call_mips.cc revision 0d82948094d9a198e01aa95f64012bdedd5b6fc9
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the Mips ISA */
18
19#include "codegen_mips.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "entrypoints/quick/quick_entrypoints.h"
22#include "mips_lir.h"
23
24namespace art {
25
26void MipsMir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir,
27                                 SpecialCaseHandler special_case) {
28    // TODO
29}
30
31/*
32 * The lack of pc-relative loads on Mips presents somewhat of a challenge
33 * for our PIC switch table strategy.  To materialize the current location
34 * we'll do a dummy JAL and reference our tables using r_RA as the
35 * base register.  Note that r_RA will be used both as the base to
36 * locate the switch table data and as the reference base for the switch
37 * target offsets stored in the table.  We'll use a special pseudo-instruction
38 * to represent the jal and trigger the construction of the
39 * switch table offsets (which will happen after final assembly and all
40 * labels are fixed).
41 *
42 * The test loop will look something like:
43 *
44 *   ori   rEnd, r_ZERO, #table_size  ; size in bytes
45 *   jal   BaseLabel         ; stores "return address" (BaseLabel) in r_RA
46 *   nop                     ; opportunistically fill
47 * BaseLabel:
48 *   addiu rBase, r_RA, <table> - <BaseLabel>  ; table relative to BaseLabel
49     addu  rEnd, rEnd, rBase                   ; end of table
50 *   lw    r_val, [rSP, v_reg_off]                ; Test Value
51 * loop:
52 *   beq   rBase, rEnd, done
53 *   lw    r_key, 0(rBase)
54 *   addu  rBase, 8
55 *   bne   r_val, r_key, loop
56 *   lw    r_disp, -4(rBase)
57 *   addu  r_RA, r_disp
58 *   jr    r_RA
59 * done:
60 *
61 */
62void MipsMir2Lir::GenSparseSwitch(MIR* mir, DexOffset table_offset,
63                                  RegLocation rl_src) {
64  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
65  if (cu_->verbose) {
66    DumpSparseSwitchTable(table);
67  }
68  // Add the table to the list - we'll process it later
69  SwitchTable* tab_rec =
70      static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), ArenaAllocator::kAllocData));
71  tab_rec->table = table;
72  tab_rec->vaddr = current_dalvik_offset_;
73  int elements = table[1];
74  tab_rec->targets =
75      static_cast<LIR**>(arena_->Alloc(elements * sizeof(LIR*), ArenaAllocator::kAllocLIR));
76  switch_tables_.Insert(tab_rec);
77
78  // The table is composed of 8-byte key/disp pairs
79  int byte_size = elements * 8;
80
81  int size_hi = byte_size >> 16;
82  int size_lo = byte_size & 0xffff;
83
84  int rEnd = AllocTemp();
85  if (size_hi) {
86    NewLIR2(kMipsLui, rEnd, size_hi);
87  }
88  // Must prevent code motion for the curr pc pair
89  GenBarrier();  // Scheduling barrier
90  NewLIR0(kMipsCurrPC);  // Really a jal to .+8
91  // Now, fill the branch delay slot
92  if (size_hi) {
93    NewLIR3(kMipsOri, rEnd, rEnd, size_lo);
94  } else {
95    NewLIR3(kMipsOri, rEnd, r_ZERO, size_lo);
96  }
97  GenBarrier();  // Scheduling barrier
98
99  // Construct BaseLabel and set up table base register
100  LIR* base_label = NewLIR0(kPseudoTargetLabel);
101  // Remember base label so offsets can be computed later
102  tab_rec->anchor = base_label;
103  int rBase = AllocTemp();
104  NewLIR4(kMipsDelta, rBase, 0, WrapPointer(base_label), WrapPointer(tab_rec));
105  OpRegRegReg(kOpAdd, rEnd, rEnd, rBase);
106
107  // Grab switch test value
108  rl_src = LoadValue(rl_src, kCoreReg);
109
110  // Test loop
111  int r_key = AllocTemp();
112  LIR* loop_label = NewLIR0(kPseudoTargetLabel);
113  LIR* exit_branch = OpCmpBranch(kCondEq, rBase, rEnd, NULL);
114  LoadWordDisp(rBase, 0, r_key);
115  OpRegImm(kOpAdd, rBase, 8);
116  OpCmpBranch(kCondNe, rl_src.low_reg, r_key, loop_label);
117  int r_disp = AllocTemp();
118  LoadWordDisp(rBase, -4, r_disp);
119  OpRegRegReg(kOpAdd, r_RA, r_RA, r_disp);
120  OpReg(kOpBx, r_RA);
121
122  // Loop exit
123  LIR* exit_label = NewLIR0(kPseudoTargetLabel);
124  exit_branch->target = exit_label;
125}
126
127/*
128 * Code pattern will look something like:
129 *
130 *   lw    r_val
131 *   jal   BaseLabel         ; stores "return address" (BaseLabel) in r_RA
132 *   nop                     ; opportunistically fill
133 *   [subiu r_val, bias]      ; Remove bias if low_val != 0
134 *   bound check -> done
135 *   lw    r_disp, [r_RA, r_val]
136 *   addu  r_RA, r_disp
137 *   jr    r_RA
138 * done:
139 */
140void MipsMir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset,
141                                  RegLocation rl_src) {
142  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
143  if (cu_->verbose) {
144    DumpPackedSwitchTable(table);
145  }
146  // Add the table to the list - we'll process it later
147  SwitchTable* tab_rec =
148      static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), ArenaAllocator::kAllocData));
149  tab_rec->table = table;
150  tab_rec->vaddr = current_dalvik_offset_;
151  int size = table[1];
152  tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*),
153                                                      ArenaAllocator::kAllocLIR));
154  switch_tables_.Insert(tab_rec);
155
156  // Get the switch value
157  rl_src = LoadValue(rl_src, kCoreReg);
158
159  // Prepare the bias.  If too big, handle 1st stage here
160  int low_key = s4FromSwitchData(&table[2]);
161  bool large_bias = false;
162  int r_key;
163  if (low_key == 0) {
164    r_key = rl_src.low_reg;
165  } else if ((low_key & 0xffff) != low_key) {
166    r_key = AllocTemp();
167    LoadConstant(r_key, low_key);
168    large_bias = true;
169  } else {
170    r_key = AllocTemp();
171  }
172
173  // Must prevent code motion for the curr pc pair
174  GenBarrier();
175  NewLIR0(kMipsCurrPC);  // Really a jal to .+8
176  // Now, fill the branch delay slot with bias strip
177  if (low_key == 0) {
178    NewLIR0(kMipsNop);
179  } else {
180    if (large_bias) {
181      OpRegRegReg(kOpSub, r_key, rl_src.low_reg, r_key);
182    } else {
183      OpRegRegImm(kOpSub, r_key, rl_src.low_reg, low_key);
184    }
185  }
186  GenBarrier();  // Scheduling barrier
187
188  // Construct BaseLabel and set up table base register
189  LIR* base_label = NewLIR0(kPseudoTargetLabel);
190  // Remember base label so offsets can be computed later
191  tab_rec->anchor = base_label;
192
193  // Bounds check - if < 0 or >= size continue following switch
194  LIR* branch_over = OpCmpImmBranch(kCondHi, r_key, size-1, NULL);
195
196  // Materialize the table base pointer
197  int rBase = AllocTemp();
198  NewLIR4(kMipsDelta, rBase, 0, WrapPointer(base_label), WrapPointer(tab_rec));
199
200  // Load the displacement from the switch table
201  int r_disp = AllocTemp();
202  LoadBaseIndexed(rBase, r_key, r_disp, 2, kWord);
203
204  // Add to r_AP and go
205  OpRegRegReg(kOpAdd, r_RA, r_RA, r_disp);
206  OpReg(kOpBx, r_RA);
207
208  /* branch_over target here */
209  LIR* target = NewLIR0(kPseudoTargetLabel);
210  branch_over->target = target;
211}
212
213/*
214 * Array data table format:
215 *  ushort ident = 0x0300   magic value
216 *  ushort width            width of each element in the table
217 *  uint   size             number of elements in the table
218 *  ubyte  data[size*width] table of data values (may contain a single-byte
219 *                          padding at the end)
220 *
221 * Total size is 4+(width * size + 1)/2 16-bit code units.
222 */
223void MipsMir2Lir::GenFillArrayData(DexOffset table_offset, RegLocation rl_src) {
224  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
225  // Add the table to the list - we'll process it later
226  FillArrayData* tab_rec =
227      reinterpret_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData),
228                                                     ArenaAllocator::kAllocData));
229  tab_rec->table = table;
230  tab_rec->vaddr = current_dalvik_offset_;
231  uint16_t width = tab_rec->table[1];
232  uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
233  tab_rec->size = (size * width) + 8;
234
235  fill_array_data_.Insert(tab_rec);
236
237  // Making a call - use explicit registers
238  FlushAllRegs();   /* Everything to home location */
239  LockCallTemps();
240  LoadValueDirectFixed(rl_src, rMIPS_ARG0);
241
242  // Must prevent code motion for the curr pc pair
243  GenBarrier();
244  NewLIR0(kMipsCurrPC);  // Really a jal to .+8
245  // Now, fill the branch delay slot with the helper load
246  int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pHandleFillArrayData));
247  GenBarrier();  // Scheduling barrier
248
249  // Construct BaseLabel and set up table base register
250  LIR* base_label = NewLIR0(kPseudoTargetLabel);
251
252  // Materialize a pointer to the fill data image
253  NewLIR4(kMipsDelta, rMIPS_ARG1, 0, WrapPointer(base_label), WrapPointer(tab_rec));
254
255  // And go...
256  ClobberCalleeSave();
257  LIR* call_inst = OpReg(kOpBlx, r_tgt);  // ( array*, fill_data* )
258  MarkSafepointPC(call_inst);
259}
260
261void MipsMir2Lir::GenMoveException(RegLocation rl_dest) {
262  int ex_offset = Thread::ExceptionOffset().Int32Value();
263  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
264  int reset_reg = AllocTemp();
265  LoadWordDisp(rMIPS_SELF, ex_offset, rl_result.low_reg);
266  LoadConstant(reset_reg, 0);
267  StoreWordDisp(rMIPS_SELF, ex_offset, reset_reg);
268  FreeTemp(reset_reg);
269  StoreValue(rl_dest, rl_result);
270}
271
272/*
273 * Mark garbage collection card. Skip if the value we're storing is null.
274 */
275void MipsMir2Lir::MarkGCCard(int val_reg, int tgt_addr_reg) {
276  int reg_card_base = AllocTemp();
277  int reg_card_no = AllocTemp();
278  LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
279  LoadWordDisp(rMIPS_SELF, Thread::CardTableOffset().Int32Value(), reg_card_base);
280  OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
281  StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0,
282                   kUnsignedByte);
283  LIR* target = NewLIR0(kPseudoTargetLabel);
284  branch_over->target = target;
285  FreeTemp(reg_card_base);
286  FreeTemp(reg_card_no);
287}
288
289void MipsMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
290  int spill_count = num_core_spills_ + num_fp_spills_;
291  /*
292   * On entry, rMIPS_ARG0, rMIPS_ARG1, rMIPS_ARG2 & rMIPS_ARG3 are live.  Let the register
293   * allocation mechanism know so it doesn't try to use any of them when
294   * expanding the frame or flushing.  This leaves the utility
295   * code with a single temp: r12.  This should be enough.
296   */
297  LockTemp(rMIPS_ARG0);
298  LockTemp(rMIPS_ARG1);
299  LockTemp(rMIPS_ARG2);
300  LockTemp(rMIPS_ARG3);
301
302  /*
303   * We can safely skip the stack overflow check if we're
304   * a leaf *and* our frame size < fudge factor.
305   */
306  bool skip_overflow_check = (mir_graph_->MethodIsLeaf() &&
307      (static_cast<size_t>(frame_size_) < Thread::kStackOverflowReservedBytes));
308  NewLIR0(kPseudoMethodEntry);
309  int check_reg = AllocTemp();
310  int new_sp = AllocTemp();
311  if (!skip_overflow_check) {
312    /* Load stack limit */
313    LoadWordDisp(rMIPS_SELF, Thread::StackEndOffset().Int32Value(), check_reg);
314  }
315  /* Spill core callee saves */
316  SpillCoreRegs();
317  /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
318  DCHECK_EQ(num_fp_spills_, 0);
319  if (!skip_overflow_check) {
320    OpRegRegImm(kOpSub, new_sp, rMIPS_SP, frame_size_ - (spill_count * 4));
321    GenRegRegCheck(kCondCc, new_sp, check_reg, kThrowStackOverflow);
322    OpRegCopy(rMIPS_SP, new_sp);     // Establish stack
323  } else {
324    OpRegImm(kOpSub, rMIPS_SP, frame_size_ - (spill_count * 4));
325  }
326
327  FlushIns(ArgLocs, rl_method);
328
329  FreeTemp(rMIPS_ARG0);
330  FreeTemp(rMIPS_ARG1);
331  FreeTemp(rMIPS_ARG2);
332  FreeTemp(rMIPS_ARG3);
333}
334
335void MipsMir2Lir::GenExitSequence() {
336  /*
337   * In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't
338   * allocated by the register utilities as temps.
339   */
340  LockTemp(rMIPS_RET0);
341  LockTemp(rMIPS_RET1);
342
343  NewLIR0(kPseudoMethodExit);
344  UnSpillCoreRegs();
345  OpReg(kOpBx, r_RA);
346}
347
348}  // namespace art
349