gen_invoke.cc revision 49161cef10a308aedada18e9aa742498d6e6c8c7
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "dex/compiler_ir.h"
18#include "dex/frontend.h"
19#include "dex/quick/dex_file_method_inliner.h"
20#include "dex/quick/dex_file_to_method_inliner_map.h"
21#include "dex_file-inl.h"
22#include "entrypoints/quick/quick_entrypoints.h"
23#include "invoke_type.h"
24#include "mirror/array.h"
25#include "mirror/string.h"
26#include "mir_to_lir-inl.h"
27#include "x86/codegen_x86.h"
28
29namespace art {
30
31/*
32 * This source files contains "gen" codegen routines that should
33 * be applicable to most targets.  Only mid-level support utilities
34 * and "op" calls may be used here.
35 */
36
37/*
38 * To save scheduling time, helper calls are broken into two parts: generation of
39 * the helper target address, and the actuall call to the helper.  Because x86
40 * has a memory call operation, part 1 is a NOP for x86.  For other targets,
41 * load arguments between the two parts.
42 */
43int Mir2Lir::CallHelperSetup(ThreadOffset helper_offset) {
44  return (cu_->instruction_set == kX86) ? 0 : LoadHelper(helper_offset);
45}
46
47/* NOTE: if r_tgt is a temp, it will be freed following use */
48LIR* Mir2Lir::CallHelper(int r_tgt, ThreadOffset helper_offset, bool safepoint_pc) {
49  LIR* call_inst;
50  if (cu_->instruction_set == kX86) {
51    call_inst = OpThreadMem(kOpBlx, helper_offset);
52  } else {
53    call_inst = OpReg(kOpBlx, r_tgt);
54    FreeTemp(r_tgt);
55  }
56  if (safepoint_pc) {
57    MarkSafepointPC(call_inst);
58  }
59  return call_inst;
60}
61
62void Mir2Lir::CallRuntimeHelperImm(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
63  int r_tgt = CallHelperSetup(helper_offset);
64  LoadConstant(TargetReg(kArg0), arg0);
65  ClobberCallerSave();
66  CallHelper(r_tgt, helper_offset, safepoint_pc);
67}
68
69void Mir2Lir::CallRuntimeHelperReg(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
70  int r_tgt = CallHelperSetup(helper_offset);
71  OpRegCopy(TargetReg(kArg0), arg0);
72  ClobberCallerSave();
73  CallHelper(r_tgt, helper_offset, safepoint_pc);
74}
75
76void Mir2Lir::CallRuntimeHelperRegLocation(ThreadOffset helper_offset, RegLocation arg0,
77                                           bool safepoint_pc) {
78  int r_tgt = CallHelperSetup(helper_offset);
79  if (arg0.wide == 0) {
80    LoadValueDirectFixed(arg0, TargetReg(kArg0));
81  } else {
82    LoadValueDirectWideFixed(arg0, TargetReg(kArg0), TargetReg(kArg1));
83  }
84  ClobberCallerSave();
85  CallHelper(r_tgt, helper_offset, safepoint_pc);
86}
87
88void Mir2Lir::CallRuntimeHelperImmImm(ThreadOffset helper_offset, int arg0, int arg1,
89                                      bool safepoint_pc) {
90  int r_tgt = CallHelperSetup(helper_offset);
91  LoadConstant(TargetReg(kArg0), arg0);
92  LoadConstant(TargetReg(kArg1), arg1);
93  ClobberCallerSave();
94  CallHelper(r_tgt, helper_offset, safepoint_pc);
95}
96
97void Mir2Lir::CallRuntimeHelperImmRegLocation(ThreadOffset helper_offset, int arg0,
98                                              RegLocation arg1, bool safepoint_pc) {
99  int r_tgt = CallHelperSetup(helper_offset);
100  if (arg1.wide == 0) {
101    LoadValueDirectFixed(arg1, TargetReg(kArg1));
102  } else {
103    LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2));
104  }
105  LoadConstant(TargetReg(kArg0), arg0);
106  ClobberCallerSave();
107  CallHelper(r_tgt, helper_offset, safepoint_pc);
108}
109
110void Mir2Lir::CallRuntimeHelperRegLocationImm(ThreadOffset helper_offset, RegLocation arg0, int arg1,
111                                              bool safepoint_pc) {
112  int r_tgt = CallHelperSetup(helper_offset);
113  LoadValueDirectFixed(arg0, TargetReg(kArg0));
114  LoadConstant(TargetReg(kArg1), arg1);
115  ClobberCallerSave();
116  CallHelper(r_tgt, helper_offset, safepoint_pc);
117}
118
119void Mir2Lir::CallRuntimeHelperImmReg(ThreadOffset helper_offset, int arg0, int arg1,
120                                      bool safepoint_pc) {
121  int r_tgt = CallHelperSetup(helper_offset);
122  OpRegCopy(TargetReg(kArg1), arg1);
123  LoadConstant(TargetReg(kArg0), arg0);
124  ClobberCallerSave();
125  CallHelper(r_tgt, helper_offset, safepoint_pc);
126}
127
128void Mir2Lir::CallRuntimeHelperRegImm(ThreadOffset helper_offset, int arg0, int arg1,
129                                      bool safepoint_pc) {
130  int r_tgt = CallHelperSetup(helper_offset);
131  OpRegCopy(TargetReg(kArg0), arg0);
132  LoadConstant(TargetReg(kArg1), arg1);
133  ClobberCallerSave();
134  CallHelper(r_tgt, helper_offset, safepoint_pc);
135}
136
137void Mir2Lir::CallRuntimeHelperImmMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
138  int r_tgt = CallHelperSetup(helper_offset);
139  LoadCurrMethodDirect(TargetReg(kArg1));
140  LoadConstant(TargetReg(kArg0), arg0);
141  ClobberCallerSave();
142  CallHelper(r_tgt, helper_offset, safepoint_pc);
143}
144
145void Mir2Lir::CallRuntimeHelperRegMethod(ThreadOffset helper_offset, int arg0, bool safepoint_pc) {
146  int r_tgt = CallHelperSetup(helper_offset);
147  DCHECK_NE(TargetReg(kArg1), arg0);
148  if (TargetReg(kArg0) != arg0) {
149    OpRegCopy(TargetReg(kArg0), arg0);
150  }
151  LoadCurrMethodDirect(TargetReg(kArg1));
152  ClobberCallerSave();
153  CallHelper(r_tgt, helper_offset, safepoint_pc);
154}
155
156void Mir2Lir::CallRuntimeHelperRegMethodRegLocation(ThreadOffset helper_offset, int arg0,
157                                                    RegLocation arg2, bool safepoint_pc) {
158  int r_tgt = CallHelperSetup(helper_offset);
159  DCHECK_NE(TargetReg(kArg1), arg0);
160  if (TargetReg(kArg0) != arg0) {
161    OpRegCopy(TargetReg(kArg0), arg0);
162  }
163  LoadCurrMethodDirect(TargetReg(kArg1));
164  LoadValueDirectFixed(arg2, TargetReg(kArg2));
165  ClobberCallerSave();
166  CallHelper(r_tgt, helper_offset, safepoint_pc);
167}
168
169void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(ThreadOffset helper_offset, RegLocation arg0,
170                                                      RegLocation arg1, bool safepoint_pc) {
171  int r_tgt = CallHelperSetup(helper_offset);
172  if (arg0.wide == 0) {
173    LoadValueDirectFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0));
174    if (arg1.wide == 0) {
175      if (cu_->instruction_set == kMips) {
176        LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1));
177      } else {
178        LoadValueDirectFixed(arg1, TargetReg(kArg1));
179      }
180    } else {
181      if (cu_->instruction_set == kMips) {
182        LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg1), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg2));
183      } else {
184        LoadValueDirectWideFixed(arg1, TargetReg(kArg1), TargetReg(kArg2));
185      }
186    }
187  } else {
188    LoadValueDirectWideFixed(arg0, arg0.fp ? TargetReg(kFArg0) : TargetReg(kArg0), arg0.fp ? TargetReg(kFArg1) : TargetReg(kArg1));
189    if (arg1.wide == 0) {
190      LoadValueDirectFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2));
191    } else {
192      LoadValueDirectWideFixed(arg1, arg1.fp ? TargetReg(kFArg2) : TargetReg(kArg2), arg1.fp ? TargetReg(kFArg3) : TargetReg(kArg3));
193    }
194  }
195  ClobberCallerSave();
196  CallHelper(r_tgt, helper_offset, safepoint_pc);
197}
198
199void Mir2Lir::CallRuntimeHelperRegReg(ThreadOffset helper_offset, int arg0, int arg1,
200                                      bool safepoint_pc) {
201  int r_tgt = CallHelperSetup(helper_offset);
202  DCHECK_NE(TargetReg(kArg0), arg1);  // check copy into arg0 won't clobber arg1
203  OpRegCopy(TargetReg(kArg0), arg0);
204  OpRegCopy(TargetReg(kArg1), arg1);
205  ClobberCallerSave();
206  CallHelper(r_tgt, helper_offset, safepoint_pc);
207}
208
209void Mir2Lir::CallRuntimeHelperRegRegImm(ThreadOffset helper_offset, int arg0, int arg1,
210                                         int arg2, bool safepoint_pc) {
211  int r_tgt = CallHelperSetup(helper_offset);
212  DCHECK_NE(TargetReg(kArg0), arg1);  // check copy into arg0 won't clobber arg1
213  OpRegCopy(TargetReg(kArg0), arg0);
214  OpRegCopy(TargetReg(kArg1), arg1);
215  LoadConstant(TargetReg(kArg2), arg2);
216  ClobberCallerSave();
217  CallHelper(r_tgt, helper_offset, safepoint_pc);
218}
219
220void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(ThreadOffset helper_offset,
221                                                    int arg0, RegLocation arg2, bool safepoint_pc) {
222  int r_tgt = CallHelperSetup(helper_offset);
223  LoadValueDirectFixed(arg2, TargetReg(kArg2));
224  LoadCurrMethodDirect(TargetReg(kArg1));
225  LoadConstant(TargetReg(kArg0), arg0);
226  ClobberCallerSave();
227  CallHelper(r_tgt, helper_offset, safepoint_pc);
228}
229
230void Mir2Lir::CallRuntimeHelperImmMethodImm(ThreadOffset helper_offset, int arg0,
231                                            int arg2, bool safepoint_pc) {
232  int r_tgt = CallHelperSetup(helper_offset);
233  LoadCurrMethodDirect(TargetReg(kArg1));
234  LoadConstant(TargetReg(kArg2), arg2);
235  LoadConstant(TargetReg(kArg0), arg0);
236  ClobberCallerSave();
237  CallHelper(r_tgt, helper_offset, safepoint_pc);
238}
239
240void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset helper_offset,
241                                                         int arg0, RegLocation arg1,
242                                                         RegLocation arg2, bool safepoint_pc) {
243  int r_tgt = CallHelperSetup(helper_offset);
244  DCHECK_EQ(arg1.wide, 0U);
245  LoadValueDirectFixed(arg1, TargetReg(kArg1));
246  if (arg2.wide == 0) {
247    LoadValueDirectFixed(arg2, TargetReg(kArg2));
248  } else {
249    LoadValueDirectWideFixed(arg2, TargetReg(kArg2), TargetReg(kArg3));
250  }
251  LoadConstant(TargetReg(kArg0), arg0);
252  ClobberCallerSave();
253  CallHelper(r_tgt, helper_offset, safepoint_pc);
254}
255
256void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset helper_offset,
257                                                                 RegLocation arg0, RegLocation arg1,
258                                                                 RegLocation arg2,
259                                                                 bool safepoint_pc) {
260  int r_tgt = CallHelperSetup(helper_offset);
261  DCHECK_EQ(arg0.wide, 0U);
262  LoadValueDirectFixed(arg0, TargetReg(kArg0));
263  DCHECK_EQ(arg1.wide, 0U);
264  LoadValueDirectFixed(arg1, TargetReg(kArg1));
265  DCHECK_EQ(arg1.wide, 0U);
266  LoadValueDirectFixed(arg2, TargetReg(kArg2));
267  ClobberCallerSave();
268  CallHelper(r_tgt, helper_offset, safepoint_pc);
269}
270
271/*
272 * If there are any ins passed in registers that have not been promoted
273 * to a callee-save register, flush them to the frame.  Perform intial
274 * assignment of promoted arguments.
275 *
276 * ArgLocs is an array of location records describing the incoming arguments
277 * with one location record per word of argument.
278 */
279void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
280  /*
281   * Dummy up a RegLocation for the incoming Method*
282   * It will attempt to keep kArg0 live (or copy it to home location
283   * if promoted).
284   */
285  RegLocation rl_src = rl_method;
286  rl_src.location = kLocPhysReg;
287  rl_src.reg = RegStorage(RegStorage::k32BitSolo, TargetReg(kArg0));
288  rl_src.home = false;
289  MarkLive(rl_src.reg.GetReg(), rl_src.s_reg_low);
290  StoreValue(rl_method, rl_src);
291  // If Method* has been promoted, explicitly flush
292  if (rl_method.location == kLocPhysReg) {
293    StoreWordDisp(TargetReg(kSp), 0, TargetReg(kArg0));
294  }
295
296  if (cu_->num_ins == 0) {
297    return;
298  }
299
300  int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
301  /*
302   * Copy incoming arguments to their proper home locations.
303   * NOTE: an older version of dx had an issue in which
304   * it would reuse static method argument registers.
305   * This could result in the same Dalvik virtual register
306   * being promoted to both core and fp regs. To account for this,
307   * we only copy to the corresponding promoted physical register
308   * if it matches the type of the SSA name for the incoming
309   * argument.  It is also possible that long and double arguments
310   * end up half-promoted.  In those cases, we must flush the promoted
311   * half to memory as well.
312   */
313  for (int i = 0; i < cu_->num_ins; i++) {
314    PromotionMap* v_map = &promotion_map_[start_vreg + i];
315    int reg = GetArgMappingToPhysicalReg(i);
316
317    if (reg != INVALID_REG) {
318      // If arriving in register
319      bool need_flush = true;
320      RegLocation* t_loc = &ArgLocs[i];
321      if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
322        OpRegCopy(v_map->core_reg, reg);
323        need_flush = false;
324      } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
325        OpRegCopy(v_map->FpReg, reg);
326        need_flush = false;
327      } else {
328        need_flush = true;
329      }
330
331      // For wide args, force flush if not fully promoted
332      if (t_loc->wide) {
333        PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
334        // Is only half promoted?
335        need_flush |= (p_map->core_location != v_map->core_location) ||
336            (p_map->fp_location != v_map->fp_location);
337        if ((cu_->instruction_set == kThumb2) && t_loc->fp && !need_flush) {
338          /*
339           * In Arm, a double is represented as a pair of consecutive single float
340           * registers starting at an even number.  It's possible that both Dalvik vRegs
341           * representing the incoming double were independently promoted as singles - but
342           * not in a form usable as a double.  If so, we need to flush - even though the
343           * incoming arg appears fully in register.  At this point in the code, both
344           * halves of the double are promoted.  Make sure they are in a usable form.
345           */
346          int lowreg_index = start_vreg + i + (t_loc->high_word ? -1 : 0);
347          int low_reg = promotion_map_[lowreg_index].FpReg;
348          int high_reg = promotion_map_[lowreg_index + 1].FpReg;
349          if (((low_reg & 0x1) != 0) || (high_reg != (low_reg + 1))) {
350            need_flush = true;
351          }
352        }
353      }
354      if (need_flush) {
355        StoreBaseDisp(TargetReg(kSp), SRegOffset(start_vreg + i), reg, kWord);
356      }
357    } else {
358      // If arriving in frame & promoted
359      if (v_map->core_location == kLocPhysReg) {
360        LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
361                     v_map->core_reg);
362      }
363      if (v_map->fp_location == kLocPhysReg) {
364        LoadWordDisp(TargetReg(kSp), SRegOffset(start_vreg + i),
365                     v_map->FpReg);
366      }
367    }
368  }
369}
370
371/*
372 * Bit of a hack here - in the absence of a real scheduling pass,
373 * emit the next instruction in static & direct invoke sequences.
374 */
375static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
376                          int state, const MethodReference& target_method,
377                          uint32_t unused,
378                          uintptr_t direct_code, uintptr_t direct_method,
379                          InvokeType type) {
380  Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
381  if (direct_code != 0 && direct_method != 0) {
382    switch (state) {
383    case 0:  // Get the current Method* [sets kArg0]
384      if (direct_code != static_cast<unsigned int>(-1)) {
385        if (cu->instruction_set != kX86) {
386          cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code);
387        }
388      } else if (cu->instruction_set != kX86) {
389        cg->LoadCodeAddress(target_method, type, kInvokeTgt);
390      }
391      if (direct_method != static_cast<unsigned int>(-1)) {
392        cg->LoadConstant(cg->TargetReg(kArg0), direct_method);
393      } else {
394        cg->LoadMethodAddress(target_method, type, kArg0);
395      }
396      break;
397    default:
398      return -1;
399    }
400  } else {
401    switch (state) {
402    case 0:  // Get the current Method* [sets kArg0]
403      // TUNING: we can save a reg copy if Method* has been promoted.
404      cg->LoadCurrMethodDirect(cg->TargetReg(kArg0));
405      break;
406    case 1:  // Get method->dex_cache_resolved_methods_
407      cg->LoadWordDisp(cg->TargetReg(kArg0),
408        mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(), cg->TargetReg(kArg0));
409      // Set up direct code if known.
410      if (direct_code != 0) {
411        if (direct_code != static_cast<unsigned int>(-1)) {
412          cg->LoadConstant(cg->TargetReg(kInvokeTgt), direct_code);
413        } else if (cu->instruction_set != kX86) {
414          CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
415          cg->LoadCodeAddress(target_method, type, kInvokeTgt);
416        }
417      }
418      break;
419    case 2:  // Grab target method*
420      CHECK_EQ(cu->dex_file, target_method.dex_file);
421      cg->LoadWordDisp(cg->TargetReg(kArg0),
422                       mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
423                           (target_method.dex_method_index * 4),
424                       cg-> TargetReg(kArg0));
425      break;
426    case 3:  // Grab the code from the method*
427      if (cu->instruction_set != kX86) {
428        if (direct_code == 0) {
429          cg->LoadWordDisp(cg->TargetReg(kArg0),
430                           mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(),
431                           cg->TargetReg(kInvokeTgt));
432        }
433        break;
434      }
435      // Intentional fallthrough for x86
436    default:
437      return -1;
438    }
439  }
440  return state + 1;
441}
442
443/*
444 * Bit of a hack here - in the absence of a real scheduling pass,
445 * emit the next instruction in a virtual invoke sequence.
446 * We can use kLr as a temp prior to target address loading
447 * Note also that we'll load the first argument ("this") into
448 * kArg1 here rather than the standard LoadArgRegs.
449 */
450static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
451                         int state, const MethodReference& target_method,
452                         uint32_t method_idx, uintptr_t unused, uintptr_t unused2,
453                         InvokeType unused3) {
454  Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
455  /*
456   * This is the fast path in which the target virtual method is
457   * fully resolved at compile time.
458   */
459  switch (state) {
460    case 0: {  // Get "this" [set kArg1]
461      RegLocation  rl_arg = info->args[0];
462      cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1));
463      break;
464    }
465    case 1:  // Is "this" null? [use kArg1]
466      cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags);
467      // get this->klass_ [use kArg1, set kInvokeTgt]
468      cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(),
469                       cg->TargetReg(kInvokeTgt));
470      break;
471    case 2:  // Get this->klass_->vtable [usr kInvokeTgt, set kInvokeTgt]
472      cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::VTableOffset().Int32Value(),
473                       cg->TargetReg(kInvokeTgt));
474      break;
475    case 3:  // Get target method [use kInvokeTgt, set kArg0]
476      cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), (method_idx * 4) +
477                       mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(),
478                       cg->TargetReg(kArg0));
479      break;
480    case 4:  // Get the compiled code address [uses kArg0, sets kInvokeTgt]
481      if (cu->instruction_set != kX86) {
482        cg->LoadWordDisp(cg->TargetReg(kArg0),
483                         mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(),
484                         cg->TargetReg(kInvokeTgt));
485        break;
486      }
487      // Intentional fallthrough for X86
488    default:
489      return -1;
490  }
491  return state + 1;
492}
493
494/*
495 * Emit the next instruction in an invoke interface sequence. This will do a lookup in the
496 * class's IMT, calling either the actual method or art_quick_imt_conflict_trampoline if
497 * more than one interface method map to the same index. Note also that we'll load the first
498 * argument ("this") into kArg1 here rather than the standard LoadArgRegs.
499 */
500static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
501                                 const MethodReference& target_method,
502                                 uint32_t method_idx, uintptr_t unused,
503                                 uintptr_t direct_method, InvokeType unused2) {
504  Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
505
506  switch (state) {
507    case 0:  // Set target method index in case of conflict [set kHiddenArg, kHiddenFpArg (x86)]
508      CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
509      cg->LoadConstant(cg->TargetReg(kHiddenArg), target_method.dex_method_index);
510      if (cu->instruction_set == kX86) {
511        cg->OpRegCopy(cg->TargetReg(kHiddenFpArg), cg->TargetReg(kHiddenArg));
512      }
513      break;
514    case 1: {  // Get "this" [set kArg1]
515      RegLocation  rl_arg = info->args[0];
516      cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1));
517      break;
518    }
519    case 2:  // Is "this" null? [use kArg1]
520      cg->GenNullCheck(info->args[0].s_reg_low, cg->TargetReg(kArg1), info->opt_flags);
521      // Get this->klass_ [use kArg1, set kInvokeTgt]
522      cg->LoadWordDisp(cg->TargetReg(kArg1), mirror::Object::ClassOffset().Int32Value(),
523                       cg->TargetReg(kInvokeTgt));
524      break;
525    case 3:  // Get this->klass_->imtable [use kInvokeTgt, set kInvokeTgt]
526      cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), mirror::Class::ImTableOffset().Int32Value(),
527                       cg->TargetReg(kInvokeTgt));
528      break;
529    case 4:  // Get target method [use kInvokeTgt, set kArg0]
530      cg->LoadWordDisp(cg->TargetReg(kInvokeTgt), ((method_idx % ClassLinker::kImtSize) * 4) +
531                       mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value(),
532                       cg->TargetReg(kArg0));
533      break;
534    case 5:  // Get the compiled code address [use kArg0, set kInvokeTgt]
535      if (cu->instruction_set != kX86) {
536        cg->LoadWordDisp(cg->TargetReg(kArg0),
537                         mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(),
538                         cg->TargetReg(kInvokeTgt));
539        break;
540      }
541      // Intentional fallthrough for X86
542    default:
543      return -1;
544  }
545  return state + 1;
546}
547
548static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info, ThreadOffset trampoline,
549                            int state, const MethodReference& target_method,
550                            uint32_t method_idx) {
551  Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
552  /*
553   * This handles the case in which the base method is not fully
554   * resolved at compile time, we bail to a runtime helper.
555   */
556  if (state == 0) {
557    if (cu->instruction_set != kX86) {
558      // Load trampoline target
559      cg->LoadWordDisp(cg->TargetReg(kSelf), trampoline.Int32Value(), cg->TargetReg(kInvokeTgt));
560    }
561    // Load kArg0 with method index
562    CHECK_EQ(cu->dex_file, target_method.dex_file);
563    cg->LoadConstant(cg->TargetReg(kArg0), target_method.dex_method_index);
564    return 1;
565  }
566  return -1;
567}
568
569static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
570                                int state,
571                                const MethodReference& target_method,
572                                uint32_t unused, uintptr_t unused2,
573                                uintptr_t unused3, InvokeType unused4) {
574  ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
575  return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
576}
577
578static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
579                                const MethodReference& target_method,
580                                uint32_t unused, uintptr_t unused2,
581                                uintptr_t unused3, InvokeType unused4) {
582  ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
583  return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
584}
585
586static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
587                               const MethodReference& target_method,
588                               uint32_t unused, uintptr_t unused2,
589                               uintptr_t unused3, InvokeType unused4) {
590  ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
591  return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
592}
593
594static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
595                           const MethodReference& target_method,
596                           uint32_t unused, uintptr_t unused2,
597                           uintptr_t unused3, InvokeType unused4) {
598  ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
599  return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
600}
601
602static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
603                                                CallInfo* info, int state,
604                                                const MethodReference& target_method,
605                                                uint32_t unused, uintptr_t unused2,
606                                                uintptr_t unused3, InvokeType unused4) {
607  ThreadOffset trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
608  return NextInvokeInsnSP(cu, info, trampoline, state, target_method, 0);
609}
610
611int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state,
612                         NextCallInsn next_call_insn,
613                         const MethodReference& target_method,
614                         uint32_t vtable_idx, uintptr_t direct_code,
615                         uintptr_t direct_method, InvokeType type, bool skip_this) {
616  int last_arg_reg = TargetReg(kArg3);
617  int next_reg = TargetReg(kArg1);
618  int next_arg = 0;
619  if (skip_this) {
620    next_reg++;
621    next_arg++;
622  }
623  for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) {
624    RegLocation rl_arg = info->args[next_arg++];
625    rl_arg = UpdateRawLoc(rl_arg);
626    if (rl_arg.wide && (next_reg <= TargetReg(kArg2))) {
627      LoadValueDirectWideFixed(rl_arg, next_reg, next_reg + 1);
628      next_reg++;
629      next_arg++;
630    } else {
631      if (rl_arg.wide) {
632        rl_arg.wide = false;
633        rl_arg.is_const = false;
634      }
635      LoadValueDirectFixed(rl_arg, next_reg);
636    }
637    call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
638                                direct_code, direct_method, type);
639  }
640  return call_state;
641}
642
643/*
644 * Load up to 5 arguments, the first three of which will be in
645 * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
646 * and as part of the load sequence, it must be replaced with
647 * the target method pointer.  Note, this may also be called
648 * for "range" variants if the number of arguments is 5 or fewer.
649 */
650int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
651                                  int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
652                                  const MethodReference& target_method,
653                                  uint32_t vtable_idx, uintptr_t direct_code,
654                                  uintptr_t direct_method, InvokeType type, bool skip_this) {
655  RegLocation rl_arg;
656
657  /* If no arguments, just return */
658  if (info->num_arg_words == 0)
659    return call_state;
660
661  call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
662                              direct_code, direct_method, type);
663
664  DCHECK_LE(info->num_arg_words, 5);
665  if (info->num_arg_words > 3) {
666    int32_t next_use = 3;
667    // Detect special case of wide arg spanning arg3/arg4
668    RegLocation rl_use0 = info->args[0];
669    RegLocation rl_use1 = info->args[1];
670    RegLocation rl_use2 = info->args[2];
671    if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) &&
672      rl_use2.wide) {
673      int reg = -1;
674      // Wide spans, we need the 2nd half of uses[2].
675      rl_arg = UpdateLocWide(rl_use2);
676      if (rl_arg.location == kLocPhysReg) {
677        reg = rl_arg.reg.GetHighReg();
678      } else {
679        // kArg2 & rArg3 can safely be used here
680        reg = TargetReg(kArg3);
681        LoadWordDisp(TargetReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg);
682        call_state = next_call_insn(cu_, info, call_state, target_method,
683                                    vtable_idx, direct_code, direct_method, type);
684      }
685      StoreBaseDisp(TargetReg(kSp), (next_use + 1) * 4, reg, kWord);
686      call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
687                                  direct_code, direct_method, type);
688      next_use++;
689    }
690    // Loop through the rest
691    while (next_use < info->num_arg_words) {
692      int low_reg;
693      int high_reg = -1;
694      rl_arg = info->args[next_use];
695      rl_arg = UpdateRawLoc(rl_arg);
696      if (rl_arg.location == kLocPhysReg) {
697        low_reg = rl_arg.reg.GetReg();
698        if (rl_arg.wide) {
699          high_reg = rl_arg.reg.GetHighReg();
700        }
701      } else {
702        low_reg = TargetReg(kArg2);
703        if (rl_arg.wide) {
704          high_reg = TargetReg(kArg3);
705          LoadValueDirectWideFixed(rl_arg, low_reg, high_reg);
706        } else {
707          LoadValueDirectFixed(rl_arg, low_reg);
708        }
709        call_state = next_call_insn(cu_, info, call_state, target_method,
710                                    vtable_idx, direct_code, direct_method, type);
711      }
712      int outs_offset = (next_use + 1) * 4;
713      if (rl_arg.wide) {
714        StoreBaseDispWide(TargetReg(kSp), outs_offset, low_reg, high_reg);
715        next_use += 2;
716      } else {
717        StoreWordDisp(TargetReg(kSp), outs_offset, low_reg);
718        next_use++;
719      }
720      call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
721                               direct_code, direct_method, type);
722    }
723  }
724
725  call_state = LoadArgRegs(info, call_state, next_call_insn,
726                           target_method, vtable_idx, direct_code, direct_method,
727                           type, skip_this);
728
729  if (pcrLabel) {
730    *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
731  }
732  return call_state;
733}
734
735/*
736 * May have 0+ arguments (also used for jumbo).  Note that
737 * source virtual registers may be in physical registers, so may
738 * need to be flushed to home location before copying.  This
739 * applies to arg3 and above (see below).
740 *
741 * Two general strategies:
742 *    If < 20 arguments
743 *       Pass args 3-18 using vldm/vstm block copy
744 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
745 *    If 20+ arguments
746 *       Pass args arg19+ using memcpy block copy
747 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
748 *
749 */
750int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
751                                LIR** pcrLabel, NextCallInsn next_call_insn,
752                                const MethodReference& target_method,
753                                uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
754                                InvokeType type, bool skip_this) {
755  // If we can treat it as non-range (Jumbo ops will use range form)
756  if (info->num_arg_words <= 5)
757    return GenDalvikArgsNoRange(info, call_state, pcrLabel,
758                                next_call_insn, target_method, vtable_idx,
759                                direct_code, direct_method, type, skip_this);
760  /*
761   * First load the non-register arguments.  Both forms expect all
762   * of the source arguments to be in their home frame location, so
763   * scan the s_reg names and flush any that have been promoted to
764   * frame backing storage.
765   */
766  // Scan the rest of the args - if in phys_reg flush to memory
767  for (int next_arg = 0; next_arg < info->num_arg_words;) {
768    RegLocation loc = info->args[next_arg];
769    if (loc.wide) {
770      loc = UpdateLocWide(loc);
771      if ((next_arg >= 2) && (loc.location == kLocPhysReg)) {
772        StoreBaseDispWide(TargetReg(kSp), SRegOffset(loc.s_reg_low),
773                          loc.reg.GetReg(), loc.reg.GetHighReg());
774      }
775      next_arg += 2;
776    } else {
777      loc = UpdateLoc(loc);
778      if ((next_arg >= 3) && (loc.location == kLocPhysReg)) {
779        StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low),
780                      loc.reg.GetReg(), kWord);
781      }
782      next_arg++;
783    }
784  }
785
786  // Logic below assumes that Method pointer is at offset zero from SP.
787  DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
788
789  // The first 3 arguments are passed via registers.
790  // TODO: For 64-bit, instead of hardcoding 4 for Method* size, we should either
791  // get size of uintptr_t or size of object reference according to model being used.
792  int outs_offset = 4 /* Method* */ + (3 * sizeof(uint32_t));
793  int start_offset = SRegOffset(info->args[3].s_reg_low);
794  int regs_left_to_pass_via_stack = info->num_arg_words - 3;
795  DCHECK_GT(regs_left_to_pass_via_stack, 0);
796
797  if (cu_->instruction_set == kThumb2 && regs_left_to_pass_via_stack <= 16) {
798    // Use vldm/vstm pair using kArg3 as a temp
799    call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
800                             direct_code, direct_method, type);
801    OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), start_offset);
802    LIR* ld = OpVldm(TargetReg(kArg3), regs_left_to_pass_via_stack);
803    // TUNING: loosen barrier
804    ld->u.m.def_mask = ENCODE_ALL;
805    SetMemRefType(ld, true /* is_load */, kDalvikReg);
806    call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
807                             direct_code, direct_method, type);
808    OpRegRegImm(kOpAdd, TargetReg(kArg3), TargetReg(kSp), 4 /* Method* */ + (3 * 4));
809    call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
810                             direct_code, direct_method, type);
811    LIR* st = OpVstm(TargetReg(kArg3), regs_left_to_pass_via_stack);
812    SetMemRefType(st, false /* is_load */, kDalvikReg);
813    st->u.m.def_mask = ENCODE_ALL;
814    call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
815                             direct_code, direct_method, type);
816  } else if (cu_->instruction_set == kX86) {
817    int current_src_offset = start_offset;
818    int current_dest_offset = outs_offset;
819
820    while (regs_left_to_pass_via_stack > 0) {
821      // This is based on the knowledge that the stack itself is 16-byte aligned.
822      bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
823      bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
824      size_t bytes_to_move;
825
826      /*
827       * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
828       * a 128-bit move because we won't get the chance to try to aligned. If there are more than
829       * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
830       * We do this because we could potentially do a smaller move to align.
831       */
832      if (regs_left_to_pass_via_stack == 4 ||
833          (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
834        // Moving 128-bits via xmm register.
835        bytes_to_move = sizeof(uint32_t) * 4;
836
837        // Allocate a free xmm temp. Since we are working through the calling sequence,
838        // we expect to have an xmm temporary available.
839        int temp = AllocTempDouble();
840        CHECK_GT(temp, 0);
841
842        LIR* ld1 = nullptr;
843        LIR* ld2 = nullptr;
844        LIR* st1 = nullptr;
845        LIR* st2 = nullptr;
846
847        /*
848         * The logic is similar for both loads and stores. If we have 16-byte alignment,
849         * do an aligned move. If we have 8-byte alignment, then do the move in two
850         * parts. This approach prevents possible cache line splits. Finally, fall back
851         * to doing an unaligned move. In most cases we likely won't split the cache
852         * line but we cannot prove it and thus take a conservative approach.
853         */
854        bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
855        bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
856
857        if (src_is_16b_aligned) {
858          ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovA128FP);
859        } else if (src_is_8b_aligned) {
860          ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovLo128FP);
861          ld2 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset + (bytes_to_move >> 1), kMovHi128FP);
862        } else {
863          ld1 = OpMovRegMem(temp, TargetReg(kSp), current_src_offset, kMovU128FP);
864        }
865
866        if (dest_is_16b_aligned) {
867          st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovA128FP);
868        } else if (dest_is_8b_aligned) {
869          st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovLo128FP);
870          st2 = OpMovMemReg(TargetReg(kSp), current_dest_offset + (bytes_to_move >> 1), temp, kMovHi128FP);
871        } else {
872          st1 = OpMovMemReg(TargetReg(kSp), current_dest_offset, temp, kMovU128FP);
873        }
874
875        // TODO If we could keep track of aliasing information for memory accesses that are wider
876        // than 64-bit, we wouldn't need to set up a barrier.
877        if (ld1 != nullptr) {
878          if (ld2 != nullptr) {
879            // For 64-bit load we can actually set up the aliasing information.
880            AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
881            AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
882          } else {
883            // Set barrier for 128-bit load.
884            SetMemRefType(ld1, true /* is_load */, kDalvikReg);
885            ld1->u.m.def_mask = ENCODE_ALL;
886          }
887        }
888        if (st1 != nullptr) {
889          if (st2 != nullptr) {
890            // For 64-bit store we can actually set up the aliasing information.
891            AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
892            AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
893          } else {
894            // Set barrier for 128-bit store.
895            SetMemRefType(st1, false /* is_load */, kDalvikReg);
896            st1->u.m.def_mask = ENCODE_ALL;
897          }
898        }
899
900        // Free the temporary used for the data movement.
901        FreeTemp(temp);
902      } else {
903        // Moving 32-bits via general purpose register.
904        bytes_to_move = sizeof(uint32_t);
905
906        // Instead of allocating a new temp, simply reuse one of the registers being used
907        // for argument passing.
908        int temp = TargetReg(kArg3);
909
910        // Now load the argument VR and store to the outs.
911        LoadWordDisp(TargetReg(kSp), current_src_offset, temp);
912        StoreWordDisp(TargetReg(kSp), current_dest_offset, temp);
913      }
914
915      current_src_offset += bytes_to_move;
916      current_dest_offset += bytes_to_move;
917      regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
918    }
919  } else {
920    // Generate memcpy
921    OpRegRegImm(kOpAdd, TargetReg(kArg0), TargetReg(kSp), outs_offset);
922    OpRegRegImm(kOpAdd, TargetReg(kArg1), TargetReg(kSp), start_offset);
923    CallRuntimeHelperRegRegImm(QUICK_ENTRYPOINT_OFFSET(pMemcpy), TargetReg(kArg0),
924                               TargetReg(kArg1), (info->num_arg_words - 3) * 4, false);
925  }
926
927  call_state = LoadArgRegs(info, call_state, next_call_insn,
928                           target_method, vtable_idx, direct_code, direct_method,
929                           type, skip_this);
930
931  call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
932                           direct_code, direct_method, type);
933  if (pcrLabel) {
934    *pcrLabel = GenNullCheck(info->args[0].s_reg_low, TargetReg(kArg1), info->opt_flags);
935  }
936  return call_state;
937}
938
939RegLocation Mir2Lir::InlineTarget(CallInfo* info) {
940  RegLocation res;
941  if (info->result.location == kLocInvalid) {
942    res = GetReturn(false);
943  } else {
944    res = info->result;
945  }
946  return res;
947}
948
949RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) {
950  RegLocation res;
951  if (info->result.location == kLocInvalid) {
952    res = GetReturnWide(false);
953  } else {
954    res = info->result;
955  }
956  return res;
957}
958
959bool Mir2Lir::GenInlinedCharAt(CallInfo* info) {
960  if (cu_->instruction_set == kMips) {
961    // TODO - add Mips implementation
962    return false;
963  }
964  // Location of reference to data array
965  int value_offset = mirror::String::ValueOffset().Int32Value();
966  // Location of count
967  int count_offset = mirror::String::CountOffset().Int32Value();
968  // Starting offset within data array
969  int offset_offset = mirror::String::OffsetOffset().Int32Value();
970  // Start of char data with array_
971  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
972
973  RegLocation rl_obj = info->args[0];
974  RegLocation rl_idx = info->args[1];
975  rl_obj = LoadValue(rl_obj, kCoreReg);
976  // X86 wants to avoid putting a constant index into a register.
977  if (!(cu_->instruction_set == kX86 && rl_idx.is_const)) {
978    rl_idx = LoadValue(rl_idx, kCoreReg);
979  }
980  int reg_max;
981  GenNullCheck(rl_obj.s_reg_low, rl_obj.reg.GetReg(), info->opt_flags);
982  bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
983  LIR* launch_pad = NULL;
984  int reg_off = INVALID_REG;
985  int reg_ptr = INVALID_REG;
986  if (cu_->instruction_set != kX86) {
987    reg_off = AllocTemp();
988    reg_ptr = AllocTemp();
989    if (range_check) {
990      reg_max = AllocTemp();
991      LoadWordDisp(rl_obj.reg.GetReg(), count_offset, reg_max);
992    }
993    LoadWordDisp(rl_obj.reg.GetReg(), offset_offset, reg_off);
994    LoadWordDisp(rl_obj.reg.GetReg(), value_offset, reg_ptr);
995    if (range_check) {
996      // Set up a launch pad to allow retry in case of bounds violation */
997      launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
998      intrinsic_launchpads_.Insert(launch_pad);
999      OpRegReg(kOpCmp, rl_idx.reg.GetReg(), reg_max);
1000      FreeTemp(reg_max);
1001      OpCondBranch(kCondUge, launch_pad);
1002    }
1003    OpRegImm(kOpAdd, reg_ptr, data_offset);
1004  } else {
1005    if (range_check) {
1006      // On x86, we can compare to memory directly
1007      // Set up a launch pad to allow retry in case of bounds violation */
1008      launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
1009      intrinsic_launchpads_.Insert(launch_pad);
1010      if (rl_idx.is_const) {
1011        OpCmpMemImmBranch(kCondUlt, INVALID_REG, rl_obj.reg.GetReg(), count_offset,
1012                          mir_graph_->ConstantValue(rl_idx.orig_sreg), launch_pad);
1013      } else {
1014        OpRegMem(kOpCmp, rl_idx.reg.GetReg(), rl_obj.reg.GetReg(), count_offset);
1015        OpCondBranch(kCondUge, launch_pad);
1016      }
1017    }
1018    reg_off = AllocTemp();
1019    reg_ptr = AllocTemp();
1020    LoadWordDisp(rl_obj.reg.GetReg(), offset_offset, reg_off);
1021    LoadWordDisp(rl_obj.reg.GetReg(), value_offset, reg_ptr);
1022  }
1023  if (rl_idx.is_const) {
1024    OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg));
1025  } else {
1026    OpRegReg(kOpAdd, reg_off, rl_idx.reg.GetReg());
1027  }
1028  FreeTemp(rl_obj.reg.GetReg());
1029  if (rl_idx.location == kLocPhysReg) {
1030    FreeTemp(rl_idx.reg.GetReg());
1031  }
1032  RegLocation rl_dest = InlineTarget(info);
1033  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1034  if (cu_->instruction_set != kX86) {
1035    LoadBaseIndexed(reg_ptr, reg_off, rl_result.reg.GetReg(), 1, kUnsignedHalf);
1036  } else {
1037    LoadBaseIndexedDisp(reg_ptr, reg_off, 1, data_offset, rl_result.reg.GetReg(),
1038                        INVALID_REG, kUnsignedHalf, INVALID_SREG);
1039  }
1040  FreeTemp(reg_off);
1041  FreeTemp(reg_ptr);
1042  StoreValue(rl_dest, rl_result);
1043  if (range_check) {
1044    launch_pad->operands[2] = 0;  // no resumption
1045  }
1046  // Record that we've already inlined & null checked
1047  info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
1048  return true;
1049}
1050
1051// Generates an inlined String.is_empty or String.length.
1052bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) {
1053  if (cu_->instruction_set == kMips) {
1054    // TODO - add Mips implementation
1055    return false;
1056  }
1057  // dst = src.length();
1058  RegLocation rl_obj = info->args[0];
1059  rl_obj = LoadValue(rl_obj, kCoreReg);
1060  RegLocation rl_dest = InlineTarget(info);
1061  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1062  GenNullCheck(rl_obj.s_reg_low, rl_obj.reg.GetReg(), info->opt_flags);
1063  LoadWordDisp(rl_obj.reg.GetReg(), mirror::String::CountOffset().Int32Value(), rl_result.reg.GetReg());
1064  if (is_empty) {
1065    // dst = (dst == 0);
1066    if (cu_->instruction_set == kThumb2) {
1067      int t_reg = AllocTemp();
1068      OpRegReg(kOpNeg, t_reg, rl_result.reg.GetReg());
1069      OpRegRegReg(kOpAdc, rl_result.reg.GetReg(), rl_result.reg.GetReg(), t_reg);
1070    } else {
1071      DCHECK_EQ(cu_->instruction_set, kX86);
1072      OpRegImm(kOpSub, rl_result.reg.GetReg(), 1);
1073      OpRegImm(kOpLsr, rl_result.reg.GetReg(), 31);
1074    }
1075  }
1076  StoreValue(rl_dest, rl_result);
1077  return true;
1078}
1079
1080bool Mir2Lir::GenInlinedReverseBytes(CallInfo* info, OpSize size) {
1081  if (cu_->instruction_set == kMips) {
1082    // TODO - add Mips implementation
1083    return false;
1084  }
1085  RegLocation rl_src_i = info->args[0];
1086  RegLocation rl_dest = (size == kLong) ? InlineTargetWide(info) : InlineTarget(info);  // result reg
1087  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1088  if (size == kLong) {
1089    RegLocation rl_i = LoadValueWide(rl_src_i, kCoreReg);
1090    int r_i_low = rl_i.reg.GetReg();
1091    if (rl_i.reg.GetReg() == rl_result.reg.GetReg()) {
1092      // First REV shall clobber rl_result.reg.GetReg(), save the value in a temp for the second REV.
1093      r_i_low = AllocTemp();
1094      OpRegCopy(r_i_low, rl_i.reg.GetReg());
1095    }
1096    OpRegReg(kOpRev, rl_result.reg.GetReg(), rl_i.reg.GetHighReg());
1097    OpRegReg(kOpRev, rl_result.reg.GetHighReg(), r_i_low);
1098    if (rl_i.reg.GetReg() == rl_result.reg.GetReg()) {
1099      FreeTemp(r_i_low);
1100    }
1101    StoreValueWide(rl_dest, rl_result);
1102  } else {
1103    DCHECK(size == kWord || size == kSignedHalf);
1104    OpKind op = (size == kWord) ? kOpRev : kOpRevsh;
1105    RegLocation rl_i = LoadValue(rl_src_i, kCoreReg);
1106    OpRegReg(op, rl_result.reg.GetReg(), rl_i.reg.GetReg());
1107    StoreValue(rl_dest, rl_result);
1108  }
1109  return true;
1110}
1111
1112bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) {
1113  if (cu_->instruction_set == kMips) {
1114    // TODO - add Mips implementation
1115    return false;
1116  }
1117  RegLocation rl_src = info->args[0];
1118  rl_src = LoadValue(rl_src, kCoreReg);
1119  RegLocation rl_dest = InlineTarget(info);
1120  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1121  int sign_reg = AllocTemp();
1122  // abs(x) = y<=x>>31, (x+y)^y.
1123  OpRegRegImm(kOpAsr, sign_reg, rl_src.reg.GetReg(), 31);
1124  OpRegRegReg(kOpAdd, rl_result.reg.GetReg(), rl_src.reg.GetReg(), sign_reg);
1125  OpRegReg(kOpXor, rl_result.reg.GetReg(), sign_reg);
1126  StoreValue(rl_dest, rl_result);
1127  return true;
1128}
1129
1130bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) {
1131  if (cu_->instruction_set == kMips) {
1132    // TODO - add Mips implementation
1133    return false;
1134  }
1135  if (cu_->instruction_set == kThumb2) {
1136    RegLocation rl_src = info->args[0];
1137    rl_src = LoadValueWide(rl_src, kCoreReg);
1138    RegLocation rl_dest = InlineTargetWide(info);
1139    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1140    int sign_reg = AllocTemp();
1141    // abs(x) = y<=x>>31, (x+y)^y.
1142    OpRegRegImm(kOpAsr, sign_reg, rl_src.reg.GetHighReg(), 31);
1143    OpRegRegReg(kOpAdd, rl_result.reg.GetReg(), rl_src.reg.GetReg(), sign_reg);
1144    OpRegRegReg(kOpAdc, rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg(), sign_reg);
1145    OpRegReg(kOpXor, rl_result.reg.GetReg(), sign_reg);
1146    OpRegReg(kOpXor, rl_result.reg.GetHighReg(), sign_reg);
1147    StoreValueWide(rl_dest, rl_result);
1148    return true;
1149  } else {
1150    DCHECK_EQ(cu_->instruction_set, kX86);
1151    // Reuse source registers to avoid running out of temps
1152    RegLocation rl_src = info->args[0];
1153    rl_src = LoadValueWide(rl_src, kCoreReg);
1154    RegLocation rl_dest = InlineTargetWide(info);
1155    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1156    OpRegCopyWide(rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), rl_src.reg.GetReg(), rl_src.reg.GetHighReg());
1157    FreeTemp(rl_src.reg.GetReg());
1158    FreeTemp(rl_src.reg.GetHighReg());
1159    int sign_reg = AllocTemp();
1160    // abs(x) = y<=x>>31, (x+y)^y.
1161    OpRegRegImm(kOpAsr, sign_reg, rl_result.reg.GetHighReg(), 31);
1162    OpRegReg(kOpAdd, rl_result.reg.GetReg(), sign_reg);
1163    OpRegReg(kOpAdc, rl_result.reg.GetHighReg(), sign_reg);
1164    OpRegReg(kOpXor, rl_result.reg.GetReg(), sign_reg);
1165    OpRegReg(kOpXor, rl_result.reg.GetHighReg(), sign_reg);
1166    StoreValueWide(rl_dest, rl_result);
1167    return true;
1168  }
1169}
1170
1171bool Mir2Lir::GenInlinedAbsFloat(CallInfo* info) {
1172  if (cu_->instruction_set == kMips) {
1173    // TODO - add Mips implementation
1174    return false;
1175  }
1176  RegLocation rl_src = info->args[0];
1177  rl_src = LoadValue(rl_src, kCoreReg);
1178  RegLocation rl_dest = InlineTarget(info);
1179  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1180  int signMask = AllocTemp();
1181  LoadConstant(signMask, 0x7fffffff);
1182  OpRegRegReg(kOpAnd, rl_result.reg.GetReg(), rl_src.reg.GetReg(), signMask);
1183  FreeTemp(signMask);
1184  StoreValue(rl_dest, rl_result);
1185  return true;
1186}
1187
1188bool Mir2Lir::GenInlinedAbsDouble(CallInfo* info) {
1189  if (cu_->instruction_set == kMips) {
1190    // TODO - add Mips implementation
1191    return false;
1192  }
1193  RegLocation rl_src = info->args[0];
1194  rl_src = LoadValueWide(rl_src, kCoreReg);
1195  RegLocation rl_dest = InlineTargetWide(info);
1196  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1197  OpRegCopyWide(rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), rl_src.reg.GetReg(), rl_src.reg.GetHighReg());
1198  FreeTemp(rl_src.reg.GetReg());
1199  FreeTemp(rl_src.reg.GetHighReg());
1200  int signMask = AllocTemp();
1201  LoadConstant(signMask, 0x7fffffff);
1202  OpRegReg(kOpAnd, rl_result.reg.GetHighReg(), signMask);
1203  FreeTemp(signMask);
1204  StoreValueWide(rl_dest, rl_result);
1205  return true;
1206}
1207
1208bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) {
1209  if (cu_->instruction_set == kMips) {
1210    // TODO - add Mips implementation
1211    return false;
1212  }
1213  RegLocation rl_src = info->args[0];
1214  RegLocation rl_dest = InlineTarget(info);
1215  StoreValue(rl_dest, rl_src);
1216  return true;
1217}
1218
1219bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) {
1220  if (cu_->instruction_set == kMips) {
1221    // TODO - add Mips implementation
1222    return false;
1223  }
1224  RegLocation rl_src = info->args[0];
1225  RegLocation rl_dest = InlineTargetWide(info);
1226  StoreValueWide(rl_dest, rl_src);
1227  return true;
1228}
1229
1230/*
1231 * Fast string.index_of(I) & (II).  Tests for simple case of char <= 0xffff,
1232 * otherwise bails to standard library code.
1233 */
1234bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1235  if (cu_->instruction_set == kMips) {
1236    // TODO - add Mips implementation
1237    return false;
1238  }
1239  ClobberCallerSave();
1240  LockCallTemps();  // Using fixed registers
1241  int reg_ptr = TargetReg(kArg0);
1242  int reg_char = TargetReg(kArg1);
1243  int reg_start = TargetReg(kArg2);
1244
1245  RegLocation rl_obj = info->args[0];
1246  RegLocation rl_char = info->args[1];
1247  LoadValueDirectFixed(rl_obj, reg_ptr);
1248  LoadValueDirectFixed(rl_char, reg_char);
1249  if (zero_based) {
1250    LoadConstant(reg_start, 0);
1251  } else {
1252    RegLocation rl_start = info->args[2];     // 3rd arg only present in III flavor of IndexOf.
1253    LoadValueDirectFixed(rl_start, reg_start);
1254  }
1255  int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pIndexOf));
1256  GenNullCheck(rl_obj.s_reg_low, reg_ptr, info->opt_flags);
1257  LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
1258  intrinsic_launchpads_.Insert(launch_pad);
1259  OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, launch_pad);
1260  // NOTE: not a safepoint
1261  OpReg(kOpBlx, r_tgt);
1262  LIR* resume_tgt = NewLIR0(kPseudoTargetLabel);
1263  launch_pad->operands[2] = WrapPointer(resume_tgt);
1264  // Record that we've already inlined & null checked
1265  info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
1266  RegLocation rl_return = GetReturn(false);
1267  RegLocation rl_dest = InlineTarget(info);
1268  StoreValue(rl_dest, rl_return);
1269  return true;
1270}
1271
1272/* Fast string.compareTo(Ljava/lang/string;)I. */
1273bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) {
1274  if (cu_->instruction_set == kMips) {
1275    // TODO - add Mips implementation
1276    return false;
1277  }
1278  ClobberCallerSave();
1279  LockCallTemps();  // Using fixed registers
1280  int reg_this = TargetReg(kArg0);
1281  int reg_cmp = TargetReg(kArg1);
1282
1283  RegLocation rl_this = info->args[0];
1284  RegLocation rl_cmp = info->args[1];
1285  LoadValueDirectFixed(rl_this, reg_this);
1286  LoadValueDirectFixed(rl_cmp, reg_cmp);
1287  int r_tgt = (cu_->instruction_set != kX86) ?
1288      LoadHelper(QUICK_ENTRYPOINT_OFFSET(pStringCompareTo)) : 0;
1289  GenNullCheck(rl_this.s_reg_low, reg_this, info->opt_flags);
1290  // TUNING: check if rl_cmp.s_reg_low is already null checked
1291  LIR* launch_pad = RawLIR(0, kPseudoIntrinsicRetry, WrapPointer(info));
1292  intrinsic_launchpads_.Insert(launch_pad);
1293  OpCmpImmBranch(kCondEq, reg_cmp, 0, launch_pad);
1294  // NOTE: not a safepoint
1295  if (cu_->instruction_set != kX86) {
1296    OpReg(kOpBlx, r_tgt);
1297  } else {
1298    OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pStringCompareTo));
1299  }
1300  launch_pad->operands[2] = 0;  // No return possible
1301  // Record that we've already inlined & null checked
1302  info->opt_flags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK);
1303  RegLocation rl_return = GetReturn(false);
1304  RegLocation rl_dest = InlineTarget(info);
1305  StoreValue(rl_dest, rl_return);
1306  return true;
1307}
1308
1309bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
1310  RegLocation rl_dest = InlineTarget(info);
1311  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1312  ThreadOffset offset = Thread::PeerOffset();
1313  if (cu_->instruction_set == kThumb2 || cu_->instruction_set == kMips) {
1314    LoadWordDisp(TargetReg(kSelf), offset.Int32Value(), rl_result.reg.GetReg());
1315  } else {
1316    CHECK(cu_->instruction_set == kX86);
1317    reinterpret_cast<X86Mir2Lir*>(this)->OpRegThreadMem(kOpMov, rl_result.reg.GetReg(), offset);
1318  }
1319  StoreValue(rl_dest, rl_result);
1320  return true;
1321}
1322
1323bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info,
1324                                  bool is_long, bool is_volatile) {
1325  if (cu_->instruction_set == kMips) {
1326    // TODO - add Mips implementation
1327    return false;
1328  }
1329  // Unused - RegLocation rl_src_unsafe = info->args[0];
1330  RegLocation rl_src_obj = info->args[1];  // Object
1331  RegLocation rl_src_offset = info->args[2];  // long low
1332  rl_src_offset.wide = 0;  // ignore high half in info->args[3]
1333  RegLocation rl_dest = is_long ? InlineTargetWide(info) : InlineTarget(info);  // result reg
1334  if (is_volatile) {
1335    GenMemBarrier(kLoadLoad);
1336  }
1337  RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
1338  RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
1339  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1340  if (is_long) {
1341    OpRegReg(kOpAdd, rl_object.reg.GetReg(), rl_offset.reg.GetReg());
1342    LoadBaseDispWide(rl_object.reg.GetReg(), 0, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), INVALID_SREG);
1343    StoreValueWide(rl_dest, rl_result);
1344  } else {
1345    LoadBaseIndexed(rl_object.reg.GetReg(), rl_offset.reg.GetReg(), rl_result.reg.GetReg(), 0, kWord);
1346    StoreValue(rl_dest, rl_result);
1347  }
1348  return true;
1349}
1350
1351bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long,
1352                                  bool is_object, bool is_volatile, bool is_ordered) {
1353  if (cu_->instruction_set == kMips) {
1354    // TODO - add Mips implementation
1355    return false;
1356  }
1357  // Unused - RegLocation rl_src_unsafe = info->args[0];
1358  RegLocation rl_src_obj = info->args[1];  // Object
1359  RegLocation rl_src_offset = info->args[2];  // long low
1360  rl_src_offset.wide = 0;  // ignore high half in info->args[3]
1361  RegLocation rl_src_value = info->args[4];  // value to store
1362  if (is_volatile || is_ordered) {
1363    GenMemBarrier(kStoreStore);
1364  }
1365  RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
1366  RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
1367  RegLocation rl_value;
1368  if (is_long) {
1369    rl_value = LoadValueWide(rl_src_value, kCoreReg);
1370    OpRegReg(kOpAdd, rl_object.reg.GetReg(), rl_offset.reg.GetReg());
1371    StoreBaseDispWide(rl_object.reg.GetReg(), 0, rl_value.reg.GetReg(), rl_value.reg.GetHighReg());
1372  } else {
1373    rl_value = LoadValue(rl_src_value, kCoreReg);
1374    StoreBaseIndexed(rl_object.reg.GetReg(), rl_offset.reg.GetReg(), rl_value.reg.GetReg(), 0, kWord);
1375  }
1376
1377  // Free up the temp early, to ensure x86 doesn't run out of temporaries in MarkGCCard.
1378  FreeTemp(rl_offset.reg.GetReg());
1379  if (is_volatile) {
1380    GenMemBarrier(kStoreLoad);
1381  }
1382  if (is_object) {
1383    MarkGCCard(rl_value.reg.GetReg(), rl_object.reg.GetReg());
1384  }
1385  return true;
1386}
1387
1388void Mir2Lir::GenInvoke(CallInfo* info) {
1389  if (!(info->opt_flags & MIR_INLINED)) {
1390    DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1391    if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
1392        ->GenIntrinsic(this, info)) {
1393      return;
1394    }
1395  }
1396  int call_state = 0;
1397  LIR* null_ck;
1398  LIR** p_null_ck = NULL;
1399  NextCallInsn next_call_insn;
1400  FlushAllRegs();  /* Everything to home location */
1401  // Explicit register usage
1402  LockCallTemps();
1403
1404  const MirMethodLoweringInfo& method_info = mir_graph_->GetMethodLoweringInfo(info->mir);
1405  cu_->compiler_driver->ProcessedInvoke(method_info.GetInvokeType(), method_info.StatsFlags());
1406  InvokeType original_type = static_cast<InvokeType>(method_info.GetInvokeType());
1407  info->type = static_cast<InvokeType>(method_info.GetSharpType());
1408  bool fast_path = method_info.FastPath();
1409  bool skip_this;
1410  if (info->type == kInterface) {
1411    next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck;
1412    skip_this = fast_path;
1413  } else if (info->type == kDirect) {
1414    if (fast_path) {
1415      p_null_ck = &null_ck;
1416    }
1417    next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP;
1418    skip_this = false;
1419  } else if (info->type == kStatic) {
1420    next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP;
1421    skip_this = false;
1422  } else if (info->type == kSuper) {
1423    DCHECK(!fast_path);  // Fast path is a direct call.
1424    next_call_insn = NextSuperCallInsnSP;
1425    skip_this = false;
1426  } else {
1427    DCHECK_EQ(info->type, kVirtual);
1428    next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
1429    skip_this = fast_path;
1430  }
1431  MethodReference target_method = method_info.GetTargetMethod();
1432  if (!info->is_range) {
1433    call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck,
1434                                      next_call_insn, target_method, method_info.VTableIndex(),
1435                                      method_info.DirectCode(), method_info.DirectMethod(),
1436                                      original_type, skip_this);
1437  } else {
1438    call_state = GenDalvikArgsRange(info, call_state, p_null_ck,
1439                                    next_call_insn, target_method, method_info.VTableIndex(),
1440                                    method_info.DirectCode(), method_info.DirectMethod(),
1441                                    original_type, skip_this);
1442  }
1443  // Finish up any of the call sequence not interleaved in arg loading
1444  while (call_state >= 0) {
1445    call_state = next_call_insn(cu_, info, call_state, target_method, method_info.VTableIndex(),
1446                                method_info.DirectCode(), method_info.DirectMethod(), original_type);
1447  }
1448  LIR* call_inst;
1449  if (cu_->instruction_set != kX86) {
1450    call_inst = OpReg(kOpBlx, TargetReg(kInvokeTgt));
1451  } else {
1452    if (fast_path) {
1453      if (method_info.DirectCode() == static_cast<uintptr_t>(-1)) {
1454        // We can have the linker fixup a call relative.
1455        call_inst =
1456          reinterpret_cast<X86Mir2Lir*>(this)->CallWithLinkerFixup(target_method, info->type);
1457      } else {
1458        call_inst = OpMem(kOpBlx, TargetReg(kArg0),
1459                          mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value());
1460      }
1461    } else {
1462      ThreadOffset trampoline(-1);
1463      switch (info->type) {
1464      case kInterface:
1465        trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
1466        break;
1467      case kDirect:
1468        trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
1469        break;
1470      case kStatic:
1471        trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
1472        break;
1473      case kSuper:
1474        trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
1475        break;
1476      case kVirtual:
1477        trampoline = QUICK_ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
1478        break;
1479      default:
1480        LOG(FATAL) << "Unexpected invoke type";
1481      }
1482      call_inst = OpThreadMem(kOpBlx, trampoline);
1483    }
1484  }
1485  MarkSafepointPC(call_inst);
1486
1487  ClobberCallerSave();
1488  if (info->result.location != kLocInvalid) {
1489    // We have a following MOVE_RESULT - do it now.
1490    if (info->result.wide) {
1491      RegLocation ret_loc = GetReturnWide(info->result.fp);
1492      StoreValueWide(info->result, ret_loc);
1493    } else {
1494      RegLocation ret_loc = GetReturn(info->result.fp);
1495      StoreValue(info->result, ret_loc);
1496    }
1497  }
1498}
1499
1500}  // namespace art
1501