mir_to_lir.h revision 30adc7383a74eb3cb6db3bf42cea3a5595055ce1
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_storage.h"
25#include "dex/backend.h"
26#include "driver/compiler_driver.h"
27#include "leb128.h"
28#include "safe_map.h"
29#include "utils/arena_allocator.h"
30#include "utils/growable_array.h"
31
32namespace art {
33
34/*
35 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
36 * add type safety (see runtime/offsets.h).
37 */
38typedef uint32_t DexOffset;          // Dex offset in code units.
39typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
40typedef uint32_t CodeOffset;         // Native code offset in bytes.
41
42// Set to 1 to measure cost of suspend check.
43#define NO_SUSPEND 0
44
45#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
46#define IS_BRANCH            (1ULL << kIsBranch)
47#define IS_IT                (1ULL << kIsIT)
48#define IS_LOAD              (1ULL << kMemLoad)
49#define IS_QUAD_OP           (1ULL << kIsQuadOp)
50#define IS_QUIN_OP           (1ULL << kIsQuinOp)
51#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
52#define IS_STORE             (1ULL << kMemStore)
53#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
54#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
55#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
56#define NO_OPERAND           (1ULL << kNoOperand)
57#define REG_DEF0             (1ULL << kRegDef0)
58#define REG_DEF1             (1ULL << kRegDef1)
59#define REG_DEF2             (1ULL << kRegDef2)
60#define REG_DEFA             (1ULL << kRegDefA)
61#define REG_DEFD             (1ULL << kRegDefD)
62#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
63#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
64#define REG_DEF_LIST0        (1ULL << kRegDefList0)
65#define REG_DEF_LIST1        (1ULL << kRegDefList1)
66#define REG_DEF_LR           (1ULL << kRegDefLR)
67#define REG_DEF_SP           (1ULL << kRegDefSP)
68#define REG_USE0             (1ULL << kRegUse0)
69#define REG_USE1             (1ULL << kRegUse1)
70#define REG_USE2             (1ULL << kRegUse2)
71#define REG_USE3             (1ULL << kRegUse3)
72#define REG_USE4             (1ULL << kRegUse4)
73#define REG_USEA             (1ULL << kRegUseA)
74#define REG_USEC             (1ULL << kRegUseC)
75#define REG_USED             (1ULL << kRegUseD)
76#define REG_USEB             (1ULL << kRegUseB)
77#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
78#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
79#define REG_USE_LIST0        (1ULL << kRegUseList0)
80#define REG_USE_LIST1        (1ULL << kRegUseList1)
81#define REG_USE_LR           (1ULL << kRegUseLR)
82#define REG_USE_PC           (1ULL << kRegUsePC)
83#define REG_USE_SP           (1ULL << kRegUseSP)
84#define SETS_CCODES          (1ULL << kSetsCCodes)
85#define USES_CCODES          (1ULL << kUsesCCodes)
86#define USE_FP_STACK         (1ULL << kUseFpStack)
87#define REG_USE_LO           (1ULL << kUseLo)
88#define REG_USE_HI           (1ULL << kUseHi)
89#define REG_DEF_LO           (1ULL << kDefLo)
90#define REG_DEF_HI           (1ULL << kDefHi)
91
92// Common combo register usage patterns.
93#define REG_DEF01            (REG_DEF0 | REG_DEF1)
94#define REG_DEF012           (REG_DEF0 | REG_DEF1 | REG_DEF2)
95#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
96#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
97#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
98#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
99#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
100#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
101#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
102#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
103#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
104#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
105#define REG_USE012           (REG_USE01 | REG_USE2)
106#define REG_USE014           (REG_USE01 | REG_USE4)
107#define REG_USE01            (REG_USE0 | REG_USE1)
108#define REG_USE02            (REG_USE0 | REG_USE2)
109#define REG_USE12            (REG_USE1 | REG_USE2)
110#define REG_USE23            (REG_USE2 | REG_USE3)
111#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
112
113// TODO: #includes need a cleanup
114#ifndef INVALID_SREG
115#define INVALID_SREG (-1)
116#endif
117
118struct BasicBlock;
119struct CallInfo;
120struct CompilationUnit;
121struct InlineMethod;
122struct MIR;
123struct LIR;
124struct RegLocation;
125struct RegisterInfo;
126class DexFileMethodInliner;
127class MIRGraph;
128class Mir2Lir;
129
130typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
131                            const MethodReference& target_method,
132                            uint32_t method_idx, uintptr_t direct_code,
133                            uintptr_t direct_method, InvokeType type);
134
135typedef std::vector<uint8_t> CodeBuffer;
136
137struct UseDefMasks {
138  uint64_t use_mask;        // Resource mask for use.
139  uint64_t def_mask;        // Resource mask for def.
140};
141
142struct AssemblyInfo {
143  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
144};
145
146struct LIR {
147  CodeOffset offset;             // Offset of this instruction.
148  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
149  int16_t opcode;
150  LIR* next;
151  LIR* prev;
152  LIR* target;
153  struct {
154    unsigned int alias_info:17;  // For Dalvik register disambiguation.
155    bool is_nop:1;               // LIR is optimized away.
156    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
157    bool use_def_invalid:1;      // If true, masks should not be used.
158    unsigned int generation:1;   // Used to track visitation state during fixup pass.
159    unsigned int fixup:8;        // Fixup kind.
160  } flags;
161  union {
162    UseDefMasks m;               // Use & Def masks used during optimization.
163    AssemblyInfo a;              // Instruction info used during assembly phase.
164  } u;
165  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
166};
167
168// Target-specific initialization.
169Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
170                          ArenaAllocator* const arena);
171Mir2Lir* Arm64CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
172                            ArenaAllocator* const arena);
173Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
174                          ArenaAllocator* const arena);
175Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
176                          ArenaAllocator* const arena);
177
178// Utility macros to traverse the LIR list.
179#define NEXT_LIR(lir) (lir->next)
180#define PREV_LIR(lir) (lir->prev)
181
182// Defines for alias_info (tracks Dalvik register references).
183#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
184#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
185#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
186#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
187
188// Common resource macros.
189#define ENCODE_CCODE            (1ULL << kCCode)
190#define ENCODE_FP_STATUS        (1ULL << kFPStatus)
191
192// Abstract memory locations.
193#define ENCODE_DALVIK_REG       (1ULL << kDalvikReg)
194#define ENCODE_LITERAL          (1ULL << kLiteral)
195#define ENCODE_HEAP_REF         (1ULL << kHeapRef)
196#define ENCODE_MUST_NOT_ALIAS   (1ULL << kMustNotAlias)
197
198#define ENCODE_ALL              (~0ULL)
199#define ENCODE_MEM              (ENCODE_DALVIK_REG | ENCODE_LITERAL | \
200                                 ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS)
201
202#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
203#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
204  do { \
205    low_reg = both_regs & 0xff; \
206    high_reg = (both_regs >> 8) & 0xff; \
207  } while (false)
208
209// Mask to denote sreg as the start of a double.  Must not interfere with low 16 bits.
210#define STARTING_DOUBLE_SREG 0x10000
211
212// TODO: replace these macros
213#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
214#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
215#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
216#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
217#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
218
219class Mir2Lir : public Backend {
220  public:
221    /*
222     * Auxiliary information describing the location of data embedded in the Dalvik
223     * byte code stream.
224     */
225    struct EmbeddedData {
226      CodeOffset offset;        // Code offset of data block.
227      const uint16_t* table;      // Original dex data.
228      DexOffset vaddr;            // Dalvik offset of parent opcode.
229    };
230
231    struct FillArrayData : EmbeddedData {
232      int32_t size;
233    };
234
235    struct SwitchTable : EmbeddedData {
236      LIR* anchor;                // Reference instruction for relative offsets.
237      LIR** targets;              // Array of case targets.
238    };
239
240    /* Static register use counts */
241    struct RefCounts {
242      int count;
243      int s_reg;
244    };
245
246    /*
247     * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
248     * and native register storage.  The primary purpose is to reuse previuosly
249     * loaded values, if possible, and otherwise to keep the value in register
250     * storage as long as possible.
251     *
252     * NOTE 1: wide_value refers to the width of the Dalvik value contained in
253     * this register (or pair).  For example, a 64-bit register containing a 32-bit
254     * Dalvik value would have wide_value==false even though the storage container itself
255     * is wide.  Similarly, a 32-bit register containing half of a 64-bit Dalvik value
256     * would have wide_value==true (and additionally would have its partner field set to the
257     * other half whose wide_value field would also be true.
258     *
259     * NOTE 2: In the case of a register pair, you can determine which of the partners
260     * is the low half by looking at the s_reg names.  The high s_reg will equal low_sreg + 1.
261     *
262     * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
263     * will be true and partner==self.  s_reg refers to the low-order word of the Dalvik
264     * value, and the s_reg of the high word is implied (s_reg + 1).
265     *
266     * NOTE 4: The reg and is_temp fields should always be correct.  If is_temp is false no
267     * other fields have meaning. [perhaps not true, wide should work for promoted regs?]
268     * If is_temp==true and live==false, no other fields have
269     * meaning.  If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
270     * and def_end describe the relationship between the temp register/register pair and
271     * the Dalvik value[s] described by s_reg/s_reg+1.
272     *
273     * The fields used_storage, master_storage and storage_mask are used to track allocation
274     * in light of potential aliasing.  For example, consider Arm's d2, which overlaps s4 & s5.
275     * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
276     * storage use.  For s4, it would be 0x0000001; for s5 0x00000002.  These values should not
277     * change once initialized.  The "used_storage" field tracks current allocation status.
278     * Although each record contains this field, only the field from the largest member of
279     * an aliased group is used.  In our case, it would be d2's.  The master_storage pointer
280     * of d2, s4 and s5 would all point to d2's used_storage field.  Each bit in a used_storage
281     * represents 32 bits of storage.  d2's used_storage would be initialized to 0xfffffffc.
282     * Then, if we wanted to determine whether s4 could be allocated, we would "and"
283     * s4's storage_mask with s4's *master_storage.  If the result is zero, s4 is free and
284     * to allocate: *master_storage |= storage_mask.  To free, *master_storage &= ~storage_mask.
285     *
286     * For an X86 vector register example, storage_mask would be:
287     *    0x00000001 for 32-bit view of xmm1
288     *    0x00000003 for 64-bit view of xmm1
289     *    0x0000000f for 128-bit view of xmm1
290     *    0x000000ff for 256-bit view of ymm1   // future expansion, if needed
291     *    0x0000ffff for 512-bit view of ymm1   // future expansion, if needed
292     *    0xffffffff for 1024-bit view of ymm1  // future expansion, if needed
293     *
294     * The "liveness" of a register is handled in a similar way.  The liveness_ storage is
295     * held in the widest member of an aliased set.  Note, though, that for a temp register to
296     * reused as live, it must both be marked live and the associated SReg() must match the
297     * desired s_reg.  This gets a little complicated when dealing with aliased registers.  All
298     * members of an aliased set will share the same liveness flags, but each will individually
299     * maintain s_reg_.  In this way we can know that at least one member of an
300     * aliased set is live, but will only fully match on the appropriate alias view.  For example,
301     * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9
302     * because it is wide), its aliases s2 and s3 will show as live, but will have
303     * s_reg_ == INVALID_SREG.  An attempt to later AllocLiveReg() of v9 with a single-precision
304     * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9.
305     * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will
306     * report that v9 is currently not live as a single (which is what we want).
307     *
308     * NOTE: the x86 usage is still somewhat in flux.  There are competing notions of how
309     * to treat xmm registers:
310     *     1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
311     *         o This more closely matches reality, but means you'd need to be able to get
312     *           to the associated RegisterInfo struct to figure out how it's being used.
313     *         o This is how 64-bit core registers will be used - always 64 bits, but the
314     *           "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
315     *     2. View the xmm registers based on contents.
316     *         o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
317     *           be a k64BitVector.
318     *         o Note that the two uses above would be considered distinct registers (but with
319     *           the aliasing mechanism, we could detect interference).
320     *         o This is how aliased double and single float registers will be handled on
321     *           Arm and MIPS.
322     * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
323     * mechanism 2 for aliased float registers and x86 vector registers.
324     */
325    class RegisterInfo {
326     public:
327      RegisterInfo(RegStorage r, uint64_t mask = ENCODE_ALL);
328      ~RegisterInfo() {}
329      static void* operator new(size_t size, ArenaAllocator* arena) {
330        return arena->Alloc(size, kArenaAllocRegAlloc);
331      }
332
333      bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
334      void MarkInUse() { master_->used_storage_ |= storage_mask_; }
335      void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
336      bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; }
337      void MarkLive() { master_->liveness_ |= storage_mask_; }
338      void MarkDead() {
339        master_->liveness_ &= ~storage_mask_;
340        SetSReg(INVALID_SREG);
341      }
342      RegStorage GetReg() { return reg_; }
343      void SetReg(RegStorage reg) { reg_ = reg; }
344      bool IsTemp() { return is_temp_; }
345      void SetIsTemp(bool val) { is_temp_ = val; }
346      bool IsWide() { return wide_value_; }
347      void SetIsWide(bool val) { wide_value_ = val; }
348      bool IsDirty() { return dirty_; }
349      void SetIsDirty(bool val) { dirty_ = val; }
350      RegStorage Partner() { return partner_; }
351      void SetPartner(RegStorage partner) { partner_ = partner; }
352      int SReg() { return s_reg_; }
353      void SetSReg(int s_reg) { s_reg_ = s_reg; }
354      uint64_t DefUseMask() { return def_use_mask_; }
355      void SetDefUseMask(uint64_t def_use_mask) { def_use_mask_ = def_use_mask; }
356      RegisterInfo* Master() { return master_; }
357      void SetMaster(RegisterInfo* master) {
358        master_ = master;
359        if (master != this) {
360          master_->aliased_ = true;
361        }
362      }
363      bool IsAliased() { return aliased_; }
364      uint32_t StorageMask() { return storage_mask_; }
365      void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
366      LIR* DefStart() { return def_start_; }
367      void SetDefStart(LIR* def_start) { def_start_ = def_start; }
368      LIR* DefEnd() { return def_end_; }
369      void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
370      void ResetDefBody() { def_start_ = def_end_ = nullptr; }
371
372
373     private:
374      RegStorage reg_;
375      bool is_temp_;               // Can allocate as temp?
376      bool wide_value_;            // Holds a Dalvik wide value (either itself, or part of a pair).
377      bool dirty_;                 // If live, is it dirty?
378      bool aliased_;               // Is this the master for other aliased RegisterInfo's?
379      RegStorage partner_;         // If wide_value, other reg of pair or self if 64-bit register.
380      int s_reg_;                  // Name of live value.
381      uint64_t def_use_mask_;      // Resources for this element.
382      uint32_t used_storage_;      // 1 bit per 4 bytes of storage. Unused by aliases.
383      uint32_t liveness_;          // 1 bit per 4 bytes of storage. Unused by aliases.
384      RegisterInfo* master_;       // Pointer to controlling storage mask.
385      uint32_t storage_mask_;      // Track allocation of sub-units.
386      LIR *def_start_;             // Starting inst in last def sequence.
387      LIR *def_end_;               // Ending inst in last def sequence.
388    };
389
390    class RegisterPool {
391     public:
392      RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena, const std::vector<RegStorage>& core_regs,
393                   const std::vector<RegStorage>& sp_regs, const std::vector<RegStorage>& dp_regs,
394                   const std::vector<RegStorage>& reserved_regs,
395                   const std::vector<RegStorage>& core_temps,
396                   const std::vector<RegStorage>& sp_temps,
397                   const std::vector<RegStorage>& dp_temps);
398      ~RegisterPool() {}
399      static void* operator new(size_t size, ArenaAllocator* arena) {
400        return arena->Alloc(size, kArenaAllocRegAlloc);
401      }
402      void ResetNextTemp() {
403        next_core_reg_ = 0;
404        next_sp_reg_ = 0;
405        next_dp_reg_ = 0;
406      }
407      GrowableArray<RegisterInfo*> core_regs_;
408      int next_core_reg_;
409      GrowableArray<RegisterInfo*> sp_regs_;    // Single precision float.
410      int next_sp_reg_;
411      GrowableArray<RegisterInfo*> dp_regs_;    // Double precision float.
412      int next_dp_reg_;
413
414     private:
415      Mir2Lir* const m2l_;
416    };
417
418    struct PromotionMap {
419      RegLocationType core_location:3;
420      uint8_t core_reg;
421      RegLocationType fp_location:3;
422      uint8_t FpReg;
423      bool first_in_pair;
424    };
425
426    //
427    // Slow paths.  This object is used generate a sequence of code that is executed in the
428    // slow path.  For example, resolving a string or class is slow as it will only be executed
429    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
430    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
431    // branch over them.
432    //
433    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
434    // the Compile() function that will be called near the end of the code generated by the
435    // method.
436    //
437    // The basic flow for a slow path is:
438    //
439    //     CMP reg, #value
440    //     BEQ fromfast
441    //   cont:
442    //     ...
443    //     fast path code
444    //     ...
445    //     more code
446    //     ...
447    //     RETURN
448    ///
449    //   fromfast:
450    //     ...
451    //     slow path code
452    //     ...
453    //     B cont
454    //
455    // So you see we need two labels and two branches.  The first branch (called fromfast) is
456    // the conditional branch to the slow path code.  The second label (called cont) is used
457    // as an unconditional branch target for getting back to the code after the slow path
458    // has completed.
459    //
460
461    class LIRSlowPath {
462     public:
463      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
464                  LIR* cont = nullptr) :
465        m2l_(m2l), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
466      }
467      virtual ~LIRSlowPath() {}
468      virtual void Compile() = 0;
469
470      static void* operator new(size_t size, ArenaAllocator* arena) {
471        return arena->Alloc(size, kArenaAllocData);
472      }
473
474     protected:
475      LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
476
477      Mir2Lir* const m2l_;
478      const DexOffset current_dex_pc_;
479      LIR* const fromfast_;
480      LIR* const cont_;
481    };
482
483    virtual ~Mir2Lir() {}
484
485    int32_t s4FromSwitchData(const void* switch_data) {
486      return *reinterpret_cast<const int32_t*>(switch_data);
487    }
488
489    /*
490     * TODO: this is a trace JIT vestige, and its use should be reconsidered.  At the time
491     * it was introduced, it was intended to be a quick best guess of type without having to
492     * take the time to do type analysis.  Currently, though, we have a much better idea of
493     * the types of Dalvik virtual registers.  Instead of using this for a best guess, why not
494     * just use our knowledge of type to select the most appropriate register class?
495     */
496    RegisterClass RegClassBySize(OpSize size) {
497      return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
498              size == kSignedByte) ? kCoreReg : kAnyReg;
499    }
500
501    size_t CodeBufferSizeInBytes() {
502      return code_buffer_.size() / sizeof(code_buffer_[0]);
503    }
504
505    static bool IsPseudoLirOp(int opcode) {
506      return (opcode < 0);
507    }
508
509    /*
510     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
511     * instructions which require PC-relative fixups), we need the operands to carry
512     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
513     * hold that index in the operand array.
514     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
515     * may be worth conditionally-compiling a set of identity functions here.
516     */
517    uint32_t WrapPointer(void* pointer) {
518      uint32_t res = pointer_storage_.Size();
519      pointer_storage_.Insert(pointer);
520      return res;
521    }
522
523    void* UnwrapPointer(size_t index) {
524      return pointer_storage_.Get(index);
525    }
526
527    // strdup(), but allocates from the arena.
528    char* ArenaStrdup(const char* str) {
529      size_t len = strlen(str) + 1;
530      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
531      if (res != NULL) {
532        strncpy(res, str, len);
533      }
534      return res;
535    }
536
537    // Shared by all targets - implemented in codegen_util.cc
538    void AppendLIR(LIR* lir);
539    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
540    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
541
542    /**
543     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
544     * to place in a frame.
545     * @return Returns the maximum number of compiler temporaries.
546     */
547    size_t GetMaxPossibleCompilerTemps() const;
548
549    /**
550     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
551     * @return Returns the size in bytes for space needed for compiler temporary spill region.
552     */
553    size_t GetNumBytesForCompilerTempSpillRegion();
554
555    DexOffset GetCurrentDexPc() const {
556      return current_dalvik_offset_;
557    }
558
559    int ComputeFrameSize();
560    virtual void Materialize();
561    virtual CompiledMethod* GetCompiledMethod();
562    void MarkSafepointPC(LIR* inst);
563    void SetupResourceMasks(LIR* lir);
564    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
565    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
566    void SetupRegMask(uint64_t* mask, int reg);
567    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
568    void DumpPromotionMap();
569    void CodegenDump();
570    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
571                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
572    LIR* NewLIR0(int opcode);
573    LIR* NewLIR1(int opcode, int dest);
574    LIR* NewLIR2(int opcode, int dest, int src1);
575    LIR* NewLIR2NoDest(int opcode, int src, int info);
576    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
577    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
578    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
579    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
580    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
581    LIR* AddWordData(LIR* *constant_list_p, int value);
582    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
583    void ProcessSwitchTables();
584    void DumpSparseSwitchTable(const uint16_t* table);
585    void DumpPackedSwitchTable(const uint16_t* table);
586    void MarkBoundary(DexOffset offset, const char* inst_str);
587    void NopLIR(LIR* lir);
588    void UnlinkLIR(LIR* lir);
589    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
590    bool IsInexpensiveConstant(RegLocation rl_src);
591    ConditionCode FlipComparisonOrder(ConditionCode before);
592    ConditionCode NegateComparison(ConditionCode before);
593    virtual void InstallLiteralPools();
594    void InstallSwitchTables();
595    void InstallFillArrayData();
596    bool VerifyCatchEntries();
597    void CreateMappingTables();
598    void CreateNativeGcMap();
599    int AssignLiteralOffset(CodeOffset offset);
600    int AssignSwitchTablesOffset(CodeOffset offset);
601    int AssignFillArrayDataOffset(CodeOffset offset);
602    LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
603    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
604    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
605    // Handle bookkeeping to convert a wide RegLocation to a narow RegLocation.  No code generated.
606    RegLocation NarrowRegLoc(RegLocation loc);
607
608    // Shared by all targets - implemented in local_optimizations.cc
609    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
610    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
611    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
612    void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
613
614    // Shared by all targets - implemented in ralloc_util.cc
615    int GetSRegHi(int lowSreg);
616    bool LiveOut(int s_reg);
617    void SimpleRegAlloc();
618    void ResetRegPool();
619    void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
620    void DumpRegPool(GrowableArray<RegisterInfo*>* regs);
621    void DumpCoreRegPool();
622    void DumpFpRegPool();
623    void DumpRegPools();
624    /* Mark a temp register as dead.  Does not affect allocation state. */
625    void Clobber(RegStorage reg);
626    void ClobberSReg(int s_reg);
627    void ClobberAliases(RegisterInfo* info);
628    int SRegToPMap(int s_reg);
629    void RecordCorePromotion(RegStorage reg, int s_reg);
630    RegStorage AllocPreservedCoreReg(int s_reg);
631    void RecordSinglePromotion(RegStorage reg, int s_reg);
632    void RecordDoublePromotion(RegStorage reg, int s_reg);
633    RegStorage AllocPreservedSingle(int s_reg);
634    virtual RegStorage AllocPreservedDouble(int s_reg);
635    RegStorage AllocTempBody(GrowableArray<RegisterInfo*> &regs, int* next_temp, bool required);
636    RegStorage AllocFreeTemp();
637    RegStorage AllocTemp();
638    RegStorage AllocTempSingle();
639    RegStorage AllocTempDouble();
640    void FlushReg(RegStorage reg);
641    void FlushRegWide(RegStorage reg);
642    RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
643    RegStorage FindLiveReg(GrowableArray<RegisterInfo*> &regs, int s_reg);
644    void FreeTemp(RegStorage reg);
645    bool IsLive(RegStorage reg);
646    bool IsTemp(RegStorage reg);
647    bool IsPromoted(RegStorage reg);
648    bool IsDirty(RegStorage reg);
649    void LockTemp(RegStorage reg);
650    void ResetDef(RegStorage reg);
651    void NullifyRange(RegStorage reg, int s_reg);
652    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
653    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
654    RegLocation WideToNarrow(RegLocation rl);
655    void ResetDefLoc(RegLocation rl);
656    void ResetDefLocWide(RegLocation rl);
657    void ResetDefTracking();
658    void ClobberAllRegs();
659    void FlushSpecificReg(RegisterInfo* info);
660    void FlushAllRegs();
661    bool RegClassMatches(int reg_class, RegStorage reg);
662    void MarkLive(RegLocation loc);
663    void MarkLiveReg(RegStorage reg, int s_reg);
664    void MarkTemp(RegStorage reg);
665    void UnmarkTemp(RegStorage reg);
666    void MarkWide(RegStorage reg);
667    void MarkClean(RegLocation loc);
668    void MarkDirty(RegLocation loc);
669    void MarkInUse(RegStorage reg);
670    bool CheckCorePoolSanity();
671    RegLocation UpdateLoc(RegLocation loc);
672    RegLocation UpdateLocWide(RegLocation loc);
673    RegLocation UpdateRawLoc(RegLocation loc);
674
675    /**
676     * @brief Used to load register location into a typed temporary or pair of temporaries.
677     * @see EvalLoc
678     * @param loc The register location to load from.
679     * @param reg_class Type of register needed.
680     * @param update Whether the liveness information should be updated.
681     * @return Returns the properly typed temporary in physical register pairs.
682     */
683    RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
684
685    /**
686     * @brief Used to load register location into a typed temporary.
687     * @param loc The register location to load from.
688     * @param reg_class Type of register needed.
689     * @param update Whether the liveness information should be updated.
690     * @return Returns the properly typed temporary in physical register.
691     */
692    RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
693
694    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
695    void DumpCounts(const RefCounts* arr, int size, const char* msg);
696    void DoPromotion();
697    int VRegOffset(int v_reg);
698    int SRegOffset(int s_reg);
699    RegLocation GetReturnWide(bool is_double);
700    RegLocation GetReturn(bool is_float);
701    RegisterInfo* GetRegInfo(RegStorage reg);
702
703    // Shared by all targets - implemented in gen_common.cc.
704    void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
705    bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
706                          RegLocation rl_src, RegLocation rl_dest, int lit);
707    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
708    void HandleSlowPaths();
709    void GenBarrier();
710    void GenDivZeroException();
711    // c_code holds condition code that's generated from testing divisor against 0.
712    void GenDivZeroCheck(ConditionCode c_code);
713    // reg holds divisor.
714    void GenDivZeroCheck(RegStorage reg);
715    void GenArrayBoundsCheck(RegStorage index, RegStorage length);
716    void GenArrayBoundsCheck(int32_t index, RegStorage length);
717    LIR* GenNullCheck(RegStorage reg);
718    void MarkPossibleNullPointerException(int opt_flags);
719    void MarkPossibleStackOverflowException();
720    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
721    LIR* GenImmedCheck(ConditionCode c_code, RegStorage reg, int imm_val, ThrowKind kind);
722    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
723    LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
724    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
725                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
726    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
727                                 LIR* taken, LIR* fall_through);
728    void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
729    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
730                         RegLocation rl_src);
731    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
732                     RegLocation rl_src);
733    void GenFilledNewArray(CallInfo* info);
734    void GenSput(MIR* mir, RegLocation rl_src,
735                 bool is_long_or_double, bool is_object);
736    void GenSget(MIR* mir, RegLocation rl_dest,
737                 bool is_long_or_double, bool is_object);
738    void GenIGet(MIR* mir, int opt_flags, OpSize size,
739                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
740    void GenIPut(MIR* mir, int opt_flags, OpSize size,
741                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
742    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
743                        RegLocation rl_src);
744
745    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
746    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
747    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
748    void GenThrow(RegLocation rl_src);
749    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
750    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
751    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
752                      RegLocation rl_src1, RegLocation rl_src2);
753    void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
754                        RegLocation rl_src1, RegLocation rl_shift);
755    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
756                          RegLocation rl_src, int lit);
757    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
758                        RegLocation rl_src1, RegLocation rl_src2);
759    void GenConversionCall(ThreadOffset<4> func_offset, RegLocation rl_dest,
760                           RegLocation rl_src);
761    void GenSuspendTest(int opt_flags);
762    void GenSuspendTestAndBranch(int opt_flags, LIR* target);
763
764    // This will be overridden by x86 implementation.
765    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
766    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
767                       RegLocation rl_src1, RegLocation rl_src2);
768
769    // Shared by all targets - implemented in gen_invoke.cc.
770    LIR* CallHelper(RegStorage r_tgt, ThreadOffset<4> helper_offset, bool safepoint_pc,
771                    bool use_link = true);
772    RegStorage CallHelperSetup(ThreadOffset<4> helper_offset);
773    void CallRuntimeHelper(ThreadOffset<4> helper_offset, bool safepoint_pc);
774    void CallRuntimeHelperImm(ThreadOffset<4> helper_offset, int arg0, bool safepoint_pc);
775    void CallRuntimeHelperReg(ThreadOffset<4> helper_offset, RegStorage arg0, bool safepoint_pc);
776    void CallRuntimeHelperRegLocation(ThreadOffset<4> helper_offset, RegLocation arg0,
777                                      bool safepoint_pc);
778    void CallRuntimeHelperImmImm(ThreadOffset<4> helper_offset, int arg0, int arg1,
779                                 bool safepoint_pc);
780    void CallRuntimeHelperImmRegLocation(ThreadOffset<4> helper_offset, int arg0,
781                                         RegLocation arg1, bool safepoint_pc);
782    void CallRuntimeHelperRegLocationImm(ThreadOffset<4> helper_offset, RegLocation arg0,
783                                         int arg1, bool safepoint_pc);
784    void CallRuntimeHelperImmReg(ThreadOffset<4> helper_offset, int arg0, RegStorage arg1,
785                                 bool safepoint_pc);
786    void CallRuntimeHelperRegImm(ThreadOffset<4> helper_offset, RegStorage arg0, int arg1,
787                                 bool safepoint_pc);
788    void CallRuntimeHelperImmMethod(ThreadOffset<4> helper_offset, int arg0,
789                                    bool safepoint_pc);
790    void CallRuntimeHelperRegMethod(ThreadOffset<4> helper_offset, RegStorage arg0,
791                                    bool safepoint_pc);
792    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset<4> helper_offset, RegStorage arg0,
793                                               RegLocation arg2, bool safepoint_pc);
794    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset<4> helper_offset,
795                                                 RegLocation arg0, RegLocation arg1,
796                                                 bool safepoint_pc);
797    void CallRuntimeHelperRegReg(ThreadOffset<4> helper_offset, RegStorage arg0, RegStorage arg1,
798                                 bool safepoint_pc);
799    void CallRuntimeHelperRegRegImm(ThreadOffset<4> helper_offset, RegStorage arg0, RegStorage arg1,
800                                    int arg2, bool safepoint_pc);
801    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset<4> helper_offset, int arg0,
802                                               RegLocation arg2, bool safepoint_pc);
803    void CallRuntimeHelperImmMethodImm(ThreadOffset<4> helper_offset, int arg0, int arg2,
804                                       bool safepoint_pc);
805    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset<4> helper_offset,
806                                                    int arg0, RegLocation arg1, RegLocation arg2,
807                                                    bool safepoint_pc);
808    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset<4> helper_offset,
809                                                            RegLocation arg0, RegLocation arg1,
810                                                            RegLocation arg2,
811                                                            bool safepoint_pc);
812    void GenInvoke(CallInfo* info);
813    void GenInvokeNoInline(CallInfo* info);
814    virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
815    int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
816                             NextCallInsn next_call_insn,
817                             const MethodReference& target_method,
818                             uint32_t vtable_idx,
819                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
820                             bool skip_this);
821    int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
822                           NextCallInsn next_call_insn,
823                           const MethodReference& target_method,
824                           uint32_t vtable_idx,
825                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
826                           bool skip_this);
827
828    /**
829     * @brief Used to determine the register location of destination.
830     * @details This is needed during generation of inline intrinsics because it finds destination
831     *  of return,
832     * either the physical register or the target of move-result.
833     * @param info Information about the invoke.
834     * @return Returns the destination location.
835     */
836    RegLocation InlineTarget(CallInfo* info);
837
838    /**
839     * @brief Used to determine the wide register location of destination.
840     * @see InlineTarget
841     * @param info Information about the invoke.
842     * @return Returns the destination location.
843     */
844    RegLocation InlineTargetWide(CallInfo* info);
845
846    bool GenInlinedCharAt(CallInfo* info);
847    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
848    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
849    bool GenInlinedAbsInt(CallInfo* info);
850    bool GenInlinedAbsLong(CallInfo* info);
851    bool GenInlinedAbsFloat(CallInfo* info);
852    bool GenInlinedAbsDouble(CallInfo* info);
853    bool GenInlinedFloatCvt(CallInfo* info);
854    bool GenInlinedDoubleCvt(CallInfo* info);
855    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
856    bool GenInlinedStringCompareTo(CallInfo* info);
857    bool GenInlinedCurrentThread(CallInfo* info);
858    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
859    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
860                             bool is_volatile, bool is_ordered);
861    virtual int LoadArgRegs(CallInfo* info, int call_state,
862                    NextCallInsn next_call_insn,
863                    const MethodReference& target_method,
864                    uint32_t vtable_idx,
865                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
866                    bool skip_this);
867
868    // Shared by all targets - implemented in gen_loadstore.cc.
869    RegLocation LoadCurrMethod();
870    void LoadCurrMethodDirect(RegStorage r_tgt);
871    LIR* LoadConstant(RegStorage r_dest, int value);
872    // Natural word size.
873    LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
874      return LoadBaseDisp(r_base, displacement, r_dest, kWord);
875    }
876    // Load 32 bits, regardless of target.
877    LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
878      return LoadBaseDisp(r_base, displacement, r_dest, k32);
879    }
880    // Load a reference at base + displacement and decompress into register.
881    LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
882      return LoadBaseDisp(r_base, displacement, r_dest, kReference);
883    }
884    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
885    RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
886    // Load Dalvik value with 64-bit memory storage.
887    RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
888    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
889    void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
890    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
891    void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
892    // Load Dalvik value with 64-bit memory storage.
893    void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
894    // Load Dalvik value with 64-bit memory storage.
895    void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
896    // Store an item of natural word size.
897    LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
898      return StoreBaseDisp(r_base, displacement, r_src, kWord);
899    }
900    // Store an uncompressed reference into a compressed 32-bit container.
901    LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src) {
902      return StoreBaseDisp(r_base, displacement, r_src, kReference);
903    }
904    // Store 32 bits, regardless of target.
905    LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
906      return StoreBaseDisp(r_base, displacement, r_src, k32);
907    }
908
909    /**
910     * @brief Used to do the final store in the destination as per bytecode semantics.
911     * @param rl_dest The destination dalvik register location.
912     * @param rl_src The source register location. Can be either physical register or dalvik register.
913     */
914    void StoreValue(RegLocation rl_dest, RegLocation rl_src);
915
916    /**
917     * @brief Used to do the final store in a wide destination as per bytecode semantics.
918     * @see StoreValue
919     * @param rl_dest The destination dalvik register location.
920     * @param rl_src The source register location. Can be either physical register or dalvik
921     *  register.
922     */
923    void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
924
925    /**
926     * @brief Used to do the final store to a destination as per bytecode semantics.
927     * @see StoreValue
928     * @param rl_dest The destination dalvik register location.
929     * @param rl_src The source register location. It must be kLocPhysReg
930     *
931     * This is used for x86 two operand computations, where we have computed the correct
932     * register value that now needs to be properly registered.  This is used to avoid an
933     * extra register copy that would result if StoreValue was called.
934     */
935    void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
936
937    /**
938     * @brief Used to do the final store in a wide destination as per bytecode semantics.
939     * @see StoreValueWide
940     * @param rl_dest The destination dalvik register location.
941     * @param rl_src The source register location. It must be kLocPhysReg
942     *
943     * This is used for x86 two operand computations, where we have computed the correct
944     * register values that now need to be properly registered.  This is used to avoid an
945     * extra pair of register copies that would result if StoreValueWide was called.
946     */
947    void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
948
949    // Shared by all targets - implemented in mir_to_lir.cc.
950    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
951    void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
952    bool MethodBlockCodeGen(BasicBlock* bb);
953    bool SpecialMIR2LIR(const InlineMethod& special);
954    void MethodMIR2LIR();
955    // Update LIR for verbose listings.
956    void UpdateLIROffsets();
957
958    /*
959     * @brief Load the address of the dex method into the register.
960     * @param target_method The MethodReference of the method to be invoked.
961     * @param type How the method will be invoked.
962     * @param register that will contain the code address.
963     * @note register will be passed to TargetReg to get physical register.
964     */
965    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
966                         SpecialTargetRegister symbolic_reg);
967
968    /*
969     * @brief Load the Method* of a dex method into the register.
970     * @param target_method The MethodReference of the method to be invoked.
971     * @param type How the method will be invoked.
972     * @param register that will contain the code address.
973     * @note register will be passed to TargetReg to get physical register.
974     */
975    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
976                                   SpecialTargetRegister symbolic_reg);
977
978    /*
979     * @brief Load the Class* of a Dex Class type into the register.
980     * @param type How the method will be invoked.
981     * @param register that will contain the code address.
982     * @note register will be passed to TargetReg to get physical register.
983     */
984    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
985
986    // Routines that work for the generic case, but may be overriden by target.
987    /*
988     * @brief Compare memory to immediate, and branch if condition true.
989     * @param cond The condition code that when true will branch to the target.
990     * @param temp_reg A temporary register that can be used if compare to memory is not
991     * supported by the architecture.
992     * @param base_reg The register holding the base address.
993     * @param offset The offset from the base.
994     * @param check_value The immediate to compare to.
995     * @returns The branch instruction that was generated.
996     */
997    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
998                                   int offset, int check_value, LIR* target);
999
1000    // Required for target - codegen helpers.
1001    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1002                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1003    virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
1004    virtual LIR* CheckSuspendUsingLoad() = 0;
1005    virtual RegStorage LoadHelper(ThreadOffset<4> offset) = 0;
1006    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1007                              OpSize size) = 0;
1008    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1009                                 int scale, OpSize size) = 0;
1010    virtual LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1011                                     int displacement, RegStorage r_dest, OpSize size) = 0;
1012    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
1013    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
1014    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
1015                               OpSize size) = 0;
1016    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1017                                  int scale, OpSize size) = 0;
1018    virtual LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
1019                                      int displacement, RegStorage r_src, OpSize size) = 0;
1020    virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0;
1021
1022    // Required for target - register utilities.
1023    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class) = 0;
1024    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class) = 0;
1025    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
1026    virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
1027    virtual RegLocation GetReturnAlt() = 0;
1028    virtual RegLocation GetReturnWideAlt() = 0;
1029    virtual RegLocation LocCReturn() = 0;
1030    virtual RegLocation LocCReturnDouble() = 0;
1031    virtual RegLocation LocCReturnFloat() = 0;
1032    virtual RegLocation LocCReturnWide() = 0;
1033    virtual uint64_t GetRegMaskCommon(RegStorage reg) = 0;
1034    virtual void AdjustSpillMask() = 0;
1035    virtual void ClobberCallerSave() = 0;
1036    virtual void FreeCallTemps() = 0;
1037    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) = 0;
1038    virtual void LockCallTemps() = 0;
1039    virtual void MarkPreservedSingle(int v_reg, RegStorage reg) = 0;
1040    virtual void MarkPreservedDouble(int v_reg, RegStorage reg) = 0;
1041    virtual void CompilerInitializeRegAlloc() = 0;
1042
1043    // Required for target - miscellaneous.
1044    virtual void AssembleLIR() = 0;
1045    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix) = 0;
1046    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags) = 0;
1047    virtual const char* GetTargetInstFmt(int opcode) = 0;
1048    virtual const char* GetTargetInstName(int opcode) = 0;
1049    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
1050    virtual uint64_t GetPCUseDefEncoding() = 0;
1051    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
1052    virtual int GetInsnSize(LIR* lir) = 0;
1053    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
1054
1055    // Required for target - Dalvik-level generators.
1056    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1057                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
1058    virtual void GenMulLong(Instruction::Code,
1059                            RegLocation rl_dest, RegLocation rl_src1,
1060                            RegLocation rl_src2) = 0;
1061    virtual void GenAddLong(Instruction::Code,
1062                            RegLocation rl_dest, RegLocation rl_src1,
1063                            RegLocation rl_src2) = 0;
1064    virtual void GenAndLong(Instruction::Code,
1065                            RegLocation rl_dest, RegLocation rl_src1,
1066                            RegLocation rl_src2) = 0;
1067    virtual void GenArithOpDouble(Instruction::Code opcode,
1068                                  RegLocation rl_dest, RegLocation rl_src1,
1069                                  RegLocation rl_src2) = 0;
1070    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
1071                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
1072    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
1073                          RegLocation rl_src1, RegLocation rl_src2) = 0;
1074    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
1075                               RegLocation rl_src) = 0;
1076    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
1077
1078    /**
1079     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
1080     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
1081     * that applies on integers. The generated code will write the smallest or largest value
1082     * directly into the destination register as specified by the invoke information.
1083     * @param info Information about the invoke.
1084     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
1085     * @return Returns true if successfully generated
1086     */
1087    virtual bool GenInlinedMinMaxInt(CallInfo* info, bool is_min) = 0;
1088
1089    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
1090    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
1091    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
1092    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
1093    virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1094                           RegLocation rl_src2) = 0;
1095    virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1096                            RegLocation rl_src2) = 0;
1097    virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1098                            RegLocation rl_src2) = 0;
1099    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
1100                                  bool is_div) = 0;
1101    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
1102                                     bool is_div) = 0;
1103    /*
1104     * @brief Generate an integer div or rem operation by a literal.
1105     * @param rl_dest Destination Location.
1106     * @param rl_src1 Numerator Location.
1107     * @param rl_src2 Divisor Location.
1108     * @param is_div 'true' if this is a division, 'false' for a remainder.
1109     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
1110     */
1111    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
1112                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
1113    /*
1114     * @brief Generate an integer div or rem operation by a literal.
1115     * @param rl_dest Destination Location.
1116     * @param rl_src Numerator Location.
1117     * @param lit Divisor.
1118     * @param is_div 'true' if this is a division, 'false' for a remainder.
1119     */
1120    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
1121                                     bool is_div) = 0;
1122    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
1123
1124    /**
1125     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
1126     * @details This is used for generating DivideByZero checks when divisor is held in two
1127     *  separate registers.
1128     * @param reg The register holding the pair of 32-bit values.
1129     */
1130    virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
1131
1132    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
1133    virtual void GenExitSequence() = 0;
1134    virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0;
1135    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
1136    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
1137
1138    /**
1139     * @brief Lowers the kMirOpSelect MIR into LIR.
1140     * @param bb The basic block in which the MIR is from.
1141     * @param mir The MIR whose opcode is kMirOpSelect.
1142     */
1143    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
1144
1145    /**
1146     * @brief Used to generate a memory barrier in an architecture specific way.
1147     * @details The last generated LIR will be considered for use as barrier. Namely,
1148     * if the last LIR can be updated in a way where it will serve the semantics of
1149     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
1150     * that can keep the semantics.
1151     * @param barrier_kind The kind of memory barrier to generate.
1152     */
1153    virtual void GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1154
1155    virtual void GenMoveException(RegLocation rl_dest) = 0;
1156    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1157                                               int first_bit, int second_bit) = 0;
1158    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1159    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1160    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1161    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1162    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1163                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1164    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1165                             RegLocation rl_index, RegLocation rl_src, int scale,
1166                             bool card_mark) = 0;
1167    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1168                                   RegLocation rl_src1, RegLocation rl_shift) = 0;
1169
1170    // Required for target - single operation generators.
1171    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1172    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1173    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1174                                LIR* target) = 0;
1175    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1176    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1177    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1178    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1179    virtual void OpEndIT(LIR* it) = 0;
1180    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1181    virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1182    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1183    virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1184    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1185    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1186    virtual LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) = 0;
1187    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1188
1189    /**
1190     * @brief Used to generate an LIR that does a load from mem to reg.
1191     * @param r_dest The destination physical register.
1192     * @param r_base The base physical register for memory operand.
1193     * @param offset The displacement for memory operand.
1194     * @param move_type Specification on the move desired (size, alignment, register kind).
1195     * @return Returns the generate move LIR.
1196     */
1197    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1198                             MoveType move_type) = 0;
1199
1200    /**
1201     * @brief Used to generate an LIR that does a store from reg to mem.
1202     * @param r_base The base physical register for memory operand.
1203     * @param offset The displacement for memory operand.
1204     * @param r_src The destination physical register.
1205     * @param bytes_to_move The number of bytes to move.
1206     * @param is_aligned Whether the memory location is known to be aligned.
1207     * @return Returns the generate move LIR.
1208     */
1209    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1210                             MoveType move_type) = 0;
1211
1212    /**
1213     * @brief Used for generating a conditional register to register operation.
1214     * @param op The opcode kind.
1215     * @param cc The condition code that when true will perform the opcode.
1216     * @param r_dest The destination physical register.
1217     * @param r_src The source physical register.
1218     * @return Returns the newly created LIR or null in case of creation failure.
1219     */
1220    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1221
1222    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1223    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1224                             RegStorage r_src2) = 0;
1225    virtual LIR* OpTestSuspend(LIR* target) = 0;
1226    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) = 0;
1227    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1228    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1229    virtual void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale,
1230                       int offset) = 0;
1231    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1232    virtual void OpTlsCmp(ThreadOffset<4> offset, int val) = 0;
1233    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1234    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1235    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1236    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1237
1238    // May be optimized by targets.
1239    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1240    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1241
1242    // Temp workaround
1243    void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
1244
1245  protected:
1246    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1247
1248    CompilationUnit* GetCompilationUnit() {
1249      return cu_;
1250    }
1251    /*
1252     * @brief Returns the index of the lowest set bit in 'x'.
1253     * @param x Value to be examined.
1254     * @returns The bit number of the lowest bit set in the value.
1255     */
1256    int32_t LowestSetBit(uint64_t x);
1257    /*
1258     * @brief Is this value a power of two?
1259     * @param x Value to be examined.
1260     * @returns 'true' if only 1 bit is set in the value.
1261     */
1262    bool IsPowerOfTwo(uint64_t x);
1263    /*
1264     * @brief Do these SRs overlap?
1265     * @param rl_op1 One RegLocation
1266     * @param rl_op2 The other RegLocation
1267     * @return 'true' if the VR pairs overlap
1268     *
1269     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1270     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1271     * dex, we'll want to make this case illegal.
1272     */
1273    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1274
1275    /*
1276     * @brief Force a location (in a register) into a temporary register
1277     * @param loc location of result
1278     * @returns update location
1279     */
1280    RegLocation ForceTemp(RegLocation loc);
1281
1282    /*
1283     * @brief Force a wide location (in registers) into temporary registers
1284     * @param loc location of result
1285     * @returns update location
1286     */
1287    RegLocation ForceTempWide(RegLocation loc);
1288
1289    static constexpr OpSize LoadStoreOpSize(bool wide, bool ref) {
1290      return wide ? k64 : ref ? kReference : k32;
1291    }
1292
1293    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1294                                    RegLocation rl_dest, RegLocation rl_src);
1295
1296    void AddSlowPath(LIRSlowPath* slowpath);
1297
1298    virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1299                                            bool type_known_abstract, bool use_declaring_class,
1300                                            bool can_assume_type_is_in_dex_cache,
1301                                            uint32_t type_idx, RegLocation rl_dest,
1302                                            RegLocation rl_src);
1303    /*
1304     * @brief Generate the debug_frame FDE information if possible.
1305     * @returns pointer to vector containg CFE information, or NULL.
1306     */
1307    virtual std::vector<uint8_t>* ReturnCallFrameInformation();
1308
1309    /**
1310     * @brief Used to insert marker that can be used to associate MIR with LIR.
1311     * @details Only inserts marker if verbosity is enabled.
1312     * @param mir The mir that is currently being generated.
1313     */
1314    void GenPrintLabel(MIR* mir);
1315
1316    /**
1317     * @brief Used to generate return sequence when there is no frame.
1318     * @details Assumes that the return registers have already been populated.
1319     */
1320    virtual void GenSpecialExitSequence() = 0;
1321
1322    /**
1323     * @brief Used to generate code for special methods that are known to be
1324     * small enough to work in frameless mode.
1325     * @param bb The basic block of the first MIR.
1326     * @param mir The first MIR of the special method.
1327     * @param special Information about the special method.
1328     * @return Returns whether or not this was handled successfully. Returns false
1329     * if caller should punt to normal MIR2LIR conversion.
1330     */
1331    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1332
1333  private:
1334    void ClobberBody(RegisterInfo* p);
1335    void SetCurrentDexPc(DexOffset dexpc) {
1336      current_dalvik_offset_ = dexpc;
1337    }
1338
1339    /**
1340     * @brief Used to lock register if argument at in_position was passed that way.
1341     * @details Does nothing if the argument is passed via stack.
1342     * @param in_position The argument number whose register to lock.
1343     * @param wide Whether the argument is wide.
1344     */
1345    void LockArg(int in_position, bool wide = false);
1346
1347    /**
1348     * @brief Used to load VR argument to a physical register.
1349     * @details The load is only done if the argument is not already in physical register.
1350     * LockArg must have been previously called.
1351     * @param in_position The argument number to load.
1352     * @param wide Whether the argument is 64-bit or not.
1353     * @return Returns the register (or register pair) for the loaded argument.
1354     */
1355    RegStorage LoadArg(int in_position, bool wide = false);
1356
1357    /**
1358     * @brief Used to load a VR argument directly to a specified register location.
1359     * @param in_position The argument number to place in register.
1360     * @param rl_dest The register location where to place argument.
1361     */
1362    void LoadArgDirect(int in_position, RegLocation rl_dest);
1363
1364    /**
1365     * @brief Used to generate LIR for special getter method.
1366     * @param mir The mir that represents the iget.
1367     * @param special Information about the special getter method.
1368     * @return Returns whether LIR was successfully generated.
1369     */
1370    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1371
1372    /**
1373     * @brief Used to generate LIR for special setter method.
1374     * @param mir The mir that represents the iput.
1375     * @param special Information about the special setter method.
1376     * @return Returns whether LIR was successfully generated.
1377     */
1378    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1379
1380    /**
1381     * @brief Used to generate LIR for special return-args method.
1382     * @param mir The mir that represents the return of argument.
1383     * @param special Information about the special return-args method.
1384     * @return Returns whether LIR was successfully generated.
1385     */
1386    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1387
1388    void AddDivZeroCheckSlowPath(LIR* branch);
1389
1390    // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
1391    // kArg2 as temp.
1392    void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
1393
1394  public:
1395    // TODO: add accessors for these.
1396    LIR* literal_list_;                        // Constants.
1397    LIR* method_literal_list_;                 // Method literals requiring patching.
1398    LIR* class_literal_list_;                  // Class literals requiring patching.
1399    LIR* code_literal_list_;                   // Code literals requiring patching.
1400    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1401
1402  protected:
1403    CompilationUnit* const cu_;
1404    MIRGraph* const mir_graph_;
1405    GrowableArray<SwitchTable*> switch_tables_;
1406    GrowableArray<FillArrayData*> fill_array_data_;
1407    GrowableArray<RegisterInfo*> tempreg_info_;
1408    GrowableArray<RegisterInfo*> reginfo_map_;
1409    GrowableArray<void*> pointer_storage_;
1410    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1411    CodeOffset data_offset_;            // starting offset of literal pool.
1412    size_t total_size_;                   // header + code size.
1413    LIR* block_label_list_;
1414    PromotionMap* promotion_map_;
1415    /*
1416     * TODO: The code generation utilities don't have a built-in
1417     * mechanism to propagate the original Dalvik opcode address to the
1418     * associated generated instructions.  For the trace compiler, this wasn't
1419     * necessary because the interpreter handled all throws and debugging
1420     * requests.  For now we'll handle this by placing the Dalvik offset
1421     * in the CompilationUnit struct before codegen for each instruction.
1422     * The low-level LIR creation utilites will pull it from here.  Rework this.
1423     */
1424    DexOffset current_dalvik_offset_;
1425    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1426    RegisterPool* reg_pool_;
1427    /*
1428     * Sanity checking for the register temp tracking.  The same ssa
1429     * name should never be associated with one temp register per
1430     * instruction compilation.
1431     */
1432    int live_sreg_;
1433    CodeBuffer code_buffer_;
1434    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1435    std::vector<uint8_t> encoded_mapping_table_;
1436    std::vector<uint32_t> core_vmap_table_;
1437    std::vector<uint32_t> fp_vmap_table_;
1438    std::vector<uint8_t> native_gc_map_;
1439    int num_core_spills_;
1440    int num_fp_spills_;
1441    int frame_size_;
1442    unsigned int core_spill_mask_;
1443    unsigned int fp_spill_mask_;
1444    LIR* first_lir_insn_;
1445    LIR* last_lir_insn_;
1446
1447    GrowableArray<LIRSlowPath*> slow_paths_;
1448};  // Class Mir2Lir
1449
1450}  // namespace art
1451
1452#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1453