call_mips.cc revision 3bc01748ef1c3e43361bdf520947a9d656658bf8
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the Mips ISA */
18
19#include "codegen_mips.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "entrypoints/quick/quick_entrypoints.h"
22#include "mips_lir.h"
23
24namespace art {
25
26bool MipsMir2Lir::GenSpecialCase(BasicBlock* bb, MIR* mir,
27                                 const InlineMethod& special) {
28  // TODO
29  return false;
30}
31
32/*
33 * The lack of pc-relative loads on Mips presents somewhat of a challenge
34 * for our PIC switch table strategy.  To materialize the current location
35 * we'll do a dummy JAL and reference our tables using r_RA as the
36 * base register.  Note that r_RA will be used both as the base to
37 * locate the switch table data and as the reference base for the switch
38 * target offsets stored in the table.  We'll use a special pseudo-instruction
39 * to represent the jal and trigger the construction of the
40 * switch table offsets (which will happen after final assembly and all
41 * labels are fixed).
42 *
43 * The test loop will look something like:
44 *
45 *   ori   rEnd, r_ZERO, #table_size  ; size in bytes
46 *   jal   BaseLabel         ; stores "return address" (BaseLabel) in r_RA
47 *   nop                     ; opportunistically fill
48 * BaseLabel:
49 *   addiu rBase, r_RA, <table> - <BaseLabel>  ; table relative to BaseLabel
50     addu  rEnd, rEnd, rBase                   ; end of table
51 *   lw    r_val, [rSP, v_reg_off]                ; Test Value
52 * loop:
53 *   beq   rBase, rEnd, done
54 *   lw    r_key, 0(rBase)
55 *   addu  rBase, 8
56 *   bne   r_val, r_key, loop
57 *   lw    r_disp, -4(rBase)
58 *   addu  r_RA, r_disp
59 *   jr    r_RA
60 * done:
61 *
62 */
63void MipsMir2Lir::GenSparseSwitch(MIR* mir, DexOffset table_offset,
64                                  RegLocation rl_src) {
65  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
66  if (cu_->verbose) {
67    DumpSparseSwitchTable(table);
68  }
69  // Add the table to the list - we'll process it later
70  SwitchTable* tab_rec =
71      static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), ArenaAllocator::kAllocData));
72  tab_rec->table = table;
73  tab_rec->vaddr = current_dalvik_offset_;
74  int elements = table[1];
75  tab_rec->targets =
76      static_cast<LIR**>(arena_->Alloc(elements * sizeof(LIR*), ArenaAllocator::kAllocLIR));
77  switch_tables_.Insert(tab_rec);
78
79  // The table is composed of 8-byte key/disp pairs
80  int byte_size = elements * 8;
81
82  int size_hi = byte_size >> 16;
83  int size_lo = byte_size & 0xffff;
84
85  int rEnd = AllocTemp();
86  if (size_hi) {
87    NewLIR2(kMipsLui, rEnd, size_hi);
88  }
89  // Must prevent code motion for the curr pc pair
90  GenBarrier();  // Scheduling barrier
91  NewLIR0(kMipsCurrPC);  // Really a jal to .+8
92  // Now, fill the branch delay slot
93  if (size_hi) {
94    NewLIR3(kMipsOri, rEnd, rEnd, size_lo);
95  } else {
96    NewLIR3(kMipsOri, rEnd, r_ZERO, size_lo);
97  }
98  GenBarrier();  // Scheduling barrier
99
100  // Construct BaseLabel and set up table base register
101  LIR* base_label = NewLIR0(kPseudoTargetLabel);
102  // Remember base label so offsets can be computed later
103  tab_rec->anchor = base_label;
104  int rBase = AllocTemp();
105  NewLIR4(kMipsDelta, rBase, 0, WrapPointer(base_label), WrapPointer(tab_rec));
106  OpRegRegReg(kOpAdd, rEnd, rEnd, rBase);
107
108  // Grab switch test value
109  rl_src = LoadValue(rl_src, kCoreReg);
110
111  // Test loop
112  int r_key = AllocTemp();
113  LIR* loop_label = NewLIR0(kPseudoTargetLabel);
114  LIR* exit_branch = OpCmpBranch(kCondEq, rBase, rEnd, NULL);
115  LoadWordDisp(rBase, 0, r_key);
116  OpRegImm(kOpAdd, rBase, 8);
117  OpCmpBranch(kCondNe, rl_src.low_reg, r_key, loop_label);
118  int r_disp = AllocTemp();
119  LoadWordDisp(rBase, -4, r_disp);
120  OpRegRegReg(kOpAdd, r_RA, r_RA, r_disp);
121  OpReg(kOpBx, r_RA);
122
123  // Loop exit
124  LIR* exit_label = NewLIR0(kPseudoTargetLabel);
125  exit_branch->target = exit_label;
126}
127
128/*
129 * Code pattern will look something like:
130 *
131 *   lw    r_val
132 *   jal   BaseLabel         ; stores "return address" (BaseLabel) in r_RA
133 *   nop                     ; opportunistically fill
134 *   [subiu r_val, bias]      ; Remove bias if low_val != 0
135 *   bound check -> done
136 *   lw    r_disp, [r_RA, r_val]
137 *   addu  r_RA, r_disp
138 *   jr    r_RA
139 * done:
140 */
141void MipsMir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset,
142                                  RegLocation rl_src) {
143  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
144  if (cu_->verbose) {
145    DumpPackedSwitchTable(table);
146  }
147  // Add the table to the list - we'll process it later
148  SwitchTable* tab_rec =
149      static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), ArenaAllocator::kAllocData));
150  tab_rec->table = table;
151  tab_rec->vaddr = current_dalvik_offset_;
152  int size = table[1];
153  tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*),
154                                                      ArenaAllocator::kAllocLIR));
155  switch_tables_.Insert(tab_rec);
156
157  // Get the switch value
158  rl_src = LoadValue(rl_src, kCoreReg);
159
160  // Prepare the bias.  If too big, handle 1st stage here
161  int low_key = s4FromSwitchData(&table[2]);
162  bool large_bias = false;
163  int r_key;
164  if (low_key == 0) {
165    r_key = rl_src.low_reg;
166  } else if ((low_key & 0xffff) != low_key) {
167    r_key = AllocTemp();
168    LoadConstant(r_key, low_key);
169    large_bias = true;
170  } else {
171    r_key = AllocTemp();
172  }
173
174  // Must prevent code motion for the curr pc pair
175  GenBarrier();
176  NewLIR0(kMipsCurrPC);  // Really a jal to .+8
177  // Now, fill the branch delay slot with bias strip
178  if (low_key == 0) {
179    NewLIR0(kMipsNop);
180  } else {
181    if (large_bias) {
182      OpRegRegReg(kOpSub, r_key, rl_src.low_reg, r_key);
183    } else {
184      OpRegRegImm(kOpSub, r_key, rl_src.low_reg, low_key);
185    }
186  }
187  GenBarrier();  // Scheduling barrier
188
189  // Construct BaseLabel and set up table base register
190  LIR* base_label = NewLIR0(kPseudoTargetLabel);
191  // Remember base label so offsets can be computed later
192  tab_rec->anchor = base_label;
193
194  // Bounds check - if < 0 or >= size continue following switch
195  LIR* branch_over = OpCmpImmBranch(kCondHi, r_key, size-1, NULL);
196
197  // Materialize the table base pointer
198  int rBase = AllocTemp();
199  NewLIR4(kMipsDelta, rBase, 0, WrapPointer(base_label), WrapPointer(tab_rec));
200
201  // Load the displacement from the switch table
202  int r_disp = AllocTemp();
203  LoadBaseIndexed(rBase, r_key, r_disp, 2, kWord);
204
205  // Add to r_AP and go
206  OpRegRegReg(kOpAdd, r_RA, r_RA, r_disp);
207  OpReg(kOpBx, r_RA);
208
209  /* branch_over target here */
210  LIR* target = NewLIR0(kPseudoTargetLabel);
211  branch_over->target = target;
212}
213
214/*
215 * Array data table format:
216 *  ushort ident = 0x0300   magic value
217 *  ushort width            width of each element in the table
218 *  uint   size             number of elements in the table
219 *  ubyte  data[size*width] table of data values (may contain a single-byte
220 *                          padding at the end)
221 *
222 * Total size is 4+(width * size + 1)/2 16-bit code units.
223 */
224void MipsMir2Lir::GenFillArrayData(DexOffset table_offset, RegLocation rl_src) {
225  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
226  // Add the table to the list - we'll process it later
227  FillArrayData* tab_rec =
228      reinterpret_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData),
229                                                     ArenaAllocator::kAllocData));
230  tab_rec->table = table;
231  tab_rec->vaddr = current_dalvik_offset_;
232  uint16_t width = tab_rec->table[1];
233  uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
234  tab_rec->size = (size * width) + 8;
235
236  fill_array_data_.Insert(tab_rec);
237
238  // Making a call - use explicit registers
239  FlushAllRegs();   /* Everything to home location */
240  LockCallTemps();
241  LoadValueDirectFixed(rl_src, rMIPS_ARG0);
242
243  // Must prevent code motion for the curr pc pair
244  GenBarrier();
245  NewLIR0(kMipsCurrPC);  // Really a jal to .+8
246  // Now, fill the branch delay slot with the helper load
247  int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pHandleFillArrayData));
248  GenBarrier();  // Scheduling barrier
249
250  // Construct BaseLabel and set up table base register
251  LIR* base_label = NewLIR0(kPseudoTargetLabel);
252
253  // Materialize a pointer to the fill data image
254  NewLIR4(kMipsDelta, rMIPS_ARG1, 0, WrapPointer(base_label), WrapPointer(tab_rec));
255
256  // And go...
257  ClobberCallerSave();
258  LIR* call_inst = OpReg(kOpBlx, r_tgt);  // ( array*, fill_data* )
259  MarkSafepointPC(call_inst);
260}
261
262void MipsMir2Lir::GenMoveException(RegLocation rl_dest) {
263  int ex_offset = Thread::ExceptionOffset().Int32Value();
264  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
265  int reset_reg = AllocTemp();
266  LoadWordDisp(rMIPS_SELF, ex_offset, rl_result.low_reg);
267  LoadConstant(reset_reg, 0);
268  StoreWordDisp(rMIPS_SELF, ex_offset, reset_reg);
269  FreeTemp(reset_reg);
270  StoreValue(rl_dest, rl_result);
271}
272
273/*
274 * Mark garbage collection card. Skip if the value we're storing is null.
275 */
276void MipsMir2Lir::MarkGCCard(int val_reg, int tgt_addr_reg) {
277  int reg_card_base = AllocTemp();
278  int reg_card_no = AllocTemp();
279  LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
280  LoadWordDisp(rMIPS_SELF, Thread::CardTableOffset().Int32Value(), reg_card_base);
281  OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
282  StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0,
283                   kUnsignedByte);
284  LIR* target = NewLIR0(kPseudoTargetLabel);
285  branch_over->target = target;
286  FreeTemp(reg_card_base);
287  FreeTemp(reg_card_no);
288}
289
290void MipsMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
291  int spill_count = num_core_spills_ + num_fp_spills_;
292  /*
293   * On entry, rMIPS_ARG0, rMIPS_ARG1, rMIPS_ARG2 & rMIPS_ARG3 are live.  Let the register
294   * allocation mechanism know so it doesn't try to use any of them when
295   * expanding the frame or flushing.  This leaves the utility
296   * code with a single temp: r12.  This should be enough.
297   */
298  LockTemp(rMIPS_ARG0);
299  LockTemp(rMIPS_ARG1);
300  LockTemp(rMIPS_ARG2);
301  LockTemp(rMIPS_ARG3);
302
303  /*
304   * We can safely skip the stack overflow check if we're
305   * a leaf *and* our frame size < fudge factor.
306   */
307  bool skip_overflow_check = (mir_graph_->MethodIsLeaf() &&
308      (static_cast<size_t>(frame_size_) < Thread::kStackOverflowReservedBytes));
309  NewLIR0(kPseudoMethodEntry);
310  int check_reg = AllocTemp();
311  int new_sp = AllocTemp();
312  if (!skip_overflow_check) {
313    /* Load stack limit */
314    LoadWordDisp(rMIPS_SELF, Thread::StackEndOffset().Int32Value(), check_reg);
315  }
316  /* Spill core callee saves */
317  SpillCoreRegs();
318  /* NOTE: promotion of FP regs currently unsupported, thus no FP spill */
319  DCHECK_EQ(num_fp_spills_, 0);
320  if (!skip_overflow_check) {
321    OpRegRegImm(kOpSub, new_sp, rMIPS_SP, frame_size_ - (spill_count * 4));
322    GenRegRegCheck(kCondUlt, new_sp, check_reg, kThrowStackOverflow);
323    OpRegCopy(rMIPS_SP, new_sp);     // Establish stack
324  } else {
325    OpRegImm(kOpSub, rMIPS_SP, frame_size_ - (spill_count * 4));
326  }
327
328  FlushIns(ArgLocs, rl_method);
329
330  FreeTemp(rMIPS_ARG0);
331  FreeTemp(rMIPS_ARG1);
332  FreeTemp(rMIPS_ARG2);
333  FreeTemp(rMIPS_ARG3);
334}
335
336void MipsMir2Lir::GenExitSequence() {
337  /*
338   * In the exit path, rMIPS_RET0/rMIPS_RET1 are live - make sure they aren't
339   * allocated by the register utilities as temps.
340   */
341  LockTemp(rMIPS_RET0);
342  LockTemp(rMIPS_RET1);
343
344  NewLIR0(kPseudoMethodExit);
345  UnSpillCoreRegs();
346  OpReg(kOpBx, r_RA);
347}
348
349void MipsMir2Lir::GenSpecialExitSequence() {
350  OpReg(kOpBx, r_RA);
351}
352
353}  // namespace art
354