codegen_util.cc revision e45fb9e7976c8462b94a58ad60b006b0eacec49f
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "dex/compiler_internals.h"
18#include "dex_file-inl.h"
19#include "gc_map.h"
20#include "gc_map_builder.h"
21#include "mapping_table.h"
22#include "mir_to_lir-inl.h"
23#include "dex/quick/dex_file_method_inliner.h"
24#include "dex/quick/dex_file_to_method_inliner_map.h"
25#include "dex/verification_results.h"
26#include "dex/verified_method.h"
27#include "verifier/dex_gc_map.h"
28#include "verifier/method_verifier.h"
29#include "vmap_table.h"
30
31namespace art {
32
33namespace {
34
35/* Dump a mapping table */
36template <typename It>
37void DumpMappingTable(const char* table_name, const char* descriptor, const char* name,
38                      const Signature& signature, uint32_t size, It first) {
39  if (size != 0) {
40    std::string line(StringPrintf("\n  %s %s%s_%s_table[%u] = {", table_name,
41                     descriptor, name, signature.ToString().c_str(), size));
42    std::replace(line.begin(), line.end(), ';', '_');
43    LOG(INFO) << line;
44    for (uint32_t i = 0; i != size; ++i) {
45      line = StringPrintf("    {0x%05x, 0x%04x},", first.NativePcOffset(), first.DexPc());
46      ++first;
47      LOG(INFO) << line;
48    }
49    LOG(INFO) <<"  };\n\n";
50  }
51}
52
53}  // anonymous namespace
54
55bool Mir2Lir::IsInexpensiveConstant(RegLocation rl_src) {
56  bool res = false;
57  if (rl_src.is_const) {
58    if (rl_src.wide) {
59      if (rl_src.fp) {
60         res = InexpensiveConstantDouble(mir_graph_->ConstantValueWide(rl_src));
61      } else {
62         res = InexpensiveConstantLong(mir_graph_->ConstantValueWide(rl_src));
63      }
64    } else {
65      if (rl_src.fp) {
66         res = InexpensiveConstantFloat(mir_graph_->ConstantValue(rl_src));
67      } else {
68         res = InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src));
69      }
70    }
71  }
72  return res;
73}
74
75void Mir2Lir::MarkSafepointPC(LIR* inst) {
76  DCHECK(!inst->flags.use_def_invalid);
77  inst->u.m.def_mask = ENCODE_ALL;
78  LIR* safepoint_pc = NewLIR0(kPseudoSafepointPC);
79  DCHECK_EQ(safepoint_pc->u.m.def_mask, ENCODE_ALL);
80}
81
82/* Remove a LIR from the list. */
83void Mir2Lir::UnlinkLIR(LIR* lir) {
84  if (UNLIKELY(lir == first_lir_insn_)) {
85    first_lir_insn_ = lir->next;
86    if (lir->next != NULL) {
87      lir->next->prev = NULL;
88    } else {
89      DCHECK(lir->next == NULL);
90      DCHECK(lir == last_lir_insn_);
91      last_lir_insn_ = NULL;
92    }
93  } else if (lir == last_lir_insn_) {
94    last_lir_insn_ = lir->prev;
95    lir->prev->next = NULL;
96  } else if ((lir->prev != NULL) && (lir->next != NULL)) {
97    lir->prev->next = lir->next;
98    lir->next->prev = lir->prev;
99  }
100}
101
102/* Convert an instruction to a NOP */
103void Mir2Lir::NopLIR(LIR* lir) {
104  lir->flags.is_nop = true;
105  if (!cu_->verbose) {
106    UnlinkLIR(lir);
107  }
108}
109
110void Mir2Lir::SetMemRefType(LIR* lir, bool is_load, int mem_type) {
111  uint64_t *mask_ptr;
112  uint64_t mask = ENCODE_MEM;
113  DCHECK(GetTargetInstFlags(lir->opcode) & (IS_LOAD | IS_STORE));
114  DCHECK(!lir->flags.use_def_invalid);
115  if (is_load) {
116    mask_ptr = &lir->u.m.use_mask;
117  } else {
118    mask_ptr = &lir->u.m.def_mask;
119  }
120  /* Clear out the memref flags */
121  *mask_ptr &= ~mask;
122  /* ..and then add back the one we need */
123  switch (mem_type) {
124    case kLiteral:
125      DCHECK(is_load);
126      *mask_ptr |= ENCODE_LITERAL;
127      break;
128    case kDalvikReg:
129      *mask_ptr |= ENCODE_DALVIK_REG;
130      break;
131    case kHeapRef:
132      *mask_ptr |= ENCODE_HEAP_REF;
133      break;
134    case kMustNotAlias:
135      /* Currently only loads can be marked as kMustNotAlias */
136      DCHECK(!(GetTargetInstFlags(lir->opcode) & IS_STORE));
137      *mask_ptr |= ENCODE_MUST_NOT_ALIAS;
138      break;
139    default:
140      LOG(FATAL) << "Oat: invalid memref kind - " << mem_type;
141  }
142}
143
144/*
145 * Mark load/store instructions that access Dalvik registers through the stack.
146 */
147void Mir2Lir::AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load,
148                                      bool is64bit) {
149  SetMemRefType(lir, is_load, kDalvikReg);
150
151  /*
152   * Store the Dalvik register id in alias_info. Mark the MSB if it is a 64-bit
153   * access.
154   */
155  lir->flags.alias_info = ENCODE_ALIAS_INFO(reg_id, is64bit);
156}
157
158/*
159 * Debugging macros
160 */
161#define DUMP_RESOURCE_MASK(X)
162
163/* Pretty-print a LIR instruction */
164void Mir2Lir::DumpLIRInsn(LIR* lir, unsigned char* base_addr) {
165  int offset = lir->offset;
166  int dest = lir->operands[0];
167  const bool dump_nop = (cu_->enable_debug & (1 << kDebugShowNops));
168
169  /* Handle pseudo-ops individually, and all regular insns as a group */
170  switch (lir->opcode) {
171    case kPseudoMethodEntry:
172      LOG(INFO) << "-------- method entry "
173                << PrettyMethod(cu_->method_idx, *cu_->dex_file);
174      break;
175    case kPseudoMethodExit:
176      LOG(INFO) << "-------- Method_Exit";
177      break;
178    case kPseudoBarrier:
179      LOG(INFO) << "-------- BARRIER";
180      break;
181    case kPseudoEntryBlock:
182      LOG(INFO) << "-------- entry offset: 0x" << std::hex << dest;
183      break;
184    case kPseudoDalvikByteCodeBoundary:
185      if (lir->operands[0] == 0) {
186         // NOTE: only used for debug listings.
187         lir->operands[0] = WrapPointer(ArenaStrdup("No instruction string"));
188      }
189      LOG(INFO) << "-------- dalvik offset: 0x" << std::hex
190                << lir->dalvik_offset << " @ "
191                << reinterpret_cast<char*>(UnwrapPointer(lir->operands[0]));
192      break;
193    case kPseudoExitBlock:
194      LOG(INFO) << "-------- exit offset: 0x" << std::hex << dest;
195      break;
196    case kPseudoPseudoAlign4:
197      LOG(INFO) << reinterpret_cast<uintptr_t>(base_addr) + offset << " (0x" << std::hex
198                << offset << "): .align4";
199      break;
200    case kPseudoEHBlockLabel:
201      LOG(INFO) << "Exception_Handling:";
202      break;
203    case kPseudoTargetLabel:
204    case kPseudoNormalBlockLabel:
205      LOG(INFO) << "L" << reinterpret_cast<void*>(lir) << ":";
206      break;
207    case kPseudoThrowTarget:
208      LOG(INFO) << "LT" << reinterpret_cast<void*>(lir) << ":";
209      break;
210    case kPseudoIntrinsicRetry:
211      LOG(INFO) << "IR" << reinterpret_cast<void*>(lir) << ":";
212      break;
213    case kPseudoSuspendTarget:
214      LOG(INFO) << "LS" << reinterpret_cast<void*>(lir) << ":";
215      break;
216    case kPseudoSafepointPC:
217      LOG(INFO) << "LsafepointPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
218      break;
219    case kPseudoExportedPC:
220      LOG(INFO) << "LexportedPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
221      break;
222    case kPseudoCaseLabel:
223      LOG(INFO) << "LC" << reinterpret_cast<void*>(lir) << ": Case target 0x"
224                << std::hex << lir->operands[0] << "|" << std::dec <<
225        lir->operands[0];
226      break;
227    default:
228      if (lir->flags.is_nop && !dump_nop) {
229        break;
230      } else {
231        std::string op_name(BuildInsnString(GetTargetInstName(lir->opcode),
232                                               lir, base_addr));
233        std::string op_operands(BuildInsnString(GetTargetInstFmt(lir->opcode),
234                                                    lir, base_addr));
235        LOG(INFO) << StringPrintf("%5p: %-9s%s%s",
236                                  base_addr + offset,
237                                  op_name.c_str(), op_operands.c_str(),
238                                  lir->flags.is_nop ? "(nop)" : "");
239      }
240      break;
241  }
242
243  if (lir->u.m.use_mask && (!lir->flags.is_nop || dump_nop)) {
244    DUMP_RESOURCE_MASK(DumpResourceMask(lir, lir->u.m.use_mask, "use"));
245  }
246  if (lir->u.m.def_mask && (!lir->flags.is_nop || dump_nop)) {
247    DUMP_RESOURCE_MASK(DumpResourceMask(lir, lir->u.m.def_mask, "def"));
248  }
249}
250
251void Mir2Lir::DumpPromotionMap() {
252  int num_regs = cu_->num_dalvik_registers + mir_graph_->GetNumUsedCompilerTemps();
253  for (int i = 0; i < num_regs; i++) {
254    PromotionMap v_reg_map = promotion_map_[i];
255    std::string buf;
256    if (v_reg_map.fp_location == kLocPhysReg) {
257      StringAppendF(&buf, " : s%d", RegStorage::RegNum(v_reg_map.FpReg));
258    }
259
260    std::string buf3;
261    if (i < cu_->num_dalvik_registers) {
262      StringAppendF(&buf3, "%02d", i);
263    } else if (i == mir_graph_->GetMethodSReg()) {
264      buf3 = "Method*";
265    } else {
266      StringAppendF(&buf3, "ct%d", i - cu_->num_dalvik_registers);
267    }
268
269    LOG(INFO) << StringPrintf("V[%s] -> %s%d%s", buf3.c_str(),
270                              v_reg_map.core_location == kLocPhysReg ?
271                              "r" : "SP+", v_reg_map.core_location == kLocPhysReg ?
272                              v_reg_map.core_reg : SRegOffset(i),
273                              buf.c_str());
274  }
275}
276
277void Mir2Lir::UpdateLIROffsets() {
278  // Only used for code listings.
279  size_t offset = 0;
280  for (LIR* lir = first_lir_insn_; lir != nullptr; lir = lir->next) {
281    lir->offset = offset;
282    if (!lir->flags.is_nop && !IsPseudoLirOp(lir->opcode)) {
283      offset += GetInsnSize(lir);
284    } else if (lir->opcode == kPseudoPseudoAlign4) {
285      offset += (offset & 0x2);
286    }
287  }
288}
289
290/* Dump instructions and constant pool contents */
291void Mir2Lir::CodegenDump() {
292  LOG(INFO) << "Dumping LIR insns for "
293            << PrettyMethod(cu_->method_idx, *cu_->dex_file);
294  LIR* lir_insn;
295  int insns_size = cu_->code_item->insns_size_in_code_units_;
296
297  LOG(INFO) << "Regs (excluding ins) : " << cu_->num_regs;
298  LOG(INFO) << "Ins          : " << cu_->num_ins;
299  LOG(INFO) << "Outs         : " << cu_->num_outs;
300  LOG(INFO) << "CoreSpills       : " << num_core_spills_;
301  LOG(INFO) << "FPSpills       : " << num_fp_spills_;
302  LOG(INFO) << "CompilerTemps    : " << mir_graph_->GetNumUsedCompilerTemps();
303  LOG(INFO) << "Frame size       : " << frame_size_;
304  LOG(INFO) << "code size is " << total_size_ <<
305    " bytes, Dalvik size is " << insns_size * 2;
306  LOG(INFO) << "expansion factor: "
307            << static_cast<float>(total_size_) / static_cast<float>(insns_size * 2);
308  DumpPromotionMap();
309  UpdateLIROffsets();
310  for (lir_insn = first_lir_insn_; lir_insn != NULL; lir_insn = lir_insn->next) {
311    DumpLIRInsn(lir_insn, 0);
312  }
313  for (lir_insn = literal_list_; lir_insn != NULL; lir_insn = lir_insn->next) {
314    LOG(INFO) << StringPrintf("%x (%04x): .word (%#x)", lir_insn->offset, lir_insn->offset,
315                              lir_insn->operands[0]);
316  }
317
318  const DexFile::MethodId& method_id =
319      cu_->dex_file->GetMethodId(cu_->method_idx);
320  const Signature signature = cu_->dex_file->GetMethodSignature(method_id);
321  const char* name = cu_->dex_file->GetMethodName(method_id);
322  const char* descriptor(cu_->dex_file->GetMethodDeclaringClassDescriptor(method_id));
323
324  // Dump mapping tables
325  if (!encoded_mapping_table_.empty()) {
326    MappingTable table(&encoded_mapping_table_[0]);
327    DumpMappingTable("PC2Dex_MappingTable", descriptor, name, signature,
328                     table.PcToDexSize(), table.PcToDexBegin());
329    DumpMappingTable("Dex2PC_MappingTable", descriptor, name, signature,
330                     table.DexToPcSize(), table.DexToPcBegin());
331  }
332}
333
334/*
335 * Search the existing constants in the literal pool for an exact or close match
336 * within specified delta (greater or equal to 0).
337 */
338LIR* Mir2Lir::ScanLiteralPool(LIR* data_target, int value, unsigned int delta) {
339  while (data_target) {
340    if ((static_cast<unsigned>(value - data_target->operands[0])) <= delta)
341      return data_target;
342    data_target = data_target->next;
343  }
344  return NULL;
345}
346
347/* Search the existing constants in the literal pool for an exact wide match */
348LIR* Mir2Lir::ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi) {
349  bool lo_match = false;
350  LIR* lo_target = NULL;
351  while (data_target) {
352    if (lo_match && (data_target->operands[0] == val_hi)) {
353      // Record high word in case we need to expand this later.
354      lo_target->operands[1] = val_hi;
355      return lo_target;
356    }
357    lo_match = false;
358    if (data_target->operands[0] == val_lo) {
359      lo_match = true;
360      lo_target = data_target;
361    }
362    data_target = data_target->next;
363  }
364  return NULL;
365}
366
367/*
368 * The following are building blocks to insert constants into the pool or
369 * instruction streams.
370 */
371
372/* Add a 32-bit constant to the constant pool */
373LIR* Mir2Lir::AddWordData(LIR* *constant_list_p, int value) {
374  /* Add the constant to the literal pool */
375  if (constant_list_p) {
376    LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
377    new_value->operands[0] = value;
378    new_value->next = *constant_list_p;
379    *constant_list_p = new_value;
380    estimated_native_code_size_ += sizeof(value);
381    return new_value;
382  }
383  return NULL;
384}
385
386/* Add a 64-bit constant to the constant pool or mixed with code */
387LIR* Mir2Lir::AddWideData(LIR* *constant_list_p, int val_lo, int val_hi) {
388  AddWordData(constant_list_p, val_hi);
389  return AddWordData(constant_list_p, val_lo);
390}
391
392static void Push32(std::vector<uint8_t>&buf, int data) {
393  buf.push_back(data & 0xff);
394  buf.push_back((data >> 8) & 0xff);
395  buf.push_back((data >> 16) & 0xff);
396  buf.push_back((data >> 24) & 0xff);
397}
398
399// Push 8 bytes on 64-bit target systems; 4 on 32-bit target systems.
400static void PushPointer(std::vector<uint8_t>&buf, const void* pointer, bool target64) {
401  uint64_t data = reinterpret_cast<uintptr_t>(pointer);
402  if (target64) {
403    Push32(buf, data & 0xFFFFFFFF);
404    Push32(buf, (data >> 32) & 0xFFFFFFFF);
405  } else {
406    Push32(buf, static_cast<uint32_t>(data));
407  }
408}
409
410static void AlignBuffer(std::vector<uint8_t>&buf, size_t offset) {
411  while (buf.size() < offset) {
412    buf.push_back(0);
413  }
414}
415
416/* Write the literal pool to the output stream */
417void Mir2Lir::InstallLiteralPools() {
418  AlignBuffer(code_buffer_, data_offset_);
419  LIR* data_lir = literal_list_;
420  while (data_lir != NULL) {
421    Push32(code_buffer_, data_lir->operands[0]);
422    data_lir = NEXT_LIR(data_lir);
423  }
424  // Push code and method literals, record offsets for the compiler to patch.
425  data_lir = code_literal_list_;
426  while (data_lir != NULL) {
427    uint32_t target_method_idx = data_lir->operands[0];
428    const DexFile* target_dex_file =
429        reinterpret_cast<const DexFile*>(UnwrapPointer(data_lir->operands[1]));
430    cu_->compiler_driver->AddCodePatch(cu_->dex_file,
431                                       cu_->class_def_idx,
432                                       cu_->method_idx,
433                                       cu_->invoke_type,
434                                       target_method_idx,
435                                       target_dex_file,
436                                       static_cast<InvokeType>(data_lir->operands[2]),
437                                       code_buffer_.size());
438    const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
439    // unique value based on target to ensure code deduplication works
440    PushPointer(code_buffer_, &target_method_id, cu_->target64);
441    data_lir = NEXT_LIR(data_lir);
442  }
443  data_lir = method_literal_list_;
444  while (data_lir != NULL) {
445    uint32_t target_method_idx = data_lir->operands[0];
446    const DexFile* target_dex_file =
447        reinterpret_cast<const DexFile*>(UnwrapPointer(data_lir->operands[1]));
448    cu_->compiler_driver->AddMethodPatch(cu_->dex_file,
449                                         cu_->class_def_idx,
450                                         cu_->method_idx,
451                                         cu_->invoke_type,
452                                         target_method_idx,
453                                         target_dex_file,
454                                         static_cast<InvokeType>(data_lir->operands[2]),
455                                         code_buffer_.size());
456    const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
457    // unique value based on target to ensure code deduplication works
458    PushPointer(code_buffer_, &target_method_id, cu_->target64);
459    data_lir = NEXT_LIR(data_lir);
460  }
461  // Push class literals.
462  data_lir = class_literal_list_;
463  while (data_lir != NULL) {
464    uint32_t target_method_idx = data_lir->operands[0];
465    cu_->compiler_driver->AddClassPatch(cu_->dex_file,
466                                        cu_->class_def_idx,
467                                        cu_->method_idx,
468                                        target_method_idx,
469                                        code_buffer_.size());
470    const DexFile::TypeId& target_method_id = cu_->dex_file->GetTypeId(target_method_idx);
471    // unique value based on target to ensure code deduplication works
472    PushPointer(code_buffer_, &target_method_id, cu_->target64);
473    data_lir = NEXT_LIR(data_lir);
474  }
475}
476
477/* Write the switch tables to the output stream */
478void Mir2Lir::InstallSwitchTables() {
479  GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_);
480  while (true) {
481    Mir2Lir::SwitchTable* tab_rec = iterator.Next();
482    if (tab_rec == NULL) break;
483    AlignBuffer(code_buffer_, tab_rec->offset);
484    /*
485     * For Arm, our reference point is the address of the bx
486     * instruction that does the launch, so we have to subtract
487     * the auto pc-advance.  For other targets the reference point
488     * is a label, so we can use the offset as-is.
489     */
490    int bx_offset = INVALID_OFFSET;
491    switch (cu_->instruction_set) {
492      case kThumb2:
493        DCHECK(tab_rec->anchor->flags.fixup != kFixupNone);
494        bx_offset = tab_rec->anchor->offset + 4;
495        break;
496      case kX86:
497      case kX86_64:
498        bx_offset = 0;
499        break;
500      case kArm64:
501      case kMips:
502        bx_offset = tab_rec->anchor->offset;
503        break;
504      default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
505    }
506    if (cu_->verbose) {
507      LOG(INFO) << "Switch table for offset 0x" << std::hex << bx_offset;
508    }
509    if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
510      const int32_t* keys = reinterpret_cast<const int32_t*>(&(tab_rec->table[2]));
511      for (int elems = 0; elems < tab_rec->table[1]; elems++) {
512        int disp = tab_rec->targets[elems]->offset - bx_offset;
513        if (cu_->verbose) {
514          LOG(INFO) << "  Case[" << elems << "] key: 0x"
515                    << std::hex << keys[elems] << ", disp: 0x"
516                    << std::hex << disp;
517        }
518        Push32(code_buffer_, keys[elems]);
519        Push32(code_buffer_,
520          tab_rec->targets[elems]->offset - bx_offset);
521      }
522    } else {
523      DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
524                static_cast<int>(Instruction::kPackedSwitchSignature));
525      for (int elems = 0; elems < tab_rec->table[1]; elems++) {
526        int disp = tab_rec->targets[elems]->offset - bx_offset;
527        if (cu_->verbose) {
528          LOG(INFO) << "  Case[" << elems << "] disp: 0x"
529                    << std::hex << disp;
530        }
531        Push32(code_buffer_, tab_rec->targets[elems]->offset - bx_offset);
532      }
533    }
534  }
535}
536
537/* Write the fill array dta to the output stream */
538void Mir2Lir::InstallFillArrayData() {
539  GrowableArray<FillArrayData*>::Iterator iterator(&fill_array_data_);
540  while (true) {
541    Mir2Lir::FillArrayData *tab_rec = iterator.Next();
542    if (tab_rec == NULL) break;
543    AlignBuffer(code_buffer_, tab_rec->offset);
544    for (int i = 0; i < (tab_rec->size + 1) / 2; i++) {
545      code_buffer_.push_back(tab_rec->table[i] & 0xFF);
546      code_buffer_.push_back((tab_rec->table[i] >> 8) & 0xFF);
547    }
548  }
549}
550
551static int AssignLiteralOffsetCommon(LIR* lir, CodeOffset offset) {
552  for (; lir != NULL; lir = lir->next) {
553    lir->offset = offset;
554    offset += 4;
555  }
556  return offset;
557}
558
559static int AssignLiteralPointerOffsetCommon(LIR* lir, CodeOffset offset,
560                                            unsigned int element_size) {
561  // Align to natural pointer size.
562  offset = RoundUp(offset, element_size);
563  for (; lir != NULL; lir = lir->next) {
564    lir->offset = offset;
565    offset += element_size;
566  }
567  return offset;
568}
569
570// Make sure we have a code address for every declared catch entry
571bool Mir2Lir::VerifyCatchEntries() {
572  MappingTable table(&encoded_mapping_table_[0]);
573  std::vector<uint32_t> dex_pcs;
574  dex_pcs.reserve(table.DexToPcSize());
575  for (auto it = table.DexToPcBegin(), end = table.DexToPcEnd(); it != end; ++it) {
576    dex_pcs.push_back(it.DexPc());
577  }
578  // Sort dex_pcs, so that we can quickly check it against the ordered mir_graph_->catches_.
579  std::sort(dex_pcs.begin(), dex_pcs.end());
580
581  bool success = true;
582  auto it = dex_pcs.begin(), end = dex_pcs.end();
583  for (uint32_t dex_pc : mir_graph_->catches_) {
584    while (it != end && *it < dex_pc) {
585      LOG(INFO) << "Unexpected catch entry @ dex pc 0x" << std::hex << *it;
586      ++it;
587      success = false;
588    }
589    if (it == end || *it > dex_pc) {
590      LOG(INFO) << "Missing native PC for catch entry @ 0x" << std::hex << dex_pc;
591      success = false;
592    } else {
593      ++it;
594    }
595  }
596  if (!success) {
597    LOG(INFO) << "Bad dex2pcMapping table in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
598    LOG(INFO) << "Entries @ decode: " << mir_graph_->catches_.size() << ", Entries in table: "
599              << table.DexToPcSize();
600  }
601  return success;
602}
603
604
605void Mir2Lir::CreateMappingTables() {
606  uint32_t pc2dex_data_size = 0u;
607  uint32_t pc2dex_entries = 0u;
608  uint32_t pc2dex_offset = 0u;
609  uint32_t pc2dex_dalvik_offset = 0u;
610  uint32_t dex2pc_data_size = 0u;
611  uint32_t dex2pc_entries = 0u;
612  uint32_t dex2pc_offset = 0u;
613  uint32_t dex2pc_dalvik_offset = 0u;
614  for (LIR* tgt_lir = first_lir_insn_; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) {
615    if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
616      pc2dex_entries += 1;
617      DCHECK(pc2dex_offset <= tgt_lir->offset);
618      pc2dex_data_size += UnsignedLeb128Size(tgt_lir->offset - pc2dex_offset);
619      pc2dex_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) -
620                                           static_cast<int32_t>(pc2dex_dalvik_offset));
621      pc2dex_offset = tgt_lir->offset;
622      pc2dex_dalvik_offset = tgt_lir->dalvik_offset;
623    }
624    if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
625      dex2pc_entries += 1;
626      DCHECK(dex2pc_offset <= tgt_lir->offset);
627      dex2pc_data_size += UnsignedLeb128Size(tgt_lir->offset - dex2pc_offset);
628      dex2pc_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) -
629                                           static_cast<int32_t>(dex2pc_dalvik_offset));
630      dex2pc_offset = tgt_lir->offset;
631      dex2pc_dalvik_offset = tgt_lir->dalvik_offset;
632    }
633  }
634
635  uint32_t total_entries = pc2dex_entries + dex2pc_entries;
636  uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries);
637  uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size;
638  encoded_mapping_table_.resize(data_size);
639  uint8_t* write_pos = &encoded_mapping_table_[0];
640  write_pos = EncodeUnsignedLeb128(write_pos, total_entries);
641  write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries);
642  DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]), hdr_data_size);
643  uint8_t* write_pos2 = write_pos + pc2dex_data_size;
644
645  pc2dex_offset = 0u;
646  pc2dex_dalvik_offset = 0u;
647  dex2pc_offset = 0u;
648  dex2pc_dalvik_offset = 0u;
649  for (LIR* tgt_lir = first_lir_insn_; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) {
650    if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
651      DCHECK(pc2dex_offset <= tgt_lir->offset);
652      write_pos = EncodeUnsignedLeb128(write_pos, tgt_lir->offset - pc2dex_offset);
653      write_pos = EncodeSignedLeb128(write_pos, static_cast<int32_t>(tgt_lir->dalvik_offset) -
654                                     static_cast<int32_t>(pc2dex_dalvik_offset));
655      pc2dex_offset = tgt_lir->offset;
656      pc2dex_dalvik_offset = tgt_lir->dalvik_offset;
657    }
658    if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
659      DCHECK(dex2pc_offset <= tgt_lir->offset);
660      write_pos2 = EncodeUnsignedLeb128(write_pos2, tgt_lir->offset - dex2pc_offset);
661      write_pos2 = EncodeSignedLeb128(write_pos2, static_cast<int32_t>(tgt_lir->dalvik_offset) -
662                                      static_cast<int32_t>(dex2pc_dalvik_offset));
663      dex2pc_offset = tgt_lir->offset;
664      dex2pc_dalvik_offset = tgt_lir->dalvik_offset;
665    }
666  }
667  DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]),
668            hdr_data_size + pc2dex_data_size);
669  DCHECK_EQ(static_cast<size_t>(write_pos2 - &encoded_mapping_table_[0]), data_size);
670
671  if (kIsDebugBuild) {
672    CHECK(VerifyCatchEntries());
673
674    // Verify the encoded table holds the expected data.
675    MappingTable table(&encoded_mapping_table_[0]);
676    CHECK_EQ(table.TotalSize(), total_entries);
677    CHECK_EQ(table.PcToDexSize(), pc2dex_entries);
678    auto it = table.PcToDexBegin();
679    auto it2 = table.DexToPcBegin();
680    for (LIR* tgt_lir = first_lir_insn_; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) {
681      if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
682        CHECK_EQ(tgt_lir->offset, it.NativePcOffset());
683        CHECK_EQ(tgt_lir->dalvik_offset, it.DexPc());
684        ++it;
685      }
686      if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
687        CHECK_EQ(tgt_lir->offset, it2.NativePcOffset());
688        CHECK_EQ(tgt_lir->dalvik_offset, it2.DexPc());
689        ++it2;
690      }
691    }
692    CHECK(it == table.PcToDexEnd());
693    CHECK(it2 == table.DexToPcEnd());
694  }
695}
696
697void Mir2Lir::CreateNativeGcMap() {
698  DCHECK(!encoded_mapping_table_.empty());
699  MappingTable mapping_table(&encoded_mapping_table_[0]);
700  uint32_t max_native_offset = 0;
701  for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) {
702    uint32_t native_offset = it.NativePcOffset();
703    if (native_offset > max_native_offset) {
704      max_native_offset = native_offset;
705    }
706  }
707  MethodReference method_ref(cu_->dex_file, cu_->method_idx);
708  const std::vector<uint8_t>& gc_map_raw =
709      mir_graph_->GetCurrentDexCompilationUnit()->GetVerifiedMethod()->GetDexGcMap();
710  verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]);
711  DCHECK_EQ(gc_map_raw.size(), dex_gc_map.RawSize());
712  // Compute native offset to references size.
713  GcMapBuilder native_gc_map_builder(&native_gc_map_,
714                                     mapping_table.PcToDexSize(),
715                                     max_native_offset, dex_gc_map.RegWidth());
716
717  for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) {
718    uint32_t native_offset = it.NativePcOffset();
719    uint32_t dex_pc = it.DexPc();
720    const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false);
721    CHECK(references != NULL) << "Missing ref for dex pc 0x" << std::hex << dex_pc <<
722        ": " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
723    native_gc_map_builder.AddEntry(native_offset, references);
724  }
725}
726
727/* Determine the offset of each literal field */
728int Mir2Lir::AssignLiteralOffset(CodeOffset offset) {
729  offset = AssignLiteralOffsetCommon(literal_list_, offset);
730  unsigned int ptr_size = GetInstructionSetPointerSize(cu_->instruction_set);
731  offset = AssignLiteralPointerOffsetCommon(code_literal_list_, offset, ptr_size);
732  offset = AssignLiteralPointerOffsetCommon(method_literal_list_, offset, ptr_size);
733  offset = AssignLiteralPointerOffsetCommon(class_literal_list_, offset, ptr_size);
734  return offset;
735}
736
737int Mir2Lir::AssignSwitchTablesOffset(CodeOffset offset) {
738  GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_);
739  while (true) {
740    Mir2Lir::SwitchTable* tab_rec = iterator.Next();
741    if (tab_rec == NULL) break;
742    tab_rec->offset = offset;
743    if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
744      offset += tab_rec->table[1] * (sizeof(int) * 2);
745    } else {
746      DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
747                static_cast<int>(Instruction::kPackedSwitchSignature));
748      offset += tab_rec->table[1] * sizeof(int);
749    }
750  }
751  return offset;
752}
753
754int Mir2Lir::AssignFillArrayDataOffset(CodeOffset offset) {
755  GrowableArray<FillArrayData*>::Iterator iterator(&fill_array_data_);
756  while (true) {
757    Mir2Lir::FillArrayData *tab_rec = iterator.Next();
758    if (tab_rec == NULL) break;
759    tab_rec->offset = offset;
760    offset += tab_rec->size;
761    // word align
762    offset = RoundUp(offset, 4);
763    }
764  return offset;
765}
766
767/*
768 * Insert a kPseudoCaseLabel at the beginning of the Dalvik
769 * offset vaddr if pretty-printing, otherise use the standard block
770 * label.  The selected label will be used to fix up the case
771 * branch table during the assembly phase.  All resource flags
772 * are set to prevent code motion.  KeyVal is just there for debugging.
773 */
774LIR* Mir2Lir::InsertCaseLabel(DexOffset vaddr, int keyVal) {
775  LIR* boundary_lir = &block_label_list_[mir_graph_->FindBlock(vaddr)->id];
776  LIR* res = boundary_lir;
777  if (cu_->verbose) {
778    // Only pay the expense if we're pretty-printing.
779    LIR* new_label = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocLIR));
780    new_label->dalvik_offset = vaddr;
781    new_label->opcode = kPseudoCaseLabel;
782    new_label->operands[0] = keyVal;
783    new_label->flags.fixup = kFixupLabel;
784    DCHECK(!new_label->flags.use_def_invalid);
785    new_label->u.m.def_mask = ENCODE_ALL;
786    InsertLIRAfter(boundary_lir, new_label);
787    res = new_label;
788  }
789  return res;
790}
791
792void Mir2Lir::MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec) {
793  const uint16_t* table = tab_rec->table;
794  DexOffset base_vaddr = tab_rec->vaddr;
795  const int32_t *targets = reinterpret_cast<const int32_t*>(&table[4]);
796  int entries = table[1];
797  int low_key = s4FromSwitchData(&table[2]);
798  for (int i = 0; i < entries; i++) {
799    tab_rec->targets[i] = InsertCaseLabel(base_vaddr + targets[i], i + low_key);
800  }
801}
802
803void Mir2Lir::MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec) {
804  const uint16_t* table = tab_rec->table;
805  DexOffset base_vaddr = tab_rec->vaddr;
806  int entries = table[1];
807  const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
808  const int32_t* targets = &keys[entries];
809  for (int i = 0; i < entries; i++) {
810    tab_rec->targets[i] = InsertCaseLabel(base_vaddr + targets[i], keys[i]);
811  }
812}
813
814void Mir2Lir::ProcessSwitchTables() {
815  GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_);
816  while (true) {
817    Mir2Lir::SwitchTable *tab_rec = iterator.Next();
818    if (tab_rec == NULL) break;
819    if (tab_rec->table[0] == Instruction::kPackedSwitchSignature) {
820      MarkPackedCaseLabels(tab_rec);
821    } else if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
822      MarkSparseCaseLabels(tab_rec);
823    } else {
824      LOG(FATAL) << "Invalid switch table";
825    }
826  }
827}
828
829void Mir2Lir::DumpSparseSwitchTable(const uint16_t* table) {
830  /*
831   * Sparse switch data format:
832   *  ushort ident = 0x0200   magic value
833   *  ushort size       number of entries in the table; > 0
834   *  int keys[size]      keys, sorted low-to-high; 32-bit aligned
835   *  int targets[size]     branch targets, relative to switch opcode
836   *
837   * Total size is (2+size*4) 16-bit code units.
838   */
839  uint16_t ident = table[0];
840  int entries = table[1];
841  const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
842  const int32_t* targets = &keys[entries];
843  LOG(INFO) <<  "Sparse switch table - ident:0x" << std::hex << ident
844            << ", entries: " << std::dec << entries;
845  for (int i = 0; i < entries; i++) {
846    LOG(INFO) << "  Key[" << keys[i] << "] -> 0x" << std::hex << targets[i];
847  }
848}
849
850void Mir2Lir::DumpPackedSwitchTable(const uint16_t* table) {
851  /*
852   * Packed switch data format:
853   *  ushort ident = 0x0100   magic value
854   *  ushort size       number of entries in the table
855   *  int first_key       first (and lowest) switch case value
856   *  int targets[size]     branch targets, relative to switch opcode
857   *
858   * Total size is (4+size*2) 16-bit code units.
859   */
860  uint16_t ident = table[0];
861  const int32_t* targets = reinterpret_cast<const int32_t*>(&table[4]);
862  int entries = table[1];
863  int low_key = s4FromSwitchData(&table[2]);
864  LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident
865            << ", entries: " << std::dec << entries << ", low_key: " << low_key;
866  for (int i = 0; i < entries; i++) {
867    LOG(INFO) << "  Key[" << (i + low_key) << "] -> 0x" << std::hex
868              << targets[i];
869  }
870}
871
872/* Set up special LIR to mark a Dalvik byte-code instruction start for pretty printing */
873void Mir2Lir::MarkBoundary(DexOffset offset, const char* inst_str) {
874  // NOTE: only used for debug listings.
875  NewLIR1(kPseudoDalvikByteCodeBoundary, WrapPointer(ArenaStrdup(inst_str)));
876}
877
878bool Mir2Lir::EvaluateBranch(Instruction::Code opcode, int32_t src1, int32_t src2) {
879  bool is_taken;
880  switch (opcode) {
881    case Instruction::IF_EQ: is_taken = (src1 == src2); break;
882    case Instruction::IF_NE: is_taken = (src1 != src2); break;
883    case Instruction::IF_LT: is_taken = (src1 < src2); break;
884    case Instruction::IF_GE: is_taken = (src1 >= src2); break;
885    case Instruction::IF_GT: is_taken = (src1 > src2); break;
886    case Instruction::IF_LE: is_taken = (src1 <= src2); break;
887    case Instruction::IF_EQZ: is_taken = (src1 == 0); break;
888    case Instruction::IF_NEZ: is_taken = (src1 != 0); break;
889    case Instruction::IF_LTZ: is_taken = (src1 < 0); break;
890    case Instruction::IF_GEZ: is_taken = (src1 >= 0); break;
891    case Instruction::IF_GTZ: is_taken = (src1 > 0); break;
892    case Instruction::IF_LEZ: is_taken = (src1 <= 0); break;
893    default:
894      LOG(FATAL) << "Unexpected opcode " << opcode;
895      is_taken = false;
896  }
897  return is_taken;
898}
899
900// Convert relation of src1/src2 to src2/src1
901ConditionCode Mir2Lir::FlipComparisonOrder(ConditionCode before) {
902  ConditionCode res;
903  switch (before) {
904    case kCondEq: res = kCondEq; break;
905    case kCondNe: res = kCondNe; break;
906    case kCondLt: res = kCondGt; break;
907    case kCondGt: res = kCondLt; break;
908    case kCondLe: res = kCondGe; break;
909    case kCondGe: res = kCondLe; break;
910    default:
911      res = static_cast<ConditionCode>(0);
912      LOG(FATAL) << "Unexpected ccode " << before;
913  }
914  return res;
915}
916
917ConditionCode Mir2Lir::NegateComparison(ConditionCode before) {
918  ConditionCode res;
919  switch (before) {
920    case kCondEq: res = kCondNe; break;
921    case kCondNe: res = kCondEq; break;
922    case kCondLt: res = kCondGe; break;
923    case kCondGt: res = kCondLe; break;
924    case kCondLe: res = kCondGt; break;
925    case kCondGe: res = kCondLt; break;
926    default:
927      res = static_cast<ConditionCode>(0);
928      LOG(FATAL) << "Unexpected ccode " << before;
929  }
930  return res;
931}
932
933// TODO: move to mir_to_lir.cc
934Mir2Lir::Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
935    : Backend(arena),
936      literal_list_(NULL),
937      method_literal_list_(NULL),
938      class_literal_list_(NULL),
939      code_literal_list_(NULL),
940      first_fixup_(NULL),
941      cu_(cu),
942      mir_graph_(mir_graph),
943      switch_tables_(arena, 4, kGrowableArraySwitchTables),
944      fill_array_data_(arena, 4, kGrowableArrayFillArrayData),
945      tempreg_info_(arena, 20, kGrowableArrayMisc),
946      reginfo_map_(arena, RegStorage::kMaxRegs, kGrowableArrayMisc),
947      pointer_storage_(arena, 128, kGrowableArrayMisc),
948      data_offset_(0),
949      total_size_(0),
950      block_label_list_(NULL),
951      promotion_map_(NULL),
952      current_dalvik_offset_(0),
953      estimated_native_code_size_(0),
954      reg_pool_(NULL),
955      live_sreg_(0),
956      num_core_spills_(0),
957      num_fp_spills_(0),
958      frame_size_(0),
959      core_spill_mask_(0),
960      fp_spill_mask_(0),
961      first_lir_insn_(NULL),
962      last_lir_insn_(NULL),
963      slow_paths_(arena, 32, kGrowableArraySlowPaths) {
964  // Reserve pointer id 0 for NULL.
965  size_t null_idx = WrapPointer(NULL);
966  DCHECK_EQ(null_idx, 0U);
967}
968
969void Mir2Lir::Materialize() {
970  cu_->NewTimingSplit("RegisterAllocation");
971  CompilerInitializeRegAlloc();  // Needs to happen after SSA naming
972
973  /* Allocate Registers using simple local allocation scheme */
974  SimpleRegAlloc();
975
976  /* First try the custom light codegen for special cases. */
977  DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
978  bool special_worked = cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
979      ->GenSpecial(this, cu_->method_idx);
980
981  /* Take normal path for converting MIR to LIR only if the special codegen did not succeed. */
982  if (special_worked == false) {
983    MethodMIR2LIR();
984  }
985
986  /* Method is not empty */
987  if (first_lir_insn_) {
988    // mark the targets of switch statement case labels
989    ProcessSwitchTables();
990
991    /* Convert LIR into machine code. */
992    AssembleLIR();
993
994    if (cu_->verbose) {
995      CodegenDump();
996    }
997  }
998}
999
1000CompiledMethod* Mir2Lir::GetCompiledMethod() {
1001  // Combine vmap tables - core regs, then fp regs - into vmap_table.
1002  Leb128EncodingVector vmap_encoder;
1003  if (frame_size_ > 0) {
1004    // Prefix the encoded data with its size.
1005    size_t size = core_vmap_table_.size() + 1 /* marker */ + fp_vmap_table_.size();
1006    vmap_encoder.Reserve(size + 1u);  // All values are likely to be one byte in ULEB128 (<128).
1007    vmap_encoder.PushBackUnsigned(size);
1008    // Core regs may have been inserted out of order - sort first.
1009    std::sort(core_vmap_table_.begin(), core_vmap_table_.end());
1010    for (size_t i = 0 ; i < core_vmap_table_.size(); ++i) {
1011      // Copy, stripping out the phys register sort key.
1012      vmap_encoder.PushBackUnsigned(
1013          ~(-1 << VREG_NUM_WIDTH) & (core_vmap_table_[i] + VmapTable::kEntryAdjustment));
1014    }
1015    // Push a marker to take place of lr.
1016    vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker);
1017    // fp regs already sorted.
1018    for (uint32_t i = 0; i < fp_vmap_table_.size(); i++) {
1019      vmap_encoder.PushBackUnsigned(fp_vmap_table_[i] + VmapTable::kEntryAdjustment);
1020    }
1021  } else {
1022    DCHECK_EQ(POPCOUNT(core_spill_mask_), 0);
1023    DCHECK_EQ(POPCOUNT(fp_spill_mask_), 0);
1024    DCHECK_EQ(core_vmap_table_.size(), 0u);
1025    DCHECK_EQ(fp_vmap_table_.size(), 0u);
1026    vmap_encoder.PushBackUnsigned(0u);  // Size is 0.
1027  }
1028
1029  UniquePtr<std::vector<uint8_t> > cfi_info(ReturnCallFrameInformation());
1030  CompiledMethod* result =
1031      new CompiledMethod(cu_->compiler_driver, cu_->instruction_set, code_buffer_, frame_size_,
1032                         core_spill_mask_, fp_spill_mask_, encoded_mapping_table_,
1033                         vmap_encoder.GetData(), native_gc_map_, cfi_info.get());
1034  return result;
1035}
1036
1037size_t Mir2Lir::GetMaxPossibleCompilerTemps() const {
1038  // Chose a reasonably small value in order to contain stack growth.
1039  // Backends that are smarter about spill region can return larger values.
1040  const size_t max_compiler_temps = 10;
1041  return max_compiler_temps;
1042}
1043
1044size_t Mir2Lir::GetNumBytesForCompilerTempSpillRegion() {
1045  // By default assume that the Mir2Lir will need one slot for each temporary.
1046  // If the backend can better determine temps that have non-overlapping ranges and
1047  // temps that do not need spilled, it can actually provide a small region.
1048  return (mir_graph_->GetNumUsedCompilerTemps() * sizeof(uint32_t));
1049}
1050
1051int Mir2Lir::ComputeFrameSize() {
1052  /* Figure out the frame size */
1053  uint32_t size = num_core_spills_ * GetBytesPerGprSpillLocation(cu_->instruction_set)
1054                  + num_fp_spills_ * GetBytesPerFprSpillLocation(cu_->instruction_set)
1055                  + sizeof(uint32_t)  // Filler.
1056                  + (cu_->num_regs + cu_->num_outs) * sizeof(uint32_t)
1057                  + GetNumBytesForCompilerTempSpillRegion();
1058  /* Align and set */
1059  return RoundUp(size, kStackAlignment);
1060}
1061
1062/*
1063 * Append an LIR instruction to the LIR list maintained by a compilation
1064 * unit
1065 */
1066void Mir2Lir::AppendLIR(LIR* lir) {
1067  if (first_lir_insn_ == NULL) {
1068    DCHECK(last_lir_insn_ == NULL);
1069    last_lir_insn_ = first_lir_insn_ = lir;
1070    lir->prev = lir->next = NULL;
1071  } else {
1072    last_lir_insn_->next = lir;
1073    lir->prev = last_lir_insn_;
1074    lir->next = NULL;
1075    last_lir_insn_ = lir;
1076  }
1077}
1078
1079/*
1080 * Insert an LIR instruction before the current instruction, which cannot be the
1081 * first instruction.
1082 *
1083 * prev_lir <-> new_lir <-> current_lir
1084 */
1085void Mir2Lir::InsertLIRBefore(LIR* current_lir, LIR* new_lir) {
1086  DCHECK(current_lir->prev != NULL);
1087  LIR *prev_lir = current_lir->prev;
1088
1089  prev_lir->next = new_lir;
1090  new_lir->prev = prev_lir;
1091  new_lir->next = current_lir;
1092  current_lir->prev = new_lir;
1093}
1094
1095/*
1096 * Insert an LIR instruction after the current instruction, which cannot be the
1097 * first instruction.
1098 *
1099 * current_lir -> new_lir -> old_next
1100 */
1101void Mir2Lir::InsertLIRAfter(LIR* current_lir, LIR* new_lir) {
1102  new_lir->prev = current_lir;
1103  new_lir->next = current_lir->next;
1104  current_lir->next = new_lir;
1105  new_lir->next->prev = new_lir;
1106}
1107
1108bool Mir2Lir::IsPowerOfTwo(uint64_t x) {
1109  return (x & (x - 1)) == 0;
1110}
1111
1112// Returns the index of the lowest set bit in 'x'.
1113int32_t Mir2Lir::LowestSetBit(uint64_t x) {
1114  int bit_posn = 0;
1115  while ((x & 0xf) == 0) {
1116    bit_posn += 4;
1117    x >>= 4;
1118  }
1119  while ((x & 1) == 0) {
1120    bit_posn++;
1121    x >>= 1;
1122  }
1123  return bit_posn;
1124}
1125
1126bool Mir2Lir::BadOverlap(RegLocation rl_src, RegLocation rl_dest) {
1127  DCHECK(rl_src.wide);
1128  DCHECK(rl_dest.wide);
1129  return (abs(mir_graph_->SRegToVReg(rl_src.s_reg_low) - mir_graph_->SRegToVReg(rl_dest.s_reg_low)) == 1);
1130}
1131
1132LIR *Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
1133                                int offset, int check_value, LIR* target) {
1134  // Handle this for architectures that can't compare to memory.
1135  Load32Disp(base_reg, offset, temp_reg);
1136  LIR* branch = OpCmpImmBranch(cond, temp_reg, check_value, target);
1137  return branch;
1138}
1139
1140void Mir2Lir::AddSlowPath(LIRSlowPath* slowpath) {
1141  slow_paths_.Insert(slowpath);
1142}
1143
1144void Mir2Lir::LoadCodeAddress(const MethodReference& target_method, InvokeType type,
1145                              SpecialTargetRegister symbolic_reg) {
1146  int target_method_idx = target_method.dex_method_index;
1147  LIR* data_target = ScanLiteralPool(code_literal_list_, target_method_idx, 0);
1148  if (data_target == NULL) {
1149    data_target = AddWordData(&code_literal_list_, target_method_idx);
1150    data_target->operands[1] = WrapPointer(const_cast<DexFile*>(target_method.dex_file));
1151    data_target->operands[2] = type;
1152  }
1153  LIR* load_pc_rel = OpPcRelLoad(TargetReg(symbolic_reg), data_target);
1154  AppendLIR(load_pc_rel);
1155  DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target);
1156}
1157
1158void Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
1159                                SpecialTargetRegister symbolic_reg) {
1160  int target_method_idx = target_method.dex_method_index;
1161  LIR* data_target = ScanLiteralPool(method_literal_list_, target_method_idx, 0);
1162  if (data_target == NULL) {
1163    data_target = AddWordData(&method_literal_list_, target_method_idx);
1164    data_target->operands[1] = WrapPointer(const_cast<DexFile*>(target_method.dex_file));
1165    data_target->operands[2] = type;
1166  }
1167  LIR* load_pc_rel = OpPcRelLoad(TargetReg(symbolic_reg), data_target);
1168  AppendLIR(load_pc_rel);
1169  DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target);
1170}
1171
1172void Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
1173  // Use the literal pool and a PC-relative load from a data word.
1174  LIR* data_target = ScanLiteralPool(class_literal_list_, type_idx, 0);
1175  if (data_target == nullptr) {
1176    data_target = AddWordData(&class_literal_list_, type_idx);
1177  }
1178  LIR* load_pc_rel = OpPcRelLoad(TargetReg(symbolic_reg), data_target);
1179  AppendLIR(load_pc_rel);
1180}
1181
1182std::vector<uint8_t>* Mir2Lir::ReturnCallFrameInformation() {
1183  // Default case is to do nothing.
1184  return nullptr;
1185}
1186
1187RegLocation Mir2Lir::NarrowRegLoc(RegLocation loc) {
1188  loc.wide = false;
1189  if (loc.location == kLocPhysReg) {
1190    if (loc.reg.IsPair()) {
1191      loc.reg = loc.reg.GetLow();
1192    } else {
1193      // FIXME: temp workaround.
1194      // Issue here: how do we narrow to a 32-bit value in 64-bit container?
1195      // Probably the wrong thing to narrow the RegStorage container here.  That
1196      // should be a target decision.  At the RegLocation level, we're only
1197      // modifying the view of the Dalvik value - this is orthogonal to the storage
1198      // container size.  Consider this a temp workaround.
1199      DCHECK(loc.reg.IsDouble());
1200      loc.reg = loc.reg.DoubleToLowSingle();
1201    }
1202  }
1203  return loc;
1204}
1205
1206}  // namespace art
1207