mir_to_lir.h revision 7a11ab09f93f54b1c07c0bf38dd65ed322e86bc6
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
18#define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
19
20#include "invoke_type.h"
21#include "compiled_method.h"
22#include "dex/compiler_enums.h"
23#include "dex/compiler_ir.h"
24#include "dex/reg_storage.h"
25#include "dex/backend.h"
26#include "driver/compiler_driver.h"
27#include "leb128.h"
28#include "safe_map.h"
29#include "utils/arena_allocator.h"
30#include "utils/growable_array.h"
31
32namespace art {
33
34/*
35 * TODO: refactoring pass to move these (and other) typdefs towards usage style of runtime to
36 * add type safety (see runtime/offsets.h).
37 */
38typedef uint32_t DexOffset;          // Dex offset in code units.
39typedef uint16_t NarrowDexOffset;    // For use in structs, Dex offsets range from 0 .. 0xffff.
40typedef uint32_t CodeOffset;         // Native code offset in bytes.
41
42// Set to 1 to measure cost of suspend check.
43#define NO_SUSPEND 0
44
45#define IS_BINARY_OP         (1ULL << kIsBinaryOp)
46#define IS_BRANCH            (1ULL << kIsBranch)
47#define IS_IT                (1ULL << kIsIT)
48#define IS_LOAD              (1ULL << kMemLoad)
49#define IS_QUAD_OP           (1ULL << kIsQuadOp)
50#define IS_QUIN_OP           (1ULL << kIsQuinOp)
51#define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
52#define IS_STORE             (1ULL << kMemStore)
53#define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
54#define IS_UNARY_OP          (1ULL << kIsUnaryOp)
55#define NEEDS_FIXUP          (1ULL << kPCRelFixup)
56#define NO_OPERAND           (1ULL << kNoOperand)
57#define REG_DEF0             (1ULL << kRegDef0)
58#define REG_DEF1             (1ULL << kRegDef1)
59#define REG_DEF2             (1ULL << kRegDef2)
60#define REG_DEFA             (1ULL << kRegDefA)
61#define REG_DEFD             (1ULL << kRegDefD)
62#define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
63#define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
64#define REG_DEF_LIST0        (1ULL << kRegDefList0)
65#define REG_DEF_LIST1        (1ULL << kRegDefList1)
66#define REG_DEF_LR           (1ULL << kRegDefLR)
67#define REG_DEF_SP           (1ULL << kRegDefSP)
68#define REG_USE0             (1ULL << kRegUse0)
69#define REG_USE1             (1ULL << kRegUse1)
70#define REG_USE2             (1ULL << kRegUse2)
71#define REG_USE3             (1ULL << kRegUse3)
72#define REG_USE4             (1ULL << kRegUse4)
73#define REG_USEA             (1ULL << kRegUseA)
74#define REG_USEC             (1ULL << kRegUseC)
75#define REG_USED             (1ULL << kRegUseD)
76#define REG_USEB             (1ULL << kRegUseB)
77#define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
78#define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
79#define REG_USE_LIST0        (1ULL << kRegUseList0)
80#define REG_USE_LIST1        (1ULL << kRegUseList1)
81#define REG_USE_LR           (1ULL << kRegUseLR)
82#define REG_USE_PC           (1ULL << kRegUsePC)
83#define REG_USE_SP           (1ULL << kRegUseSP)
84#define SETS_CCODES          (1ULL << kSetsCCodes)
85#define USES_CCODES          (1ULL << kUsesCCodes)
86#define USE_FP_STACK         (1ULL << kUseFpStack)
87#define REG_USE_LO           (1ULL << kUseLo)
88#define REG_USE_HI           (1ULL << kUseHi)
89#define REG_DEF_LO           (1ULL << kDefLo)
90#define REG_DEF_HI           (1ULL << kDefHi)
91
92// Common combo register usage patterns.
93#define REG_DEF01            (REG_DEF0 | REG_DEF1)
94#define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
95#define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
96#define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
97#define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
98#define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
99#define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
100#define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
101#define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
102#define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
103#define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
104#define REG_USE012           (REG_USE01 | REG_USE2)
105#define REG_USE014           (REG_USE01 | REG_USE4)
106#define REG_USE01            (REG_USE0 | REG_USE1)
107#define REG_USE02            (REG_USE0 | REG_USE2)
108#define REG_USE12            (REG_USE1 | REG_USE2)
109#define REG_USE23            (REG_USE2 | REG_USE3)
110#define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
111
112// TODO: #includes need a cleanup
113#ifndef INVALID_SREG
114#define INVALID_SREG (-1)
115#endif
116
117struct BasicBlock;
118struct CallInfo;
119struct CompilationUnit;
120struct InlineMethod;
121struct MIR;
122struct LIR;
123struct RegLocation;
124struct RegisterInfo;
125class DexFileMethodInliner;
126class MIRGraph;
127class Mir2Lir;
128
129typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
130                            const MethodReference& target_method,
131                            uint32_t method_idx, uintptr_t direct_code,
132                            uintptr_t direct_method, InvokeType type);
133
134typedef std::vector<uint8_t> CodeBuffer;
135
136struct UseDefMasks {
137  uint64_t use_mask;        // Resource mask for use.
138  uint64_t def_mask;        // Resource mask for def.
139};
140
141struct AssemblyInfo {
142  LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
143};
144
145struct LIR {
146  CodeOffset offset;             // Offset of this instruction.
147  NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
148  int16_t opcode;
149  LIR* next;
150  LIR* prev;
151  LIR* target;
152  struct {
153    unsigned int alias_info:17;  // For Dalvik register disambiguation.
154    bool is_nop:1;               // LIR is optimized away.
155    unsigned int size:4;         // Note: size of encoded instruction is in bytes.
156    bool use_def_invalid:1;      // If true, masks should not be used.
157    unsigned int generation:1;   // Used to track visitation state during fixup pass.
158    unsigned int fixup:8;        // Fixup kind.
159  } flags;
160  union {
161    UseDefMasks m;               // Use & Def masks used during optimization.
162    AssemblyInfo a;              // Instruction info used during assembly phase.
163  } u;
164  int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
165};
166
167// Target-specific initialization.
168Mir2Lir* ArmCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
169                          ArenaAllocator* const arena);
170Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
171                          ArenaAllocator* const arena);
172Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
173                          ArenaAllocator* const arena);
174
175// Utility macros to traverse the LIR list.
176#define NEXT_LIR(lir) (lir->next)
177#define PREV_LIR(lir) (lir->prev)
178
179// Defines for alias_info (tracks Dalvik register references).
180#define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
181#define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
182#define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
183#define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
184
185// Common resource macros.
186#define ENCODE_CCODE            (1ULL << kCCode)
187#define ENCODE_FP_STATUS        (1ULL << kFPStatus)
188
189// Abstract memory locations.
190#define ENCODE_DALVIK_REG       (1ULL << kDalvikReg)
191#define ENCODE_LITERAL          (1ULL << kLiteral)
192#define ENCODE_HEAP_REF         (1ULL << kHeapRef)
193#define ENCODE_MUST_NOT_ALIAS   (1ULL << kMustNotAlias)
194
195#define ENCODE_ALL              (~0ULL)
196#define ENCODE_MEM              (ENCODE_DALVIK_REG | ENCODE_LITERAL | \
197                                 ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS)
198
199#define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
200#define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
201  do { \
202    low_reg = both_regs & 0xff; \
203    high_reg = (both_regs >> 8) & 0xff; \
204  } while (false)
205
206// Mask to denote sreg as the start of a double.  Must not interfere with low 16 bits.
207#define STARTING_DOUBLE_SREG 0x10000
208
209// TODO: replace these macros
210#define SLOW_FIELD_PATH (cu_->enable_debug & (1 << kDebugSlowFieldPath))
211#define SLOW_INVOKE_PATH (cu_->enable_debug & (1 << kDebugSlowInvokePath))
212#define SLOW_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowStringPath))
213#define SLOW_TYPE_PATH (cu_->enable_debug & (1 << kDebugSlowTypePath))
214#define EXERCISE_SLOWEST_STRING_PATH (cu_->enable_debug & (1 << kDebugSlowestStringPath))
215
216class Mir2Lir : public Backend {
217  public:
218    /*
219     * Auxiliary information describing the location of data embedded in the Dalvik
220     * byte code stream.
221     */
222    struct EmbeddedData {
223      CodeOffset offset;        // Code offset of data block.
224      const uint16_t* table;      // Original dex data.
225      DexOffset vaddr;            // Dalvik offset of parent opcode.
226    };
227
228    struct FillArrayData : EmbeddedData {
229      int32_t size;
230    };
231
232    struct SwitchTable : EmbeddedData {
233      LIR* anchor;                // Reference instruction for relative offsets.
234      LIR** targets;              // Array of case targets.
235    };
236
237    /* Static register use counts */
238    struct RefCounts {
239      int count;
240      int s_reg;
241    };
242
243    /*
244     * Data structure tracking the mapping between a Dalvik register (pair) and a
245     * native register (pair). The idea is to reuse the previously loaded value
246     * if possible, otherwise to keep the value in a native register as long as
247     * possible.
248     */
249    struct RegisterInfo {
250      int reg;                    // Reg number
251      bool in_use;                // Has it been allocated?
252      bool is_temp;               // Can allocate as temp?
253      bool pair;                  // Part of a register pair?
254      int partner;                // If pair, other reg of pair.
255      bool live;                  // Is there an associated SSA name?
256      bool dirty;                 // If live, is it dirty?
257      int s_reg;                  // Name of live value.
258      LIR *def_start;             // Starting inst in last def sequence.
259      LIR *def_end;               // Ending inst in last def sequence.
260    };
261
262    struct RegisterPool {
263       int num_core_regs;
264       RegisterInfo *core_regs;
265       int next_core_reg;
266       int num_fp_regs;
267       RegisterInfo *FPRegs;
268       int next_fp_reg;
269     };
270
271    struct PromotionMap {
272      RegLocationType core_location:3;
273      uint8_t core_reg;
274      RegLocationType fp_location:3;
275      uint8_t FpReg;
276      bool first_in_pair;
277    };
278
279    //
280    // Slow paths.  This object is used generate a sequence of code that is executed in the
281    // slow path.  For example, resolving a string or class is slow as it will only be executed
282    // once (after that it is resolved and doesn't need to be done again).  We want slow paths
283    // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
284    // branch over them.
285    //
286    // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
287    // the Compile() function that will be called near the end of the code generated by the
288    // method.
289    //
290    // The basic flow for a slow path is:
291    //
292    //     CMP reg, #value
293    //     BEQ fromfast
294    //   cont:
295    //     ...
296    //     fast path code
297    //     ...
298    //     more code
299    //     ...
300    //     RETURN
301    ///
302    //   fromfast:
303    //     ...
304    //     slow path code
305    //     ...
306    //     B cont
307    //
308    // So you see we need two labels and two branches.  The first branch (called fromfast) is
309    // the conditional branch to the slow path code.  The second label (called cont) is used
310    // as an unconditional branch target for getting back to the code after the slow path
311    // has completed.
312    //
313
314    class LIRSlowPath {
315     public:
316      LIRSlowPath(Mir2Lir* m2l, const DexOffset dexpc, LIR* fromfast,
317                  LIR* cont = nullptr) :
318        m2l_(m2l), current_dex_pc_(dexpc), fromfast_(fromfast), cont_(cont) {
319      }
320      virtual ~LIRSlowPath() {}
321      virtual void Compile() = 0;
322
323      static void* operator new(size_t size, ArenaAllocator* arena) {
324        return arena->Alloc(size, kArenaAllocData);
325      }
326
327     protected:
328      LIR* GenerateTargetLabel();
329
330      Mir2Lir* const m2l_;
331      const DexOffset current_dex_pc_;
332      LIR* const fromfast_;
333      LIR* const cont_;
334    };
335
336    virtual ~Mir2Lir() {}
337
338    int32_t s4FromSwitchData(const void* switch_data) {
339      return *reinterpret_cast<const int32_t*>(switch_data);
340    }
341
342    RegisterClass oat_reg_class_by_size(OpSize size) {
343      return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
344              size == kSignedByte) ? kCoreReg : kAnyReg;
345    }
346
347    size_t CodeBufferSizeInBytes() {
348      return code_buffer_.size() / sizeof(code_buffer_[0]);
349    }
350
351    static bool IsPseudoLirOp(int opcode) {
352      return (opcode < 0);
353    }
354
355    /*
356     * LIR operands are 32-bit integers.  Sometimes, (especially for managing
357     * instructions which require PC-relative fixups), we need the operands to carry
358     * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
359     * hold that index in the operand array.
360     * TUNING: If use of these utilities becomes more common on 32-bit builds, it
361     * may be worth conditionally-compiling a set of identity functions here.
362     */
363    uint32_t WrapPointer(void* pointer) {
364      uint32_t res = pointer_storage_.Size();
365      pointer_storage_.Insert(pointer);
366      return res;
367    }
368
369    void* UnwrapPointer(size_t index) {
370      return pointer_storage_.Get(index);
371    }
372
373    // strdup(), but allocates from the arena.
374    char* ArenaStrdup(const char* str) {
375      size_t len = strlen(str) + 1;
376      char* res = reinterpret_cast<char*>(arena_->Alloc(len, kArenaAllocMisc));
377      if (res != NULL) {
378        strncpy(res, str, len);
379      }
380      return res;
381    }
382
383    // Shared by all targets - implemented in codegen_util.cc
384    void AppendLIR(LIR* lir);
385    void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
386    void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
387
388    /**
389     * @brief Provides the maximum number of compiler temporaries that the backend can/wants
390     * to place in a frame.
391     * @return Returns the maximum number of compiler temporaries.
392     */
393    size_t GetMaxPossibleCompilerTemps() const;
394
395    /**
396     * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
397     * @return Returns the size in bytes for space needed for compiler temporary spill region.
398     */
399    size_t GetNumBytesForCompilerTempSpillRegion();
400
401    DexOffset GetCurrentDexPc() const {
402      return current_dalvik_offset_;
403    }
404
405    int ComputeFrameSize();
406    virtual void Materialize();
407    virtual CompiledMethod* GetCompiledMethod();
408    void MarkSafepointPC(LIR* inst);
409    void SetupResourceMasks(LIR* lir);
410    void SetMemRefType(LIR* lir, bool is_load, int mem_type);
411    void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
412    void SetupRegMask(uint64_t* mask, int reg);
413    void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
414    void DumpPromotionMap();
415    void CodegenDump();
416    LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
417                int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = NULL);
418    LIR* NewLIR0(int opcode);
419    LIR* NewLIR1(int opcode, int dest);
420    LIR* NewLIR2(int opcode, int dest, int src1);
421    LIR* NewLIR2NoDest(int opcode, int src, int info);
422    LIR* NewLIR3(int opcode, int dest, int src1, int src2);
423    LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
424    LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
425    LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
426    LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
427    LIR* AddWordData(LIR* *constant_list_p, int value);
428    LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
429    void ProcessSwitchTables();
430    void DumpSparseSwitchTable(const uint16_t* table);
431    void DumpPackedSwitchTable(const uint16_t* table);
432    void MarkBoundary(DexOffset offset, const char* inst_str);
433    void NopLIR(LIR* lir);
434    void UnlinkLIR(LIR* lir);
435    bool EvaluateBranch(Instruction::Code opcode, int src1, int src2);
436    bool IsInexpensiveConstant(RegLocation rl_src);
437    ConditionCode FlipComparisonOrder(ConditionCode before);
438    ConditionCode NegateComparison(ConditionCode before);
439    virtual void InstallLiteralPools();
440    void InstallSwitchTables();
441    void InstallFillArrayData();
442    bool VerifyCatchEntries();
443    void CreateMappingTables();
444    void CreateNativeGcMap();
445    int AssignLiteralOffset(CodeOffset offset);
446    int AssignSwitchTablesOffset(CodeOffset offset);
447    int AssignFillArrayDataOffset(CodeOffset offset);
448    LIR* InsertCaseLabel(DexOffset vaddr, int keyVal);
449    void MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec);
450    void MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec);
451    // Handle bookkeeping to convert a wide RegLocation to a narow RegLocation.  No code generated.
452    RegLocation NarrowRegLoc(RegLocation loc);
453
454    // Shared by all targets - implemented in local_optimizations.cc
455    void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
456    void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
457    void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
458    void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
459
460    // Shared by all targets - implemented in ralloc_util.cc
461    int GetSRegHi(int lowSreg);
462    bool oat_live_out(int s_reg);
463    int oatSSASrc(MIR* mir, int num);
464    void SimpleRegAlloc();
465    void ResetRegPool();
466    void CompilerInitPool(RegisterInfo* regs, int* reg_nums, int num);
467    void DumpRegPool(RegisterInfo* p, int num_regs);
468    void DumpCoreRegPool();
469    void DumpFpRegPool();
470    /* Mark a temp register as dead.  Does not affect allocation state. */
471    void Clobber(int reg) {
472      ClobberBody(GetRegInfo(reg));
473    }
474    void Clobber(RegStorage reg);
475    void ClobberSRegBody(RegisterInfo* p, int num_regs, int s_reg);
476    void ClobberSReg(int s_reg);
477    int SRegToPMap(int s_reg);
478    void RecordCorePromotion(RegStorage reg, int s_reg);
479    RegStorage AllocPreservedCoreReg(int s_reg);
480    void RecordFpPromotion(RegStorage reg, int s_reg);
481    RegStorage AllocPreservedSingle(int s_reg);
482    RegStorage AllocPreservedDouble(int s_reg);
483    RegStorage AllocTempBody(RegisterInfo* p, int num_regs, int* next_temp, bool required);
484    virtual RegStorage AllocTempDouble();
485    RegStorage AllocFreeTemp();
486    RegStorage AllocTemp();
487    RegStorage AllocTempFloat();
488    RegisterInfo* AllocLiveBody(RegisterInfo* p, int num_regs, int s_reg);
489    RegisterInfo* AllocLive(int s_reg, int reg_class);
490    void FreeTemp(int reg);
491    void FreeTemp(RegStorage reg);
492    RegisterInfo* IsLive(int reg);
493    bool IsLive(RegStorage reg);
494    RegisterInfo* IsTemp(int reg);
495    bool IsTemp(RegStorage reg);
496    RegisterInfo* IsPromoted(int reg);
497    bool IsPromoted(RegStorage reg);
498    bool IsDirty(int reg);
499    bool IsDirty(RegStorage reg);
500    void LockTemp(int reg);
501    void LockTemp(RegStorage reg);
502    void ResetDef(int reg);
503    void ResetDef(RegStorage reg);
504    void NullifyRange(LIR *start, LIR *finish, int s_reg1, int s_reg2);
505    void MarkDef(RegLocation rl, LIR *start, LIR *finish);
506    void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
507    RegLocation WideToNarrow(RegLocation rl);
508    void ResetDefLoc(RegLocation rl);
509    virtual void ResetDefLocWide(RegLocation rl);
510    void ResetDefTracking();
511    void ClobberAllRegs();
512    void FlushSpecificReg(RegisterInfo* info);
513    void FlushAllRegsBody(RegisterInfo* info, int num_regs);
514    void FlushAllRegs();
515    bool RegClassMatches(int reg_class, RegStorage reg);
516    void MarkLive(RegStorage reg, int s_reg);
517    void MarkTemp(int reg);
518    void MarkTemp(RegStorage reg);
519    void UnmarkTemp(int reg);
520    void UnmarkTemp(RegStorage reg);
521    void MarkPair(int low_reg, int high_reg);
522    void MarkClean(RegLocation loc);
523    void MarkDirty(RegLocation loc);
524    void MarkInUse(int reg);
525    void MarkInUse(RegStorage reg);
526    void CopyRegInfo(int new_reg, int old_reg);
527    void CopyRegInfo(RegStorage new_reg, RegStorage old_reg);
528    bool CheckCorePoolSanity();
529    RegLocation UpdateLoc(RegLocation loc);
530    virtual RegLocation UpdateLocWide(RegLocation loc);
531    RegLocation UpdateRawLoc(RegLocation loc);
532
533    /**
534     * @brief Used to load register location into a typed temporary or pair of temporaries.
535     * @see EvalLoc
536     * @param loc The register location to load from.
537     * @param reg_class Type of register needed.
538     * @param update Whether the liveness information should be updated.
539     * @return Returns the properly typed temporary in physical register pairs.
540     */
541    virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
542
543    /**
544     * @brief Used to load register location into a typed temporary.
545     * @param loc The register location to load from.
546     * @param reg_class Type of register needed.
547     * @param update Whether the liveness information should be updated.
548     * @return Returns the properly typed temporary in physical register.
549     */
550    virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
551
552    void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
553    void DumpCounts(const RefCounts* arr, int size, const char* msg);
554    void DoPromotion();
555    int VRegOffset(int v_reg);
556    int SRegOffset(int s_reg);
557    RegLocation GetReturnWide(bool is_double);
558    RegLocation GetReturn(bool is_float);
559    RegisterInfo* GetRegInfo(int reg);
560
561    // Shared by all targets - implemented in gen_common.cc.
562    void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
563    bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
564                          RegLocation rl_src, RegLocation rl_dest, int lit);
565    bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
566    void HandleSuspendLaunchPads();
567    void HandleSlowPaths();
568    void GenBarrier();
569    void GenDivZeroException();
570    // c_code holds condition code that's generated from testing divisor against 0.
571    void GenDivZeroCheck(ConditionCode c_code);
572    // reg holds divisor.
573    void GenDivZeroCheck(RegStorage reg);
574    void GenArrayBoundsCheck(RegStorage index, RegStorage length);
575    void GenArrayBoundsCheck(int32_t index, RegStorage length);
576    LIR* GenNullCheck(RegStorage reg);
577    void MarkPossibleNullPointerException(int opt_flags);
578    void MarkPossibleStackOverflowException();
579    void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
580    LIR* GenImmedCheck(ConditionCode c_code, RegStorage reg, int imm_val, ThrowKind kind);
581    LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
582    LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
583    void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
584                             RegLocation rl_src2, LIR* taken, LIR* fall_through);
585    void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src,
586                                 LIR* taken, LIR* fall_through);
587    void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
588    void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
589                         RegLocation rl_src);
590    void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
591                     RegLocation rl_src);
592    void GenFilledNewArray(CallInfo* info);
593    void GenSput(MIR* mir, RegLocation rl_src,
594                 bool is_long_or_double, bool is_object);
595    void GenSget(MIR* mir, RegLocation rl_dest,
596                 bool is_long_or_double, bool is_object);
597    void GenIGet(MIR* mir, int opt_flags, OpSize size,
598                 RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, bool is_object);
599    void GenIPut(MIR* mir, int opt_flags, OpSize size,
600                 RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, bool is_object);
601    void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
602                        RegLocation rl_src);
603
604    void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
605    void GenConstString(uint32_t string_idx, RegLocation rl_dest);
606    void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
607    void GenThrow(RegLocation rl_src);
608    void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
609    void GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
610    void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
611                      RegLocation rl_src1, RegLocation rl_src2);
612    void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
613                        RegLocation rl_src1, RegLocation rl_shift);
614    void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
615                          RegLocation rl_src, int lit);
616    void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
617                        RegLocation rl_src1, RegLocation rl_src2);
618    void GenConversionCall(ThreadOffset<4> func_offset, RegLocation rl_dest,
619                           RegLocation rl_src);
620    void GenSuspendTest(int opt_flags);
621    void GenSuspendTestAndBranch(int opt_flags, LIR* target);
622
623    // This will be overridden by x86 implementation.
624    virtual void GenConstWide(RegLocation rl_dest, int64_t value);
625    virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
626                       RegLocation rl_src1, RegLocation rl_src2);
627
628    // Shared by all targets - implemented in gen_invoke.cc.
629    LIR* CallHelper(RegStorage r_tgt, ThreadOffset<4> helper_offset, bool safepoint_pc,
630                    bool use_link = true);
631    RegStorage CallHelperSetup(ThreadOffset<4> helper_offset);
632    void CallRuntimeHelper(ThreadOffset<4> helper_offset, bool safepoint_pc);
633    void CallRuntimeHelperImm(ThreadOffset<4> helper_offset, int arg0, bool safepoint_pc);
634    void CallRuntimeHelperReg(ThreadOffset<4> helper_offset, RegStorage arg0, bool safepoint_pc);
635    void CallRuntimeHelperRegLocation(ThreadOffset<4> helper_offset, RegLocation arg0,
636                                      bool safepoint_pc);
637    void CallRuntimeHelperImmImm(ThreadOffset<4> helper_offset, int arg0, int arg1,
638                                 bool safepoint_pc);
639    void CallRuntimeHelperImmRegLocation(ThreadOffset<4> helper_offset, int arg0,
640                                         RegLocation arg1, bool safepoint_pc);
641    void CallRuntimeHelperRegLocationImm(ThreadOffset<4> helper_offset, RegLocation arg0,
642                                         int arg1, bool safepoint_pc);
643    void CallRuntimeHelperImmReg(ThreadOffset<4> helper_offset, int arg0, RegStorage arg1,
644                                 bool safepoint_pc);
645    void CallRuntimeHelperRegImm(ThreadOffset<4> helper_offset, RegStorage arg0, int arg1,
646                                 bool safepoint_pc);
647    void CallRuntimeHelperImmMethod(ThreadOffset<4> helper_offset, int arg0,
648                                    bool safepoint_pc);
649    void CallRuntimeHelperRegMethod(ThreadOffset<4> helper_offset, RegStorage arg0,
650                                    bool safepoint_pc);
651    void CallRuntimeHelperRegMethodRegLocation(ThreadOffset<4> helper_offset, RegStorage arg0,
652                                               RegLocation arg2, bool safepoint_pc);
653    void CallRuntimeHelperRegLocationRegLocation(ThreadOffset<4> helper_offset,
654                                                 RegLocation arg0, RegLocation arg1,
655                                                 bool safepoint_pc);
656    void CallRuntimeHelperRegReg(ThreadOffset<4> helper_offset, RegStorage arg0, RegStorage arg1,
657                                 bool safepoint_pc);
658    void CallRuntimeHelperRegRegImm(ThreadOffset<4> helper_offset, RegStorage arg0, RegStorage arg1,
659                                    int arg2, bool safepoint_pc);
660    void CallRuntimeHelperImmMethodRegLocation(ThreadOffset<4> helper_offset, int arg0,
661                                               RegLocation arg2, bool safepoint_pc);
662    void CallRuntimeHelperImmMethodImm(ThreadOffset<4> helper_offset, int arg0, int arg2,
663                                       bool safepoint_pc);
664    void CallRuntimeHelperImmRegLocationRegLocation(ThreadOffset<4> helper_offset,
665                                                    int arg0, RegLocation arg1, RegLocation arg2,
666                                                    bool safepoint_pc);
667    void CallRuntimeHelperRegLocationRegLocationRegLocation(ThreadOffset<4> helper_offset,
668                                                            RegLocation arg0, RegLocation arg1,
669                                                            RegLocation arg2,
670                                                            bool safepoint_pc);
671    void GenInvoke(CallInfo* info);
672    void GenInvokeNoInline(CallInfo* info);
673    void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
674    int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
675                             NextCallInsn next_call_insn,
676                             const MethodReference& target_method,
677                             uint32_t vtable_idx,
678                             uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
679                             bool skip_this);
680    int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
681                           NextCallInsn next_call_insn,
682                           const MethodReference& target_method,
683                           uint32_t vtable_idx,
684                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
685                           bool skip_this);
686
687    /**
688     * @brief Used to determine the register location of destination.
689     * @details This is needed during generation of inline intrinsics because it finds destination
690     *  of return,
691     * either the physical register or the target of move-result.
692     * @param info Information about the invoke.
693     * @return Returns the destination location.
694     */
695    RegLocation InlineTarget(CallInfo* info);
696
697    /**
698     * @brief Used to determine the wide register location of destination.
699     * @see InlineTarget
700     * @param info Information about the invoke.
701     * @return Returns the destination location.
702     */
703    RegLocation InlineTargetWide(CallInfo* info);
704
705    bool GenInlinedCharAt(CallInfo* info);
706    bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
707    bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
708    bool GenInlinedAbsInt(CallInfo* info);
709    bool GenInlinedAbsLong(CallInfo* info);
710    bool GenInlinedAbsFloat(CallInfo* info);
711    bool GenInlinedAbsDouble(CallInfo* info);
712    bool GenInlinedFloatCvt(CallInfo* info);
713    bool GenInlinedDoubleCvt(CallInfo* info);
714    virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
715    bool GenInlinedStringCompareTo(CallInfo* info);
716    bool GenInlinedCurrentThread(CallInfo* info);
717    bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_volatile);
718    bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
719                             bool is_volatile, bool is_ordered);
720    int LoadArgRegs(CallInfo* info, int call_state,
721                    NextCallInsn next_call_insn,
722                    const MethodReference& target_method,
723                    uint32_t vtable_idx,
724                    uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
725                    bool skip_this);
726
727    // Shared by all targets - implemented in gen_loadstore.cc.
728    RegLocation LoadCurrMethod();
729    void LoadCurrMethodDirect(RegStorage r_tgt);
730    LIR* LoadConstant(RegStorage r_dest, int value);
731    // Natural word size.
732    LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
733      return LoadBaseDisp(r_base, displacement, r_dest, kWord, INVALID_SREG);
734    }
735    // Load 32 bits, regardless of target.
736    LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
737      return LoadBaseDisp(r_base, displacement, r_dest, k32, INVALID_SREG);
738    }
739    // Load a reference at base + displacement and decompress into register.
740    LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
741      return LoadBaseDisp(r_base, displacement, r_dest, kReference, INVALID_SREG);
742    }
743    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
744    RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
745    // Load Dalvik value with 64-bit memory storage.
746    RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
747    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
748    void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
749    // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
750    void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
751    // Load Dalvik value with 64-bit memory storage.
752    void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
753    // Load Dalvik value with 64-bit memory storage.
754    void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
755    // Store an item of natural word size.
756    LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
757      return StoreBaseDisp(r_base, displacement, r_src, kWord);
758    }
759    // Store an uncompressed reference into a compressed 32-bit container.
760    LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src) {
761      return StoreBaseDisp(r_base, displacement, r_src, kReference);
762    }
763    // Store 32 bits, regardless of target.
764    LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
765      return StoreBaseDisp(r_base, displacement, r_src, k32);
766    }
767
768    /**
769     * @brief Used to do the final store in the destination as per bytecode semantics.
770     * @param rl_dest The destination dalvik register location.
771     * @param rl_src The source register location. Can be either physical register or dalvik register.
772     */
773    void StoreValue(RegLocation rl_dest, RegLocation rl_src);
774
775    /**
776     * @brief Used to do the final store in a wide destination as per bytecode semantics.
777     * @see StoreValue
778     * @param rl_dest The destination dalvik register location.
779     * @param rl_src The source register location. Can be either physical register or dalvik
780     *  register.
781     */
782    void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
783
784    /**
785     * @brief Used to do the final store to a destination as per bytecode semantics.
786     * @see StoreValue
787     * @param rl_dest The destination dalvik register location.
788     * @param rl_src The source register location. It must be kLocPhysReg
789     *
790     * This is used for x86 two operand computations, where we have computed the correct
791     * register value that now needs to be properly registered.  This is used to avoid an
792     * extra register copy that would result if StoreValue was called.
793     */
794    void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
795
796    /**
797     * @brief Used to do the final store in a wide destination as per bytecode semantics.
798     * @see StoreValueWide
799     * @param rl_dest The destination dalvik register location.
800     * @param rl_src The source register location. It must be kLocPhysReg
801     *
802     * This is used for x86 two operand computations, where we have computed the correct
803     * register values that now need to be properly registered.  This is used to avoid an
804     * extra pair of register copies that would result if StoreValueWide was called.
805     */
806    void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
807
808    // Shared by all targets - implemented in mir_to_lir.cc.
809    void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
810    void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
811    bool MethodBlockCodeGen(BasicBlock* bb);
812    bool SpecialMIR2LIR(const InlineMethod& special);
813    void MethodMIR2LIR();
814    // Update LIR for verbose listings.
815    void UpdateLIROffsets();
816
817    /*
818     * @brief Load the address of the dex method into the register.
819     * @param target_method The MethodReference of the method to be invoked.
820     * @param type How the method will be invoked.
821     * @param register that will contain the code address.
822     * @note register will be passed to TargetReg to get physical register.
823     */
824    void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
825                         SpecialTargetRegister symbolic_reg);
826
827    /*
828     * @brief Load the Method* of a dex method into the register.
829     * @param target_method The MethodReference of the method to be invoked.
830     * @param type How the method will be invoked.
831     * @param register that will contain the code address.
832     * @note register will be passed to TargetReg to get physical register.
833     */
834    virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
835                                   SpecialTargetRegister symbolic_reg);
836
837    /*
838     * @brief Load the Class* of a Dex Class type into the register.
839     * @param type How the method will be invoked.
840     * @param register that will contain the code address.
841     * @note register will be passed to TargetReg to get physical register.
842     */
843    virtual void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
844
845    // Routines that work for the generic case, but may be overriden by target.
846    /*
847     * @brief Compare memory to immediate, and branch if condition true.
848     * @param cond The condition code that when true will branch to the target.
849     * @param temp_reg A temporary register that can be used if compare to memory is not
850     * supported by the architecture.
851     * @param base_reg The register holding the base address.
852     * @param offset The offset from the base.
853     * @param check_value The immediate to compare to.
854     * @returns The branch instruction that was generated.
855     */
856    virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
857                                   int offset, int check_value, LIR* target);
858
859    // Required for target - codegen helpers.
860    virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
861                                    RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
862    virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
863    virtual LIR* CheckSuspendUsingLoad() = 0;
864    virtual RegStorage LoadHelper(ThreadOffset<4> offset) = 0;
865    virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest, OpSize size,
866                              int s_reg) = 0;
867    virtual LIR* LoadBaseDispWide(RegStorage r_base, int displacement, RegStorage r_dest,
868                                  int s_reg) = 0;
869    virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
870                                 int scale, OpSize size) = 0;
871    virtual LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
872                                     int displacement, RegStorage r_dest, RegStorage r_dest_hi,
873                                     OpSize size, int s_reg) = 0;
874    virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
875    virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
876    virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
877                               OpSize size) = 0;
878    virtual LIR* StoreBaseDispWide(RegStorage r_base, int displacement, RegStorage r_src) = 0;
879    virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
880                                  int scale, OpSize size) = 0;
881    virtual LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
882                                      int displacement, RegStorage r_src, RegStorage r_src_hi,
883                                      OpSize size, int s_reg) = 0;
884    virtual void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) = 0;
885
886    // Required for target - register utilities.
887    virtual bool IsFpReg(int reg) = 0;
888    virtual bool IsFpReg(RegStorage reg) = 0;
889    virtual bool SameRegType(int reg1, int reg2) = 0;
890    virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class) = 0;
891    virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class) = 0;
892    // TODO: elminate S2d.
893    virtual int S2d(int low_reg, int high_reg) = 0;
894    virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
895    virtual RegStorage GetArgMappingToPhysicalReg(int arg_num) = 0;
896    virtual RegLocation GetReturnAlt() = 0;
897    virtual RegLocation GetReturnWideAlt() = 0;
898    virtual RegLocation LocCReturn() = 0;
899    virtual RegLocation LocCReturnDouble() = 0;
900    virtual RegLocation LocCReturnFloat() = 0;
901    virtual RegLocation LocCReturnWide() = 0;
902    // TODO: use to reduce/eliminate xx_FPREG() macro use.
903    virtual uint32_t FpRegMask() = 0;
904    virtual uint64_t GetRegMaskCommon(int reg) = 0;
905    virtual void AdjustSpillMask() = 0;
906    virtual void ClobberCallerSave() = 0;
907    virtual void FlushReg(RegStorage reg) = 0;
908    virtual void FlushRegWide(RegStorage reg) = 0;
909    virtual void FreeCallTemps() = 0;
910    virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) = 0;
911    virtual void LockCallTemps() = 0;
912    virtual void MarkPreservedSingle(int v_reg, int reg) = 0;
913    virtual void CompilerInitializeRegAlloc() = 0;
914
915    // Required for target - miscellaneous.
916    virtual void AssembleLIR() = 0;
917    virtual void DumpResourceMask(LIR* lir, uint64_t mask, const char* prefix) = 0;
918    virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags) = 0;
919    virtual const char* GetTargetInstFmt(int opcode) = 0;
920    virtual const char* GetTargetInstName(int opcode) = 0;
921    virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
922    virtual uint64_t GetPCUseDefEncoding() = 0;
923    virtual uint64_t GetTargetInstFlags(int opcode) = 0;
924    virtual int GetInsnSize(LIR* lir) = 0;
925    virtual bool IsUnconditionalBranch(LIR* lir) = 0;
926
927    // Required for target - Dalvik-level generators.
928    virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
929                                   RegLocation rl_src1, RegLocation rl_src2) = 0;
930    virtual void GenMulLong(Instruction::Code,
931                            RegLocation rl_dest, RegLocation rl_src1,
932                            RegLocation rl_src2) = 0;
933    virtual void GenAddLong(Instruction::Code,
934                            RegLocation rl_dest, RegLocation rl_src1,
935                            RegLocation rl_src2) = 0;
936    virtual void GenAndLong(Instruction::Code,
937                            RegLocation rl_dest, RegLocation rl_src1,
938                            RegLocation rl_src2) = 0;
939    virtual void GenArithOpDouble(Instruction::Code opcode,
940                                  RegLocation rl_dest, RegLocation rl_src1,
941                                  RegLocation rl_src2) = 0;
942    virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
943                                 RegLocation rl_src1, RegLocation rl_src2) = 0;
944    virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
945                          RegLocation rl_src1, RegLocation rl_src2) = 0;
946    virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
947                               RegLocation rl_src) = 0;
948    virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
949
950    /**
951     * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
952     * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
953     * that applies on integers. The generated code will write the smallest or largest value
954     * directly into the destination register as specified by the invoke information.
955     * @param info Information about the invoke.
956     * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
957     * @return Returns true if successfully generated
958     */
959    virtual bool GenInlinedMinMaxInt(CallInfo* info, bool is_min) = 0;
960
961    virtual bool GenInlinedSqrt(CallInfo* info) = 0;
962    virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
963    virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
964    virtual void GenNegLong(RegLocation rl_dest, RegLocation rl_src) = 0;
965    virtual void GenOrLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
966                           RegLocation rl_src2) = 0;
967    virtual void GenSubLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
968                            RegLocation rl_src2) = 0;
969    virtual void GenXorLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
970                            RegLocation rl_src2) = 0;
971    virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
972                                  bool is_div) = 0;
973    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
974                                     bool is_div) = 0;
975    /*
976     * @brief Generate an integer div or rem operation by a literal.
977     * @param rl_dest Destination Location.
978     * @param rl_src1 Numerator Location.
979     * @param rl_src2 Divisor Location.
980     * @param is_div 'true' if this is a division, 'false' for a remainder.
981     * @param check_zero 'true' if an exception should be generated if the divisor is 0.
982     */
983    virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
984                                  RegLocation rl_src2, bool is_div, bool check_zero) = 0;
985    /*
986     * @brief Generate an integer div or rem operation by a literal.
987     * @param rl_dest Destination Location.
988     * @param rl_src Numerator Location.
989     * @param lit Divisor.
990     * @param is_div 'true' if this is a division, 'false' for a remainder.
991     */
992    virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
993                                     bool is_div) = 0;
994    virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
995
996    /**
997     * @brief Used for generating code that throws ArithmeticException if both registers are zero.
998     * @details This is used for generating DivideByZero checks when divisor is held in two
999     *  separate registers.
1000     * @param reg The register holding the pair of 32-bit values.
1001     */
1002    virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
1003
1004    virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
1005    virtual void GenExitSequence() = 0;
1006    virtual void GenFillArrayData(DexOffset table_offset, RegLocation rl_src) = 0;
1007    virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
1008    virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
1009
1010    /**
1011     * @brief Lowers the kMirOpSelect MIR into LIR.
1012     * @param bb The basic block in which the MIR is from.
1013     * @param mir The MIR whose opcode is kMirOpSelect.
1014     */
1015    virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
1016
1017    /**
1018     * @brief Used to generate a memory barrier in an architecture specific way.
1019     * @details The last generated LIR will be considered for use as barrier. Namely,
1020     * if the last LIR can be updated in a way where it will serve the semantics of
1021     * barrier, then it will be used as such. Otherwise, a new LIR will be generated
1022     * that can keep the semantics.
1023     * @param barrier_kind The kind of memory barrier to generate.
1024     */
1025    virtual void GenMemBarrier(MemBarrierKind barrier_kind) = 0;
1026
1027    virtual void GenMoveException(RegLocation rl_dest) = 0;
1028    virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
1029                                               int first_bit, int second_bit) = 0;
1030    virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
1031    virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
1032    virtual void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1033    virtual void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
1034    virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1035                             RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
1036    virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1037                             RegLocation rl_index, RegLocation rl_src, int scale,
1038                             bool card_mark) = 0;
1039    virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1040                                   RegLocation rl_src1, RegLocation rl_shift) = 0;
1041
1042    // Required for target - single operation generators.
1043    virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
1044    virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
1045    virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
1046                                LIR* target) = 0;
1047    virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
1048    virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
1049    virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1050    virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
1051    virtual void OpEndIT(LIR* it) = 0;
1052    virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
1053    virtual LIR* OpPcRelLoad(RegStorage reg, LIR* target) = 0;
1054    virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
1055    virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
1056    virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
1057    virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
1058    virtual LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) = 0;
1059    virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
1060
1061    /**
1062     * @brief Used to generate an LIR that does a load from mem to reg.
1063     * @param r_dest The destination physical register.
1064     * @param r_base The base physical register for memory operand.
1065     * @param offset The displacement for memory operand.
1066     * @param move_type Specification on the move desired (size, alignment, register kind).
1067     * @return Returns the generate move LIR.
1068     */
1069    virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
1070                             MoveType move_type) = 0;
1071
1072    /**
1073     * @brief Used to generate an LIR that does a store from reg to mem.
1074     * @param r_base The base physical register for memory operand.
1075     * @param offset The displacement for memory operand.
1076     * @param r_src The destination physical register.
1077     * @param bytes_to_move The number of bytes to move.
1078     * @param is_aligned Whether the memory location is known to be aligned.
1079     * @return Returns the generate move LIR.
1080     */
1081    virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
1082                             MoveType move_type) = 0;
1083
1084    /**
1085     * @brief Used for generating a conditional register to register operation.
1086     * @param op The opcode kind.
1087     * @param cc The condition code that when true will perform the opcode.
1088     * @param r_dest The destination physical register.
1089     * @param r_src The source physical register.
1090     * @return Returns the newly created LIR or null in case of creation failure.
1091     */
1092    virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
1093
1094    virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
1095    virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
1096                             RegStorage r_src2) = 0;
1097    virtual LIR* OpTestSuspend(LIR* target) = 0;
1098    virtual LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) = 0;
1099    virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
1100    virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
1101    virtual void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale,
1102                       int offset) = 0;
1103    virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
1104    virtual void OpTlsCmp(ThreadOffset<4> offset, int val) = 0;
1105    virtual bool InexpensiveConstantInt(int32_t value) = 0;
1106    virtual bool InexpensiveConstantFloat(int32_t value) = 0;
1107    virtual bool InexpensiveConstantLong(int64_t value) = 0;
1108    virtual bool InexpensiveConstantDouble(int64_t value) = 0;
1109
1110    // May be optimized by targets.
1111    virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
1112    virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
1113
1114    // Temp workaround
1115    void Workaround7250540(RegLocation rl_dest, RegStorage zero_reg);
1116
1117  protected:
1118    Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
1119
1120    CompilationUnit* GetCompilationUnit() {
1121      return cu_;
1122    }
1123    /*
1124     * @brief Returns the index of the lowest set bit in 'x'.
1125     * @param x Value to be examined.
1126     * @returns The bit number of the lowest bit set in the value.
1127     */
1128    int32_t LowestSetBit(uint64_t x);
1129    /*
1130     * @brief Is this value a power of two?
1131     * @param x Value to be examined.
1132     * @returns 'true' if only 1 bit is set in the value.
1133     */
1134    bool IsPowerOfTwo(uint64_t x);
1135    /*
1136     * @brief Do these SRs overlap?
1137     * @param rl_op1 One RegLocation
1138     * @param rl_op2 The other RegLocation
1139     * @return 'true' if the VR pairs overlap
1140     *
1141     * Check to see if a result pair has a misaligned overlap with an operand pair.  This
1142     * is not usual for dx to generate, but it is legal (for now).  In a future rev of
1143     * dex, we'll want to make this case illegal.
1144     */
1145    bool BadOverlap(RegLocation rl_op1, RegLocation rl_op2);
1146
1147    /*
1148     * @brief Force a location (in a register) into a temporary register
1149     * @param loc location of result
1150     * @returns update location
1151     */
1152    RegLocation ForceTemp(RegLocation loc);
1153
1154    /*
1155     * @brief Force a wide location (in registers) into temporary registers
1156     * @param loc location of result
1157     * @returns update location
1158     */
1159    RegLocation ForceTempWide(RegLocation loc);
1160
1161    virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1162                                    RegLocation rl_dest, RegLocation rl_src);
1163
1164    void AddSlowPath(LIRSlowPath* slowpath);
1165
1166    virtual void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1167                                            bool type_known_abstract, bool use_declaring_class,
1168                                            bool can_assume_type_is_in_dex_cache,
1169                                            uint32_t type_idx, RegLocation rl_dest,
1170                                            RegLocation rl_src);
1171    /*
1172     * @brief Generate the debug_frame FDE information if possible.
1173     * @returns pointer to vector containg CFE information, or NULL.
1174     */
1175    virtual std::vector<uint8_t>* ReturnCallFrameInformation();
1176
1177    /**
1178     * @brief Used to insert marker that can be used to associate MIR with LIR.
1179     * @details Only inserts marker if verbosity is enabled.
1180     * @param mir The mir that is currently being generated.
1181     */
1182    void GenPrintLabel(MIR* mir);
1183
1184    /**
1185     * @brief Used to generate return sequence when there is no frame.
1186     * @details Assumes that the return registers have already been populated.
1187     */
1188    virtual void GenSpecialExitSequence() = 0;
1189
1190    /**
1191     * @brief Used to generate code for special methods that are known to be
1192     * small enough to work in frameless mode.
1193     * @param bb The basic block of the first MIR.
1194     * @param mir The first MIR of the special method.
1195     * @param special Information about the special method.
1196     * @return Returns whether or not this was handled successfully. Returns false
1197     * if caller should punt to normal MIR2LIR conversion.
1198     */
1199    virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
1200
1201  private:
1202    void ClobberBody(RegisterInfo* p);
1203    void ResetDefBody(RegisterInfo* p) {
1204      p->def_start = NULL;
1205      p->def_end = NULL;
1206    }
1207
1208    void SetCurrentDexPc(DexOffset dexpc) {
1209      current_dalvik_offset_ = dexpc;
1210    }
1211
1212    /**
1213     * @brief Used to lock register if argument at in_position was passed that way.
1214     * @details Does nothing if the argument is passed via stack.
1215     * @param in_position The argument number whose register to lock.
1216     * @param wide Whether the argument is wide.
1217     */
1218    void LockArg(int in_position, bool wide = false);
1219
1220    /**
1221     * @brief Used to load VR argument to a physical register.
1222     * @details The load is only done if the argument is not already in physical register.
1223     * LockArg must have been previously called.
1224     * @param in_position The argument number to load.
1225     * @param wide Whether the argument is 64-bit or not.
1226     * @return Returns the register (or register pair) for the loaded argument.
1227     */
1228    RegStorage LoadArg(int in_position, bool wide = false);
1229
1230    /**
1231     * @brief Used to load a VR argument directly to a specified register location.
1232     * @param in_position The argument number to place in register.
1233     * @param rl_dest The register location where to place argument.
1234     */
1235    void LoadArgDirect(int in_position, RegLocation rl_dest);
1236
1237    /**
1238     * @brief Used to generate LIR for special getter method.
1239     * @param mir The mir that represents the iget.
1240     * @param special Information about the special getter method.
1241     * @return Returns whether LIR was successfully generated.
1242     */
1243    bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
1244
1245    /**
1246     * @brief Used to generate LIR for special setter method.
1247     * @param mir The mir that represents the iput.
1248     * @param special Information about the special setter method.
1249     * @return Returns whether LIR was successfully generated.
1250     */
1251    bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
1252
1253    /**
1254     * @brief Used to generate LIR for special return-args method.
1255     * @param mir The mir that represents the return of argument.
1256     * @param special Information about the special return-args method.
1257     * @return Returns whether LIR was successfully generated.
1258     */
1259    bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
1260
1261    void AddDivZeroCheckSlowPath(LIR* branch);
1262
1263    // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
1264    // kArg2 as temp.
1265    void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
1266
1267  public:
1268    // TODO: add accessors for these.
1269    LIR* literal_list_;                        // Constants.
1270    LIR* method_literal_list_;                 // Method literals requiring patching.
1271    LIR* class_literal_list_;                  // Class literals requiring patching.
1272    LIR* code_literal_list_;                   // Code literals requiring patching.
1273    LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
1274
1275  protected:
1276    CompilationUnit* const cu_;
1277    MIRGraph* const mir_graph_;
1278    GrowableArray<SwitchTable*> switch_tables_;
1279    GrowableArray<FillArrayData*> fill_array_data_;
1280    GrowableArray<LIR*> suspend_launchpads_;
1281    GrowableArray<RegisterInfo*> tempreg_info_;
1282    GrowableArray<RegisterInfo*> reginfo_map_;
1283    GrowableArray<void*> pointer_storage_;
1284    CodeOffset current_code_offset_;    // Working byte offset of machine instructons.
1285    CodeOffset data_offset_;            // starting offset of literal pool.
1286    size_t total_size_;                   // header + code size.
1287    LIR* block_label_list_;
1288    PromotionMap* promotion_map_;
1289    /*
1290     * TODO: The code generation utilities don't have a built-in
1291     * mechanism to propagate the original Dalvik opcode address to the
1292     * associated generated instructions.  For the trace compiler, this wasn't
1293     * necessary because the interpreter handled all throws and debugging
1294     * requests.  For now we'll handle this by placing the Dalvik offset
1295     * in the CompilationUnit struct before codegen for each instruction.
1296     * The low-level LIR creation utilites will pull it from here.  Rework this.
1297     */
1298    DexOffset current_dalvik_offset_;
1299    size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
1300    RegisterPool* reg_pool_;
1301    /*
1302     * Sanity checking for the register temp tracking.  The same ssa
1303     * name should never be associated with one temp register per
1304     * instruction compilation.
1305     */
1306    int live_sreg_;
1307    CodeBuffer code_buffer_;
1308    // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
1309    std::vector<uint8_t> encoded_mapping_table_;
1310    std::vector<uint32_t> core_vmap_table_;
1311    std::vector<uint32_t> fp_vmap_table_;
1312    std::vector<uint8_t> native_gc_map_;
1313    int num_core_spills_;
1314    int num_fp_spills_;
1315    int frame_size_;
1316    unsigned int core_spill_mask_;
1317    unsigned int fp_spill_mask_;
1318    LIR* first_lir_insn_;
1319    LIR* last_lir_insn_;
1320
1321    GrowableArray<LIRSlowPath*> slow_paths_;
1322};  // Class Mir2Lir
1323
1324}  // namespace art
1325
1326#endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
1327