target_arm64.cc revision 2f244e9faccfcca68af3c5484c397a01a1c3a342
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_arm64.h"
18
19#include <inttypes.h>
20
21#include <string>
22
23#include "dex/compiler_internals.h"
24#include "dex/quick/mir_to_lir-inl.h"
25
26namespace art {
27
28// TODO: rework this when c++11 support allows.
29static const RegStorage core_regs_arr[] =
30    {rs_x0, rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7,
31     rs_x8, rs_x9, rs_x10, rs_x11, rs_x12, rs_x13, rs_x14, rs_x15,
32     rs_x16, rs_x17, rs_x18, rs_x19, rs_x20, rs_x21, rs_x22, rs_x23,
33     rs_x24, rs_x25, rs_x26, rs_x27, rs_x28, rs_x29, rs_x30, rs_x31};
34static const RegStorage sp_regs_arr[] =
35    {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7,
36     rs_f8, rs_f9, rs_f10, rs_f11, rs_f12, rs_f13, rs_f14, rs_f15,
37     rs_f16, rs_f17, rs_f18, rs_f19, rs_f20, rs_f21, rs_f22, rs_f23,
38     rs_f24, rs_f25, rs_f26, rs_f27, rs_f28, rs_f29, rs_f30, rs_f31};
39static const RegStorage dp_regs_arr[] =
40    {rs_d0, rs_d1, rs_d2, rs_d3, rs_d4, rs_d5, rs_d6, rs_d7,
41     rs_d8, rs_d9, rs_d10, rs_d11, rs_d12, rs_d13, rs_d14, rs_d15};
42static const RegStorage reserved_regs_arr[] =
43    {rs_rA64_SUSPEND, rs_rA64_SELF, rs_rA64_SP, rs_rA64_LR};
44static const RegStorage core_temps_arr[] =
45    {rs_x0, rs_x1, rs_x2, rs_x3, rs_x12};
46static const RegStorage sp_temps_arr[] =
47    {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7,
48     rs_f8, rs_f9, rs_f10, rs_f11, rs_f12, rs_f13, rs_f14, rs_f15};
49static const RegStorage dp_temps_arr[] =
50    {rs_d0, rs_d1, rs_d2, rs_d3, rs_d4, rs_d5, rs_d6, rs_d7};
51
52static const std::vector<RegStorage> core_regs(core_regs_arr,
53    core_regs_arr + arraysize(core_regs_arr));
54static const std::vector<RegStorage> sp_regs(sp_regs_arr,
55    sp_regs_arr + arraysize(sp_regs_arr));
56static const std::vector<RegStorage> dp_regs(dp_regs_arr,
57    dp_regs_arr + arraysize(dp_regs_arr));
58static const std::vector<RegStorage> reserved_regs(reserved_regs_arr,
59    reserved_regs_arr + arraysize(reserved_regs_arr));
60static const std::vector<RegStorage> core_temps(core_temps_arr,
61    core_temps_arr + arraysize(core_temps_arr));
62static const std::vector<RegStorage> sp_temps(sp_temps_arr, sp_temps_arr + arraysize(sp_temps_arr));
63static const std::vector<RegStorage> dp_temps(dp_temps_arr, dp_temps_arr + arraysize(dp_temps_arr));
64
65RegLocation Arm64Mir2Lir::LocCReturn() {
66  return arm_loc_c_return;
67}
68
69RegLocation Arm64Mir2Lir::LocCReturnWide() {
70  return arm_loc_c_return_wide;
71}
72
73RegLocation Arm64Mir2Lir::LocCReturnFloat() {
74  return arm_loc_c_return_float;
75}
76
77RegLocation Arm64Mir2Lir::LocCReturnDouble() {
78  return arm_loc_c_return_double;
79}
80
81// Return a target-dependent special register.
82RegStorage Arm64Mir2Lir::TargetReg(SpecialTargetRegister reg) {
83  // TODO(Arm64): this function doesn't work for hard-float ABI.
84  RegStorage res_reg = RegStorage::InvalidReg();
85  switch (reg) {
86    case kSelf: res_reg = rs_rA64_SELF; break;
87    case kSuspend: res_reg = rs_rA64_SUSPEND; break;
88    case kLr: res_reg =  rs_rA64_LR; break;
89    case kPc: res_reg = RegStorage::InvalidReg(); break;
90    case kSp: res_reg =  rs_rA64_SP; break;
91    case kArg0: res_reg = rs_x0; break;
92    case kArg1: res_reg = rs_x1; break;
93    case kArg2: res_reg = rs_x2; break;
94    case kArg3: res_reg = rs_x3; break;
95    case kFArg0: res_reg = rs_f0; break;
96    case kFArg1: res_reg = rs_f1; break;
97    case kFArg2: res_reg = rs_f2; break;
98    case kFArg3: res_reg = rs_f3; break;
99    case kRet0: res_reg = rs_x0; break;
100    case kRet1: res_reg = rs_x0; break;
101    case kInvokeTgt: res_reg = rs_rA64_LR; break;
102    case kHiddenArg: res_reg = rs_x12; break;
103    case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break;
104    case kCount: res_reg = RegStorage::InvalidReg(); break;
105  }
106  return res_reg;
107}
108
109RegStorage Arm64Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
110  return RegStorage::InvalidReg();
111}
112
113/*
114 * Decode the register id. This routine makes assumptions on the encoding made by RegStorage.
115 */
116uint64_t Arm64Mir2Lir::GetRegMaskCommon(RegStorage reg) {
117  // TODO(Arm64): this function depends too much on the internal RegStorage encoding. Refactor.
118
119  int reg_raw = reg.GetRawBits();
120  // Check if the shape mask is zero (i.e. invalid).
121  if (UNLIKELY(reg == rs_wzr || reg == rs_xzr)) {
122    // The zero register is not a true register. It is just an immediate zero.
123    return 0;
124  }
125
126  return UINT64_C(1) << (reg_raw & RegStorage::kRegTypeMask);
127}
128
129uint64_t Arm64Mir2Lir::GetPCUseDefEncoding() {
130  LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for Arm64";
131  return 0ULL;
132}
133
134// Arm64 specific setup.  TODO: inline?:
135void Arm64Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags) {
136  DCHECK_EQ(cu_->instruction_set, kArm64);
137  DCHECK(!lir->flags.use_def_invalid);
138
139  // These flags are somewhat uncommon - bypass if we can.
140  if ((flags & (REG_DEF_SP | REG_USE_SP | REG_DEF_LR)) != 0) {
141    if (flags & REG_DEF_SP) {
142      lir->u.m.def_mask |= ENCODE_ARM_REG_SP;
143    }
144
145    if (flags & REG_USE_SP) {
146      lir->u.m.use_mask |= ENCODE_ARM_REG_SP;
147    }
148
149    if (flags & REG_DEF_LR) {
150      lir->u.m.def_mask |= ENCODE_ARM_REG_LR;
151    }
152  }
153}
154
155ArmConditionCode Arm64Mir2Lir::ArmConditionEncoding(ConditionCode ccode) {
156  ArmConditionCode res;
157  switch (ccode) {
158    case kCondEq: res = kArmCondEq; break;
159    case kCondNe: res = kArmCondNe; break;
160    case kCondCs: res = kArmCondCs; break;
161    case kCondCc: res = kArmCondCc; break;
162    case kCondUlt: res = kArmCondCc; break;
163    case kCondUge: res = kArmCondCs; break;
164    case kCondMi: res = kArmCondMi; break;
165    case kCondPl: res = kArmCondPl; break;
166    case kCondVs: res = kArmCondVs; break;
167    case kCondVc: res = kArmCondVc; break;
168    case kCondHi: res = kArmCondHi; break;
169    case kCondLs: res = kArmCondLs; break;
170    case kCondGe: res = kArmCondGe; break;
171    case kCondLt: res = kArmCondLt; break;
172    case kCondGt: res = kArmCondGt; break;
173    case kCondLe: res = kArmCondLe; break;
174    case kCondAl: res = kArmCondAl; break;
175    case kCondNv: res = kArmCondNv; break;
176    default:
177      LOG(FATAL) << "Bad condition code " << ccode;
178      res = static_cast<ArmConditionCode>(0);  // Quiet gcc
179  }
180  return res;
181}
182
183static const char *shift_names[4] = {
184  "lsl",
185  "lsr",
186  "asr",
187  "ror"
188};
189
190static const char* extend_names[8] = {
191  "uxtb",
192  "uxth",
193  "uxtw",
194  "uxtx",
195  "sxtb",
196  "sxth",
197  "sxtw",
198  "sxtx",
199};
200
201/* Decode and print a register extension (e.g. ", uxtb #1") */
202static void DecodeRegExtendOrShift(int operand, char *buf, size_t buf_size) {
203  if ((operand & (1 << 6)) == 0) {
204    const char *shift_name = shift_names[(operand >> 7) & 0x3];
205    int amount = operand & 0x3f;
206    snprintf(buf, buf_size, ", %s #%d", shift_name, amount);
207  } else {
208    const char *extend_name = extend_names[(operand >> 3) & 0x7];
209    int amount = operand & 0x7;
210    if (amount == 0) {
211      snprintf(buf, buf_size, ", %s", extend_name);
212    } else {
213      snprintf(buf, buf_size, ", %s #%d", extend_name, amount);
214    }
215  }
216}
217
218#define BIT_MASK(w) ((UINT64_C(1) << (w)) - UINT64_C(1))
219
220static uint64_t RotateRight(uint64_t value, unsigned rotate, unsigned width) {
221  DCHECK_LE(width, 64U);
222  rotate &= 63;
223  value = value & BIT_MASK(width);
224  return ((value & BIT_MASK(rotate)) << (width - rotate)) | (value >> rotate);
225}
226
227static uint64_t RepeatBitsAcrossReg(bool is_wide, uint64_t value, unsigned width) {
228  unsigned i;
229  unsigned reg_size = (is_wide) ? 64 : 32;
230  uint64_t result = value & BIT_MASK(width);
231  DCHECK_NE(width, reg_size);
232  for (i = width; i < reg_size; i *= 2) {
233    result |= (result << i);
234  }
235  DCHECK_EQ(i, reg_size);
236  return result;
237}
238
239/**
240 * @brief Decode an immediate in the form required by logical instructions.
241 *
242 * @param is_wide Whether @p value encodes a 64-bit (as opposed to 32-bit) immediate.
243 * @param value The encoded logical immediates that is to be decoded.
244 * @return The decoded logical immediate.
245 * @note This is the inverse of Arm64Mir2Lir::EncodeLogicalImmediate().
246 */
247uint64_t Arm64Mir2Lir::DecodeLogicalImmediate(bool is_wide, int value) {
248  unsigned n     = (value >> 12) & 0x01;
249  unsigned imm_r = (value >>  6) & 0x3f;
250  unsigned imm_s = (value >>  0) & 0x3f;
251
252  // An integer is constructed from the n, imm_s and imm_r bits according to
253  // the following table:
254  //
255  // N   imms immr  size S             R
256  // 1 ssssss rrrrrr 64  UInt(ssssss) UInt(rrrrrr)
257  // 0 0sssss xrrrrr 32  UInt(sssss)  UInt(rrrrr)
258  // 0 10ssss xxrrrr 16  UInt(ssss)   UInt(rrrr)
259  // 0 110sss xxxrrr 8   UInt(sss)    UInt(rrr)
260  // 0 1110ss xxxxrr 4   UInt(ss)     UInt(rr)
261  // 0 11110s xxxxxr 2   UInt(s)      UInt(r)
262  // (s bits must not be all set)
263  //
264  // A pattern is constructed of size bits, where the least significant S+1
265  // bits are set. The pattern is rotated right by R, and repeated across a
266  // 32 or 64-bit value, depending on destination register width.
267
268  if (n == 1) {
269    DCHECK_NE(imm_s, 0x3fU);
270    uint64_t bits = BIT_MASK(imm_s + 1);
271    return RotateRight(bits, imm_r, 64);
272  } else {
273    DCHECK_NE((imm_s >> 1), 0x1fU);
274    for (unsigned width = 0x20; width >= 0x2; width >>= 1) {
275      if ((imm_s & width) == 0) {
276        unsigned mask = (unsigned)(width - 1);
277        DCHECK_NE((imm_s & mask), mask);
278        uint64_t bits = BIT_MASK((imm_s & mask) + 1);
279        return RepeatBitsAcrossReg(is_wide, RotateRight(bits, imm_r & mask, width), width);
280      }
281    }
282  }
283  return 0;
284}
285
286/**
287 * @brief Decode an 8-bit single point number encoded with EncodeImmSingle().
288 */
289static float DecodeImmSingle(uint8_t small_float) {
290  int mantissa = (small_float & 0x0f) + 0x10;
291  int sign = ((small_float & 0x80) == 0) ? 1 : -1;
292  float signed_mantissa = static_cast<float>(sign*mantissa);
293  int exponent = (((small_float >> 4) & 0x7) + 4) & 0x7;
294  return signed_mantissa*static_cast<float>(1 << exponent)*0.0078125f;
295}
296
297static const char* cc_names[] = {"eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
298                                 "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"};
299/*
300 * Interpret a format string and build a string no longer than size
301 * See format key in assemble_arm64.cc.
302 */
303std::string Arm64Mir2Lir::BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) {
304  std::string buf;
305  const char* fmt_end = &fmt[strlen(fmt)];
306  char tbuf[256];
307  const char* name;
308  char nc;
309  while (fmt < fmt_end) {
310    int operand;
311    if (*fmt == '!') {
312      fmt++;
313      DCHECK_LT(fmt, fmt_end);
314      nc = *fmt++;
315      if (nc == '!') {
316        strcpy(tbuf, "!");
317      } else {
318         DCHECK_LT(fmt, fmt_end);
319         DCHECK_LT(static_cast<unsigned>(nc-'0'), 4U);
320         operand = lir->operands[nc-'0'];
321         switch (*fmt++) {
322           case 'e':  {
323               // Omit ", uxtw #0" in strings like "add w0, w1, w3, uxtw #0" and
324               // ", uxtx #0" in strings like "add x0, x1, x3, uxtx #0"
325               int omittable = ((IS_WIDE(lir->opcode)) ? EncodeExtend(kA64Uxtw, 0) :
326                                EncodeExtend(kA64Uxtw, 0));
327               if (LIKELY(operand == omittable)) {
328                 strcpy(tbuf, "");
329               } else {
330                 DecodeRegExtendOrShift(operand, tbuf, arraysize(tbuf));
331               }
332             }
333             break;
334           case 'o':
335             // Omit ", lsl #0"
336             if (LIKELY(operand == EncodeShift(kA64Lsl, 0))) {
337               strcpy(tbuf, "");
338             } else {
339               DecodeRegExtendOrShift(operand, tbuf, arraysize(tbuf));
340             }
341             break;
342           case 'B':
343             switch (operand) {
344               case kSY:
345                 name = "sy";
346                 break;
347               case kST:
348                 name = "st";
349                 break;
350               case kISH:
351                 name = "ish";
352                 break;
353               case kISHST:
354                 name = "ishst";
355                 break;
356               case kNSH:
357                 name = "nsh";
358                 break;
359               case kNSHST:
360                 name = "shst";
361                 break;
362               default:
363                 name = "DecodeError2";
364                 break;
365             }
366             strcpy(tbuf, name);
367             break;
368           case 's':
369             snprintf(tbuf, arraysize(tbuf), "s%d", operand & ARM_FP_REG_MASK);
370             break;
371           case 'S':
372             snprintf(tbuf, arraysize(tbuf), "d%d", operand & ARM_FP_REG_MASK);
373             break;
374           case 'f':
375             snprintf(tbuf, arraysize(tbuf), "%c%d", (IS_FWIDE(lir->opcode)) ? 'd' : 's',
376                      operand & ARM_FP_REG_MASK);
377             break;
378           case 'l': {
379               bool is_wide = IS_WIDE(lir->opcode);
380               uint64_t imm = DecodeLogicalImmediate(is_wide, operand);
381               snprintf(tbuf, arraysize(tbuf), "%" PRId64 " (%#" PRIx64 ")", imm, imm);
382             }
383             break;
384           case 'I':
385             snprintf(tbuf, arraysize(tbuf), "%f", DecodeImmSingle(operand));
386             break;
387           case 'M':
388             if (LIKELY(operand == 0))
389               strcpy(tbuf, "");
390             else
391               snprintf(tbuf, arraysize(tbuf), ", lsl #%d", 16*operand);
392             break;
393           case 'd':
394             snprintf(tbuf, arraysize(tbuf), "%d", operand);
395             break;
396           case 'w':
397             if (LIKELY(operand != rwzr))
398               snprintf(tbuf, arraysize(tbuf), "w%d", operand & RegStorage::kRegNumMask);
399             else
400               strcpy(tbuf, "wzr");
401             break;
402           case 'W':
403             if (LIKELY(operand != rwsp))
404               snprintf(tbuf, arraysize(tbuf), "w%d", operand & RegStorage::kRegNumMask);
405             else
406               strcpy(tbuf, "wsp");
407             break;
408           case 'x':
409             if (LIKELY(operand != rxzr))
410               snprintf(tbuf, arraysize(tbuf), "x%d", operand & RegStorage::kRegNumMask);
411             else
412               strcpy(tbuf, "xzr");
413             break;
414           case 'X':
415             if (LIKELY(operand != rsp))
416               snprintf(tbuf, arraysize(tbuf), "x%d", operand & RegStorage::kRegNumMask);
417             else
418               strcpy(tbuf, "sp");
419             break;
420           case 'D':
421             snprintf(tbuf, arraysize(tbuf), "%d", operand*((IS_WIDE(lir->opcode)) ? 8 : 4));
422             break;
423           case 'E':
424             snprintf(tbuf, arraysize(tbuf), "%d", operand*4);
425             break;
426           case 'F':
427             snprintf(tbuf, arraysize(tbuf), "%d", operand*2);
428             break;
429           case 'G':
430             if (LIKELY(operand == 0))
431               strcpy(tbuf, "");
432             else
433               strcpy(tbuf, (IS_WIDE(lir->opcode)) ? ", lsl #3" : ", lsl #2");
434             break;
435           case 'c':
436             strcpy(tbuf, cc_names[operand]);
437             break;
438           case 't':
439             snprintf(tbuf, arraysize(tbuf), "0x%08" PRIxPTR " (L%p)",
440                 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + (operand << 2),
441                 lir->target);
442             break;
443           case 'r': {
444               bool is_wide = IS_WIDE(lir->opcode);
445               if (LIKELY(operand != rwzr && operand != rxzr)) {
446                 snprintf(tbuf, arraysize(tbuf), "%c%d", (is_wide) ? 'x' : 'w',
447                          operand & RegStorage::kRegNumMask);
448               } else {
449                 strcpy(tbuf, (is_wide) ? "xzr" : "wzr");
450               }
451             }
452             break;
453           case 'R': {
454               bool is_wide = IS_WIDE(lir->opcode);
455               if (LIKELY(operand != rwsp || operand != rsp)) {
456                 snprintf(tbuf, arraysize(tbuf), "%c%d", (is_wide) ? 'x' : 'w',
457                          operand & RegStorage::kRegNumMask);
458               } else {
459                 strcpy(tbuf, (is_wide) ? "sp" : "wsp");
460               }
461             }
462             break;
463           case 'p':
464             snprintf(tbuf, arraysize(tbuf), ".+%d (addr %#" PRIxPTR ")", 4*operand,
465                      reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4*operand);
466             break;
467           case 'T':
468             if (LIKELY(operand == 0))
469               strcpy(tbuf, "");
470             else if (operand == 1)
471               strcpy(tbuf, ", lsl #12");
472             else
473               strcpy(tbuf, ", DecodeError3");
474             break;
475           default:
476             strcpy(tbuf, "DecodeError1");
477             break;
478        }
479        buf += tbuf;
480      }
481    } else {
482       buf += *fmt++;
483    }
484  }
485  return buf;
486}
487
488void Arm64Mir2Lir::DumpResourceMask(LIR* arm_lir, uint64_t mask, const char* prefix) {
489  char buf[256];
490  buf[0] = 0;
491
492  if (mask == ENCODE_ALL) {
493    strcpy(buf, "all");
494  } else {
495    char num[8];
496    int i;
497
498    for (i = 0; i < kArmRegEnd; i++) {
499      if (mask & (1ULL << i)) {
500        snprintf(num, arraysize(num), "%d ", i);
501        strcat(buf, num);
502      }
503    }
504
505    if (mask & ENCODE_CCODE) {
506      strcat(buf, "cc ");
507    }
508    if (mask & ENCODE_FP_STATUS) {
509      strcat(buf, "fpcc ");
510    }
511
512    /* Memory bits */
513    if (arm_lir && (mask & ENCODE_DALVIK_REG)) {
514      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
515               DECODE_ALIAS_INFO_REG(arm_lir->flags.alias_info),
516               DECODE_ALIAS_INFO_WIDE(arm_lir->flags.alias_info) ? "(+1)" : "");
517    }
518    if (mask & ENCODE_LITERAL) {
519      strcat(buf, "lit ");
520    }
521
522    if (mask & ENCODE_HEAP_REF) {
523      strcat(buf, "heap ");
524    }
525    if (mask & ENCODE_MUST_NOT_ALIAS) {
526      strcat(buf, "noalias ");
527    }
528  }
529  if (buf[0]) {
530    LOG(INFO) << prefix << ": " << buf;
531  }
532}
533
534bool Arm64Mir2Lir::IsUnconditionalBranch(LIR* lir) {
535  return (lir->opcode == kA64B1t);
536}
537
538bool Arm64Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
539  return true;
540}
541
542RegisterClass Arm64Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
543  if (UNLIKELY(is_volatile)) {
544    // On arm64, fp register load/store is atomic only for single bytes.
545    if (size != kSignedByte && size != kUnsignedByte) {
546      return kCoreReg;
547    }
548  }
549  return RegClassBySize(size);
550}
551
552Arm64Mir2Lir::Arm64Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
553    : Mir2Lir(cu, mir_graph, arena) {
554  // Sanity check - make sure encoding map lines up.
555  for (int i = 0; i < kA64Last; i++) {
556    if (UNWIDE(Arm64Mir2Lir::EncodingMap[i].opcode) != i) {
557      LOG(FATAL) << "Encoding order for " << Arm64Mir2Lir::EncodingMap[i].name
558                 << " is wrong: expecting " << i << ", seeing "
559                 << static_cast<int>(Arm64Mir2Lir::EncodingMap[i].opcode);
560    }
561  }
562}
563
564Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
565                            ArenaAllocator* const arena) {
566  return new Arm64Mir2Lir(cu, mir_graph, arena);
567}
568
569// Alloc a pair of core registers, or a double.
570RegStorage Arm64Mir2Lir::AllocTypedTempWide(bool fp_hint, int reg_class) {
571  if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
572    return AllocTempDouble();
573  } else {
574    RegStorage low_reg = AllocTemp();
575    RegStorage high_reg = AllocTemp();
576    return RegStorage::MakeRegPair(low_reg, high_reg);
577  }
578}
579
580RegStorage Arm64Mir2Lir::AllocTypedTemp(bool fp_hint, int reg_class) {
581  if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg))
582    return AllocTempSingle();
583  return AllocTemp();
584}
585
586void Arm64Mir2Lir::CompilerInitializeRegAlloc() {
587  reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs, sp_regs, dp_regs, reserved_regs,
588                                        core_temps, sp_temps, dp_temps);
589
590  // Target-specific adjustments.
591
592  // Alias single precision floats to appropriate half of overlapping double.
593  GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
594  for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
595    int sp_reg_num = info->GetReg().GetRegNum();
596    int dp_reg_num = sp_reg_num >> 1;
597    RegStorage dp_reg = RegStorage::Solo64(RegStorage::kFloatingPoint | dp_reg_num);
598    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
599    // Double precision register's master storage should refer to itself.
600    DCHECK_EQ(dp_reg_info, dp_reg_info->Master());
601    // Redirect single precision's master storage to master.
602    info->SetMaster(dp_reg_info);
603    // Singles should show a single 32-bit mask bit, at first referring to the low half.
604    DCHECK_EQ(info->StorageMask(), 0x1U);
605    if (sp_reg_num & 1) {
606      // For odd singles, change to user the high word of the backing double.
607      info->SetStorageMask(0x2);
608    }
609  }
610
611  // TODO: re-enable this when we can safely save r4 over the suspension code path.
612  bool no_suspend = NO_SUSPEND;  // || !Runtime::Current()->ExplicitSuspendChecks();
613  if (no_suspend) {
614    GetRegInfo(rs_rA64_SUSPEND)->MarkFree();
615  }
616
617  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
618  // TODO: adjust when we roll to hard float calling convention.
619  reg_pool_->next_core_reg_ = 2;
620  reg_pool_->next_sp_reg_ = 0;
621  reg_pool_->next_dp_reg_ = 0;
622}
623
624void Arm64Mir2Lir::FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) {
625  LOG(FATAL) << "Unexpected call to FreeRegLocTemps for Arm64";
626}
627
628/*
629 * TUNING: is true leaf?  Can't just use METHOD_IS_LEAF to determine as some
630 * instructions might call out to C/assembly helper functions.  Until
631 * machinery is in place, always spill lr.
632 */
633
634void Arm64Mir2Lir::AdjustSpillMask() {
635  core_spill_mask_ |= (1 << rs_rA64_LR.GetRegNum());
636  num_core_spills_++;
637}
638
639/*
640 * Mark a callee-save fp register as promoted.  Note that
641 * vpush/vpop uses contiguous register lists so we must
642 * include any holes in the mask.  Associate holes with
643 * Dalvik register INVALID_VREG (0xFFFFU).
644 */
645void Arm64Mir2Lir::MarkPreservedSingle(int v_reg, RegStorage reg) {
646  DCHECK_GE(reg.GetRegNum(), ARM_FP_CALLEE_SAVE_BASE);
647  int adjusted_reg_num = reg.GetRegNum() - ARM_FP_CALLEE_SAVE_BASE;
648  // Ensure fp_vmap_table is large enough
649  int table_size = fp_vmap_table_.size();
650  for (int i = table_size; i < (adjusted_reg_num + 1); i++) {
651    fp_vmap_table_.push_back(INVALID_VREG);
652  }
653  // Add the current mapping
654  fp_vmap_table_[adjusted_reg_num] = v_reg;
655  // Size of fp_vmap_table is high-water mark, use to set mask
656  num_fp_spills_ = fp_vmap_table_.size();
657  fp_spill_mask_ = ((1 << num_fp_spills_) - 1) << ARM_FP_CALLEE_SAVE_BASE;
658}
659
660void Arm64Mir2Lir::MarkPreservedDouble(int v_reg, RegStorage reg) {
661  // TEMP: perform as 2 singles.
662  int reg_num = reg.GetRegNum() << 1;
663  RegStorage lo = RegStorage::Solo32(RegStorage::kFloatingPoint | reg_num);
664  RegStorage hi = RegStorage::Solo32(RegStorage::kFloatingPoint | reg_num | 1);
665  MarkPreservedSingle(v_reg, lo);
666  MarkPreservedSingle(v_reg + 1, hi);
667}
668
669/* Clobber all regs that might be used by an external C call */
670void Arm64Mir2Lir::ClobberCallerSave() {
671  // TODO(Arm64): implement this.
672  UNIMPLEMENTED(WARNING);
673
674  Clobber(rs_x0);
675  Clobber(rs_x1);
676  Clobber(rs_x2);
677  Clobber(rs_x3);
678  Clobber(rs_x12);
679  Clobber(rs_x30);
680  Clobber(rs_f0);
681  Clobber(rs_f1);
682  Clobber(rs_f2);
683  Clobber(rs_f3);
684  Clobber(rs_f4);
685  Clobber(rs_f5);
686  Clobber(rs_f6);
687  Clobber(rs_f7);
688  Clobber(rs_f8);
689  Clobber(rs_f9);
690  Clobber(rs_f10);
691  Clobber(rs_f11);
692  Clobber(rs_f12);
693  Clobber(rs_f13);
694  Clobber(rs_f14);
695  Clobber(rs_f15);
696}
697
698RegLocation Arm64Mir2Lir::GetReturnWideAlt() {
699  RegLocation res = LocCReturnWide();
700  res.reg.SetReg(rx2);
701  res.reg.SetHighReg(rx3);
702  Clobber(rs_x2);
703  Clobber(rs_x3);
704  MarkInUse(rs_x2);
705  MarkInUse(rs_x3);
706  MarkWide(res.reg);
707  return res;
708}
709
710RegLocation Arm64Mir2Lir::GetReturnAlt() {
711  RegLocation res = LocCReturn();
712  res.reg.SetReg(rx1);
713  Clobber(rs_x1);
714  MarkInUse(rs_x1);
715  return res;
716}
717
718/* To be used when explicitly managing register use */
719void Arm64Mir2Lir::LockCallTemps() {
720  LockTemp(rs_x0);
721  LockTemp(rs_x1);
722  LockTemp(rs_x2);
723  LockTemp(rs_x3);
724}
725
726/* To be used when explicitly managing register use */
727void Arm64Mir2Lir::FreeCallTemps() {
728  FreeTemp(rs_x0);
729  FreeTemp(rs_x1);
730  FreeTemp(rs_x2);
731  FreeTemp(rs_x3);
732}
733
734RegStorage Arm64Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
735  UNIMPLEMENTED(FATAL) << "Should not be called.";
736  return RegStorage::InvalidReg();
737}
738
739RegStorage Arm64Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
740  // TODO(Arm64): use LoadWordDisp instead.
741  //   e.g. LoadWordDisp(rs_rA64_SELF, offset.Int32Value(), rs_rA64_LR);
742  LoadBaseDisp(rs_rA64_SELF, offset.Int32Value(), rs_rA64_LR, k64);
743  return rs_rA64_LR;
744}
745
746LIR* Arm64Mir2Lir::CheckSuspendUsingLoad() {
747  RegStorage tmp = rs_x0;
748  LoadWordDisp(rs_rA64_SELF, Thread::ThreadSuspendTriggerOffset<8>().Int32Value(), tmp);
749  LIR* load2 = LoadWordDisp(tmp, 0, tmp);
750  return load2;
751}
752
753uint64_t Arm64Mir2Lir::GetTargetInstFlags(int opcode) {
754  DCHECK(!IsPseudoLirOp(opcode));
755  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].flags;
756}
757
758const char* Arm64Mir2Lir::GetTargetInstName(int opcode) {
759  DCHECK(!IsPseudoLirOp(opcode));
760  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].name;
761}
762
763const char* Arm64Mir2Lir::GetTargetInstFmt(int opcode) {
764  DCHECK(!IsPseudoLirOp(opcode));
765  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].fmt;
766}
767
768/*
769 * Somewhat messy code here.  We want to allocate a pair of contiguous
770 * physical single-precision floating point registers starting with
771 * an even numbered reg.  It is possible that the paired s_reg (s_reg+1)
772 * has already been allocated - try to fit if possible.  Fail to
773 * allocate if we can't meet the requirements for the pair of
774 * s_reg<=sX[even] & (s_reg+1)<= sX+1.
775 */
776// TODO: needs rewrite to support non-backed 64-bit float regs.
777RegStorage Arm64Mir2Lir::AllocPreservedDouble(int s_reg) {
778  RegStorage res;
779  int v_reg = mir_graph_->SRegToVReg(s_reg);
780  int p_map_idx = SRegToPMap(s_reg);
781  if (promotion_map_[p_map_idx+1].fp_location == kLocPhysReg) {
782    // Upper reg is already allocated.  Can we fit?
783    int high_reg = promotion_map_[p_map_idx+1].FpReg;
784    if ((high_reg & 1) == 0) {
785      // High reg is even - fail.
786      return res;  // Invalid.
787    }
788    // Is the low reg of the pair free?
789    // FIXME: rework.
790    RegisterInfo* p = GetRegInfo(RegStorage::FloatSolo32(high_reg - 1));
791    if (p->InUse() || p->IsTemp()) {
792      // Already allocated or not preserved - fail.
793      return res;  // Invalid.
794    }
795    // OK - good to go.
796    res = RegStorage::FloatSolo64(p->GetReg().GetRegNum() >> 1);
797    p->MarkInUse();
798    MarkPreservedSingle(v_reg, p->GetReg());
799  } else {
800    /*
801     * TODO: until runtime support is in, make sure we avoid promoting the same vreg to
802     * different underlying physical registers.
803     */
804    GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->dp_regs_);
805    for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
806      if (!info->IsTemp() && !info->InUse()) {
807        res = info->GetReg();
808        info->MarkInUse();
809        MarkPreservedDouble(v_reg, info->GetReg());
810        break;
811      }
812    }
813  }
814  if (res.Valid()) {
815    promotion_map_[p_map_idx].fp_location = kLocPhysReg;
816    promotion_map_[p_map_idx].FpReg = res.DoubleToLowSingle().GetReg();
817    promotion_map_[p_map_idx+1].fp_location = kLocPhysReg;
818    promotion_map_[p_map_idx+1].FpReg = res.DoubleToHighSingle().GetReg();
819  }
820  return res;
821}
822
823// TODO(Arm64): reuse info in QuickArgumentVisitor?
824static RegStorage GetArgPhysicalReg(RegLocation* loc, int* num_gpr_used, int* num_fpr_used,
825                                    OpSize* op_size) {
826  if (loc->fp) {
827    int n = *num_fpr_used;
828    if (n < 8) {
829      *num_fpr_used = n + 1;
830      RegStorage::RegStorageKind reg_kind;
831      if (loc->wide) {
832        *op_size = kDouble;
833        reg_kind = RegStorage::k64BitSolo;
834      } else {
835        *op_size = kSingle;
836        reg_kind = RegStorage::k32BitSolo;
837      }
838      return RegStorage(RegStorage::kValid | reg_kind | RegStorage::kFloatingPoint | n);
839    }
840  } else {
841    int n = *num_gpr_used;
842    if (n < 7) {
843      *num_gpr_used = n + 1;
844      if (loc->wide) {
845        *op_size = k64;
846        return RegStorage::Solo64(n);
847      } else {
848        *op_size = k32;
849        return RegStorage::Solo32(n);
850      }
851    }
852  }
853
854  return RegStorage::InvalidReg();
855}
856
857/*
858 * If there are any ins passed in registers that have not been promoted
859 * to a callee-save register, flush them to the frame.  Perform initial
860 * assignment of promoted arguments.
861 *
862 * ArgLocs is an array of location records describing the incoming arguments
863 * with one location record per word of argument.
864 */
865void Arm64Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
866  int num_gpr_used = 1;
867  int num_fpr_used = 0;
868
869  /*
870   * Dummy up a RegLocation for the incoming Method*
871   * It will attempt to keep kArg0 live (or copy it to home location
872   * if promoted).
873   */
874  RegLocation rl_src = rl_method;
875  rl_src.location = kLocPhysReg;
876  rl_src.reg = TargetReg(kArg0);
877  rl_src.home = false;
878  MarkLive(rl_src);
879
880  // TODO(Arm64): compress the Method pointer?
881  StoreValueWide(rl_method, rl_src);
882
883  // If Method* has been promoted, explicitly flush
884  if (rl_method.location == kLocPhysReg) {
885    StoreWordDisp(TargetReg(kSp), 0, TargetReg(kArg0));
886  }
887
888  if (cu_->num_ins == 0) {
889    return;
890  }
891
892  int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
893  for (int i = 0; i < cu_->num_ins; i++) {
894    PromotionMap* v_map = &promotion_map_[start_vreg + i];
895    RegLocation* t_loc = &ArgLocs[i];
896    OpSize op_size;
897    RegStorage reg = GetArgPhysicalReg(t_loc, &num_gpr_used, &num_fpr_used, &op_size);
898
899    if (reg.Valid()) {
900      if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
901        OpRegCopy(RegStorage::Solo32(v_map->core_reg), reg);
902      } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
903        OpRegCopy(RegStorage::Solo32(v_map->FpReg), reg);
904      } else {
905        StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, op_size);
906        if (reg.Is64Bit()) {
907          if (SRegOffset(start_vreg + i) + 4 != SRegOffset(start_vreg + i + 1)) {
908            LOG(FATAL) << "64 bit value stored in non-consecutive 4 bytes slots";
909          }
910          i += 1;
911        }
912      }
913    } else {
914      // If arriving in frame & promoted
915      if (v_map->core_location == kLocPhysReg) {
916        LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
917                     RegStorage::Solo32(v_map->core_reg));
918      }
919      if (v_map->fp_location == kLocPhysReg) {
920        LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->FpReg));
921      }
922    }
923  }
924}
925
926int Arm64Mir2Lir::LoadArgRegs(CallInfo* info, int call_state,
927                              NextCallInsn next_call_insn,
928                              const MethodReference& target_method,
929                              uint32_t vtable_idx, uintptr_t direct_code,
930                              uintptr_t direct_method, InvokeType type, bool skip_this) {
931  int last_arg_reg = TargetReg(kArg3).GetReg();
932  int next_reg = TargetReg(kArg1).GetReg();
933  int next_arg = 0;
934  if (skip_this) {
935    next_reg++;
936    next_arg++;
937  }
938  for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) {
939    RegLocation rl_arg = info->args[next_arg++];
940    rl_arg = UpdateRawLoc(rl_arg);
941    if (rl_arg.wide && (next_reg <= TargetReg(kArg2).GetReg())) {
942      RegStorage r_tmp(RegStorage::k64BitPair, next_reg, next_reg + 1);
943      LoadValueDirectWideFixed(rl_arg, r_tmp);
944      next_reg++;
945      next_arg++;
946    } else {
947      if (rl_arg.wide) {
948        rl_arg = NarrowRegLoc(rl_arg);
949        rl_arg.is_const = false;
950      }
951      LoadValueDirectFixed(rl_arg, RegStorage::Solo32(next_reg));
952    }
953    call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
954                                direct_code, direct_method, type);
955  }
956  return call_state;
957}
958
959}  // namespace art
960