target_arm64.cc revision b5860fb459f1ed71f39d8a87b45bee6727d79fe8
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_arm64.h"
18
19#include <inttypes.h>
20
21#include <string>
22
23#include "dex/compiler_internals.h"
24#include "dex/quick/mir_to_lir-inl.h"
25#include "dex/reg_storage_eq.h"
26
27namespace art {
28
29static constexpr RegStorage core_regs_arr[] =
30    {rs_w0, rs_w1, rs_w2, rs_w3, rs_w4, rs_w5, rs_w6, rs_w7,
31     rs_w8, rs_w9, rs_w10, rs_w11, rs_w12, rs_w13, rs_w14, rs_w15,
32     rs_w16, rs_w17, rs_w18, rs_w19, rs_w20, rs_w21, rs_w22, rs_w23,
33     rs_w24, rs_w25, rs_w26, rs_w27, rs_w28, rs_w29, rs_w30, rs_w31,
34     rs_wzr};
35static constexpr RegStorage core64_regs_arr[] =
36    {rs_x0, rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7,
37     rs_x8, rs_x9, rs_x10, rs_x11, rs_x12, rs_x13, rs_x14, rs_x15,
38     rs_x16, rs_x17, rs_x18, rs_x19, rs_x20, rs_x21, rs_x22, rs_x23,
39     rs_x24, rs_x25, rs_x26, rs_x27, rs_x28, rs_x29, rs_x30, rs_x31,
40     rs_xzr};
41static constexpr RegStorage sp_regs_arr[] =
42    {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7,
43     rs_f8, rs_f9, rs_f10, rs_f11, rs_f12, rs_f13, rs_f14, rs_f15,
44     rs_f16, rs_f17, rs_f18, rs_f19, rs_f20, rs_f21, rs_f22, rs_f23,
45     rs_f24, rs_f25, rs_f26, rs_f27, rs_f28, rs_f29, rs_f30, rs_f31};
46static constexpr RegStorage dp_regs_arr[] =
47    {rs_d0, rs_d1, rs_d2, rs_d3, rs_d4, rs_d5, rs_d6, rs_d7,
48     rs_d8, rs_d9, rs_d10, rs_d11, rs_d12, rs_d13, rs_d14, rs_d15,
49     rs_d16, rs_d17, rs_d18, rs_d19, rs_d20, rs_d21, rs_d22, rs_d23,
50     rs_d24, rs_d25, rs_d26, rs_d27, rs_d28, rs_d29, rs_d30, rs_d31};
51static constexpr RegStorage reserved_regs_arr[] =
52    {rs_wSUSPEND, rs_wSELF, rs_wsp, rs_wLR, rs_wzr};
53static constexpr RegStorage reserved64_regs_arr[] =
54    {rs_xSUSPEND, rs_xSELF, rs_sp, rs_xLR, rs_xzr};
55// TUNING: Are there too many temp registers and too less promote target?
56// This definition need to be matched with runtime.cc, quick entry assembly and JNI compiler
57// Note: we are not able to call to C function directly if it un-match C ABI.
58// Currently, rs_rA64_SELF is not a callee save register which does not match C ABI.
59static constexpr RegStorage core_temps_arr[] =
60    {rs_w0, rs_w1, rs_w2, rs_w3, rs_w4, rs_w5, rs_w6, rs_w7,
61     rs_w8, rs_w9, rs_w10, rs_w11, rs_w12, rs_w13, rs_w14, rs_w15, rs_w16,
62     rs_w17};
63static constexpr RegStorage core64_temps_arr[] =
64    {rs_x0, rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7,
65     rs_x8, rs_x9, rs_x10, rs_x11, rs_x12, rs_x13, rs_x14, rs_x15, rs_x16,
66     rs_x17};
67static constexpr RegStorage sp_temps_arr[] =
68    {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7,
69     rs_f16, rs_f17, rs_f18, rs_f19, rs_f20, rs_f21, rs_f22, rs_f23,
70     rs_f24, rs_f25, rs_f26, rs_f27, rs_f28, rs_f29, rs_f30, rs_f31};
71static constexpr RegStorage dp_temps_arr[] =
72    {rs_d0, rs_d1, rs_d2, rs_d3, rs_d4, rs_d5, rs_d6, rs_d7,
73     rs_d16, rs_d17, rs_d18, rs_d19, rs_d20, rs_d21, rs_d22, rs_d23,
74     rs_d24, rs_d25, rs_d26, rs_d27, rs_d28, rs_d29, rs_d30, rs_d31};
75
76static constexpr ArrayRef<const RegStorage> core_regs(core_regs_arr);
77static constexpr ArrayRef<const RegStorage> core64_regs(core64_regs_arr);
78static constexpr ArrayRef<const RegStorage> sp_regs(sp_regs_arr);
79static constexpr ArrayRef<const RegStorage> dp_regs(dp_regs_arr);
80static constexpr ArrayRef<const RegStorage> reserved_regs(reserved_regs_arr);
81static constexpr ArrayRef<const RegStorage> reserved64_regs(reserved64_regs_arr);
82static constexpr ArrayRef<const RegStorage> core_temps(core_temps_arr);
83static constexpr ArrayRef<const RegStorage> core64_temps(core64_temps_arr);
84static constexpr ArrayRef<const RegStorage> sp_temps(sp_temps_arr);
85static constexpr ArrayRef<const RegStorage> dp_temps(dp_temps_arr);
86
87RegLocation Arm64Mir2Lir::LocCReturn() {
88  return arm_loc_c_return;
89}
90
91RegLocation Arm64Mir2Lir::LocCReturnRef() {
92  return arm_loc_c_return_ref;
93}
94
95RegLocation Arm64Mir2Lir::LocCReturnWide() {
96  return arm_loc_c_return_wide;
97}
98
99RegLocation Arm64Mir2Lir::LocCReturnFloat() {
100  return arm_loc_c_return_float;
101}
102
103RegLocation Arm64Mir2Lir::LocCReturnDouble() {
104  return arm_loc_c_return_double;
105}
106
107// Return a target-dependent special register.
108RegStorage Arm64Mir2Lir::TargetReg(SpecialTargetRegister reg) {
109  RegStorage res_reg = RegStorage::InvalidReg();
110  switch (reg) {
111    case kSelf: res_reg = rs_xSELF; break;
112    case kSuspend: res_reg = rs_xSUSPEND; break;
113    case kLr: res_reg =  rs_xLR; break;
114    case kPc: res_reg = RegStorage::InvalidReg(); break;
115    case kSp: res_reg =  rs_sp; break;
116    case kArg0: res_reg = rs_x0; break;
117    case kArg1: res_reg = rs_x1; break;
118    case kArg2: res_reg = rs_x2; break;
119    case kArg3: res_reg = rs_x3; break;
120    case kArg4: res_reg = rs_x4; break;
121    case kArg5: res_reg = rs_x5; break;
122    case kArg6: res_reg = rs_x6; break;
123    case kArg7: res_reg = rs_x7; break;
124    case kFArg0: res_reg = rs_f0; break;
125    case kFArg1: res_reg = rs_f1; break;
126    case kFArg2: res_reg = rs_f2; break;
127    case kFArg3: res_reg = rs_f3; break;
128    case kFArg4: res_reg = rs_f4; break;
129    case kFArg5: res_reg = rs_f5; break;
130    case kFArg6: res_reg = rs_f6; break;
131    case kFArg7: res_reg = rs_f7; break;
132    case kRet0: res_reg = rs_x0; break;
133    case kRet1: res_reg = rs_x1; break;
134    case kInvokeTgt: res_reg = rs_xLR; break;
135    case kHiddenArg: res_reg = rs_x12; break;
136    case kHiddenFpArg: res_reg = RegStorage::InvalidReg(); break;
137    case kCount: res_reg = RegStorage::InvalidReg(); break;
138    default: res_reg = RegStorage::InvalidReg();
139  }
140  return res_reg;
141}
142
143/*
144 * Decode the register id. This routine makes assumptions on the encoding made by RegStorage.
145 */
146ResourceMask Arm64Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
147  // TODO(Arm64): this function depends too much on the internal RegStorage encoding. Refactor.
148
149  // Check if the shape mask is zero (i.e. invalid).
150  if (UNLIKELY(reg == rs_wzr || reg == rs_xzr)) {
151    // The zero register is not a true register. It is just an immediate zero.
152    return kEncodeNone;
153  }
154
155  return ResourceMask::Bit(
156      // FP register starts at bit position 32.
157      (reg.IsFloat() ? kArm64FPReg0 : 0) + reg.GetRegNum());
158}
159
160ResourceMask Arm64Mir2Lir::GetPCUseDefEncoding() const {
161  LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for Arm64";
162  return kEncodeNone;
163}
164
165// Arm64 specific setup.  TODO: inline?:
166void Arm64Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
167                                            ResourceMask* use_mask, ResourceMask* def_mask) {
168  DCHECK_EQ(cu_->instruction_set, kArm64);
169  DCHECK(!lir->flags.use_def_invalid);
170
171  // These flags are somewhat uncommon - bypass if we can.
172  if ((flags & (REG_DEF_SP | REG_USE_SP | REG_DEF_LR)) != 0) {
173    if (flags & REG_DEF_SP) {
174      def_mask->SetBit(kArm64RegSP);
175    }
176
177    if (flags & REG_USE_SP) {
178      use_mask->SetBit(kArm64RegSP);
179    }
180
181    if (flags & REG_DEF_LR) {
182      def_mask->SetBit(kArm64RegLR);
183    }
184  }
185}
186
187ArmConditionCode Arm64Mir2Lir::ArmConditionEncoding(ConditionCode ccode) {
188  ArmConditionCode res;
189  switch (ccode) {
190    case kCondEq: res = kArmCondEq; break;
191    case kCondNe: res = kArmCondNe; break;
192    case kCondCs: res = kArmCondCs; break;
193    case kCondCc: res = kArmCondCc; break;
194    case kCondUlt: res = kArmCondCc; break;
195    case kCondUge: res = kArmCondCs; break;
196    case kCondMi: res = kArmCondMi; break;
197    case kCondPl: res = kArmCondPl; break;
198    case kCondVs: res = kArmCondVs; break;
199    case kCondVc: res = kArmCondVc; break;
200    case kCondHi: res = kArmCondHi; break;
201    case kCondLs: res = kArmCondLs; break;
202    case kCondGe: res = kArmCondGe; break;
203    case kCondLt: res = kArmCondLt; break;
204    case kCondGt: res = kArmCondGt; break;
205    case kCondLe: res = kArmCondLe; break;
206    case kCondAl: res = kArmCondAl; break;
207    case kCondNv: res = kArmCondNv; break;
208    default:
209      LOG(FATAL) << "Bad condition code " << ccode;
210      res = static_cast<ArmConditionCode>(0);  // Quiet gcc
211  }
212  return res;
213}
214
215static const char *shift_names[4] = {
216  "lsl",
217  "lsr",
218  "asr",
219  "ror"
220};
221
222static const char* extend_names[8] = {
223  "uxtb",
224  "uxth",
225  "uxtw",
226  "uxtx",
227  "sxtb",
228  "sxth",
229  "sxtw",
230  "sxtx",
231};
232
233/* Decode and print a register extension (e.g. ", uxtb #1") */
234static void DecodeRegExtendOrShift(int operand, char *buf, size_t buf_size) {
235  if ((operand & (1 << 6)) == 0) {
236    const char *shift_name = shift_names[(operand >> 7) & 0x3];
237    int amount = operand & 0x3f;
238    snprintf(buf, buf_size, ", %s #%d", shift_name, amount);
239  } else {
240    const char *extend_name = extend_names[(operand >> 3) & 0x7];
241    int amount = operand & 0x7;
242    if (amount == 0) {
243      snprintf(buf, buf_size, ", %s", extend_name);
244    } else {
245      snprintf(buf, buf_size, ", %s #%d", extend_name, amount);
246    }
247  }
248}
249
250#define BIT_MASK(w) ((UINT64_C(1) << (w)) - UINT64_C(1))
251
252static uint64_t RotateRight(uint64_t value, unsigned rotate, unsigned width) {
253  DCHECK_LE(width, 64U);
254  rotate &= 63;
255  value = value & BIT_MASK(width);
256  return ((value & BIT_MASK(rotate)) << (width - rotate)) | (value >> rotate);
257}
258
259static uint64_t RepeatBitsAcrossReg(bool is_wide, uint64_t value, unsigned width) {
260  unsigned i;
261  unsigned reg_size = (is_wide) ? 64 : 32;
262  uint64_t result = value & BIT_MASK(width);
263  for (i = width; i < reg_size; i *= 2) {
264    result |= (result << i);
265  }
266  DCHECK_EQ(i, reg_size);
267  return result;
268}
269
270/**
271 * @brief Decode an immediate in the form required by logical instructions.
272 *
273 * @param is_wide Whether @p value encodes a 64-bit (as opposed to 32-bit) immediate.
274 * @param value The encoded logical immediates that is to be decoded.
275 * @return The decoded logical immediate.
276 * @note This is the inverse of Arm64Mir2Lir::EncodeLogicalImmediate().
277 */
278uint64_t Arm64Mir2Lir::DecodeLogicalImmediate(bool is_wide, int value) {
279  unsigned n     = (value >> 12) & 0x01;
280  unsigned imm_r = (value >>  6) & 0x3f;
281  unsigned imm_s = (value >>  0) & 0x3f;
282
283  // An integer is constructed from the n, imm_s and imm_r bits according to
284  // the following table:
285  //
286  // N   imms immr  size S             R
287  // 1 ssssss rrrrrr 64  UInt(ssssss) UInt(rrrrrr)
288  // 0 0sssss xrrrrr 32  UInt(sssss)  UInt(rrrrr)
289  // 0 10ssss xxrrrr 16  UInt(ssss)   UInt(rrrr)
290  // 0 110sss xxxrrr 8   UInt(sss)    UInt(rrr)
291  // 0 1110ss xxxxrr 4   UInt(ss)     UInt(rr)
292  // 0 11110s xxxxxr 2   UInt(s)      UInt(r)
293  // (s bits must not be all set)
294  //
295  // A pattern is constructed of size bits, where the least significant S+1
296  // bits are set. The pattern is rotated right by R, and repeated across a
297  // 32 or 64-bit value, depending on destination register width.
298
299  if (n == 1) {
300    DCHECK_NE(imm_s, 0x3fU);
301    uint64_t bits = BIT_MASK(imm_s + 1);
302    return RotateRight(bits, imm_r, 64);
303  } else {
304    DCHECK_NE((imm_s >> 1), 0x1fU);
305    for (unsigned width = 0x20; width >= 0x2; width >>= 1) {
306      if ((imm_s & width) == 0) {
307        unsigned mask = (unsigned)(width - 1);
308        DCHECK_NE((imm_s & mask), mask);
309        uint64_t bits = BIT_MASK((imm_s & mask) + 1);
310        return RepeatBitsAcrossReg(is_wide, RotateRight(bits, imm_r & mask, width), width);
311      }
312    }
313  }
314  return 0;
315}
316
317/**
318 * @brief Decode an 8-bit single point number encoded with EncodeImmSingle().
319 */
320static float DecodeImmSingle(uint8_t small_float) {
321  int mantissa = (small_float & 0x0f) + 0x10;
322  int sign = ((small_float & 0x80) == 0) ? 1 : -1;
323  float signed_mantissa = static_cast<float>(sign*mantissa);
324  int exponent = (((small_float >> 4) & 0x7) + 4) & 0x7;
325  return signed_mantissa*static_cast<float>(1 << exponent)*0.0078125f;
326}
327
328static const char* cc_names[] = {"eq", "ne", "cs", "cc", "mi", "pl", "vs", "vc",
329                                 "hi", "ls", "ge", "lt", "gt", "le", "al", "nv"};
330/*
331 * Interpret a format string and build a string no longer than size
332 * See format key in assemble_arm64.cc.
333 */
334std::string Arm64Mir2Lir::BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) {
335  std::string buf;
336  const char* fmt_end = &fmt[strlen(fmt)];
337  char tbuf[256];
338  const char* name;
339  char nc;
340  while (fmt < fmt_end) {
341    int operand;
342    if (*fmt == '!') {
343      fmt++;
344      DCHECK_LT(fmt, fmt_end);
345      nc = *fmt++;
346      if (nc == '!') {
347        strcpy(tbuf, "!");
348      } else {
349         DCHECK_LT(fmt, fmt_end);
350         DCHECK_LT(static_cast<unsigned>(nc-'0'), 4U);
351         operand = lir->operands[nc-'0'];
352         switch (*fmt++) {
353           case 'e':  {
354               // Omit ", uxtw #0" in strings like "add w0, w1, w3, uxtw #0" and
355               // ", uxtx #0" in strings like "add x0, x1, x3, uxtx #0"
356               int omittable = ((IS_WIDE(lir->opcode)) ? EncodeExtend(kA64Uxtw, 0) :
357                                EncodeExtend(kA64Uxtw, 0));
358               if (LIKELY(operand == omittable)) {
359                 strcpy(tbuf, "");
360               } else {
361                 DecodeRegExtendOrShift(operand, tbuf, arraysize(tbuf));
362               }
363             }
364             break;
365           case 'o':
366             // Omit ", lsl #0"
367             if (LIKELY(operand == EncodeShift(kA64Lsl, 0))) {
368               strcpy(tbuf, "");
369             } else {
370               DecodeRegExtendOrShift(operand, tbuf, arraysize(tbuf));
371             }
372             break;
373           case 'B':
374             switch (operand) {
375               case kSY:
376                 name = "sy";
377                 break;
378               case kST:
379                 name = "st";
380                 break;
381               case kISH:
382                 name = "ish";
383                 break;
384               case kISHST:
385                 name = "ishst";
386                 break;
387               case kNSH:
388                 name = "nsh";
389                 break;
390               case kNSHST:
391                 name = "shst";
392                 break;
393               default:
394                 name = "DecodeError2";
395                 break;
396             }
397             strcpy(tbuf, name);
398             break;
399           case 's':
400             snprintf(tbuf, arraysize(tbuf), "s%d", operand & RegStorage::kRegNumMask);
401             break;
402           case 'S':
403             snprintf(tbuf, arraysize(tbuf), "d%d", operand & RegStorage::kRegNumMask);
404             break;
405           case 'f':
406             snprintf(tbuf, arraysize(tbuf), "%c%d", (IS_FWIDE(lir->opcode)) ? 'd' : 's',
407                      operand & RegStorage::kRegNumMask);
408             break;
409           case 'l': {
410               bool is_wide = IS_WIDE(lir->opcode);
411               uint64_t imm = DecodeLogicalImmediate(is_wide, operand);
412               snprintf(tbuf, arraysize(tbuf), "%" PRId64 " (%#" PRIx64 ")", imm, imm);
413             }
414             break;
415           case 'I':
416             snprintf(tbuf, arraysize(tbuf), "%f", DecodeImmSingle(operand));
417             break;
418           case 'M':
419             if (LIKELY(operand == 0))
420               strcpy(tbuf, "");
421             else
422               snprintf(tbuf, arraysize(tbuf), ", lsl #%d", 16*operand);
423             break;
424           case 'd':
425             snprintf(tbuf, arraysize(tbuf), "%d", operand);
426             break;
427           case 'w':
428             if (LIKELY(operand != rwzr))
429               snprintf(tbuf, arraysize(tbuf), "w%d", operand & RegStorage::kRegNumMask);
430             else
431               strcpy(tbuf, "wzr");
432             break;
433           case 'W':
434             if (LIKELY(operand != rwsp))
435               snprintf(tbuf, arraysize(tbuf), "w%d", operand & RegStorage::kRegNumMask);
436             else
437               strcpy(tbuf, "wsp");
438             break;
439           case 'x':
440             if (LIKELY(operand != rxzr))
441               snprintf(tbuf, arraysize(tbuf), "x%d", operand & RegStorage::kRegNumMask);
442             else
443               strcpy(tbuf, "xzr");
444             break;
445           case 'X':
446             if (LIKELY(operand != rsp))
447               snprintf(tbuf, arraysize(tbuf), "x%d", operand & RegStorage::kRegNumMask);
448             else
449               strcpy(tbuf, "sp");
450             break;
451           case 'D':
452             snprintf(tbuf, arraysize(tbuf), "%d", operand*((IS_WIDE(lir->opcode)) ? 8 : 4));
453             break;
454           case 'E':
455             snprintf(tbuf, arraysize(tbuf), "%d", operand*4);
456             break;
457           case 'F':
458             snprintf(tbuf, arraysize(tbuf), "%d", operand*2);
459             break;
460           case 'G':
461             if (LIKELY(operand == 0))
462               strcpy(tbuf, "");
463             else
464               strcpy(tbuf, (IS_WIDE(lir->opcode)) ? ", lsl #3" : ", lsl #2");
465             break;
466           case 'c':
467             strcpy(tbuf, cc_names[operand]);
468             break;
469           case 't':
470             snprintf(tbuf, arraysize(tbuf), "0x%08" PRIxPTR " (L%p)",
471                 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + (operand << 2),
472                 lir->target);
473             break;
474           case 'r': {
475               bool is_wide = IS_WIDE(lir->opcode);
476               if (LIKELY(operand != rwzr && operand != rxzr)) {
477                 snprintf(tbuf, arraysize(tbuf), "%c%d", (is_wide) ? 'x' : 'w',
478                          operand & RegStorage::kRegNumMask);
479               } else {
480                 strcpy(tbuf, (is_wide) ? "xzr" : "wzr");
481               }
482             }
483             break;
484           case 'R': {
485               bool is_wide = IS_WIDE(lir->opcode);
486               if (LIKELY(operand != rwsp && operand != rsp)) {
487                 snprintf(tbuf, arraysize(tbuf), "%c%d", (is_wide) ? 'x' : 'w',
488                          operand & RegStorage::kRegNumMask);
489               } else {
490                 strcpy(tbuf, (is_wide) ? "sp" : "wsp");
491               }
492             }
493             break;
494           case 'p':
495             snprintf(tbuf, arraysize(tbuf), ".+%d (addr %#" PRIxPTR ")", 4*operand,
496                      reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4*operand);
497             break;
498           case 'T':
499             if (LIKELY(operand == 0))
500               strcpy(tbuf, "");
501             else if (operand == 1)
502               strcpy(tbuf, ", lsl #12");
503             else
504               strcpy(tbuf, ", DecodeError3");
505             break;
506           default:
507             strcpy(tbuf, "DecodeError1");
508             break;
509        }
510        buf += tbuf;
511      }
512    } else {
513       buf += *fmt++;
514    }
515  }
516  return buf;
517}
518
519void Arm64Mir2Lir::DumpResourceMask(LIR* arm_lir, const ResourceMask& mask, const char* prefix) {
520  char buf[256];
521  buf[0] = 0;
522
523  if (mask.Equals(kEncodeAll)) {
524    strcpy(buf, "all");
525  } else {
526    char num[8];
527    int i;
528
529    for (i = 0; i < kArm64RegEnd; i++) {
530      if (mask.HasBit(i)) {
531        snprintf(num, arraysize(num), "%d ", i);
532        strcat(buf, num);
533      }
534    }
535
536    if (mask.HasBit(ResourceMask::kCCode)) {
537      strcat(buf, "cc ");
538    }
539    if (mask.HasBit(ResourceMask::kFPStatus)) {
540      strcat(buf, "fpcc ");
541    }
542
543    /* Memory bits */
544    if (arm_lir && (mask.HasBit(ResourceMask::kDalvikReg))) {
545      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
546               DECODE_ALIAS_INFO_REG(arm_lir->flags.alias_info),
547               DECODE_ALIAS_INFO_WIDE(arm_lir->flags.alias_info) ? "(+1)" : "");
548    }
549    if (mask.HasBit(ResourceMask::kLiteral)) {
550      strcat(buf, "lit ");
551    }
552
553    if (mask.HasBit(ResourceMask::kHeapRef)) {
554      strcat(buf, "heap ");
555    }
556    if (mask.HasBit(ResourceMask::kMustNotAlias)) {
557      strcat(buf, "noalias ");
558    }
559  }
560  if (buf[0]) {
561    LOG(INFO) << prefix << ": " << buf;
562  }
563}
564
565bool Arm64Mir2Lir::IsUnconditionalBranch(LIR* lir) {
566  return (lir->opcode == kA64B1t);
567}
568
569bool Arm64Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
570  return true;
571}
572
573RegisterClass Arm64Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
574  if (UNLIKELY(is_volatile)) {
575    // On arm64, fp register load/store is atomic only for single bytes.
576    if (size != kSignedByte && size != kUnsignedByte) {
577      return (size == kReference) ? kRefReg : kCoreReg;
578    }
579  }
580  return RegClassBySize(size);
581}
582
583Arm64Mir2Lir::Arm64Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
584    : Mir2Lir(cu, mir_graph, arena) {
585  // Sanity check - make sure encoding map lines up.
586  for (int i = 0; i < kA64Last; i++) {
587    if (UNWIDE(Arm64Mir2Lir::EncodingMap[i].opcode) != i) {
588      LOG(FATAL) << "Encoding order for " << Arm64Mir2Lir::EncodingMap[i].name
589                 << " is wrong: expecting " << i << ", seeing "
590                 << static_cast<int>(Arm64Mir2Lir::EncodingMap[i].opcode);
591    }
592  }
593}
594
595Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
596                            ArenaAllocator* const arena) {
597  return new Arm64Mir2Lir(cu, mir_graph, arena);
598}
599
600void Arm64Mir2Lir::CompilerInitializeRegAlloc() {
601  reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs, core64_regs, sp_regs, dp_regs,
602                                        reserved_regs, reserved64_regs, core_temps, core64_temps,
603                                        sp_temps, dp_temps);
604
605  // Target-specific adjustments.
606  // Alias single precision float registers to corresponding double registers.
607  GrowableArray<RegisterInfo*>::Iterator fp_it(&reg_pool_->sp_regs_);
608  for (RegisterInfo* info = fp_it.Next(); info != nullptr; info = fp_it.Next()) {
609    int fp_reg_num = info->GetReg().GetRegNum();
610    RegStorage dp_reg = RegStorage::FloatSolo64(fp_reg_num);
611    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
612    // Double precision register's master storage should refer to itself.
613    DCHECK_EQ(dp_reg_info, dp_reg_info->Master());
614    // Redirect single precision's master storage to master.
615    info->SetMaster(dp_reg_info);
616    // Singles should show a single 32-bit mask bit, at first referring to the low half.
617    DCHECK_EQ(info->StorageMask(), 0x1U);
618  }
619
620  // Alias 32bit W registers to corresponding 64bit X registers.
621  GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
622  for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
623    int x_reg_num = info->GetReg().GetRegNum();
624    RegStorage x_reg = RegStorage::Solo64(x_reg_num);
625    RegisterInfo* x_reg_info = GetRegInfo(x_reg);
626    // 64bit X register's master storage should refer to itself.
627    DCHECK_EQ(x_reg_info, x_reg_info->Master());
628    // Redirect 32bit W master storage to 64bit X.
629    info->SetMaster(x_reg_info);
630    // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
631    DCHECK_EQ(info->StorageMask(), 0x1U);
632  }
633
634  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
635  // TODO: adjust when we roll to hard float calling convention.
636  reg_pool_->next_core_reg_ = 2;
637  reg_pool_->next_sp_reg_ = 0;
638  reg_pool_->next_dp_reg_ = 0;
639}
640
641/*
642 * TUNING: is true leaf?  Can't just use METHOD_IS_LEAF to determine as some
643 * instructions might call out to C/assembly helper functions.  Until
644 * machinery is in place, always spill lr.
645 */
646
647void Arm64Mir2Lir::AdjustSpillMask() {
648  core_spill_mask_ |= (1 << rs_xLR.GetRegNum());
649  num_core_spills_++;
650}
651
652/* Clobber all regs that might be used by an external C call */
653void Arm64Mir2Lir::ClobberCallerSave() {
654  Clobber(rs_x0);
655  Clobber(rs_x1);
656  Clobber(rs_x2);
657  Clobber(rs_x3);
658  Clobber(rs_x4);
659  Clobber(rs_x5);
660  Clobber(rs_x6);
661  Clobber(rs_x7);
662  Clobber(rs_x8);
663  Clobber(rs_x9);
664  Clobber(rs_x10);
665  Clobber(rs_x11);
666  Clobber(rs_x12);
667  Clobber(rs_x13);
668  Clobber(rs_x14);
669  Clobber(rs_x15);
670  Clobber(rs_x16);
671  Clobber(rs_x17);
672  Clobber(rs_x30);
673
674  Clobber(rs_f0);
675  Clobber(rs_f1);
676  Clobber(rs_f2);
677  Clobber(rs_f3);
678  Clobber(rs_f4);
679  Clobber(rs_f5);
680  Clobber(rs_f6);
681  Clobber(rs_f7);
682  Clobber(rs_f16);
683  Clobber(rs_f17);
684  Clobber(rs_f18);
685  Clobber(rs_f19);
686  Clobber(rs_f20);
687  Clobber(rs_f21);
688  Clobber(rs_f22);
689  Clobber(rs_f23);
690  Clobber(rs_f24);
691  Clobber(rs_f25);
692  Clobber(rs_f26);
693  Clobber(rs_f27);
694  Clobber(rs_f28);
695  Clobber(rs_f29);
696  Clobber(rs_f30);
697  Clobber(rs_f31);
698}
699
700RegLocation Arm64Mir2Lir::GetReturnWideAlt() {
701  RegLocation res = LocCReturnWide();
702  res.reg.SetReg(rx2);
703  res.reg.SetHighReg(rx3);
704  Clobber(rs_x2);
705  Clobber(rs_x3);
706  MarkInUse(rs_x2);
707  MarkInUse(rs_x3);
708  MarkWide(res.reg);
709  return res;
710}
711
712RegLocation Arm64Mir2Lir::GetReturnAlt() {
713  RegLocation res = LocCReturn();
714  res.reg.SetReg(rx1);
715  Clobber(rs_x1);
716  MarkInUse(rs_x1);
717  return res;
718}
719
720/* To be used when explicitly managing register use */
721void Arm64Mir2Lir::LockCallTemps() {
722  // TODO: needs cleanup.
723  LockTemp(rs_x0);
724  LockTemp(rs_x1);
725  LockTemp(rs_x2);
726  LockTemp(rs_x3);
727  LockTemp(rs_x4);
728  LockTemp(rs_x5);
729  LockTemp(rs_x6);
730  LockTemp(rs_x7);
731  LockTemp(rs_f0);
732  LockTemp(rs_f1);
733  LockTemp(rs_f2);
734  LockTemp(rs_f3);
735  LockTemp(rs_f4);
736  LockTemp(rs_f5);
737  LockTemp(rs_f6);
738  LockTemp(rs_f7);
739}
740
741/* To be used when explicitly managing register use */
742void Arm64Mir2Lir::FreeCallTemps() {
743  // TODO: needs cleanup.
744  FreeTemp(rs_x0);
745  FreeTemp(rs_x1);
746  FreeTemp(rs_x2);
747  FreeTemp(rs_x3);
748  FreeTemp(rs_x4);
749  FreeTemp(rs_x5);
750  FreeTemp(rs_x6);
751  FreeTemp(rs_x7);
752  FreeTemp(rs_f0);
753  FreeTemp(rs_f1);
754  FreeTemp(rs_f2);
755  FreeTemp(rs_f3);
756  FreeTemp(rs_f4);
757  FreeTemp(rs_f5);
758  FreeTemp(rs_f6);
759  FreeTemp(rs_f7);
760}
761
762RegStorage Arm64Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
763  UNIMPLEMENTED(FATAL) << "Should not be called.";
764  return RegStorage::InvalidReg();
765}
766
767RegStorage Arm64Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
768  // TODO(Arm64): use LoadWordDisp instead.
769  //   e.g. LoadWordDisp(rs_rA64_SELF, offset.Int32Value(), rs_rA64_LR);
770  LoadBaseDisp(rs_xSELF, offset.Int32Value(), rs_xLR, k64, kNotVolatile);
771  return rs_xLR;
772}
773
774LIR* Arm64Mir2Lir::CheckSuspendUsingLoad() {
775  RegStorage tmp = rs_x0;
776  LoadWordDisp(rs_xSELF, Thread::ThreadSuspendTriggerOffset<8>().Int32Value(), tmp);
777  LIR* load2 = LoadWordDisp(tmp, 0, tmp);
778  return load2;
779}
780
781uint64_t Arm64Mir2Lir::GetTargetInstFlags(int opcode) {
782  DCHECK(!IsPseudoLirOp(opcode));
783  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].flags;
784}
785
786const char* Arm64Mir2Lir::GetTargetInstName(int opcode) {
787  DCHECK(!IsPseudoLirOp(opcode));
788  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].name;
789}
790
791const char* Arm64Mir2Lir::GetTargetInstFmt(int opcode) {
792  DCHECK(!IsPseudoLirOp(opcode));
793  return Arm64Mir2Lir::EncodingMap[UNWIDE(opcode)].fmt;
794}
795
796RegStorage Arm64Mir2Lir::InToRegStorageArm64Mapper::GetNextReg(bool is_double_or_float,
797                                                               bool is_wide,
798                                                               bool is_ref) {
799  const RegStorage coreArgMappingToPhysicalReg[] =
800      {rs_x1, rs_x2, rs_x3, rs_x4, rs_x5, rs_x6, rs_x7};
801  const int coreArgMappingToPhysicalRegSize =
802      sizeof(coreArgMappingToPhysicalReg) / sizeof(RegStorage);
803  const RegStorage fpArgMappingToPhysicalReg[] =
804      {rs_f0, rs_f1, rs_f2, rs_f3, rs_f4, rs_f5, rs_f6, rs_f7};
805  const int fpArgMappingToPhysicalRegSize =
806      sizeof(fpArgMappingToPhysicalReg) / sizeof(RegStorage);
807
808  RegStorage result = RegStorage::InvalidReg();
809  if (is_double_or_float) {
810    if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
811      DCHECK(!is_ref);
812      result = fpArgMappingToPhysicalReg[cur_fp_reg_++];
813      if (result.Valid()) {
814        // TODO: switching between widths remains a bit ugly.  Better way?
815        int res_reg = result.GetReg();
816        result = is_wide ? RegStorage::FloatSolo64(res_reg) : RegStorage::FloatSolo32(res_reg);
817      }
818    }
819  } else {
820    if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
821      result = coreArgMappingToPhysicalReg[cur_core_reg_++];
822      if (result.Valid()) {
823        // TODO: switching between widths remains a bit ugly.  Better way?
824        int res_reg = result.GetReg();
825        DCHECK(!(is_wide && is_ref));
826        result = (is_wide || is_ref) ? RegStorage::Solo64(res_reg) : RegStorage::Solo32(res_reg);
827      }
828    }
829  }
830  return result;
831}
832
833RegStorage Arm64Mir2Lir::InToRegStorageMapping::Get(int in_position) {
834  DCHECK(IsInitialized());
835  auto res = mapping_.find(in_position);
836  return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
837}
838
839void Arm64Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count,
840                                                     InToRegStorageMapper* mapper) {
841  DCHECK(mapper != nullptr);
842  max_mapped_in_ = -1;
843  is_there_stack_mapped_ = false;
844  for (int in_position = 0; in_position < count; in_position++) {
845     RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp,
846                                         arg_locs[in_position].wide,
847                                         arg_locs[in_position].ref);
848     if (reg.Valid()) {
849       mapping_[in_position] = reg;
850       if (arg_locs[in_position].wide) {
851         // We covered 2 args, so skip the next one
852         in_position++;
853       }
854       max_mapped_in_ = std::max(max_mapped_in_, in_position);
855     } else {
856       is_there_stack_mapped_ = true;
857     }
858  }
859  initialized_ = true;
860}
861
862
863// Deprecate.  Use the new mechanism.
864// TODO(Arm64): reuse info in QuickArgumentVisitor?
865static RegStorage GetArgPhysicalReg(RegLocation* loc, int* num_gpr_used, int* num_fpr_used,
866                                    OpSize* op_size) {
867  if (loc->fp) {
868    int n = *num_fpr_used;
869    if (n < 8) {
870      *num_fpr_used = n + 1;
871      RegStorage::RegStorageKind reg_kind;
872      if (loc->wide) {
873        *op_size = kDouble;
874        reg_kind = RegStorage::k64BitSolo;
875      } else {
876        *op_size = kSingle;
877        reg_kind = RegStorage::k32BitSolo;
878      }
879      return RegStorage(RegStorage::kValid | reg_kind | RegStorage::kFloatingPoint | n);
880    }
881  } else {
882    int n = *num_gpr_used;
883    if (n < 8) {
884      *num_gpr_used = n + 1;
885      if (loc->wide || loc->ref) {
886        *op_size = k64;
887        return RegStorage::Solo64(n);
888      } else {
889        *op_size = k32;
890        return RegStorage::Solo32(n);
891      }
892    }
893  }
894  *op_size = kWord;
895  return RegStorage::InvalidReg();
896}
897
898RegStorage Arm64Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
899  if (!in_to_reg_storage_mapping_.IsInitialized()) {
900    int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
901    RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
902
903    InToRegStorageArm64Mapper mapper;
904    in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
905  }
906  return in_to_reg_storage_mapping_.Get(arg_num);
907}
908
909
910/*
911 * If there are any ins passed in registers that have not been promoted
912 * to a callee-save register, flush them to the frame.  Perform initial
913 * assignment of promoted arguments.
914 *
915 * ArgLocs is an array of location records describing the incoming arguments
916 * with one location record per word of argument.
917 */
918void Arm64Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
919  int num_gpr_used = 1;
920  int num_fpr_used = 0;
921
922  /*
923   * Dummy up a RegLocation for the incoming StackReference<mirror::ArtMethod>
924   * It will attempt to keep kArg0 live (or copy it to home location
925   * if promoted).
926   */
927  RegLocation rl_src = rl_method;
928  rl_src.location = kLocPhysReg;
929  rl_src.reg = TargetReg(kArg0);
930  rl_src.home = false;
931  MarkLive(rl_src);
932  StoreValue(rl_method, rl_src);
933  // If Method* has been promoted, explicitly flush
934  if (rl_method.location == kLocPhysReg) {
935    StoreRefDisp(TargetReg(kSp), 0, TargetReg(kArg0), kNotVolatile);
936  }
937
938  if (cu_->num_ins == 0) {
939    return;
940  }
941
942  // Handle dalvik registers.
943  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
944  int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
945  for (int i = 0; i < cu_->num_ins; i++) {
946    RegLocation* t_loc = &ArgLocs[i];
947    OpSize op_size;
948    RegStorage reg = GetArgPhysicalReg(t_loc, &num_gpr_used, &num_fpr_used, &op_size);
949
950    if (reg.Valid()) {
951      // If arriving in register.
952
953      // We have already updated the arg location with promoted info
954      // so we can be based on it.
955      if (t_loc->location == kLocPhysReg) {
956        // Just copy it.
957        OpRegCopy(t_loc->reg, reg);
958      } else {
959        // Needs flush.
960        if (t_loc->ref) {
961          StoreRefDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, kNotVolatile);
962        } else {
963          StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
964              kNotVolatile);
965        }
966      }
967    } else {
968      // If arriving in frame & promoted.
969      if (t_loc->location == kLocPhysReg) {
970        if (t_loc->ref) {
971          LoadRefDisp(TargetReg(kSp), SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
972        } else {
973          LoadBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), t_loc->reg,
974                       t_loc->wide ? k64 : k32, kNotVolatile);
975        }
976      }
977    }
978    if (t_loc->wide) {
979      // Increment i to skip the next one.
980      i++;
981    }
982    //      if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
983    //        OpRegCopy(RegStorage::Solo32(v_map->core_reg), reg);
984    //      } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
985    //        OpRegCopy(RegStorage::Solo32(v_map->fp_reg), reg);
986    //      } else {
987    //        StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, op_size, kNotVolatile);
988    //        if (reg.Is64Bit()) {
989    //          if (SRegOffset(start_vreg + i) + 4 != SRegOffset(start_vreg + i + 1)) {
990    //            LOG(FATAL) << "64 bit value stored in non-consecutive 4 bytes slots";
991    //          }
992    //          i += 1;
993    //        }
994    //      }
995    //    } else {
996    //      // If arriving in frame & promoted
997    //      if (v_map->core_location == kLocPhysReg) {
998    //        LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
999    //                     RegStorage::Solo32(v_map->core_reg));
1000    //      }
1001    //      if (v_map->fp_location == kLocPhysReg) {
1002    //        LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i), RegStorage::Solo32(v_map->fp_reg));
1003    //      }
1004  }
1005}
1006
1007/*
1008 * Load up to 5 arguments, the first three of which will be in
1009 * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
1010 * and as part of the load sequence, it must be replaced with
1011 * the target method pointer.
1012 */
1013int Arm64Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
1014                                       int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
1015                                       const MethodReference& target_method,
1016                                       uint32_t vtable_idx, uintptr_t direct_code,
1017                                       uintptr_t direct_method, InvokeType type, bool skip_this) {
1018  return GenDalvikArgsRange(info,
1019                       call_state, pcrLabel, next_call_insn,
1020                       target_method,
1021                       vtable_idx, direct_code,
1022                       direct_method, type, skip_this);
1023}
1024
1025/*
1026 * May have 0+ arguments (also used for jumbo).  Note that
1027 * source virtual registers may be in physical registers, so may
1028 * need to be flushed to home location before copying.  This
1029 * applies to arg3 and above (see below).
1030 *
1031 * FIXME: update comments.
1032 *
1033 * Two general strategies:
1034 *    If < 20 arguments
1035 *       Pass args 3-18 using vldm/vstm block copy
1036 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
1037 *    If 20+ arguments
1038 *       Pass args arg19+ using memcpy block copy
1039 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
1040 *
1041 */
1042int Arm64Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
1043                                     LIR** pcrLabel, NextCallInsn next_call_insn,
1044                                     const MethodReference& target_method,
1045                                     uint32_t vtable_idx, uintptr_t direct_code,
1046                                     uintptr_t direct_method, InvokeType type, bool skip_this) {
1047  /* If no arguments, just return */
1048  if (info->num_arg_words == 0)
1049    return call_state;
1050
1051  const int start_index = skip_this ? 1 : 0;
1052
1053  InToRegStorageArm64Mapper mapper;
1054  InToRegStorageMapping in_to_reg_storage_mapping;
1055  in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
1056  const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
1057  int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + 1);
1058
1059  // Fisrt of all, check whether it make sense to use bulk copying
1060  // Optimization is aplicable only for range case
1061  // TODO: make a constant instead of 2
1062  if (info->is_range && regs_left_to_pass_via_stack >= 2) {
1063    // Scan the rest of the args - if in phys_reg flush to memory
1064    for (int next_arg = last_mapped_in + 1; next_arg < info->num_arg_words;) {
1065      RegLocation loc = info->args[next_arg];
1066      if (loc.wide) {
1067        loc = UpdateLocWide(loc);
1068        if (loc.location == kLocPhysReg) {
1069          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1070          StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
1071        }
1072        next_arg += 2;
1073      } else {
1074        loc = UpdateLoc(loc);
1075        if (loc.location == kLocPhysReg) {
1076          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1077          if (loc.ref) {
1078            StoreRefDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, kNotVolatile);
1079          } else {
1080            StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
1081          }
1082        }
1083        next_arg++;
1084      }
1085    }
1086
1087    // Logic below assumes that Method pointer is at offset zero from SP.
1088    DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
1089
1090    // The rest can be copied together
1091    int start_offset = SRegOffset(info->args[last_mapped_in + 1].s_reg_low);
1092    int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + 1,
1093                                                   cu_->instruction_set);
1094
1095    int current_src_offset = start_offset;
1096    int current_dest_offset = outs_offset;
1097
1098    // Only davik regs are accessed in this loop; no next_call_insn() calls.
1099    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1100    while (regs_left_to_pass_via_stack > 0) {
1101      /*
1102       * TODO: Improve by adding block copy for large number of arguments.  This
1103       * should be done, if possible, as a target-depending helper.  For now, just
1104       * copy a Dalvik vreg at a time.
1105       */
1106      // Moving 32-bits via general purpose register.
1107      size_t bytes_to_move = sizeof(uint32_t);
1108
1109      // Instead of allocating a new temp, simply reuse one of the registers being used
1110      // for argument passing.
1111      RegStorage temp = TargetReg(kArg3, false);
1112
1113      // Now load the argument VR and store to the outs.
1114      Load32Disp(TargetReg(kSp), current_src_offset, temp);
1115      Store32Disp(TargetReg(kSp), current_dest_offset, temp);
1116
1117      current_src_offset += bytes_to_move;
1118      current_dest_offset += bytes_to_move;
1119      regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
1120    }
1121    DCHECK_EQ(regs_left_to_pass_via_stack, 0);
1122  }
1123
1124  // Now handle rest not registers if they are
1125  if (in_to_reg_storage_mapping.IsThereStackMapped()) {
1126    RegStorage regSingle = TargetReg(kArg2);
1127    RegStorage regWide = RegStorage::Solo64(TargetReg(kArg3).GetReg());
1128    for (int i = start_index; i <= last_mapped_in + regs_left_to_pass_via_stack; i++) {
1129      RegLocation rl_arg = info->args[i];
1130      rl_arg = UpdateRawLoc(rl_arg);
1131      RegStorage reg = in_to_reg_storage_mapping.Get(i);
1132      if (!reg.Valid()) {
1133        int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
1134
1135        {
1136          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1137          if (rl_arg.wide) {
1138            if (rl_arg.location == kLocPhysReg) {
1139              StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
1140            } else {
1141              LoadValueDirectWideFixed(rl_arg, regWide);
1142              StoreBaseDisp(TargetReg(kSp), out_offset, regWide, k64, kNotVolatile);
1143            }
1144            i++;
1145          } else {
1146            if (rl_arg.location == kLocPhysReg) {
1147              if (rl_arg.ref) {
1148                StoreRefDisp(TargetReg(kSp), out_offset, rl_arg.reg, kNotVolatile);
1149              } else {
1150                StoreBaseDisp(TargetReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile);
1151              }
1152            } else {
1153              if (rl_arg.ref) {
1154                LoadValueDirectFixed(rl_arg, regSingle);
1155                StoreRefDisp(TargetReg(kSp), out_offset, regSingle, kNotVolatile);
1156              } else {
1157                LoadValueDirectFixed(rl_arg, As32BitReg(regSingle));
1158                StoreBaseDisp(TargetReg(kSp), out_offset, As32BitReg(regSingle), k32, kNotVolatile);
1159              }
1160            }
1161          }
1162        }
1163        call_state = next_call_insn(cu_, info, call_state, target_method,
1164                                    vtable_idx, direct_code, direct_method, type);
1165      }
1166    }
1167  }
1168
1169  // Finish with mapped registers
1170  for (int i = start_index; i <= last_mapped_in; i++) {
1171    RegLocation rl_arg = info->args[i];
1172    rl_arg = UpdateRawLoc(rl_arg);
1173    RegStorage reg = in_to_reg_storage_mapping.Get(i);
1174    if (reg.Valid()) {
1175      if (rl_arg.wide) {
1176        LoadValueDirectWideFixed(rl_arg, reg);
1177        i++;
1178      } else {
1179        LoadValueDirectFixed(rl_arg, reg);
1180      }
1181      call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
1182                               direct_code, direct_method, type);
1183    }
1184  }
1185
1186  call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
1187                           direct_code, direct_method, type);
1188  if (pcrLabel) {
1189    if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
1190      *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1), info->opt_flags);
1191    } else {
1192      *pcrLabel = nullptr;
1193      // In lieu of generating a check for kArg1 being null, we need to
1194      // perform a load when doing implicit checks.
1195      RegStorage tmp = AllocTemp();
1196      Load32Disp(TargetReg(kArg1), 0, tmp);
1197      MarkPossibleNullPointerException(info->opt_flags);
1198      FreeTemp(tmp);
1199    }
1200  }
1201  return call_state;
1202}
1203
1204}  // namespace art
1205