assemble_x86.cc revision 2c498d1f28e62e81fbdb477ff93ca7454e7493d7
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26  { kX8632BitData, kData,    IS_UNARY_OP,            { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data",  "0x!0d" },
27  { kX86Bkpt,      kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28  { kX86Nop,       kNop,     IS_UNARY_OP,            { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop",   "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31                     rm8_r8, rm32_r32, \
32                     r8_rm8, r32_rm32, \
33                     ax8_i8, ax32_i32, \
34                     rm8_i8, rm8_i8_modrm, \
35                     rm32_i32, rm32_i32_modrm, \
36                     rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48  \
49{ kX86 ## opname ## 16MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0,              0,        0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64  \
65{ kX86 ## opname ## 32MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82  0x00 /* RegMem8/Reg8 */,     0x01 /* RegMem32/Reg32 */,
83  0x02 /* Reg8/RegMem8 */,     0x03 /* Reg32/RegMem32 */,
84  0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85  0x80, 0x0 /* RegMem8/imm8 */,
86  0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88  0x08 /* RegMem8/Reg8 */,     0x09 /* RegMem32/Reg32 */,
89  0x0A /* Reg8/RegMem8 */,     0x0B /* Reg32/RegMem32 */,
90  0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91  0x80, 0x1 /* RegMem8/imm8 */,
92  0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94  0x10 /* RegMem8/Reg8 */,     0x11 /* RegMem32/Reg32 */,
95  0x12 /* Reg8/RegMem8 */,     0x13 /* Reg32/RegMem32 */,
96  0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97  0x80, 0x2 /* RegMem8/imm8 */,
98  0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100  0x18 /* RegMem8/Reg8 */,     0x19 /* RegMem32/Reg32 */,
101  0x1A /* Reg8/RegMem8 */,     0x1B /* Reg32/RegMem32 */,
102  0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103  0x80, 0x3 /* RegMem8/imm8 */,
104  0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106  0x20 /* RegMem8/Reg8 */,     0x21 /* RegMem32/Reg32 */,
107  0x22 /* Reg8/RegMem8 */,     0x23 /* Reg32/RegMem32 */,
108  0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109  0x80, 0x4 /* RegMem8/imm8 */,
110  0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112  0x28 /* RegMem8/Reg8 */,     0x29 /* RegMem32/Reg32 */,
113  0x2A /* Reg8/RegMem8 */,     0x2B /* Reg32/RegMem32 */,
114  0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115  0x80, 0x5 /* RegMem8/imm8 */,
116  0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118  0x30 /* RegMem8/Reg8 */,     0x31 /* RegMem32/Reg32 */,
119  0x32 /* Reg8/RegMem8 */,     0x33 /* Reg32/RegMem32 */,
120  0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121  0x80, 0x6 /* RegMem8/imm8 */,
122  0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124  0x38 /* RegMem8/Reg8 */,     0x39 /* RegMem32/Reg32 */,
125  0x3A /* Reg8/RegMem8 */,     0x3B /* Reg32/RegMem32 */,
126  0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127  0x80, 0x7 /* RegMem8/imm8 */,
128  0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131  { kX86Imul16RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132  { kX86Imul16RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133  { kX86Imul16RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135  { kX86Imul32RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136  { kX86Imul32RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137  { kX86Imul32RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138  { kX86Imul32RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139  { kX86Imul32RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140  { kX86Imul32RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142  { kX86Mov8MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143  { kX86Mov8AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144  { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145  { kX86Mov8RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146  { kX86Mov8RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147  { kX86Mov8RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148  { kX86Mov8RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149  { kX86Mov8RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150  { kX86Mov8MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151  { kX86Mov8AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152  { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154  { kX86Mov16MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0x66,          0,    0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155  { kX86Mov16AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0x66,          0,    0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156  { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157  { kX86Mov16RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158  { kX86Mov16RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159  { kX86Mov16RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160  { kX86Mov16RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161  { kX86Mov16RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0x66,          0,    0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162  { kX86Mov16MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0x66,          0,    0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163  { kX86Mov16AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0x66,          0,    0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164  { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166  { kX86Mov32MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167  { kX86Mov32AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168  { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169  { kX86Mov32RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170  { kX86Mov32RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171  { kX86Mov32RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172  { kX86Mov32RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173  { kX86Mov32RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174  { kX86Mov32MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175  { kX86Mov32AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176  { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178  { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
180  { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, {0, 0, 0x0F, 0x40, 0, 0, 0, 0}, "Cmovcc32RR", "!2c !0r,!1r" },
181
182#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
183{ kX86 ## opname ## 8RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
184{ kX86 ## opname ## 8MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
185{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
186{ kX86 ## opname ## 8RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8RC", "!0r,cl" }, \
187{ kX86 ## opname ## 8MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8MC", "[!0r+!1d],cl" }, \
188{ kX86 ## opname ## 8AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
189  \
190{ kX86 ## opname ## 16RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
191{ kX86 ## opname ## 16MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
192{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
193{ kX86 ## opname ## 16RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16RC", "!0r,cl" }, \
194{ kX86 ## opname ## 16MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16MC", "[!0r+!1d],cl" }, \
195{ kX86 ## opname ## 16AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
196  \
197{ kX86 ## opname ## 32RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
198{ kX86 ## opname ## 32MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
199{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
200{ kX86 ## opname ## 32RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32RC", "!0r,cl" }, \
201{ kX86 ## opname ## 32MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32MC", "[!0r+!1d],cl" }, \
202{ kX86 ## opname ## 32AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
203
204  SHIFT_ENCODING_MAP(Rol, 0x0),
205  SHIFT_ENCODING_MAP(Ror, 0x1),
206  SHIFT_ENCODING_MAP(Rcl, 0x2),
207  SHIFT_ENCODING_MAP(Rcr, 0x3),
208  SHIFT_ENCODING_MAP(Sal, 0x4),
209  SHIFT_ENCODING_MAP(Shr, 0x5),
210  SHIFT_ENCODING_MAP(Sar, 0x7),
211#undef SHIFT_ENCODING_MAP
212
213  { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
214  { kX86Shld32RRI,  kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES, { 0,    0, 0x0F, 0xA4, 0, 0, 0, 1}, "Shld32", "!0r,!1r,!2d" },
215  { kX86Shrd32RRI,  kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01  | SETS_CCODES, { 0,    0, 0x0F, 0xAC, 0, 0, 0, 1}, "Shrd32", "!0r,!1r,!2d" },
216
217  { kX86Test8RI,  kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
218  { kX86Test8MI,  kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
219  { kX86Test8AI,  kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
220  { kX86Test16RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
221  { kX86Test16MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
222  { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
223  { kX86Test32RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
224  { kX86Test32MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
225  { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
226  { kX86Test32RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { 0,    0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
227
228#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
229                           reg, reg_kind, reg_flags, \
230                           mem, mem_kind, mem_flags, \
231                           arr, arr_kind, arr_flags, imm, \
232                           b_flags, hw_flags, w_flags, \
233                           b_format, hw_format, w_format) \
234{ kX86 ## opname ## 8 ## reg,  reg_kind,                      reg_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
235{ kX86 ## opname ## 8 ## mem,  mem_kind, IS_LOAD | is_store | mem_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
236{ kX86 ## opname ## 8 ## arr,  arr_kind, IS_LOAD | is_store | arr_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
237{ kX86 ## opname ## 16 ## reg, reg_kind,                      reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
238{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
239{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
240{ kX86 ## opname ## 32 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
241{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
242{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
243
244  UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0,           R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
245  UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
246
247  UNARY_ENCODING_MAP(Mul,     0x4, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
248  UNARY_ENCODING_MAP(Imul,    0x5, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
249  UNARY_ENCODING_MAP(Divmod,  0x6, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
250  UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
251#undef UNARY_ENCODING_MAP
252
253  { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA,                                  { 0, 0, 0x99, 0, 0, 0, 0, 0 }, "Cdq", "" },
254  { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0,                                 { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0 }, "Bswap32R", "!0r" },
255  { kX86Push32R,  kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0, 0, 0x50, 0,    0, 0, 0, 0 }, "Push32R",  "!0r" },
256  { kX86Pop32R,   kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD,  { 0, 0, 0x58, 0,    0, 0, 0, 0 }, "Pop32R",   "!0r" },
257
258#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
259{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE01,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
260{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
261{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
262
263  EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
264  { kX86MovsdMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
265  { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
266
267  EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
268  { kX86MovssMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
269  { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
270
271  EXT_0F_ENCODING_MAP(Cvtsi2sd,  0xF2, 0x2A, REG_DEF0),
272  EXT_0F_ENCODING_MAP(Cvtsi2ss,  0xF3, 0x2A, REG_DEF0),
273  EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
274  EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
275  EXT_0F_ENCODING_MAP(Cvtsd2si,  0xF2, 0x2D, REG_DEF0),
276  EXT_0F_ENCODING_MAP(Cvtss2si,  0xF3, 0x2D, REG_DEF0),
277  EXT_0F_ENCODING_MAP(Ucomisd,   0x66, 0x2E, SETS_CCODES),
278  EXT_0F_ENCODING_MAP(Ucomiss,   0x00, 0x2E, SETS_CCODES),
279  EXT_0F_ENCODING_MAP(Comisd,    0x66, 0x2F, SETS_CCODES),
280  EXT_0F_ENCODING_MAP(Comiss,    0x00, 0x2F, SETS_CCODES),
281  EXT_0F_ENCODING_MAP(Orps,      0x00, 0x56, REG_DEF0),
282  EXT_0F_ENCODING_MAP(Xorps,     0x00, 0x57, REG_DEF0),
283  EXT_0F_ENCODING_MAP(Addsd,     0xF2, 0x58, REG_DEF0),
284  EXT_0F_ENCODING_MAP(Addss,     0xF3, 0x58, REG_DEF0),
285  EXT_0F_ENCODING_MAP(Mulsd,     0xF2, 0x59, REG_DEF0),
286  EXT_0F_ENCODING_MAP(Mulss,     0xF3, 0x59, REG_DEF0),
287  EXT_0F_ENCODING_MAP(Cvtsd2ss,  0xF2, 0x5A, REG_DEF0),
288  EXT_0F_ENCODING_MAP(Cvtss2sd,  0xF3, 0x5A, REG_DEF0),
289  EXT_0F_ENCODING_MAP(Subsd,     0xF2, 0x5C, REG_DEF0),
290  EXT_0F_ENCODING_MAP(Subss,     0xF3, 0x5C, REG_DEF0),
291  EXT_0F_ENCODING_MAP(Divsd,     0xF2, 0x5E, REG_DEF0),
292  EXT_0F_ENCODING_MAP(Divss,     0xF3, 0x5E, REG_DEF0),
293  EXT_0F_ENCODING_MAP(Punpckldq, 0x66, 0x62, REG_DEF0),
294
295  { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
296  { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
297  { kX86SqrtsdRR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0xF2, 0, 0x0F, 0x51, 0, 0, 0, 0 }, "SqrtsdRR", "!0r,!1r" },
298  { kX86FstpdM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0 }, "FstpdM", "[!0r,!1d]" },
299
300  EXT_0F_ENCODING_MAP(Movups,    0x0, 0x10, REG_DEF0),
301  { kX86MovupsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovupsMR", "[!0r+!1d],!2r" },
302  { kX86MovupsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovupsAR", "[!0r+!1r<<!2d+!3d],!4r" },
303
304  EXT_0F_ENCODING_MAP(Movaps,    0x0, 0x28, REG_DEF0),
305  { kX86MovapsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0 }, "MovapsMR", "[!0r+!1d],!2r" },
306  { kX86MovapsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0 }, "MovapsAR", "[!0r+!1r<<!2d+!3d],!4r" },
307
308  { kX86MovlpsRM, kRegMem,      IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01,  { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0 }, "MovlpsRM", "!0r,[!1r+!2d]" },
309  { kX86MovlpsRA, kRegArray,    IS_LOAD | IS_QUIN_OP     | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0 }, "MovlpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
310  { kX86MovlpsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0 }, "MovlpsMR", "[!0r+!1d],!2r" },
311  { kX86MovlpsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0 }, "MovlpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
312
313  { kX86MovhpsRM, kRegMem,      IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01,  { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0 }, "MovhpsRM", "!0r,[!1r+!2d]" },
314  { kX86MovhpsRA, kRegArray,    IS_LOAD | IS_QUIN_OP     | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0 }, "MovhpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
315  { kX86MovhpsMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0 }, "MovhpsMR", "[!0r+!1d],!2r" },
316  { kX86MovhpsAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0 }, "MovhpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
317
318  EXT_0F_ENCODING_MAP(Movdxr,    0x66, 0x6E, REG_DEF0),
319  { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE01,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
320  { kX86MovdrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
321  { kX86MovdrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
322
323  { kX86Set8R, kRegCond,              IS_BINARY_OP   | REG_DEF0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
324  { kX86Set8M, kMemCond,   IS_STORE | IS_TERTIARY_OP | REG_USE0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
325  { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP     | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
326
327  // TODO: load/store?
328  // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
329  { kX86Mfence, kReg,                 NO_OPERAND,     { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
330
331  EXT_0F_ENCODING_MAP(Imul16,  0x66, 0xAF, REG_DEF0 | SETS_CCODES),
332  EXT_0F_ENCODING_MAP(Imul32,  0x00, 0xAF, REG_DEF0 | SETS_CCODES),
333
334  { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
335  { kX86CmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
336  { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
337  { kX86LockCmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
338  { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
339  { kX86LockCmpxchg8bM, kMem,   IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1d]" },
340  { kX86LockCmpxchg8bA, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
341
342  EXT_0F_ENCODING_MAP(Movzx8,  0x00, 0xB6, REG_DEF0),
343  EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
344  EXT_0F_ENCODING_MAP(Movsx8,  0x00, 0xBE, REG_DEF0),
345  EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
346#undef EXT_0F_ENCODING_MAP
347
348  { kX86Jcc8,  kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x70, 0,    0, 0, 0, 0 }, "Jcc8",  "!1c !0t" },
349  { kX86Jcc32, kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
350  { kX86Jmp8,  kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xEB, 0,    0, 0, 0, 0 }, "Jmp8",  "!0t" },
351  { kX86Jmp32, kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xE9, 0,    0, 0, 0, 0 }, "Jmp32", "!0t" },
352  { kX86JmpR,  kJmp,  IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xFF, 0,    0, 4, 0, 0 }, "JmpR",  "!0r" },
353  { kX86CallR, kCall, IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xE8, 0,    0, 0, 0, 0 }, "CallR", "!0r" },
354  { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0,        { 0,             0, 0xFF, 0,    0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
355  { kX86CallA, kCall, IS_QUAD_OP   | IS_BRANCH | IS_LOAD | REG_USE01,       { 0,             0, 0xFF, 0,    0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
356  { kX86CallT, kCall, IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
357  { kX86Ret,   kNullary, NO_OPERAND | IS_BRANCH,                            { 0,             0, 0xC3, 0,    0, 0, 0, 0 }, "Ret", "" },
358
359  { kX86StartOfMethod, kMacro,  IS_UNARY_OP | SETS_CCODES,             { 0, 0, 0,    0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
360  { kX86PcRelLoadRA,   kPcRel,  IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA",   "!0r,[!1r+!2r<<!3d+!4p]" },
361  { kX86PcRelAdr,      kPcRel,  IS_LOAD | IS_BINARY_OP | REG_DEF0,     { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr",      "!0r,!1d" },
362};
363
364static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
365  size_t size = 0;
366  if (entry->skeleton.prefix1 > 0) {
367    ++size;
368    if (entry->skeleton.prefix2 > 0) {
369      ++size;
370    }
371  }
372  ++size;  // opcode
373  if (entry->skeleton.opcode == 0x0F) {
374    ++size;
375    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
376      ++size;
377    }
378  }
379  ++size;  // modrm
380  if (has_sib || base == rX86_SP) {
381    // SP requires a SIB byte.
382    ++size;
383  }
384  if (displacement != 0 || base == rBP) {
385    // BP requires an explicit displacement, even when it's 0.
386    if (entry->opcode != kX86Lea32RA) {
387      DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
388    }
389    size += IS_SIMM8(displacement) ? 1 : 4;
390  }
391  size += entry->skeleton.immediate_bytes;
392  return size;
393}
394
395int X86Mir2Lir::GetInsnSize(LIR* lir) {
396  DCHECK(!IsPseudoLirOp(lir->opcode));
397  const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
398  switch (entry->kind) {
399    case kData:
400      return 4;  // 4 bytes of data
401    case kNop:
402      return lir->operands[0];  // length of nop is sole operand
403    case kNullary:
404      return 1;  // 1 byte of opcode
405    case kRegOpcode:  // lir operands - 0: reg
406      return ComputeSize(entry, 0, 0, false) - 1;  // substract 1 for modrm
407    case kReg:  // lir operands - 0: reg
408      return ComputeSize(entry, 0, 0, false);
409    case kMem:  // lir operands - 0: base, 1: disp
410      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
411    case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
412      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
413    case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
414      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
415    case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
416      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
417    case kThreadReg:  // lir operands - 0: disp, 1: reg
418      return ComputeSize(entry, 0, lir->operands[0], false);
419    case kRegReg:
420      return ComputeSize(entry, 0, 0, false);
421    case kRegRegStore:
422      return ComputeSize(entry, 0, 0, false);
423    case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
424      return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
425    case kRegArray:   // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
426      return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
427    case kRegThread:  // lir operands - 0: reg, 1: disp
428      return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
429    case kRegImm: {  // lir operands - 0: reg, 1: immediate
430      size_t size = ComputeSize(entry, 0, 0, false);
431      if (entry->skeleton.ax_opcode == 0) {
432        return size;
433      } else {
434        // AX opcodes don't require the modrm byte.
435        int reg = lir->operands[0];
436        return size - (reg == rAX ? 1 : 0);
437      }
438    }
439    case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
440      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
441    case kArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
442      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
443    case kThreadImm:  // lir operands - 0: disp, 1: imm
444      return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
445    case kRegRegImm:  // lir operands - 0: reg, 1: reg, 2: imm
446    case kRegRegImmRev:
447      return ComputeSize(entry, 0, 0, false);
448    case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
449      return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
450    case kRegArrayImm:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
451      return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
452    case kMovRegImm:  // lir operands - 0: reg, 1: immediate
453      return 1 + entry->skeleton.immediate_bytes;
454    case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
455      // Shift by immediate one has a shorter opcode.
456      return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
457    case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
458      // Shift by immediate one has a shorter opcode.
459      return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
460             (lir->operands[2] == 1 ? 1 : 0);
461    case kShiftArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
462      // Shift by immediate one has a shorter opcode.
463      return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
464             (lir->operands[4] == 1 ? 1 : 0);
465    case kShiftRegCl:
466      return ComputeSize(entry, 0, 0, false);
467    case kShiftMemCl:  // lir operands - 0: base, 1: disp, 2: cl
468      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
469    case kShiftArrayCl:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
470      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
471    case kRegCond:  // lir operands - 0: reg, 1: cond
472      return ComputeSize(entry, 0, 0, false);
473    case kMemCond:  // lir operands - 0: base, 1: disp, 2: cond
474      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
475    case kArrayCond:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
476      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
477    case kRegRegCond:  // lir operands - 0: reg, 1: reg, 2: cond
478      return ComputeSize(entry, 0, 0, false);
479    case kJcc:
480      if (lir->opcode == kX86Jcc8) {
481        return 2;  // opcode + rel8
482      } else {
483        DCHECK(lir->opcode == kX86Jcc32);
484        return 6;  // 2 byte opcode + rel32
485      }
486    case kJmp:
487      if (lir->opcode == kX86Jmp8) {
488        return 2;  // opcode + rel8
489      } else if (lir->opcode == kX86Jmp32) {
490        return 5;  // opcode + rel32
491      } else {
492        DCHECK(lir->opcode == kX86JmpR);
493        return 2;  // opcode + modrm
494      }
495    case kCall:
496      switch (lir->opcode) {
497        case kX86CallR: return 2;  // opcode modrm
498        case kX86CallM:  // lir operands - 0: base, 1: disp
499          return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
500        case kX86CallA:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
501          return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
502        case kX86CallT:  // lir operands - 0: disp
503          return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
504        default:
505          break;
506      }
507      break;
508    case kPcRel:
509      if (entry->opcode == kX86PcRelLoadRA) {
510        // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
511        return ComputeSize(entry, lir->operands[1], 0x12345678, true);
512      } else {
513        DCHECK(entry->opcode == kX86PcRelAdr);
514        return 5;  // opcode with reg + 4 byte immediate
515      }
516    case kMacro:
517      DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
518      return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
519          ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
520          (lir->operands[0] == rAX  ? 1 : 0);  // shorter ax encoding
521    default:
522      break;
523  }
524  UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
525  return 0;
526}
527
528void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry) {
529  if (entry->skeleton.prefix1 != 0) {
530    code_buffer_.push_back(entry->skeleton.prefix1);
531    if (entry->skeleton.prefix2 != 0) {
532      code_buffer_.push_back(entry->skeleton.prefix2);
533    }
534  } else {
535    DCHECK_EQ(0, entry->skeleton.prefix2);
536  }
537}
538
539void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
540  code_buffer_.push_back(entry->skeleton.opcode);
541  if (entry->skeleton.opcode == 0x0F) {
542    code_buffer_.push_back(entry->skeleton.extra_opcode1);
543    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
544      code_buffer_.push_back(entry->skeleton.extra_opcode2);
545    } else {
546      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
547    }
548  } else {
549    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
550    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
551  }
552}
553
554void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry) {
555  EmitPrefix(entry);
556  EmitOpcode(entry);
557}
558
559static uint8_t ModrmForDisp(int base, int disp) {
560  // BP requires an explicit disp, so do not omit it in the 0 case
561  if (disp == 0 && base != rBP) {
562    return 0;
563  } else if (IS_SIMM8(disp)) {
564    return 1;
565  } else {
566    return 2;
567  }
568}
569
570void X86Mir2Lir::EmitDisp(uint8_t base, int disp) {
571  // BP requires an explicit disp, so do not omit it in the 0 case
572  if (disp == 0 && base != rBP) {
573    return;
574  } else if (IS_SIMM8(disp)) {
575    code_buffer_.push_back(disp & 0xFF);
576  } else {
577    code_buffer_.push_back(disp & 0xFF);
578    code_buffer_.push_back((disp >> 8) & 0xFF);
579    code_buffer_.push_back((disp >> 16) & 0xFF);
580    code_buffer_.push_back((disp >> 24) & 0xFF);
581  }
582}
583
584void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp) {
585  DCHECK_LT(reg_or_opcode, 8);
586  DCHECK_LT(base, 8);
587  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
588  code_buffer_.push_back(modrm);
589  if (base == rX86_SP) {
590    // Special SIB for SP base
591    code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
592  }
593  EmitDisp(base, disp);
594}
595
596void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
597                                  int scale, int disp) {
598  DCHECK_LT(reg_or_opcode, 8);
599  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | rX86_SP;
600  code_buffer_.push_back(modrm);
601  DCHECK_LT(scale, 4);
602  DCHECK_LT(index, 8);
603  DCHECK_LT(base, 8);
604  uint8_t sib = (scale << 6) | (index << 3) | base;
605  code_buffer_.push_back(sib);
606  EmitDisp(base, disp);
607}
608
609void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int imm) {
610  switch (entry->skeleton.immediate_bytes) {
611    case 1:
612      DCHECK(IS_SIMM8(imm));
613      code_buffer_.push_back(imm & 0xFF);
614      break;
615    case 2:
616      DCHECK(IS_SIMM16(imm));
617      code_buffer_.push_back(imm & 0xFF);
618      code_buffer_.push_back((imm >> 8) & 0xFF);
619      break;
620    case 4:
621      code_buffer_.push_back(imm & 0xFF);
622      code_buffer_.push_back((imm >> 8) & 0xFF);
623      code_buffer_.push_back((imm >> 16) & 0xFF);
624      code_buffer_.push_back((imm >> 24) & 0xFF);
625      break;
626    default:
627      LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
628                 << ") for instruction: " << entry->name;
629      break;
630  }
631}
632
633void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg) {
634  EmitPrefixAndOpcode(entry);
635  // There's no 3-byte instruction with +rd
636  DCHECK(entry->skeleton.opcode != 0x0F ||
637         (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
638  DCHECK(!X86_FPREG(reg));
639  DCHECK_LT(reg, 8);
640  code_buffer_.back() += reg;
641  DCHECK_EQ(0, entry->skeleton.ax_opcode);
642  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
643}
644
645void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
646  EmitPrefixAndOpcode(entry);
647  if (X86_FPREG(reg)) {
648    reg = reg & X86_FP_REG_MASK;
649  }
650  if (reg >= 4) {
651    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
652        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
653  }
654  DCHECK_LT(reg, 8);
655  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
656  code_buffer_.push_back(modrm);
657  DCHECK_EQ(0, entry->skeleton.ax_opcode);
658  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
659}
660
661void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
662  EmitPrefix(entry);
663  code_buffer_.push_back(entry->skeleton.opcode);
664  DCHECK_NE(0x0F, entry->skeleton.opcode);
665  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
666  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
667  EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
668  DCHECK_EQ(0, entry->skeleton.ax_opcode);
669  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
670}
671
672void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index,
673                             int scale, int disp) {
674  EmitPrefixAndOpcode(entry);
675  EmitModrmSibDisp(entry->skeleton.modrm_opcode, base, index, scale, disp);
676  DCHECK_EQ(0, entry->skeleton.ax_opcode);
677  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
678}
679
680void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
681                       uint8_t base, int disp, uint8_t reg) {
682  EmitPrefixAndOpcode(entry);
683  if (X86_FPREG(reg)) {
684    reg = reg & X86_FP_REG_MASK;
685  }
686  if (reg >= 4) {
687    DCHECK(strchr(entry->name, '8') == NULL ||
688           entry->opcode == kX86Movzx8RM || entry->opcode == kX86Movsx8RM)
689        << entry->name << " " << static_cast<int>(reg)
690        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
691  }
692  EmitModrmDisp(reg, base, disp);
693  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
694  DCHECK_EQ(0, entry->skeleton.ax_opcode);
695  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
696}
697
698void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
699                       uint8_t reg, uint8_t base, int disp) {
700  // Opcode will flip operands.
701  EmitMemReg(entry, base, disp, reg);
702}
703
704void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
705                              int scale, int disp) {
706  EmitPrefixAndOpcode(entry);
707  if (X86_FPREG(reg)) {
708    reg = reg & X86_FP_REG_MASK;
709  }
710  EmitModrmSibDisp(reg, base, index, scale, disp);
711  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
712  DCHECK_EQ(0, entry->skeleton.ax_opcode);
713  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
714}
715
716void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
717                  uint8_t reg) {
718  // Opcode will flip operands.
719  EmitRegArray(entry, reg, base, index, scale, disp);
720}
721
722void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
723  DCHECK_NE(entry->skeleton.prefix1, 0);
724  EmitPrefixAndOpcode(entry);
725  if (X86_FPREG(reg)) {
726    reg = reg & X86_FP_REG_MASK;
727  }
728  if (reg >= 4) {
729    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
730        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
731  }
732  DCHECK_LT(reg, 8);
733  uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
734  code_buffer_.push_back(modrm);
735  code_buffer_.push_back(disp & 0xFF);
736  code_buffer_.push_back((disp >> 8) & 0xFF);
737  code_buffer_.push_back((disp >> 16) & 0xFF);
738  code_buffer_.push_back((disp >> 24) & 0xFF);
739  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
740  DCHECK_EQ(0, entry->skeleton.ax_opcode);
741  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
742}
743
744void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
745  EmitPrefixAndOpcode(entry);
746  if (X86_FPREG(reg1)) {
747    reg1 = reg1 & X86_FP_REG_MASK;
748  }
749  if (X86_FPREG(reg2)) {
750    reg2 = reg2 & X86_FP_REG_MASK;
751  }
752  DCHECK_LT(reg1, 8);
753  DCHECK_LT(reg2, 8);
754  uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
755  code_buffer_.push_back(modrm);
756  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
757  DCHECK_EQ(0, entry->skeleton.ax_opcode);
758  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
759}
760
761void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
762                          uint8_t reg1, uint8_t reg2, int32_t imm) {
763  EmitPrefixAndOpcode(entry);
764  if (X86_FPREG(reg1)) {
765    reg1 = reg1 & X86_FP_REG_MASK;
766  }
767  if (X86_FPREG(reg2)) {
768    reg2 = reg2 & X86_FP_REG_MASK;
769  }
770  DCHECK_LT(reg1, 8);
771  DCHECK_LT(reg2, 8);
772  uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
773  code_buffer_.push_back(modrm);
774  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
775  DCHECK_EQ(0, entry->skeleton.ax_opcode);
776  EmitImm(entry, imm);
777}
778
779void X86Mir2Lir::EmitRegRegImmRev(const X86EncodingMap* entry,
780                                  uint8_t reg1, uint8_t reg2, int32_t imm) {
781  EmitRegRegImm(entry, reg2, reg1, imm);
782}
783
784void X86Mir2Lir::EmitRegMemImm(const X86EncodingMap* entry,
785                               uint8_t reg, uint8_t base, int disp, int32_t imm) {
786  EmitPrefixAndOpcode(entry);
787  DCHECK(!X86_FPREG(reg));
788  DCHECK_LT(reg, 8);
789  EmitModrmDisp(reg, base, disp);
790  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
791  DCHECK_EQ(0, entry->skeleton.ax_opcode);
792  EmitImm(entry, imm);
793}
794
795void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
796  if (entry->skeleton.prefix1 != 0) {
797    code_buffer_.push_back(entry->skeleton.prefix1);
798    if (entry->skeleton.prefix2 != 0) {
799      code_buffer_.push_back(entry->skeleton.prefix2);
800    }
801  } else {
802    DCHECK_EQ(0, entry->skeleton.prefix2);
803  }
804  if (reg == rAX && entry->skeleton.ax_opcode != 0) {
805    code_buffer_.push_back(entry->skeleton.ax_opcode);
806  } else {
807    EmitOpcode(entry);
808    if (X86_FPREG(reg)) {
809      reg = reg & X86_FP_REG_MASK;
810    }
811    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
812    code_buffer_.push_back(modrm);
813  }
814  EmitImm(entry, imm);
815}
816
817void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int32_t imm) {
818  EmitPrefixAndOpcode(entry);
819  EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
820  DCHECK_EQ(0, entry->skeleton.ax_opcode);
821  EmitImm(entry, imm);
822}
823
824void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
825  EmitPrefixAndOpcode(entry);
826  uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
827  code_buffer_.push_back(modrm);
828  code_buffer_.push_back(disp & 0xFF);
829  code_buffer_.push_back((disp >> 8) & 0xFF);
830  code_buffer_.push_back((disp >> 16) & 0xFF);
831  code_buffer_.push_back((disp >> 24) & 0xFF);
832  EmitImm(entry, imm);
833  DCHECK_EQ(entry->skeleton.ax_opcode, 0);
834}
835
836void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
837  DCHECK_LT(reg, 8);
838  code_buffer_.push_back(0xB8 + reg);
839  code_buffer_.push_back(imm & 0xFF);
840  code_buffer_.push_back((imm >> 8) & 0xFF);
841  code_buffer_.push_back((imm >> 16) & 0xFF);
842  code_buffer_.push_back((imm >> 24) & 0xFF);
843}
844
845void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
846  EmitPrefix(entry);
847  if (imm != 1) {
848    code_buffer_.push_back(entry->skeleton.opcode);
849  } else {
850    // Shorter encoding for 1 bit shift
851    code_buffer_.push_back(entry->skeleton.ax_opcode);
852  }
853  DCHECK_NE(0x0F, entry->skeleton.opcode);
854  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
855  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
856  if (reg >= 4) {
857    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
858        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
859  }
860  DCHECK_LT(reg, 8);
861  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
862  code_buffer_.push_back(modrm);
863  if (imm != 1) {
864    DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
865    DCHECK(IS_SIMM8(imm));
866    code_buffer_.push_back(imm & 0xFF);
867  }
868}
869
870void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
871  DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
872  EmitPrefix(entry);
873  code_buffer_.push_back(entry->skeleton.opcode);
874  DCHECK_NE(0x0F, entry->skeleton.opcode);
875  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
876  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
877  DCHECK_LT(reg, 8);
878  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
879  code_buffer_.push_back(modrm);
880  DCHECK_EQ(0, entry->skeleton.ax_opcode);
881  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
882}
883
884void X86Mir2Lir::EmitShiftMemCl(const X86EncodingMap* entry, uint8_t base,
885                                int displacement, uint8_t cl) {
886  DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
887  EmitPrefix(entry);
888  code_buffer_.push_back(entry->skeleton.opcode);
889  DCHECK_NE(0x0F, entry->skeleton.opcode);
890  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
891  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
892  DCHECK_LT(base, 8);
893  EmitModrmDisp(entry->skeleton.modrm_opcode, base, displacement);
894  DCHECK_EQ(0, entry->skeleton.ax_opcode);
895  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
896}
897
898void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
899  if (entry->skeleton.prefix1 != 0) {
900    code_buffer_.push_back(entry->skeleton.prefix1);
901    if (entry->skeleton.prefix2 != 0) {
902      code_buffer_.push_back(entry->skeleton.prefix2);
903    }
904  } else {
905    DCHECK_EQ(0, entry->skeleton.prefix2);
906  }
907  DCHECK_EQ(0, entry->skeleton.ax_opcode);
908  DCHECK_EQ(0x0F, entry->skeleton.opcode);
909  code_buffer_.push_back(0x0F);
910  DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
911  code_buffer_.push_back(0x90 | condition);
912  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
913  DCHECK_LT(reg, 8);
914  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
915  code_buffer_.push_back(modrm);
916  DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
917}
918
919void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, uint8_t condition) {
920  // Generate prefix and opcode without the condition
921  EmitPrefixAndOpcode(entry);
922
923  // Now add the condition. The last byte of opcode is the one that receives it.
924  DCHECK_LE(condition, 0xF);
925  code_buffer_.back() += condition;
926
927  // Not expecting to have to encode immediate or do anything special for ModR/M since there are two registers.
928  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
929  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
930
931  // Check that registers requested for encoding are sane.
932  DCHECK_LT(reg1, 8);
933  DCHECK_LT(reg2, 8);
934
935  // For register to register encoding, the mod is 3.
936  const uint8_t mod = (3 << 6);
937
938  // Encode the ModR/M byte now.
939  const uint8_t modrm = mod | (reg1 << 3) | reg2;
940  code_buffer_.push_back(modrm);
941}
942
943void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
944  if (entry->opcode == kX86Jmp8) {
945    DCHECK(IS_SIMM8(rel));
946    code_buffer_.push_back(0xEB);
947    code_buffer_.push_back(rel & 0xFF);
948  } else if (entry->opcode == kX86Jmp32) {
949    code_buffer_.push_back(0xE9);
950    code_buffer_.push_back(rel & 0xFF);
951    code_buffer_.push_back((rel >> 8) & 0xFF);
952    code_buffer_.push_back((rel >> 16) & 0xFF);
953    code_buffer_.push_back((rel >> 24) & 0xFF);
954  } else {
955    DCHECK(entry->opcode == kX86JmpR);
956    code_buffer_.push_back(entry->skeleton.opcode);
957    uint8_t reg = static_cast<uint8_t>(rel);
958    DCHECK_LT(reg, 8);
959    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
960    code_buffer_.push_back(modrm);
961  }
962}
963
964void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
965  DCHECK_LT(cc, 16);
966  if (entry->opcode == kX86Jcc8) {
967    DCHECK(IS_SIMM8(rel));
968    code_buffer_.push_back(0x70 | cc);
969    code_buffer_.push_back(rel & 0xFF);
970  } else {
971    DCHECK(entry->opcode == kX86Jcc32);
972    code_buffer_.push_back(0x0F);
973    code_buffer_.push_back(0x80 | cc);
974    code_buffer_.push_back(rel & 0xFF);
975    code_buffer_.push_back((rel >> 8) & 0xFF);
976    code_buffer_.push_back((rel >> 16) & 0xFF);
977    code_buffer_.push_back((rel >> 24) & 0xFF);
978  }
979}
980
981void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
982  EmitPrefixAndOpcode(entry);
983  EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
984  DCHECK_EQ(0, entry->skeleton.ax_opcode);
985  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
986}
987
988void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
989  DCHECK_NE(entry->skeleton.prefix1, 0);
990  EmitPrefixAndOpcode(entry);
991  uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
992  code_buffer_.push_back(modrm);
993  code_buffer_.push_back(disp & 0xFF);
994  code_buffer_.push_back((disp >> 8) & 0xFF);
995  code_buffer_.push_back((disp >> 16) & 0xFF);
996  code_buffer_.push_back((disp >> 24) & 0xFF);
997  DCHECK_EQ(0, entry->skeleton.ax_opcode);
998  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
999}
1000
1001void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
1002                      int base_or_table, uint8_t index, int scale, int table_or_disp) {
1003  int disp;
1004  if (entry->opcode == kX86PcRelLoadRA) {
1005    Mir2Lir::EmbeddedData *tab_rec =
1006        reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
1007    disp = tab_rec->offset;
1008  } else {
1009    DCHECK(entry->opcode == kX86PcRelAdr);
1010    Mir2Lir::EmbeddedData *tab_rec =
1011        reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(base_or_table));
1012    disp = tab_rec->offset;
1013  }
1014  EmitPrefix(entry);
1015  if (X86_FPREG(reg)) {
1016    reg = reg & X86_FP_REG_MASK;
1017  }
1018  DCHECK_LT(reg, 8);
1019  if (entry->opcode == kX86PcRelLoadRA) {
1020    code_buffer_.push_back(entry->skeleton.opcode);
1021    DCHECK_NE(0x0F, entry->skeleton.opcode);
1022    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1023    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1024    uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
1025    code_buffer_.push_back(modrm);
1026    DCHECK_LT(scale, 4);
1027    DCHECK_LT(index, 8);
1028    DCHECK_LT(base_or_table, 8);
1029    uint8_t base = static_cast<uint8_t>(base_or_table);
1030    uint8_t sib = (scale << 6) | (index << 3) | base;
1031    code_buffer_.push_back(sib);
1032    DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1033  } else {
1034    code_buffer_.push_back(entry->skeleton.opcode + reg);
1035  }
1036  code_buffer_.push_back(disp & 0xFF);
1037  code_buffer_.push_back((disp >> 8) & 0xFF);
1038  code_buffer_.push_back((disp >> 16) & 0xFF);
1039  code_buffer_.push_back((disp >> 24) & 0xFF);
1040  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1041  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1042}
1043
1044void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
1045  DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
1046  code_buffer_.push_back(0xE8);  // call +0
1047  code_buffer_.push_back(0);
1048  code_buffer_.push_back(0);
1049  code_buffer_.push_back(0);
1050  code_buffer_.push_back(0);
1051
1052  DCHECK_LT(reg, 8);
1053  code_buffer_.push_back(0x58 + reg);  // pop reg
1054
1055  EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
1056}
1057
1058void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1059  UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1060                         << BuildInsnString(entry->fmt, lir, 0);
1061  for (int i = 0; i < GetInsnSize(lir); ++i) {
1062    code_buffer_.push_back(0xCC);  // push breakpoint instruction - int 3
1063  }
1064}
1065
1066/*
1067 * Assemble the LIR into binary instruction format.  Note that we may
1068 * discover that pc-relative displacements may not fit the selected
1069 * instruction.  In those cases we will try to substitute a new code
1070 * sequence or request that the trace be shortened and retried.
1071 */
1072AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
1073  LIR *lir;
1074  AssemblerStatus res = kSuccess;  // Assume success
1075
1076  const bool kVerbosePcFixup = false;
1077  for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1078    if (IsPseudoLirOp(lir->opcode)) {
1079      continue;
1080    }
1081
1082    if (lir->flags.is_nop) {
1083      continue;
1084    }
1085
1086    if (lir->flags.fixup != kFixupNone) {
1087      switch (lir->opcode) {
1088        case kX86Jcc8: {
1089          LIR *target_lir = lir->target;
1090          DCHECK(target_lir != NULL);
1091          int delta = 0;
1092          CodeOffset pc;
1093          if (IS_SIMM8(lir->operands[0])) {
1094            pc = lir->offset + 2 /* opcode + rel8 */;
1095          } else {
1096            pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1097          }
1098          CodeOffset target = target_lir->offset;
1099          delta = target - pc;
1100          if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1101            if (kVerbosePcFixup) {
1102              LOG(INFO) << "Retry for JCC growth at " << lir->offset
1103                  << " delta: " << delta << " old delta: " << lir->operands[0];
1104            }
1105            lir->opcode = kX86Jcc32;
1106            SetupResourceMasks(lir);
1107            res = kRetryAll;
1108          }
1109          if (kVerbosePcFixup) {
1110            LOG(INFO) << "Source:";
1111            DumpLIRInsn(lir, 0);
1112            LOG(INFO) << "Target:";
1113            DumpLIRInsn(target_lir, 0);
1114            LOG(INFO) << "Delta " << delta;
1115          }
1116          lir->operands[0] = delta;
1117          break;
1118        }
1119        case kX86Jcc32: {
1120          LIR *target_lir = lir->target;
1121          DCHECK(target_lir != NULL);
1122          CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1123          CodeOffset target = target_lir->offset;
1124          int delta = target - pc;
1125          if (kVerbosePcFixup) {
1126            LOG(INFO) << "Source:";
1127            DumpLIRInsn(lir, 0);
1128            LOG(INFO) << "Target:";
1129            DumpLIRInsn(target_lir, 0);
1130            LOG(INFO) << "Delta " << delta;
1131          }
1132          lir->operands[0] = delta;
1133          break;
1134        }
1135        case kX86Jmp8: {
1136          LIR *target_lir = lir->target;
1137          DCHECK(target_lir != NULL);
1138          int delta = 0;
1139          CodeOffset pc;
1140          if (IS_SIMM8(lir->operands[0])) {
1141            pc = lir->offset + 2 /* opcode + rel8 */;
1142          } else {
1143            pc = lir->offset + 5 /* opcode + rel32 */;
1144          }
1145          CodeOffset target = target_lir->offset;
1146          delta = target - pc;
1147          if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1148            // Useless branch
1149            NopLIR(lir);
1150            if (kVerbosePcFixup) {
1151              LOG(INFO) << "Retry for useless branch at " << lir->offset;
1152            }
1153            res = kRetryAll;
1154          } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1155            if (kVerbosePcFixup) {
1156              LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1157            }
1158            lir->opcode = kX86Jmp32;
1159            SetupResourceMasks(lir);
1160            res = kRetryAll;
1161          }
1162          lir->operands[0] = delta;
1163          break;
1164        }
1165        case kX86Jmp32: {
1166          LIR *target_lir = lir->target;
1167          DCHECK(target_lir != NULL);
1168          CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1169          CodeOffset target = target_lir->offset;
1170          int delta = target - pc;
1171          lir->operands[0] = delta;
1172          break;
1173        }
1174        default:
1175          if (lir->flags.fixup == kFixupLoad) {
1176            LIR *target_lir = lir->target;
1177            DCHECK(target_lir != NULL);
1178            CodeOffset target = target_lir->offset;
1179            lir->operands[2] = target;
1180            int newSize = GetInsnSize(lir);
1181            if (newSize != lir->flags.size) {
1182              lir->flags.size = newSize;
1183              res = kRetryAll;
1184            }
1185          }
1186          break;
1187      }
1188    }
1189
1190    /*
1191     * If one of the pc-relative instructions expanded we'll have
1192     * to make another pass.  Don't bother to fully assemble the
1193     * instruction.
1194     */
1195    if (res != kSuccess) {
1196      continue;
1197    }
1198    CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1199    const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1200    size_t starting_cbuf_size = code_buffer_.size();
1201    switch (entry->kind) {
1202      case kData:  // 4 bytes of data
1203        code_buffer_.push_back(lir->operands[0]);
1204        break;
1205      case kNullary:  // 1 byte of opcode
1206        DCHECK_EQ(0, entry->skeleton.prefix1);
1207        DCHECK_EQ(0, entry->skeleton.prefix2);
1208        EmitOpcode(entry);
1209        DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1210        DCHECK_EQ(0, entry->skeleton.ax_opcode);
1211        DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1212        break;
1213      case kRegOpcode:  // lir operands - 0: reg
1214        EmitOpRegOpcode(entry, lir->operands[0]);
1215        break;
1216      case kReg:  // lir operands - 0: reg
1217        EmitOpReg(entry, lir->operands[0]);
1218        break;
1219      case kMem:  // lir operands - 0: base, 1: disp
1220        EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1221        break;
1222      case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
1223        EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1224        break;
1225      case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
1226        EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1227        break;
1228      case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
1229        EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1230        break;
1231      case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1232        EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1233                     lir->operands[3], lir->operands[4]);
1234        break;
1235      case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
1236        EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1237        break;
1238      case kRegArray:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1239        EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1240                     lir->operands[3], lir->operands[4]);
1241        break;
1242      case kRegThread:  // lir operands - 0: reg, 1: disp
1243        EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1244        break;
1245      case kRegReg:  // lir operands - 0: reg1, 1: reg2
1246        EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1247        break;
1248      case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
1249        EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1250        break;
1251      case kRegRegImmRev:
1252        EmitRegRegImmRev(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1253        break;
1254      case kRegRegImm:
1255        EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1256        break;
1257      case kRegMemImm:
1258        EmitRegMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1259                      lir->operands[3]);
1260        break;
1261      case kRegImm:  // lir operands - 0: reg, 1: immediate
1262        EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1263        break;
1264      case kThreadImm:  // lir operands - 0: disp, 1: immediate
1265        EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1266        break;
1267      case kMovRegImm:  // lir operands - 0: reg, 1: immediate
1268        EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1269        break;
1270      case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
1271        EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1272        break;
1273      case kShiftRegCl:  // lir operands - 0: reg, 1: cl
1274        EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1275        break;
1276      case kShiftMemCl:  // lir operands - 0: base, 1:displacement, 2: cl
1277        EmitShiftMemCl(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1278        break;
1279      case kRegCond:  // lir operands - 0: reg, 1: condition
1280        EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1281        break;
1282      case kRegRegCond:  // lir operands - 0: reg, 1: reg, 2: condition
1283        EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1284        break;
1285      case kJmp:  // lir operands - 0: rel
1286        EmitJmp(entry, lir->operands[0]);
1287        break;
1288      case kJcc:  // lir operands - 0: rel, 1: CC, target assigned
1289        EmitJcc(entry, lir->operands[0], lir->operands[1]);
1290        break;
1291      case kCall:
1292        switch (entry->opcode) {
1293          case kX86CallM:  // lir operands - 0: base, 1: disp
1294            EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1295            break;
1296          case kX86CallT:  // lir operands - 0: disp
1297            EmitCallThread(entry, lir->operands[0]);
1298            break;
1299          default:
1300            EmitUnimplemented(entry, lir);
1301            break;
1302        }
1303        break;
1304      case kPcRel:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1305        EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1306                  lir->operands[3], lir->operands[4]);
1307        break;
1308      case kMacro:
1309        EmitMacro(entry, lir->operands[0], lir->offset);
1310        break;
1311      default:
1312        EmitUnimplemented(entry, lir);
1313        break;
1314    }
1315    CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1316             code_buffer_.size() - starting_cbuf_size)
1317        << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1318  }
1319  return res;
1320}
1321
1322// LIR offset assignment.
1323// TODO: consolidate w/ Arm assembly mechanism.
1324int X86Mir2Lir::AssignInsnOffsets() {
1325  LIR* lir;
1326  int offset = 0;
1327
1328  for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1329    lir->offset = offset;
1330    if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
1331      if (!lir->flags.is_nop) {
1332        offset += lir->flags.size;
1333      }
1334    } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1335      if (offset & 0x2) {
1336        offset += 2;
1337        lir->operands[0] = 1;
1338      } else {
1339        lir->operands[0] = 0;
1340      }
1341    }
1342    /* Pseudo opcodes don't consume space */
1343  }
1344  return offset;
1345}
1346
1347/*
1348 * Walk the compilation unit and assign offsets to instructions
1349 * and literals and compute the total size of the compiled unit.
1350 * TODO: consolidate w/ Arm assembly mechanism.
1351 */
1352void X86Mir2Lir::AssignOffsets() {
1353  int offset = AssignInsnOffsets();
1354
1355  /* Const values have to be word aligned */
1356  offset = (offset + 3) & ~3;
1357
1358  /* Set up offsets for literals */
1359  data_offset_ = offset;
1360
1361  offset = AssignLiteralOffset(offset);
1362
1363  offset = AssignSwitchTablesOffset(offset);
1364
1365  offset = AssignFillArrayDataOffset(offset);
1366
1367  total_size_ = offset;
1368}
1369
1370/*
1371 * Go over each instruction in the list and calculate the offset from the top
1372 * before sending them off to the assembler. If out-of-range branch distance is
1373 * seen rearrange the instructions a bit to correct it.
1374 * TODO: consolidate w/ Arm assembly mechanism.
1375 */
1376void X86Mir2Lir::AssembleLIR() {
1377  cu_->NewTimingSplit("Assemble");
1378  AssignOffsets();
1379  int assembler_retries = 0;
1380  /*
1381   * Assemble here.  Note that we generate code with optimistic assumptions
1382   * and if found now to work, we'll have to redo the sequence and retry.
1383   */
1384
1385  while (true) {
1386    AssemblerStatus res = AssembleInstructions(0);
1387    if (res == kSuccess) {
1388      break;
1389    } else {
1390      assembler_retries++;
1391      if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1392        CodegenDump();
1393        LOG(FATAL) << "Assembler error - too many retries";
1394      }
1395      // Redo offsets and try again
1396      AssignOffsets();
1397      code_buffer_.clear();
1398    }
1399  }
1400
1401  // Install literals
1402  InstallLiteralPools();
1403
1404  // Install switch tables
1405  InstallSwitchTables();
1406
1407  // Install fill array data
1408  InstallFillArrayData();
1409
1410  // Create the mapping table and native offset to reference map.
1411  cu_->NewTimingSplit("PcMappingTable");
1412  CreateMappingTables();
1413
1414  cu_->NewTimingSplit("GcMap");
1415  CreateNativeGcMap();
1416}
1417
1418}  // namespace art
1419