expected, kCoreReg);
882  } else {
883    // NOTE: partially defined rl_expected & rl_new_value - but we just want the regs.
884    RegStorage low_reg = AllocTemp();
885    RegStorage high_reg = AllocTemp();
886    rl_new_value.reg = RegStorage::MakeRegPair(low_reg, high_reg);
887    rl_expected = rl_new_value;
888  }
889
890  // do {
891  //   tmp = [r_ptr] - expected;
892  // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
893  // result = tmp != 0;
894
895  RegStorage r_tmp = AllocTemp();
896  LIR* target = NewLIR0(kPseudoTargetLabel);
897
898  LIR* it = nullptr;
899  if (is_long) {
900    RegStorage r_tmp_high = AllocTemp();
901    if (!load_early) {
902      LoadValueDirectWide(rl_src_expected, rl_expected.reg);
903    }
904    NewLIR3(kThumb2Ldrexd, r_tmp.GetReg(), r_tmp_high.GetReg(), r_ptr.GetReg());
905    OpRegReg(kOpSub, r_tmp, rl_expected.reg.GetLow());
906    OpRegReg(kOpSub, r_tmp_high, rl_expected.reg.GetHigh());
907    if (!load_early) {
908      LoadValueDirectWide(rl_src_new_value, rl_new_value.reg);
909    }
910    // Make sure we use ORR that sets the ccode
911    if (r_tmp.Low8() && r_tmp_high.Low8()) {
912      NewLIR2(kThumbOrr, r_tmp.GetReg(), r_tmp_high.GetReg());
913    } else {
914      NewLIR4(kThumb2OrrRRRs, r_tmp.GetReg(), r_tmp.GetReg(), r_tmp_high.GetReg(), 0);
915    }
916    FreeTemp(r_tmp_high);  // Now unneeded
917
918    DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
919    it = OpIT(kCondEq, "T");
920    NewLIR4(kThumb2Strexd /* eq */, r_tmp.GetReg(), rl_new_value.reg.GetLowReg(), rl_new_value.reg.GetHighReg(), r_ptr.GetReg());
921
922  } else {
923    NewLIR3(kThumb2Ldrex, r_tmp.GetReg(), r_ptr.GetReg(), 0);
924    OpRegReg(kOpSub, r_tmp, rl_expected.reg);
925    DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
926    it = OpIT(kCondEq, "T");
927    NewLIR4(kThumb2Strex /* eq */, r_tmp.GetReg(), rl_new_value.reg.GetReg(), r_ptr.GetReg(), 0);
928  }
929
930  // Still one conditional left from OpIT(kCondEq, "T") from either branch
931  OpRegImm(kOpCmp /* eq */, r_tmp, 1);
932  OpEndIT(it);
933
934  OpCondBranch(kCondEq, target);
935
936  if (!load_early) {
937    FreeTemp(rl_expected.reg);  // Now unneeded.
938  }
939
940  // Prevent reordering with subsequent memory operations.
941  GenMemBarrier(kLoadAny);
942
943  // result := (tmp1 != 0) ? 0 : 1;
944  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
945  OpRegRegImm(kOpRsub, rl_result.reg, r_tmp, 1);
946  DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
947  it = OpIT(kCondUlt, "");
948  LoadConstant(rl_result.reg, 0); /* cc */
949  FreeTemp(r_tmp);  // Now unneeded.
950  OpEndIT(it);     // Barrier to terminate OpIT.
951
952  StoreValue(rl_dest, rl_result);
953
954  // Now, restore lr to its non-temp status.
955  Clobber(rs_rARM_LR);
956  UnmarkTemp(rs_rARM_LR);
957  return true;
958}
959
960bool ArmMir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
961  constexpr int kLargeArrayThreshold = 256;
962
963  RegLocation rl_src = info->args[0];
964  RegLocation rl_src_pos = info->args[1];
965  RegLocation rl_dst = info->args[2];
966  RegLocation rl_dst_pos = info->args[3];
967  RegLocation rl_length = info->args[4];
968  // Compile time check, handle exception by non-inline method to reduce related meta-data.
969  if ((rl_src_pos.is_const && (mir_graph_->ConstantValue(rl_src_pos) < 0)) ||
970      (rl_dst_pos.is_const && (mir_graph_->ConstantValue(rl_dst_pos) < 0)) ||
971      (rl_length.is_const && (mir_graph_->ConstantValue(rl_length) < 0))) {
972    return false;
973  }
974
975  ClobberCallerSave();
976  LockCallTemps();  // Prepare for explicit register usage.
977  LockTemp(rs_r12);
978  RegStorage rs_src = rs_r0;
979  RegStorage rs_dst = rs_r1;
980  LoadValueDirectFixed(rl_src, rs_src);
981  LoadValueDirectFixed(rl_dst, rs_dst);
982
983  // Handle null pointer exception in slow-path.
984  LIR* src_check_branch = OpCmpImmBranch(kCondEq, rs_src, 0, nullptr);
985  LIR* dst_check_branch = OpCmpImmBranch(kCondEq, rs_dst, 0, nullptr);
986  // Handle potential overlapping in slow-path.
987  LIR* src_dst_same = OpCmpBranch(kCondEq, rs_src, rs_dst, nullptr);
988  // Handle exception or big length in slow-path.
989  RegStorage rs_length = rs_r2;
990  LoadValueDirectFixed(rl_length, rs_length);
991  LIR* len_neg_or_too_big = OpCmpImmBranch(kCondHi, rs_length, kLargeArrayThreshold, nullptr);
992  // Src bounds check.
993  RegStorage rs_pos = rs_r3;
994  RegStorage rs_arr_length = rs_r12;
995  LoadValueDirectFixed(rl_src_pos, rs_pos);
996  LIR* src_pos_negative = OpCmpImmBranch(kCondLt, rs_pos, 0, nullptr);
997  Load32Disp(rs_src, mirror::Array::LengthOffset().Int32Value(), rs_arr_length);
998  OpRegReg(kOpSub, rs_arr_length, rs_pos);
999  LIR* src_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr);
1000  // Dst bounds check.
1001  LoadValueDirectFixed(rl_dst_pos, rs_pos);
1002  LIR* dst_pos_negative = OpCmpImmBranch(kCondLt, rs_pos, 0, nullptr);
1003  Load32Disp(rs_dst, mirror::Array::LengthOffset().Int32Value(), rs_arr_length);
1004  OpRegReg(kOpSub, rs_arr_length, rs_pos);
1005  LIR* dst_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr);
1006
1007  // Everything is checked now.
1008  OpRegImm(kOpAdd, rs_dst, mirror::Array::DataOffset(2).Int32Value());
1009  OpRegReg(kOpAdd, rs_dst, rs_pos);
1010  OpRegReg(kOpAdd, rs_dst, rs_pos);
1011  OpRegImm(kOpAdd, rs_src, mirror::Array::DataOffset(2).Int32Value());
1012  LoadValueDirectFixed(rl_src_pos, rs_pos);
1013  OpRegReg(kOpAdd, rs_src, rs_pos);
1014  OpRegReg(kOpAdd, rs_src, rs_pos);
1015
1016  RegStorage rs_tmp = rs_pos;
1017  OpRegRegImm(kOpLsl, rs_length, rs_length, 1);
1018
1019  // Copy one element.
1020  OpRegRegImm(kOpAnd, rs_tmp, rs_length, 2);
1021  LIR* jmp_to_begin_loop = OpCmpImmBranch(kCondEq, rs_tmp, 0, nullptr);
1022  OpRegImm(kOpSub, rs_length, 2);
1023  LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, kSignedHalf);
1024  StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, kSignedHalf);
1025
1026  // Copy two elements.
1027  LIR *begin_loop = NewLIR0(kPseudoTargetLabel);
1028  LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_length, 0, nullptr);
1029  OpRegImm(kOpSub, rs_length, 4);
1030  LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, k32);
1031  StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, k32);
1032  OpUnconditionalBranch(begin_loop);
1033
1034  LIR *check_failed = NewLIR0(kPseudoTargetLabel);
1035  LIR* launchpad_branch = OpUnconditionalBranch(nullptr);
1036  LIR* return_point = NewLIR0(kPseudoTargetLabel);
1037
1038  src_check_branch->target = check_failed;
1039  dst_check_branch->target = check_failed;
1040  src_dst_same->target = check_failed;
1041  len_neg_or_too_big->target = check_failed;
1042  src_pos_negative->target = check_failed;
1043  src_bad_len->target = check_failed;
1044  dst_pos_negative->target = check_failed;
1045  dst_bad_len->target = check_failed;
1046  jmp_to_begin_loop->target = begin_loop;
1047  jmp_to_ret->target = return_point;
1048
1049  AddIntrinsicSlowPath(info, launchpad_branch, return_point);
1050  ClobberCallerSave();  // We must clobber everything because slow path will return here
1051
1052  return true;
1053}
1054
1055LIR* ArmMir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
1056  return RawLIR(current_dalvik_offset_, kThumb2LdrPcRel12, reg.GetReg(), 0, 0, 0, 0, target);
1057}
1058
1059LIR* ArmMir2Lir::OpVldm(RegStorage r_base, int count) {
1060  return NewLIR3(kThumb2Vldms, r_base.GetReg(), rs_fr0.GetReg(), count);
1061}
1062
1063LIR* ArmMir2Lir::OpVstm(RegStorage r_base, int count) {
1064  return NewLIR3(kThumb2Vstms, r_base.GetReg(), rs_fr0.GetReg(), count);
1065}
1066
1067void ArmMir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
1068                                               RegLocation rl_result, int lit,
1069                                               int first_bit, int second_bit) {
1070  OpRegRegRegShift(kOpAdd, rl_result.reg, rl_src.reg, rl_src.reg,
1071                   EncodeShift(kArmLsl, second_bit - first_bit));
1072  if (first_bit != 0) {
1073    OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
1074  }
1075}
1076
1077void ArmMir2Lir::GenDivZeroCheckWide(RegStorage reg) {
1078  DCHECK(reg.IsPair());   // TODO: support k64BitSolo.
1079  RegStorage t_reg = AllocTemp();
1080  NewLIR4(kThumb2OrrRRRs, t_reg.GetReg(), reg.GetLowReg(), reg.GetHighReg(), 0);
1081  FreeTemp(t_reg);
1082  GenDivZeroCheck(kCondEq);
1083}
1084
1085// Test suspend flag, return target of taken suspend branch
1086LIR* ArmMir2Lir::OpTestSuspend(LIR* target) {
1087#ifdef ARM_R4_SUSPEND_FLAG
1088  NewLIR2(kThumbSubRI8, rs_rARM_SUSPEND.GetReg(), 1);
1089  return OpCondBranch((target == NULL) ? kCondEq : kCondNe, target);
1090#else
1091  RegStorage t_reg = AllocTemp();
1092  LoadBaseDisp(rs_rARM_SELF, Thread::ThreadFlagsOffset<4>().Int32Value(),
1093    t_reg, kUnsignedHalf);
1094  LIR* cmp_branch = OpCmpImmBranch((target == NULL) ? kCondNe : kCondEq, t_reg,
1095    0, target);
1096  FreeTemp(t_reg);
1097  return cmp_branch;
1098#endif
1099}
1100
1101// Decrement register and branch on condition
1102LIR* ArmMir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
1103  // Combine sub & test using sub setflags encoding here
1104  OpRegRegImm(kOpSub, reg, reg, 1);  // For value == 1, this should set flags.
1105  DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
1106  return OpCondBranch(c_code, target);
1107}
1108
1109bool ArmMir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
1110#if ANDROID_SMP != 0
1111  // Start off with using the last LIR as the barrier. If it is not enough, then we will generate one.
1112  LIR* barrier = last_lir_insn_;
1113
1114  int dmb_flavor;
1115  // TODO: revisit Arm barrier kinds
1116  switch (barrier_kind) {
1117    case kAnyStore: dmb_flavor = kISH; break;
1118    case kLoadAny: dmb_flavor = kISH; break;
1119    case kStoreStore: dmb_flavor = kISHST; break;
1120    case kAnyAny: dmb_flavor = kISH; break;
1121    default:
1122      LOG(FATAL) << "Unexpected MemBarrierKind: " << barrier_kind;
1123      dmb_flavor = kSY;  // quiet gcc.
1124      break;
1125  }
1126
1127  bool ret = false;
1128
1129  // If the same barrier already exists, don't generate another.
1130  if (barrier == nullptr
1131      || (barrier != nullptr && (barrier->opcode != kThumb2Dmb || barrier->operands[0] != dmb_flavor))) {
1132    barrier = NewLIR1(kThumb2Dmb, dmb_flavor);
1133    ret = true;
1134  }
1135
1136  // At this point we must have a memory barrier. Mark it as a scheduling barrier as well.
1137  DCHECK(!barrier->flags.use_def_invalid);
1138  barrier->u.m.def_mask = &kEncodeAll;
1139  return ret;
1140#else
1141  return false;
1142#endif
1143}
1144
1145void ArmMir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1146  rl_src = LoadValueWide(rl_src, kCoreReg);
1147  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1148  RegStorage z_reg = AllocTemp();
1149  LoadConstantNoClobber(z_reg, 0);
1150  // Check for destructive overlap
1151  if (rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
1152    RegStorage t_reg = AllocTemp();
1153    OpRegCopy(t_reg, rl_result.reg.GetLow());
1154    OpRegRegReg(kOpSub, rl_result.reg.GetLow(), z_reg, rl_src.reg.GetLow());
1155    OpRegRegReg(kOpSbc, rl_result.reg.GetHigh(), z_reg, t_reg);
1156    FreeTemp(t_reg);
1157  } else {
1158    OpRegRegReg(kOpSub, rl_result.reg.GetLow(), z_reg, rl_src.reg.GetLow());
1159    OpRegRegReg(kOpSbc, rl_result.reg.GetHigh(), z_reg, rl_src.reg.GetHigh());
1160  }
1161  FreeTemp(z_reg);
1162  StoreValueWide(rl_dest, rl_result);
1163}
1164
1165void ArmMir2Lir::GenMulLong(Instruction::Code opcode, RegLocation rl_dest,
1166                            RegLocation rl_src1, RegLocation rl_src2) {
1167    /*
1168     * tmp1     = src1.hi * src2.lo;  // src1.hi is no longer needed
1169     * dest     = src1.lo * src2.lo;
1170     * tmp1    += src1.lo * src2.hi;
1171     * dest.hi += tmp1;
1172     *
1173     * To pull off inline multiply, we have a worst-case requirement of 7 temporary
1174     * registers.  Normally for Arm, we get 5.  We can get to 6 by including
1175     * lr in the temp set.  The only problematic case is all operands and result are
1176     * distinct, and none have been promoted.  In that case, we can succeed by aggressively
1177     * freeing operand temp registers after they are no longer needed.  All other cases
1178     * can proceed normally.  We'll just punt on the case of the result having a misaligned
1179     * overlap with either operand and send that case to a runtime handler.
1180     */
1181    RegLocation rl_result;
1182    if (BadOverlap(rl_src1, rl_dest) || (BadOverlap(rl_src2, rl_dest))) {
1183      FlushAllRegs();
1184      CallRuntimeHelperRegLocationRegLocation(kQuickLmul, rl_src1, rl_src2, false);
1185      rl_result = GetReturnWide(kCoreReg);
1186      StoreValueWide(rl_dest, rl_result);
1187      return;
1188    }
1189
1190    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1191    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1192
1193    int reg_status = 0;
1194    RegStorage res_lo;
1195    RegStorage res_hi;
1196    bool dest_promoted = rl_dest.location == kLocPhysReg && rl_dest.reg.Valid() &&
1197        !IsTemp(rl_dest.reg.GetLow()) && !IsTemp(rl_dest.reg.GetHigh());
1198    bool src1_promoted = !IsTemp(rl_src1.reg.GetLow()) && !IsTemp(rl_src1.reg.GetHigh());
1199    bool src2_promoted = !IsTemp(rl_src2.reg.GetLow()) && !IsTemp(rl_src2.reg.GetHigh());
1200    // Check if rl_dest is *not* either operand and we have enough temp registers.
1201    if ((rl_dest.s_reg_low != rl_src1.s_reg_low && rl_dest.s_reg_low != rl_src2.s_reg_low) &&
1202        (dest_promoted || src1_promoted || src2_promoted)) {
1203      // In this case, we do not need to manually allocate temp registers for result.
1204      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1205      res_lo = rl_result.reg.GetLow();
1206      res_hi = rl_result.reg.GetHigh();
1207    } else {
1208      res_lo = AllocTemp();
1209      if ((rl_src1.s_reg_low == rl_src2.s_reg_low) || src1_promoted || src2_promoted) {
1210        // In this case, we have enough temp registers to be allocated for result.
1211        res_hi = AllocTemp();
1212        reg_status = 1;
1213      } else {
1214        // In this case, all temps are now allocated.
1215        // res_hi will be allocated after we can free src1_hi.
1216        reg_status = 2;
1217      }
1218    }
1219
1220    // Temporarily add LR to the temp pool, and assign it to tmp1
1221    MarkTemp(rs_rARM_LR);
1222    FreeTemp(rs_rARM_LR);
1223    RegStorage tmp1 = rs_rARM_LR;
1224    LockTemp(rs_rARM_LR);
1225
1226    if (rl_src1.reg == rl_src2.reg) {
1227      DCHECK(res_hi.Valid());
1228      DCHECK(res_lo.Valid());
1229      NewLIR3(kThumb2MulRRR, tmp1.GetReg(), rl_src1.reg.GetLowReg(), rl_src1.reg.GetHighReg());
1230      NewLIR4(kThumb2Umull, res_lo.GetReg(), res_hi.GetReg(), rl_src1.reg.GetLowReg(),
1231              rl_src1.reg.GetLowReg());
1232      OpRegRegRegShift(kOpAdd, res_hi, res_hi, tmp1, EncodeShift(kArmLsl, 1));
1233    } else {
1234      NewLIR3(kThumb2MulRRR, tmp1.GetReg(), rl_src2.reg.GetLowReg(), rl_src1.reg.GetHighReg());
1235      if (reg_status == 2) {
1236        DCHECK(!res_hi.Valid());
1237        DCHECK_NE(rl_src1.reg.GetLowReg(), rl_src2.reg.GetLowReg());
1238        DCHECK_NE(rl_src1.reg.GetHighReg(), rl_src2.reg.GetHighReg());
1239        // Will force free src1_hi, so must clobber.
1240        Clobber(rl_src1.reg);
1241        FreeTemp(rl_src1.reg.GetHigh());
1242        res_hi = AllocTemp();
1243      }
1244      DCHECK(res_hi.Valid());
1245      DCHECK(res_lo.Valid());
1246      NewLIR4(kThumb2Umull, res_lo.GetReg(), res_hi.GetReg(), rl_src2.reg.GetLowReg(),
1247              rl_src1.reg.GetLowReg());
1248      NewLIR4(kThumb2Mla, tmp1.GetReg(), rl_src1.reg.GetLowReg(), rl_src2.reg.GetHighReg(),
1249              tmp1.GetReg());
1250      NewLIR4(kThumb2AddRRR, res_hi.GetReg(), tmp1.GetReg(), res_hi.GetReg(), 0);
1251      if (reg_status == 2) {
1252        FreeTemp(rl_src1.reg.GetLow());
1253      }
1254    }
1255
1256    // Now, restore lr to its non-temp status.
1257    FreeTemp(tmp1);
1258    Clobber(rs_rARM_LR);
1259    UnmarkTemp(rs_rARM_LR);
1260
1261    if (reg_status != 0) {
1262      // We had manually allocated registers for rl_result.
1263      // Now construct a RegLocation.
1264      rl_result = GetReturnWide(kCoreReg);  // Just using as a template.
1265      rl_result.reg = RegStorage::MakeRegPair(res_lo, res_hi);
1266    }
1267
1268    StoreValueWide(rl_dest, rl_result);
1269}
1270
1271void ArmMir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
1272                                RegLocation rl_src2) {
1273  switch (opcode) {
1274    case Instruction::MUL_LONG:
1275    case Instruction::MUL_LONG_2ADDR:
1276      GenMulLong(opcode, rl_dest, rl_src1, rl_src2);
1277      return;
1278    case Instruction::NEG_LONG:
1279      GenNegLong(rl_dest, rl_src2);
1280      return;
1281
1282    default:
1283      break;
1284  }
1285
1286  // Fallback for all other ops.
1287  Mir2Lir::GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1288}
1289
1290/*
1291 * Generate array load
1292 */
1293void ArmMir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1294                             RegLocation rl_index, RegLocation rl_dest, int scale) {
1295  RegisterClass reg_class = RegClassBySize(size);
1296  int len_offset = mirror::Array::LengthOffset().Int32Value();
1297  int data_offset;
1298  RegLocation rl_result;
1299  bool constant_index = rl_index.is_const;
1300  rl_array = LoadValue(rl_array, kRefReg);
1301  if (!constant_index) {
1302    rl_index = LoadValue(rl_index, kCoreReg);
1303  }
1304
1305  if (rl_dest.wide) {
1306    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1307  } else {
1308    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1309  }
1310
1311  // If index is constant, just fold it into the data offset
1312  if (constant_index) {
1313    data_offset += mir_graph_->ConstantValue(rl_index) << scale;
1314  }
1315
1316  /* null object? */
1317  GenNullCheck(rl_array.reg, opt_flags);
1318
1319  bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
1320  RegStorage reg_len;
1321  if (needs_range_check) {
1322    reg_len = AllocTemp();
1323    /* Get len */
1324    Load32Disp(rl_array.reg, len_offset, reg_len);
1325    MarkPossibleNullPointerException(opt_flags);
1326  } else {
1327    ForceImplicitNullCheck(rl_array.reg, opt_flags);
1328  }
1329  if (rl_dest.wide || rl_dest.fp || constant_index) {
1330    RegStorage reg_ptr;
1331    if (constant_index) {
1332      reg_ptr = rl_array.reg;  // NOTE: must not alter reg_ptr in constant case.
1333    } else {
1334      // No special indexed operation, lea + load w/ displacement
1335      reg_ptr = AllocTempRef();
1336      OpRegRegRegShift(kOpAdd, reg_ptr, rl_array.reg, rl_index.reg, EncodeShift(kArmLsl, scale));
1337      FreeTemp(rl_index.reg);
1338    }
1339    rl_result = EvalLoc(rl_dest, reg_class, true);
1340
1341    if (needs_range_check) {
1342      if (constant_index) {
1343        GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len);
1344      } else {
1345        GenArrayBoundsCheck(rl_index.reg, reg_len);
1346      }
1347      FreeTemp(reg_len);
1348    }
1349    LoadBaseDisp(reg_ptr, data_offset, rl_result.reg, size, kNotVolatile);
1350    MarkPossibleNullPointerException(opt_flags);
1351    if (!constant_index) {
1352      FreeTemp(reg_ptr);
1353    }
1354    if (rl_dest.wide) {
1355      StoreValueWide(rl_dest, rl_result);
1356    } else {
1357      StoreValue(rl_dest, rl_result);
1358    }
1359  } else {
1360    // Offset base, then use indexed load
1361    RegStorage reg_ptr = AllocTempRef();
1362    OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset);
1363    FreeTemp(rl_array.reg);
1364    rl_result = EvalLoc(rl_dest, reg_class, true);
1365
1366    if (needs_range_check) {
1367      GenArrayBoundsCheck(rl_index.reg, reg_len);
1368      FreeTemp(reg_len);
1369    }
1370    LoadBaseIndexed(reg_ptr, rl_index.reg, rl_result.reg, scale, size);
1371    MarkPossibleNullPointerException(opt_flags);
1372    FreeTemp(reg_ptr);
1373    StoreValue(rl_dest, rl_result);
1374  }
1375}
1376
1377/*
1378 * Generate array store
1379 *
1380 */
1381void ArmMir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1382                             RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1383  RegisterClass reg_class = RegClassBySize(size);
1384  int len_offset = mirror::Array::LengthOffset().Int32Value();
1385  bool constant_index = rl_index.is_const;
1386
1387  int data_offset;
1388  if (size == k64 || size == kDouble) {
1389    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1390  } else {
1391    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1392  }
1393
1394  // If index is constant, just fold it into the data offset.
1395  if (constant_index) {
1396    data_offset += mir_graph_->ConstantValue(rl_index) << scale;
1397  }
1398
1399  rl_array = LoadValue(rl_array, kRefReg);
1400  if (!constant_index) {
1401    rl_index = LoadValue(rl_index, kCoreReg);
1402  }
1403
1404  RegStorage reg_ptr;
1405  bool allocated_reg_ptr_temp = false;
1406  if (constant_index) {
1407    reg_ptr = rl_array.reg;
1408  } else if (IsTemp(rl_array.reg) && !card_mark) {
1409    Clobber(rl_array.reg);
1410    reg_ptr = rl_array.reg;
1411  } else {
1412    allocated_reg_ptr_temp = true;
1413    reg_ptr = AllocTempRef();
1414  }
1415
1416  /* null object? */
1417  GenNullCheck(rl_array.reg, opt_flags);
1418
1419  bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
1420  RegStorage reg_len;
1421  if (needs_range_check) {
1422    reg_len = AllocTemp();
1423    // NOTE: max live temps(4) here.
1424    /* Get len */
1425    Load32Disp(rl_array.reg, len_offset, reg_len);
1426    MarkPossibleNullPointerException(opt_flags);
1427  } else {
1428    ForceImplicitNullCheck(rl_array.reg, opt_flags);
1429  }
1430  /* at this point, reg_ptr points to array, 2 live temps */
1431  if (rl_src.wide || rl_src.fp || constant_index) {
1432    if (rl_src.wide) {
1433      rl_src = LoadValueWide(rl_src, reg_class);
1434    } else {
1435      rl_src = LoadValue(rl_src, reg_class);
1436    }
1437    if (!constant_index) {
1438      OpRegRegRegShift(kOpAdd, reg_ptr, rl_array.reg, rl_index.reg, EncodeShift(kArmLsl, scale));
1439    }
1440    if (needs_range_check) {
1441      if (constant_index) {
1442        GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len);
1443      } else {
1444        GenArrayBoundsCheck(rl_index.reg, reg_len);
1445      }
1446      FreeTemp(reg_len);
1447    }
1448
1449    StoreBaseDisp(reg_ptr, data_offset, rl_src.reg, size, kNotVolatile);
1450    MarkPossibleNullPointerException(opt_flags);
1451  } else {
1452    /* reg_ptr -> array data */
1453    OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset);
1454    rl_src = LoadValue(rl_src, reg_class);
1455    if (needs_range_check) {
1456      GenArrayBoundsCheck(rl_index.reg, reg_len);
1457      FreeTemp(reg_len);
1458    }
1459    StoreBaseIndexed(reg_ptr, rl_index.reg, rl_src.reg, scale, size);
1460    MarkPossibleNullPointerException(opt_flags);
1461  }
1462  if (allocated_reg_ptr_temp) {
1463    FreeTemp(reg_ptr);
1464  }
1465  if (card_mark) {
1466    MarkGCCard(rl_src.reg, rl_array.reg);
1467  }
1468}
1469
1470
1471void ArmMir2Lir::GenShiftImmOpLong(Instruction::Code opcode,
1472                                   RegLocation rl_dest, RegLocation rl_src, RegLocation rl_shift) {
1473  rl_src = LoadValueWide(rl_src, kCoreReg);
1474  // Per spec, we only care about low 6 bits of shift amount.
1475  int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1476  if (shift_amount == 0) {
1477    StoreValueWide(rl_dest, rl_src);
1478    return;
1479  }
1480  if (BadOverlap(rl_src, rl_dest)) {
1481    GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1482    return;
1483  }
1484  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1485  switch (opcode) {
1486    case Instruction::SHL_LONG:
1487    case Instruction::SHL_LONG_2ADDR:
1488      if (shift_amount == 1) {
1489        OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), rl_src.reg.GetLow());
1490        OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), rl_src.reg.GetHigh());
1491      } else if (shift_amount == 32) {
1492        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg);
1493        LoadConstant(rl_result.reg.GetLow(), 0);
1494      } else if (shift_amount > 31) {
1495        OpRegRegImm(kOpLsl, rl_result.reg.GetHigh(), rl_src.reg.GetLow(), shift_amount - 32);
1496        LoadConstant(rl_result.reg.GetLow(), 0);
1497      } else {
1498        OpRegRegImm(kOpLsl, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount);
1499        OpRegRegRegShift(kOpOr, rl_result.reg.GetHigh(), rl_result.reg.GetHigh(), rl_src.reg.GetLow(),
1500                         EncodeShift(kArmLsr, 32 - shift_amount));
1501        OpRegRegImm(kOpLsl, rl_result.reg.GetLow(), rl_src.reg.GetLow(), shift_amount);
1502      }
1503      break;
1504    case Instruction::SHR_LONG:
1505    case Instruction::SHR_LONG_2ADDR:
1506      if (shift_amount == 32) {
1507        OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1508        OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), 31);
1509      } else if (shift_amount > 31) {
1510        OpRegRegImm(kOpAsr, rl_result.reg.GetLow(), rl_src.reg.GetHigh(), shift_amount - 32);
1511        OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), 31);
1512      } else {
1513        RegStorage t_reg = AllocTemp();
1514        OpRegRegImm(kOpLsr, t_reg, rl_src.reg.GetLow(), shift_amount);
1515        OpRegRegRegShift(kOpOr, rl_result.reg.GetLow(), t_reg, rl_src.reg.GetHigh(),
1516                         EncodeShift(kArmLsl, 32 - shift_amount));
1517        FreeTemp(t_reg);
1518        OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount);
1519      }
1520      break;
1521    case Instruction::USHR_LONG:
1522    case Instruction::USHR_LONG_2ADDR:
1523      if (shift_amount == 32) {
1524        OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1525        LoadConstant(rl_result.reg.GetHigh(), 0);
1526      } else if (shift_amount > 31) {
1527        OpRegRegImm(kOpLsr, rl_result.reg.GetLow(), rl_src.reg.GetHigh(), shift_amount - 32);
1528        LoadConstant(rl_result.reg.GetHigh(), 0);
1529      } else {
1530        RegStorage t_reg = AllocTemp();
1531        OpRegRegImm(kOpLsr, t_reg, rl_src.reg.GetLow(), shift_amount);
1532        OpRegRegRegShift(kOpOr, rl_result.reg.GetLow(), t_reg, rl_src.reg.GetHigh(),
1533                         EncodeShift(kArmLsl, 32 - shift_amount));
1534        FreeTemp(t_reg);
1535        OpRegRegImm(kOpLsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount);
1536      }
1537      break;
1538    default:
1539      LOG(FATAL) << "Unexpected case";
1540  }
1541  StoreValueWide(rl_dest, rl_result);
1542}
1543
1544void ArmMir2Lir::GenArithImmOpLong(Instruction::Code opcode,
1545                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1546  if ((opcode == Instruction::SUB_LONG_2ADDR) || (opcode == Instruction::SUB_LONG)) {
1547    if (!rl_src2.is_const) {
1548      // Don't bother with special handling for subtract from immediate.
1549      GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1550      return;
1551    }
1552  } else {
1553    // Normalize
1554    if (!rl_src2.is_const) {
1555      DCHECK(rl_src1.is_const);
1556      std::swap(rl_src1, rl_src2);
1557    }
1558  }
1559  if (BadOverlap(rl_src1, rl_dest)) {
1560    GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1561    return;
1562  }
1563  DCHECK(rl_src2.is_const);
1564  int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1565  uint32_t val_lo = Low32Bits(val);
1566  uint32_t val_hi = High32Bits(val);
1567  int32_t mod_imm_lo = ModifiedImmediate(val_lo);
1568  int32_t mod_imm_hi = ModifiedImmediate(val_hi);
1569
1570  // Only a subset of add/sub immediate instructions set carry - so bail if we don't fit
1571  switch (opcode) {
1572    case Instruction::ADD_LONG:
1573    case Instruction::ADD_LONG_2ADDR:
1574    case Instruction::SUB_LONG:
1575    case Instruction::SUB_LONG_2ADDR:
1576      if ((mod_imm_lo < 0) || (mod_imm_hi < 0)) {
1577        GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1578        return;
1579      }
1580      break;
1581    default:
1582      break;
1583  }
1584  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1585  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1586  // NOTE: once we've done the EvalLoc on dest, we can no longer bail.
1587  switch (opcode) {
1588    case Instruction::ADD_LONG:
1589    case Instruction::ADD_LONG_2ADDR:
1590      NewLIR3(kThumb2AddRRI8M, rl_result.reg.GetLowReg(), rl_src1.reg.GetLowReg(), mod_imm_lo);
1591      NewLIR3(kThumb2AdcRRI8M, rl_result.reg.GetHighReg(), rl_src1.reg.GetHighReg(), mod_imm_hi);
1592      break;
1593    case Instruction::OR_LONG:
1594    case Instruction::OR_LONG_2ADDR:
1595      if ((val_lo != 0) || (rl_result.reg.GetLowReg() != rl_src1.reg.GetLowReg())) {
1596        OpRegRegImm(kOpOr, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo);
1597      }
1598      if ((val_hi != 0) || (rl_result.reg.GetHighReg() != rl_src1.reg.GetHighReg())) {
1599        OpRegRegImm(kOpOr, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi);
1600      }
1601      break;
1602    case Instruction::XOR_LONG:
1603    case Instruction::XOR_LONG_2ADDR:
1604      OpRegRegImm(kOpXor, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo);
1605      OpRegRegImm(kOpXor, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi);
1606      break;
1607    case Instruction::AND_LONG:
1608    case Instruction::AND_LONG_2ADDR:
1609      if ((val_lo != 0xffffffff) || (rl_result.reg.GetLowReg() != rl_src1.reg.GetLowReg())) {
1610        OpRegRegImm(kOpAnd, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo);
1611      }
1612      if ((val_hi != 0xffffffff) || (rl_result.reg.GetHighReg() != rl_src1.reg.GetHighReg())) {
1613        OpRegRegImm(kOpAnd, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi);
1614      }
1615      break;
1616    case Instruction::SUB_LONG_2ADDR:
1617    case Instruction::SUB_LONG:
1618      NewLIR3(kThumb2SubRRI8M, rl_result.reg.GetLowReg(), rl_src1.reg.GetLowReg(), mod_imm_lo);
1619      NewLIR3(kThumb2SbcRRI8M, rl_result.reg.GetHighReg(), rl_src1.reg.GetHighReg(), mod_imm_hi);
1620      break;
1621    default:
1622      LOG(FATAL) << "Unexpected opcode " << opcode;
1623  }
1624  StoreValueWide(rl_dest, rl_result);
1625}
1626
1627}  // namespace art
1628