target_arm64.cc revision 421efca6d71ffe348295872743317bf107a9a94a
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_arm64.h"
18
19#include <inttypes.h>
20
21#include <string>
22
23#include "dex/compiler_internals.h"
24#include "dex/quick/mir_to_lir-inl.h"
25#include "dex/reg_storage_eq.h"
26
27namespace art {
28
29static constexpr RegStorage core_regs_arr[] =
30    {rs_w0, rs_w1, rs_w2, rs_w3, rs_w4, rs_w5, rs_w6, rs_w7,
31     rs_w8, rs_w9, rs_w10, rs_w11, rs_w12, rs_w13, rs_w14, rs_w15,
32     rs_w16, rs_w17, rs_w18, rs_w19, rs_w20, rs_w21, rs_w22, rs_w23,
33     rs_w24, rs_w25, rs_w26, rs_w27, rs_w28, rs_w29, rs_w30, rs_w31,
34     rs_wzr};
35static constexpr RegStorage core64_regs_arr[] =
36    {rs_x0, rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7,
37     rs_x8, rs_x9, rs_x10, rs_x11, rs_x12, rs_x13, rs_x14, rs_x15,
38     rs_x16, rs_x17, rs_x18, rs_x19, rs_x20, rs_x21, rs_x22, rs_x23,
39     rs_x24, rs_x25, rs_x26, rs_x27, rs_x28, rs_x29, rs_x30, rs_x31,
40     rs_xzr};
41static constexpr RegStorage sp_regs_arr[] =
42    {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7,
43     rs_f8, rs_f9, rs_f10, rs_f11, rs_f12, rs_f13, rs_f14, rs_f15,
44     rs_f16, rs_f17, rs_f18, rs_f19, rs_f20, rs_f21, rs_f22, rs_f23,
45     rs_f24, rs_f25, rs_f26, rs_f27, rs_f28, rs_f29, rs_f30, rs_f31};
46static constexpr RegStorage dp_regs_arr[] =
47    {rs_d0, rs_d1, rs_d2, rs_d3, rs_d4, rs_d5, rs_d6, rs_d7,
48     rs_d8, rs_d9, rs_d10, rs_d11, rs_d12, rs_d13, rs_d14, rs_d15,
49     rs_d16, rs_d17, rs_d18, rs_d19, rs_d20, rs_d21, rs_d22, rs_d23,
50     rs_d24, rs_d25, rs_d26, rs_d27, rs_d28, rs_d29, rs_d30, rs_d31};
51static constexpr RegStorage reserved_regs_arr[] =
52    {rs_wSUSPEND, rs_wSELF, rs_wsp, rs_wLR, rs_wzr};
53static constexpr RegStorage reserved64_regs_arr[] =
54    {rs_xSUSPEND, rs_xSELF, rs_sp, rs_xLR, rs_xzr};
55// TUNING: Are there too many temp registers and too less promote target?
56// This definition need to be matched with runtime.cc, quick entry assembly and JNI compiler
57// Note: we are not able to call to C function directly if it un-match C ABI.
58// Currently, rs_rA64_SELF is not a callee save register which does not match C ABI.
59static constexpr RegStorage core_temps_arr[] =
60    {rs_w0, rs_w1, rs_w2, rs_w3, rs_w4, rs_w5, rs_w6, rs_w7,
61     rs_w8, rs_w9, rs_w10, rs_w11, rs_w12, rs_w13, rs_w14, rs_w15, rs_w16,
62     rs_w17};
63static constexpr RegStorage core64_temps_arr[] =
64    {rs_x0, rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7,
65     rs_x8, rs_x9, rs_x10, rs_x11, rs_x12, rs_x13, rs_x14, rs_x15, rs_x16,
66     rs_x17};
67static constexpr RegStorage sp_temps_arr[] =
68    {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7,
69     rs_f16, rs_f17, rs_f18, rs_f19, rs_f20, rs_f21, rs_f22, rs_f23,
70     rs_f24, rs_f25, rs_f26, rs_f27, rs_f28, rs_f29, rs_f30, rs_f31};
71static constexpr RegStorage dp_temps_arr[] =
72    {rs_d0, rs_d1, rs_d2, rs_d3, rs_d4, rs_d5, rs_d6, rs_d7,
73     rs_d16, rs_d17, rs_d18, rs_d19, rs_d20, rs_d21, rs_d22, rs_d23,
74     rs_d24, rs_d25, rs_d26, rs_d27, rs_d28, rs_d29, rs_d30, rs_d31};
75
76static constexpr ArrayRef<const RegStorage> core_regs(core_regs_arr);
77static constexpr ArrayRef<const RegStorage> core64_regs(core64_regs_arr);
78static constexpr ArrayRef<const RegStorage> sp_regs(sp_regs_arr);
79static constexpr ArrayRef<const RegStorage> dp_regs(dp_regs_arr);
80static constexpr ArrayRef<const RegStorage> reserved_regs(reserved_regs_arr);
81static constexpr ArrayRef<const RegStorage> reserved64_regs(reserved64_regs_arr);
82static constexpr ArrayRef<const RegStorage> core_temps(core_temps_arr);
83static constexpr ArrayRef<const RegStorage> core64_temps(core64_temps_arr);
84static constexpr ArrayRef<const RegStorage> sp_temps(sp_temps_arr);
85static constexpr ArrayRef<const RegStorage> dp_temps(dp_temps_arr);
86
87RegLocation Arm64Mir2Lir::LocCReturn() {
88  return arm_loc_c_return;
89}
90
91RegLocation Arm64Mir2Lir::LocCReturnRef() {
92  return arm_loc_c_return_ref;
93}
94
95RegLocation Arm64Mir2Lir::LocCReturnWide() {
96  return arm_loc_c_return_wide;
97}
98
99RegLocation Arm64Mir2Lir::LocCReturnFloat() {
100  return arm_loc_c_return_float;
101}
102
103RegLocation Arm64Mir2Lir::LocCReturnDouble() {
104  return arm_loc_c_return_double;
105}
106
107// Return a target-dependent special register.
108RegStorage Arm64Mir2Lir::TargetReg(SpecialTargetRegister reg) {
109  RegStorage res_reg = RegStorage::InvalidReg();
110  switch (reg) {
111    case kSelf: res_reg = rs_xSELF; break;
112    case kSuspend: res_reg = rs_xSUSPEND; break;
113    case kLr: res_reg =  rs_xLR; break;
114    case kPc: res_reg = RegStorage::InvalidReg(); break;
115    case kSp: res_reg =  rs_sp; break;
116    case kArg0: res_reg = rs_x0; break;
117    case kArg1: res_reg = rs_x1; break;
118    case kArg2: res_reg = rs_x2; break;
119    case kArg3: res_reg = rs_x3; break;
120    case kArg4: res_reg = rs_x4; break;
121    case kArg5: res_reg = rs_x5; break;
122    case kArg6: res_reg = rs_x6; break;
123    case kArg7: res_reg = rs_x7; break;
124    case kFArg0: res_reg = rs_f0; break;
125    case kFArg1: res_reg = rs_f1; break;
126    case kFArg2: res_reg = rs_f2; break;
127    case kFArg3: res_reg = rs_f3; break;
128    case kFArg4: res_reg = rs_f4; break;
129    case kFArg5: res_reg = rs_f5; break;
130    case kFArg6: res_reg = rs_f6; break;
131    case kFArg7: res_reg = rs_f7; break;
132    case kRet0: res_reg = rs_x0; break;
133    case kRet1: res_reg = rs_x1; break;
134    case kInvokeTgt: res_reg = rs_xLR; break;
135    case kHiddenArg: res_reg = rs_x12; break;
136    case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break;
137    case kCount: res_reg = RegStorage::InvalidReg(); break;
138    default: res_reg = RegStorage::InvalidReg();
139  }
140  return res_reg;
141}
142
143/*
144 * Decode the register id. This routine makes assumptions on the encoding made by RegStorage.
145 */
146ResourceMask Arm64Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
147  // TODO(Arm64): this function depends too much on the internal RegStorage encoding. Refactor.
148
149  // Check if the shape mask is zero (i.e. invalid).
150  if (UNLIKELY(reg == rs_wzr || reg == rs_xzr)) {
151    // The zero register is not a true register. It is just an immediate zero.
152    return kEncodeNone;
153  }
154
155  return ResourceMask::Bit(
156      // FP register starts at bit position 32.
157      (reg.IsFloat() ? kArm64FPReg0 : 0) + reg.GetRegNum());
158}
159
160ResourceMask Arm64Mir2Lir::GetPCUseDefEncoding() const {
161  // Note: On arm64, we are not able to set pc except branch instructions, which is regarded as a
162  //       kind of barrier. All other instructions only use pc, which has no dependency between any
163  //       of them. So it is fine to just return kEncodeNone here.
164  return kEncodeNone;
165}
166
167// Arm64 specific setup.  TODO: inline?:
168void Arm64Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
169                                            ResourceMask* use_mask, ResourceMask* def_mask) {
170  DCHECK_EQ(cu_->instruction_set, kArm64);
171  DCHECK(!lir->flags.use_def_invalid);
172
173  // Note: REG_USE_PC is ignored, the reason is the same with what we do in GetPCUseDefEncoding().
174  // These flags are somewhat uncommon - bypass if we can.
175  if ((flags & (REG_DEF_SP | REG_USE_SP | REG_DEF_LR)) != 0) {
176    if (flags & REG_DEF_SP) {
177      def_mask->SetBit(kArm64RegSP);
178    }
179
180    if (flags & REG_USE_SP) {
181      use_mask->SetBit(kArm64RegSP);
182    }
183
184    if (flags & REG_DEF_LR) {
185      def_mask->SetBit(kArm64RegLR);
186    }
187  }
188}
189
190ArmConditionCode Arm64Mir2Lir::ArmConditionEncoding(ConditionCode ccode) {
191  ArmConditionCode res;
192  switch (ccode) {
193    case kCondEq: res = kArmCondEq; break;
194    case kCondNe: res = kArmCondNe; break;
195    case kCondCs: res = kArmCondCs; break;
196    case kCondCc: res = kArmCondCc; break;
197    case kCondUlt: res = kArmCondCc; break;
198    case kCondUge: res = kArmCondCs; break;
199    case kCondMi: res = kArmCondMi; break;
200    case kCondPl: res = kArmCondPl; break;
201    case kCondVs: res = kArmCondVs; break;
202    case kCondVc: res = kArmCondVc; break;
203    case kCondHi: res = kArmCondHi; break;
204    case kCondLs: res = kArmCondLs; break;
205    case kCondGe: res = kArmCondGe; break;
206    case kCondLt: res = kArmCondLt; break;
207    case kCondGt: res = kArmCondGt; break;
208    case kCondLe: res = kArmCondLe; break;
209    case kCondAl: res = kArmCondAl; break;
210    case kCondNv: res = kArmCondNv; break;
211    default:
212      LOG(FATAL) << "Bad condition code " << ccode;
213      res = static_cast<ArmConditionCode>(0);  // Quiet gcc
214  }
215  return res;
216}
217
218static const char *shift_names[4] = {
219  "lsl",
220  "lsr",
221  "asr",
222  "ror"
223};
224
225static const char* extend_names[8] = {
226  "uxtb",
227  "uxth",
228  "uxtw",
229  "uxtx",
230  "sxtb",
231  "sxth",
232  "sxtw",
233  "sxtx",
234};
235
236/* Decode and print a register extension (e.g. ", uxtb #1") */
237static void DecodeRegExtendOrShift(int operand, char *buf, size_t buf_size) {
238  if ((operand & (1 << 6)) == 0) {
239    const char *shift_name = shift_names[(operand >> 7) & 0x3];
240    int amount = operand & 0x3f;
241    snprintf(buf, buf_size, ", %s #%d", shift_name, amount);
242  } else {
243    const char *extend_name = extend_names[(operand >> 3) & 0x7];
244    int amount = operand & 0x7;
245    if (amount == 0) {
246      snprintf(buf, buf_size, ", %s", extend_name);
247    } else {
248      snprintf(buf, buf_size, ", %s #%d", extend_name, amount);
249    }
250  }
251}
252
253#define BIT_MASK(w) ((UINT64_C(1) << (w)) - UINT64_C(1))
254
255static uint64_t RotateRight(uint64_t value, unsigned rotate, unsigned width) {
256  DCHECK_LE(width, 64U);
257  rotate &= 63;
258  value = value & BIT_MASK(width);
259  return ((value & BIT_MASK(rotate)) << (width - rotate)) | (value >> rotate);
260}
261
262static uint64_t RepeatBitsAcrossReg(bool is_wide, uint64_t value, unsigned width) {
263  unsigned i;
264  unsigned reg_size = (is_wide) ? 64 : 32;
265  uint64_t result = value & BIT_MASK(width);
266  for (i = width; i < reg_size; i *= 2) {
267    result |= (result << i);
268  }
269  DCHECK_EQ(i, reg_size);
270  return result;
271}
272
273/**
274 * @brief Decode an immediate in the form required by logical instructions.
275 *
276 * @param is_wide Whether @p value encodes a 64-bit (as opposed to 32-bit) immediate.
277 * @param value The encoded logical immediates that is to be decoded.
278 * @return The decoded logical immediate.
279 * @note This is the inverse of Arm64Mir2Lir::EncodeLogicalImmediate().
280 */
281uint64_t Arm64Mir2Lir::DecodeLogicalImmediate(bool is_wide, int value) {
282  unsigned n     = (value >> 12) & 0x01;
283  unsigned imm_r = (value >>  6) & 0x3f;
284  unsigned imm_s = (value >>  0) & 0x3f;
285
286  // An integer is constructed from the n, imm_s and imm_r bits according to
287  // the following table:
288  //
289  // N   imms immr  size S             R
290  // 1 ssssss rrrrrr 64  UInt(ssssss) UInt(rrrrrr)
291  // 0 0sssss xrrrrr 32  UInt(sssss)  UInt(rrrrr)
292  // 0 10ssss xxrrrr 16  UInt(ssss)   UInt(rrrr)
293  // 0 110sss xxxrrr 8   UInt(sss)    UInt(rrr)
294  // 0 1110ss xxxxrr 4   UInt(ss)     UInt(rr)
295  // 0 11110s xxxxxr 2   UInt(s)      UInt(r)
296  // (s bits must not be all set)
297  //
298  // A pattern is constructed of size bits, where the least significant S+1
299  // bits are set. The pattern is rotated right by R, and repeated across a
300  // 32 or 64-bit value, depending on destination register width.
301
302  if (n == 1) {
303    DCHECK_NE(imm_s, 0x3fU);
304    uint64_t bits = BIT_MASK(imm_s + 1);
305    return RotateRight(bits, imm_r, 64);
306  } else {
307    DCHECK_NE((imm_s >> 1), 0x1fU);
308    for (unsigned width = 0x20; width >= 0x2; width >>= 1) {
309      if ((imm_s & width) == 0) {
310        unsigned mask = (unsigned)(width - 1);
311        DCHECK_NE((imm_s & mask), mask);
312        uint64_t bits = BIT_MASK((imm_s & mask) + 1);
313        return RepeatBitsAcrossReg(is_wide, RotateRight(bits, imm_r & mask, width), width);
314      }
315    }
316  }
317  return 0;
318}
319
320/**
321 * @brief Decode an 8-bit single point number encoded with EncodeImmSingle().
322 */
323static float DecodeImmSingle(uint8_t small_float) {
324  int mantissa = (small_float & 0x0f) + 0x10;
325  int sign = ((small_float & 0x80) == 0) ? 1 : -1;
326  float signed_mantissa = static_cast<float>(sign*mantissa);
327  int exponent = (((small_float >> 4) & 0x7) + 4) & 0x7;
328  return signed_mantissa*static_cast<float>(1 << exponent)*0.0078125f;
329}
330
331static const char* cc_names[] = {"eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
332                                 "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"};
333/*
334 * Interpret a format string and build a string no longer than size
335 * See format key in assemble_arm64.cc.
336 */
337std::string Arm64Mir2Lir::BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) {
338  std::string buf;
339  const char* fmt_end = &fmt[strlen(fmt)];
340  char tbuf[256];
341  const char* name;
342  char nc;
343  while (fmt < fmt_end) {
344    int operand;
345    if (*fmt == '!') {
346      fmt++;
347      DCHECK_LT(fmt, fmt_end);
348      nc = *fmt++;
349      if (nc == '!') {
350        strcpy(tbuf, "!");
351      } else {
352         DCHECK_LT(fmt, fmt_end);
353         DCHECK_LT(static_cast<unsigned>(nc-'0'), 4U);
354         operand = lir->operands[nc-'0'];
355         switch (*fmt++) {
356           case 'e':  {
357               // Omit ", uxtw #0" in strings like "add w0, w1, w3, uxtw #0" and
358               // ", uxtx #0" in strings like "add x0, x1, x3, uxtx #0"
359               int omittable = ((IS_WIDE(lir->opcode)) ? EncodeExtend(kA64Uxtw, 0) :
360                                EncodeExtend(kA64Uxtw, 0));
361               if (LIKELY(operand == omittable)) {
362                 strcpy(tbuf, "");
363               } else {
364                 DecodeRegExtendOrShift(operand, tbuf, arraysize(tbuf));
365               }
366             }
367             break;
368           case 'o':
369             // Omit ", lsl #0"
370             if (LIKELY(operand == EncodeShift(kA64Lsl, 0))) {
371               strcpy(tbuf, "");
372             } else {
373               DecodeRegExtendOrShift(operand, tbuf, arraysize(tbuf));
374             }
375             break;
376           case 'B':
377             switch (operand) {
378               case kSY:
379                 name = "sy";
380                 break;
381               case kST:
382                 name = "st";
383                 break;
384               case kISH:
385                 name = "ish";
386                 break;
387               case kISHST:
388                 name = "ishst";
389                 break;
390               case kNSH:
391                 name = "nsh";
392                 break;
393               case kNSHST:
394                 name = "shst";
395                 break;
396               default:
397                 name = "DecodeError2";
398                 break;
399             }
400             strcpy(tbuf, name);
401             break;
402           case 's':
403             snprintf(tbuf, arraysize(tbuf), "s%d", operand & RegStorage::kRegNumMask);
404             break;
405           case 'S':
406             snprintf(tbuf, arraysize(tbuf), "d%d", operand & RegStorage::kRegNumMask);
407             break;
408           case 'f':
409             snprintf(tbuf, arraysize(tbuf), "%c%d", (IS_FWIDE(lir->opcode)) ? 'd' : 's',
410                      operand & RegStorage::kRegNumMask);
411             break;
412           case 'l': {
413               bool is_wide = IS_WIDE(lir->opcode);
414               uint64_t imm = DecodeLogicalImmediate(is_wide, operand);
415               snprintf(tbuf, arraysize(tbuf), "%" PRId64 " (%#" PRIx64 ")", imm, imm);
416             }
417             break;
418           case 'I':
419             snprintf(tbuf, arraysize(tbuf), "%f", DecodeImmSingle(operand));
420             break;
421           case 'M':
422             if (LIKELY(operand == 0))
423               strcpy(tbuf, "");
424             else
425               snprintf(tbuf, arraysize(tbuf), ", lsl #%d", 16*operand);
426             break;
427           case 'd':
428             snprintf(tbuf, arraysize(tbuf), "%d", operand);
429             break;
430           case 'w':
431             if (LIKELY(operand != rwzr))
432               snprintf(tbuf, arraysize(tbuf), "w%d", operand & RegStorage::kRegNumMask);
433             else
434               strcpy(tbuf, "wzr");
435             break;
436           case 'W':
437             if (LIKELY(operand != rwsp))
438               snprintf(tbuf, arraysize(tbuf), "w%d", operand & RegStorage::kRegNumMask);
439             else
440               strcpy(tbuf, "wsp");
441             break;
442           case 'x':
443             if (LIKELY(operand != rxzr))
444               snprintf(tbuf, arraysize(tbuf), "x%d", operand & RegStorage::kRegNumMask);
445             else
446               strcpy(tbuf, "xzr");
447             break;
448           case 'X':
449             if (LIKELY(operand != rsp))
450               snprintf(tbuf, arraysize(tbuf), "x%d", operand & RegStorage::kRegNumMask);
451             else
452               strcpy(tbuf, "sp");
453             break;
454           case 'D':
455             snprintf(tbuf, arraysize(tbuf), "%d", operand*((IS_WIDE(lir->opcode)) ? 8 : 4));
456             break;
457           case 'E':
458             snprintf(tbuf, arraysize(tbuf), "%d", operand*4);
459             break;
460           case 'F':
461             snprintf(tbuf, arraysize(tbuf), "%d", operand*2);
462             break;
463           case 'G':
464             if (LIKELY(operand == 0))
465               strcpy(tbuf, "");
466             else
467               strcpy(tbuf, (IS_WIDE(lir->opcode)) ? ", lsl #3" : ", lsl #2");
468             break;
469           case 'c':
470             strcpy(tbuf, cc_names[operand]);
471             break;
472           case 't':
473             snprintf(tbuf, arraysize(tbuf), "0x%08" PRIxPTR " (L%p)",
474                 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + (operand << 2),
475                 lir->target);
476             break;
477           case 'r': {
478               bool is_wide = IS_WIDE(lir->opcode);
479               if (LIKELY(operand != rwzr && operand != rxzr)) {
480                 snprintf(tbuf, arraysize(tbuf), "%c%d", (is_wide) ? 'x' : 'w',
481                          operand & RegStorage::kRegNumMask);
482               } else {
483                 strcpy(tbuf, (is_wide) ? "xzr" : "wzr");
484               }
485             }
486             break;
487           case 'R': {
488               bool is_wide = IS_WIDE(lir->opcode);
489               if (LIKELY(operand != rwsp && operand != rsp)) {
490                 snprintf(tbuf, arraysize(tbuf), "%c%d", (is_wide) ? 'x' : 'w',
491                          operand & RegStorage::kRegNumMask);
492               } else {
493                 strcpy(tbuf, (is_wide) ? "sp" : "wsp");
494               }
495             }
496             break;
497           case 'p':
498             snprintf(tbuf, arraysize(tbuf), ".+%d (addr %#" PRIxPTR ")", 4*operand,
499                      reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4*operand);
500             break;
501           case 'T':
502             if (LIKELY(operand == 0))
503               strcpy(tbuf, "");
504             else if (operand == 1)
505               strcpy(tbuf, ", lsl #12");
506             else
507               strcpy(tbuf, ", DecodeError3");
508             break;
509           default:
510             strcpy(tbuf, "DecodeError1");
511             break;
512        }
513        buf += tbuf;
514      }
515    } else {
516       buf += *fmt++;
517    }
518  }
519  return buf;
520}
521
522void Arm64Mir2Lir::DumpResourceMask(LIR* arm_lir, const ResourceMask& mask, const char* prefix) {
523  char buf[256];
524  buf[0] = 0;
525
526  if (mask.Equals(kEncodeAll)) {
527    strcpy(buf, "all");
528  } else {
529    char num[8];
530    int i;
531
532    for (i = 0; i < kArm64RegEnd; i++) {
533      if (mask.HasBit(i)) {
534        snprintf(num, arraysize(num), "%d ", i);
535        strcat(buf, num);
536      }
537    }
538
539    if (mask.HasBit(ResourceMask::kCCode)) {
540      strcat(buf, "cc ");
541    }
542    if (mask.HasBit(ResourceMask::kFPStatus)) {
543      strcat(buf, "fpcc ");
544    }
545
546    /* Memory bits */
547    if (arm_lir && (mask.HasBit(ResourceMask::kDalvikReg))) {
548      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
549               DECODE_ALIAS_INFO_REG(arm_lir->flags.alias_info),
550               DECODE_ALIAS_INFO_WIDE(arm_lir->flags.alias_info) ? "(+1)" : "");
551    }
552    if (mask.HasBit(ResourceMask::kLiteral)) {
553      strcat(buf, "lit ");
554    }
555
556    if (mask.HasBit(ResourceMask::kHeapRef)) {
557      strcat(buf, "heap ");
558    }
559    if (mask.HasBit(ResourceMask::kMustNotAlias)) {
560      strcat(buf, "noalias ");
561    }
562  }
563  if (buf[0]) {
564    LOG(INFO) << prefix << ": " << buf;
565  }
566}
567
568bool Arm64Mir2Lir::IsUnconditionalBranch(LIR* lir) {
569  return (lir->opcode == kA64B1t);
570}
571
572bool Arm64Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
573  return true;
574}
575
576RegisterClass Arm64Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
577  if (UNLIKELY(is_volatile)) {
578    // On arm64, fp register load/store is atomic only for single bytes.
579    if (size != kSignedByte && size != kUnsignedByte) {
580      return (size == kReference) ? kRefReg : kCoreReg;
581    }
582  }
583  return RegClassBySize(size);
584}
585
586Arm64Mir2Lir::Arm64Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
587    : Mir2Lir(cu, mir_graph, arena) {
588  // Sanity check - make sure encoding map lines up.
589  for (int i = 0; i < kA64Last; i++) {
590    if (UNWIDE(Arm64Mir2Lir::EncodingMap[i].opcode) != i) {
591      LOG(FATAL) << "Encoding order for " << Arm64Mir2Lir::EncodingMap[i].name
592                 << " is wrong: expecting " << i << ", seeing "
593                 << static_cast<int>(Arm64Mir2Lir::EncodingMap[i].opcode);
594    }
595  }
596}
597
598Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
599                            ArenaAllocator* const arena) {
600  return new Arm64Mir2Lir(cu, mir_graph, arena);
601}
602
603void Arm64Mir2Lir::CompilerInitializeRegAlloc() {
604  reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs, core64_regs, sp_regs, dp_regs,
605                                        reserved_regs, reserved64_regs, core_temps, core64_temps,
606                                        sp_temps, dp_temps);
607
608  // Target-specific adjustments.
609  // Alias single precision float registers to corresponding double registers.
610  GrowableArray<RegisterInfo*>::Iterator fp_it(&reg_pool_->sp_regs_);
611  for (RegisterInfo* info = fp_it.Next(); info != nullptr; info = fp_it.Next()) {
612    int fp_reg_num = info->GetReg().GetRegNum();
613    RegStorage dp_reg = RegStorage::FloatSolo64(fp_reg_num);
614    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
615    // Double precision register's master storage should refer to itself.
616    DCHECK_EQ(dp_reg_info, dp_reg_info->Master());
617    // Redirect single precision's master storage to master.
618    info->SetMaster(dp_reg_info);
619    // Singles should show a single 32-bit mask bit, at first referring to the low half.
620    DCHECK_EQ(info->StorageMask(), 0x1U);
621  }
622
623  // Alias 32bit W registers to corresponding 64bit X registers.
624  GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
625  for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
626    int x_reg_num = info->GetReg().GetRegNum();
627    RegStorage x_reg = RegStorage::Solo64(x_reg_num);
628    RegisterInfo* x_reg_info = GetRegInfo(x_reg);
629    // 64bit X register's master storage should refer to itself.
630    DCHECK_EQ(x_reg_info, x_reg_info->Master());
631    // Redirect 32bit W master storage to 64bit X.
632    info->SetMaster(x_reg_info);
633    // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
634    DCHECK_EQ(info->StorageMask(), 0x1U);
635  }
636
637  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
638  // TODO: adjust when we roll to hard float calling convention.
639  reg_pool_->next_core_reg_ = 2;
640  reg_pool_->next_sp_reg_ = 0;
641  reg_pool_->next_dp_reg_ = 0;
642}
643
644/*
645 * TUNING: is true leaf?  Can't just use METHOD_IS_LEAF to determine as some
646 * instructions might call out to C/assembly helper functions.  Until
647 * machinery is in place, always spill lr.
648 */
649
650void Arm64Mir2Lir::AdjustSpillMask() {
651  core_spill_mask_ |= (1 << rs_xLR.GetRegNum());
652  num_core_spills_++;
653}
654
655/* Clobber all regs that might be used by an external C call */
656void Arm64Mir2Lir::ClobberCallerSave() {
657  Clobber(rs_x0);
658  Clobber(rs_x1);
659  Clobber(rs_x2);
660  Clobber(rs_x3);
661  Clobber(rs_x4);
662  Clobber(rs_x5);
663  Clobber(rs_x6);
664  Clobber(rs_x7);
665  Clobber(rs_x8);
666  Clobber(rs_x9);
667  Clobber(rs_x10);
668  Clobber(rs_x11);
669  Clobber(rs_x12);
670  Clobber(rs_x13);
671  Clobber(rs_x14);
672  Clobber(rs_x15);
673  Clobber(rs_x16);
674  Clobber(rs_x17);
675  Clobber(rs_x30);
676
677  Clobber(rs_f0);
678  Clobber(rs_f1);
679  Clobber(rs_f2);
680  Clobber(rs_f3);
681  Clobber(rs_f4);
682  Clobber(rs_f5);
683  Clobber(rs_f6);
684  Clobber(rs_f7);
685  Clobber(rs_f16);
686  Clobber(rs_f17);
687  Clobber(rs_f18);
688  Clobber(rs_f19);
689  Clobber(rs_f20);
690  Clobber(rs_f21);
691  Clobber(rs_f22);
692  Clobber(rs_f23);
693  Clobber(rs_f24);
694  Clobber(rs_f25);
695  Clobber(rs_f26);
696  Clobber(rs_f27);
697  Clobber(rs_f28);
698  Clobber(rs_f29);
699  Clobber(rs_f30);
700  Clobber(rs_f31);
701}
702
703RegLocation Arm64Mir2Lir::GetReturnWideAlt() {
704  RegLocation res = LocCReturnWide();
705  res.reg.SetReg(rx2);
706  res.reg.SetHighReg(rx3);
707  Clobber(rs_x2);
708  Clobber(rs_x3);
709  MarkInUse(rs_x2);
710  MarkInUse(rs_x3);
711  MarkWide(res.reg);
712  return res;
713}
714
715RegLocation Arm64Mir2Lir::GetReturnAlt() {
716  RegLocation res = LocCReturn();
717  res.reg.SetReg(rx1);
718  Clobber(rs_x1);
719  MarkInUse(rs_x1);
720  return res;
721}
722
723/* To be used when explicitly managing register use */
724void Arm64Mir2Lir::LockCallTemps() {
725  // TODO: needs cleanup.
726  LockTemp(rs_x0);
727  LockTemp(rs_x1);
728  LockTemp(rs_x2);
729  LockTemp(rs_x3);
730  LockTemp(rs_x4);
731  LockTemp(rs_x5);
732  LockTemp(rs_x6);
733  LockTemp(rs_x7);
734  LockTemp(rs_f0);
735  LockTemp(rs_f1);
736  LockTemp(rs_f2);
737  LockTemp(rs_f3);
738  LockTemp(rs_f4);
739  LockTemp(rs_f5);
740  LockTemp(rs_f6);
741  LockTemp(rs_f7);
742}
743
744/* To be used when explicitly managing register use */
745void Arm64Mir2Lir::FreeCallTemps() {
746  // TODO: needs cleanup.
747  FreeTemp(rs_x0);
748  FreeTemp(rs_x1);
749  FreeTemp(rs_x2);
750  FreeTemp(rs_x3);
751  FreeTemp(rs_x4);
752  FreeTemp(rs_x5);
753  FreeTemp(rs_x6);
754  FreeTemp(rs_x7);
755  FreeTemp(rs_f0);
756  FreeTemp(rs_f1);
757  FreeTemp(rs_f2);
758  FreeTemp(rs_f3);
759  FreeTemp(rs_f4);
760  FreeTemp(rs_f5);
761  FreeTemp(rs_f6);
762  FreeTemp(rs_f7);
763}
764
765RegStorage Arm64Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
766  UNIMPLEMENTED(FATAL) << "Should not be called.";
767  return RegStorage::InvalidReg();
768}
769
770RegStorage Arm64Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
771  // TODO(Arm64): use LoadWordDisp instead.
772  //   e.g. LoadWordDisp(rs_rA64_SELF, offset.Int32Value(), rs_rA64_LR);
773  LoadBaseDisp(rs_xSELF, offset.Int32Value(), rs_xLR, k64, kNotVolatile);
774  return rs_xLR;
775}
776
777LIR* Arm64Mir2Lir::CheckSuspendUsingLoad() {
778  RegStorage tmp = rs_x0;
779  LoadWordDisp(rs_xSELF, Thread::ThreadSuspendTriggerOffset<8>().Int32Value(), tmp);
780  LIR* load2 = LoadWordDisp(tmp, 0, tmp);
781  return load2;
782}
783
784uint64_t Arm64Mir2Lir::GetTargetInstFlags(int opcode) {
785  DCHECK(!IsPseudoLirOp(opcode));
786  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].flags;
787}
788
789const char* Arm64Mir2Lir::GetTargetInstName(int opcode) {
790  DCHECK(!IsPseudoLirOp(opcode));
791  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].name;
792}
793
794const char* Arm64Mir2Lir::GetTargetInstFmt(int opcode) {
795  DCHECK(!IsPseudoLirOp(opcode));
796  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].fmt;
797}
798
799RegStorage Arm64Mir2Lir::InToRegStorageArm64Mapper::GetNextReg(bool is_double_or_float,
800                                                               bool is_wide,
801                                                               bool is_ref) {
802  const RegStorage coreArgMappingToPhysicalReg[] =
803      {rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7};
804  const int coreArgMappingToPhysicalRegSize =
805      sizeof(coreArgMappingToPhysicalReg) / sizeof(RegStorage);
806  const RegStorage fpArgMappingToPhysicalReg[] =
807      {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7};
808  const int fpArgMappingToPhysicalRegSize =
809      sizeof(fpArgMappingToPhysicalReg) / sizeof(RegStorage);
810
811  RegStorage result = RegStorage::InvalidReg();
812  if (is_double_or_float) {
813    if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
814      DCHECK(!is_ref);
815      result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
816      if (result.Valid()) {
817        // TODO: switching between widths remains a bit ugly.  Better way?
818        int res_reg = result.GetReg();
819        result = is_wide ? RegStorage::FloatSolo64(res_reg) : RegStorage::FloatSolo32(res_reg);
820      }
821    }
822  } else {
823    if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
824      result = coreArgMappingToPhysicalReg[cur_core_reg_++];
825      if (result.Valid()) {
826        // TODO: switching between widths remains a bit ugly.  Better way?
827        int res_reg = result.GetReg();
828        DCHECK(!(is_wide && is_ref));
829        result = (is_wide || is_ref) ? RegStorage::Solo64(res_reg) : RegStorage::Solo32(res_reg);
830      }
831    }
832  }
833  return result;
834}
835
836RegStorage Arm64Mir2Lir::InToRegStorageMapping::Get(int in_position) {
837  DCHECK(IsInitialized());
838  auto res = mapping_.find(in_position);
839  return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
840}
841
842void Arm64Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count,
843                                                     InToRegStorageMapper* mapper) {
844  DCHECK(mapper != nullptr);
845  max_mapped_in_ = -1;
846  is_there_stack_mapped_ = false;
847  for (int in_position = 0; in_position < count; in_position++) {
848     RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp,
849                                         arg_locs[in_position].wide,
850                                         arg_locs[in_position].ref);
851     if (reg.Valid()) {
852       mapping_[in_position] = reg;
853       if (arg_locs[in_position].wide) {
854         // We covered 2 args, so skip the next one
855         in_position++;
856       }
857       max_mapped_in_ = std::max(max_mapped_in_, in_position);
858     } else {
859       is_there_stack_mapped_ = true;
860     }
861  }
862  initialized_ = true;
863}
864
865
866// Deprecate.  Use the new mechanism.
867// TODO(Arm64): reuse info in QuickArgumentVisitor?
868static RegStorage GetArgPhysicalReg(RegLocation* loc, int* num_gpr_used, int* num_fpr_used,
869                                    OpSize* op_size) {
870  if (loc->fp) {
871    int n = *num_fpr_used;
872    if (n < 8) {
873      *num_fpr_used = n + 1;
874      RegStorage::RegStorageKind reg_kind;
875      if (loc->wide) {
876        *op_size = kDouble;
877        reg_kind = RegStorage::k64BitSolo;
878      } else {
879        *op_size = kSingle;
880        reg_kind = RegStorage::k32BitSolo;
881      }
882      return RegStorage(RegStorage::kValid | reg_kind | RegStorage::kFloatingPoint | n);
883    }
884  } else {
885    int n = *num_gpr_used;
886    if (n < 8) {
887      *num_gpr_used = n + 1;
888      if (loc->wide || loc->ref) {
889        *op_size = k64;
890        return RegStorage::Solo64(n);
891      } else {
892        *op_size = k32;
893        return RegStorage::Solo32(n);
894      }
895    }
896  }
897  *op_size = kWord;
898  return RegStorage::InvalidReg();
899}
900
901RegStorage Arm64Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
902  if (!in_to_reg_storage_mapping_.IsInitialized()) {
903    int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
904    RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
905
906    InToRegStorageArm64Mapper mapper;
907    in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
908  }
909  return in_to_reg_storage_mapping_.Get(arg_num);
910}
911
912
913/*
914 * If there are any ins passed in registers that have not been promoted
915 * to a callee-save register, flush them to the frame.  Perform initial
916 * assignment of promoted arguments.
917 *
918 * ArgLocs is an array of location records describing the incoming arguments
919 * with one location record per word of argument.
920 */
921void Arm64Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
922  int num_gpr_used = 1;
923  int num_fpr_used = 0;
924
925  /*
926   * Dummy up a RegLocation for the incoming StackReference<mirror::ArtMethod>
927   * It will attempt to keep kArg0 live (or copy it to home location
928   * if promoted).
929   */
930  RegLocation rl_src = rl_method;
931  rl_src.location = kLocPhysReg;
932  rl_src.reg = TargetReg(kArg0);
933  rl_src.home = false;
934  MarkLive(rl_src);
935  StoreValue(rl_method, rl_src);
936  // If Method* has been promoted, explicitly flush
937  if (rl_method.location == kLocPhysReg) {
938    StoreRefDisp(TargetReg(kSp), 0, TargetReg(kArg0), kNotVolatile);
939  }
940
941  if (cu_->num_ins == 0) {
942    return;
943  }
944
945  // Handle dalvik registers.
946  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
947  int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
948  for (int i = 0; i < cu_->num_ins; i++) {
949    RegLocation* t_loc = &ArgLocs[i];
950    OpSize op_size;
951    RegStorage reg = GetArgPhysicalReg(t_loc, &num_gpr_used, &num_fpr_used, &op_size);
952
953    if (reg.Valid()) {
954      // If arriving in register.
955
956      // We have already updated the arg location with promoted info
957      // so we can be based on it.
958      if (t_loc->location == kLocPhysReg) {
959        // Just copy it.
960        OpRegCopy(t_loc->reg, reg);
961      } else {
962        // Needs flush.
963        if (t_loc->ref) {
964          StoreRefDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, kNotVolatile);
965        } else {
966          StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
967              kNotVolatile);
968        }
969      }
970    } else {
971      // If arriving in frame & promoted.
972      if (t_loc->location == kLocPhysReg) {
973        if (t_loc->ref) {
974          LoadRefDisp(TargetReg(kSp), SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
975        } else {
976          LoadBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), t_loc->reg,
977                       t_loc->wide ? k64 : k32, kNotVolatile);
978        }
979      }
980    }
981    if (t_loc->wide) {
982      // Increment i to skip the next one.
983      i++;
984    }
985    //      if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
986    //        OpRegCopy(RegStorage::Solo32(v_map->core_reg), reg);
987    //      } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
988    //        OpRegCopy(RegStorage::Solo32(v_map->fp_reg), reg);
989    //      } else {
990    //        StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, op_size, kNotVolatile);
991    //        if (reg.Is64Bit()) {
992    //          if (SRegOffset(start_vreg + i) + 4 != SRegOffset(start_vreg + i + 1)) {
993    //            LOG(FATAL) << "64 bit value stored in non-consecutive 4 bytes slots";
994    //          }
995    //          i += 1;
996    //        }
997    //      }
998    //    } else {
999    //      // If arriving in frame & promoted
1000    //      if (v_map->core_location == kLocPhysReg) {
1001    //        LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
1002    //                     RegStorage::Solo32(v_map->core_reg));
1003    //      }
1004    //      if (v_map->fp_location == kLocPhysReg) {
1005    //        LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->fp_reg));
1006    //      }
1007  }
1008}
1009
1010/*
1011 * Load up to 5 arguments, the first three of which will be in
1012 * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
1013 * and as part of the load sequence, it must be replaced with
1014 * the target method pointer.
1015 */
1016int Arm64Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
1017                                       int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
1018                                       const MethodReference& target_method,
1019                                       uint32_t vtable_idx, uintptr_t direct_code,
1020                                       uintptr_t direct_method, InvokeType type, bool skip_this) {
1021  return GenDalvikArgsRange(info,
1022                       call_state, pcrLabel, next_call_insn,
1023                       target_method,
1024                       vtable_idx, direct_code,
1025                       direct_method, type, skip_this);
1026}
1027
1028/*
1029 * May have 0+ arguments (also used for jumbo).  Note that
1030 * source virtual registers may be in physical registers, so may
1031 * need to be flushed to home location before copying.  This
1032 * applies to arg3 and above (see below).
1033 *
1034 * FIXME: update comments.
1035 *
1036 * Two general strategies:
1037 *    If < 20 arguments
1038 *       Pass args 3-18 using vldm/vstm block copy
1039 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
1040 *    If 20+ arguments
1041 *       Pass args arg19+ using memcpy block copy
1042 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
1043 *
1044 */
1045int Arm64Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
1046                                     LIR** pcrLabel, NextCallInsn next_call_insn,
1047                                     const MethodReference& target_method,
1048                                     uint32_t vtable_idx, uintptr_t direct_code,
1049                                     uintptr_t direct_method, InvokeType type, bool skip_this) {
1050  /* If no arguments, just return */
1051  if (info->num_arg_words == 0)
1052    return call_state;
1053
1054  const int start_index = skip_this ? 1 : 0;
1055
1056  InToRegStorageArm64Mapper mapper;
1057  InToRegStorageMapping in_to_reg_storage_mapping;
1058  in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
1059  const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
1060  int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + 1);
1061
1062  // First of all, check whether it makes sense to use bulk copying.
1063  // Bulk copying is done only for the range case.
1064  // TODO: make a constant instead of 2
1065  if (info->is_range && regs_left_to_pass_via_stack >= 2) {
1066    // Scan the rest of the args - if in phys_reg flush to memory
1067    for (int next_arg = last_mapped_in + 1; next_arg < info->num_arg_words;) {
1068      RegLocation loc = info->args[next_arg];
1069      if (loc.wide) {
1070        loc = UpdateLocWide(loc);
1071        if (loc.location == kLocPhysReg) {
1072          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1073          StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
1074        }
1075        next_arg += 2;
1076      } else {
1077        loc = UpdateLoc(loc);
1078        if (loc.location == kLocPhysReg) {
1079          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1080          if (loc.ref) {
1081            StoreRefDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, kNotVolatile);
1082          } else {
1083            StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
1084          }
1085        }
1086        next_arg++;
1087      }
1088    }
1089
1090    // Logic below assumes that Method pointer is at offset zero from SP.
1091    DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
1092
1093    // The rest can be copied together
1094    int start_offset = SRegOffset(info->args[last_mapped_in + 1].s_reg_low);
1095    int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + 1,
1096                                                   cu_->instruction_set);
1097
1098    int current_src_offset = start_offset;
1099    int current_dest_offset = outs_offset;
1100
1101    // Only davik regs are accessed in this loop; no next_call_insn() calls.
1102    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1103    while (regs_left_to_pass_via_stack > 0) {
1104      /*
1105       * TODO: Improve by adding block copy for large number of arguments.  This
1106       * should be done, if possible, as a target-depending helper.  For now, just
1107       * copy a Dalvik vreg at a time.
1108       */
1109      // Moving 32-bits via general purpose register.
1110      size_t bytes_to_move = sizeof(uint32_t);
1111
1112      // Instead of allocating a new temp, simply reuse one of the registers being used
1113      // for argument passing.
1114      RegStorage temp = TargetReg(kArg3, false);
1115
1116      // Now load the argument VR and store to the outs.
1117      Load32Disp(TargetReg(kSp), current_src_offset, temp);
1118      Store32Disp(TargetReg(kSp), current_dest_offset, temp);
1119
1120      current_src_offset += bytes_to_move;
1121      current_dest_offset += bytes_to_move;
1122      regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
1123    }
1124    DCHECK_EQ(regs_left_to_pass_via_stack, 0);
1125  }
1126
1127  // Now handle rest not registers if they are
1128  if (in_to_reg_storage_mapping.IsThereStackMapped()) {
1129    RegStorage regSingle = TargetReg(kArg2);
1130    RegStorage regWide = RegStorage::Solo64(TargetReg(kArg3).GetReg());
1131    for (int i = start_index; i <= last_mapped_in + regs_left_to_pass_via_stack; i++) {
1132      RegLocation rl_arg = info->args[i];
1133      rl_arg = UpdateRawLoc(rl_arg);
1134      RegStorage reg = in_to_reg_storage_mapping.Get(i);
1135      if (!reg.Valid()) {
1136        int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
1137
1138        {
1139          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1140          if (rl_arg.wide) {
1141            if (rl_arg.location == kLocPhysReg) {
1142              StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
1143            } else {
1144              LoadValueDirectWideFixed(rl_arg, regWide);
1145              StoreBaseDisp(TargetReg(kSp), out_offset, regWide, k64, kNotVolatile);
1146            }
1147          } else {
1148            if (rl_arg.location == kLocPhysReg) {
1149              if (rl_arg.ref) {
1150                StoreRefDisp(TargetReg(kSp), out_offset, rl_arg.reg, kNotVolatile);
1151              } else {
1152                StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile);
1153              }
1154            } else {
1155              if (rl_arg.ref) {
1156                LoadValueDirectFixed(rl_arg, regSingle);
1157                StoreRefDisp(TargetReg(kSp), out_offset, regSingle, kNotVolatile);
1158              } else {
1159                LoadValueDirectFixed(rl_arg, As32BitReg(regSingle));
1160                StoreBaseDisp(TargetReg(kSp), out_offset, As32BitReg(regSingle), k32, kNotVolatile);
1161              }
1162            }
1163          }
1164        }
1165        call_state = next_call_insn(cu_, info, call_state, target_method,
1166                                    vtable_idx, direct_code, direct_method, type);
1167      }
1168      if (rl_arg.wide) {
1169        i++;
1170      }
1171    }
1172  }
1173
1174  // Finish with mapped registers
1175  for (int i = start_index; i <= last_mapped_in; i++) {
1176    RegLocation rl_arg = info->args[i];
1177    rl_arg = UpdateRawLoc(rl_arg);
1178    RegStorage reg = in_to_reg_storage_mapping.Get(i);
1179    if (reg.Valid()) {
1180      if (rl_arg.wide) {
1181        LoadValueDirectWideFixed(rl_arg, reg);
1182      } else {
1183        LoadValueDirectFixed(rl_arg, reg);
1184      }
1185      call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
1186                                  direct_code, direct_method, type);
1187    }
1188    if (rl_arg.wide) {
1189      i++;
1190    }
1191  }
1192
1193  call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
1194                           direct_code, direct_method, type);
1195  if (pcrLabel) {
1196    if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
1197      *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1), info->opt_flags);
1198    } else {
1199      *pcrLabel = nullptr;
1200      // In lieu of generating a check for kArg1 being null, we need to
1201      // perform a load when doing implicit checks.
1202      RegStorage tmp = AllocTemp();
1203      Load32Disp(TargetReg(kArg1), 0, tmp);
1204      MarkPossibleNullPointerException(info->opt_flags);
1205      FreeTemp(tmp);
1206    }
1207  }
1208  return call_state;
1209}
1210
1211}  // namespace art
1212