assemble_x86.cc revision 343adb52d3f031b6b5e005ff51f9cb04df219b21
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26  { kX8632BitData, kData,    IS_UNARY_OP,            { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data",  "0x!0d" },
27  { kX86Bkpt,      kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28  { kX86Nop,       kNop,     IS_UNARY_OP,            { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop",   "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31                     rm8_r8, rm32_r32, \
32                     r8_rm8, r32_rm32, \
33                     ax8_i8, ax32_i32, \
34                     rm8_i8, rm8_i8_modrm, \
35                     rm32_i32, rm32_i32_modrm, \
36                     rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48  \
49{ kX86 ## opname ## 16MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0,              0,        0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64  \
65{ kX86 ## opname ## 32MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82  0x00 /* RegMem8/Reg8 */,     0x01 /* RegMem32/Reg32 */,
83  0x02 /* Reg8/RegMem8 */,     0x03 /* Reg32/RegMem32 */,
84  0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85  0x80, 0x0 /* RegMem8/imm8 */,
86  0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88  0x08 /* RegMem8/Reg8 */,     0x09 /* RegMem32/Reg32 */,
89  0x0A /* Reg8/RegMem8 */,     0x0B /* Reg32/RegMem32 */,
90  0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91  0x80, 0x1 /* RegMem8/imm8 */,
92  0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94  0x10 /* RegMem8/Reg8 */,     0x11 /* RegMem32/Reg32 */,
95  0x12 /* Reg8/RegMem8 */,     0x13 /* Reg32/RegMem32 */,
96  0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97  0x80, 0x2 /* RegMem8/imm8 */,
98  0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100  0x18 /* RegMem8/Reg8 */,     0x19 /* RegMem32/Reg32 */,
101  0x1A /* Reg8/RegMem8 */,     0x1B /* Reg32/RegMem32 */,
102  0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103  0x80, 0x3 /* RegMem8/imm8 */,
104  0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106  0x20 /* RegMem8/Reg8 */,     0x21 /* RegMem32/Reg32 */,
107  0x22 /* Reg8/RegMem8 */,     0x23 /* Reg32/RegMem32 */,
108  0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109  0x80, 0x4 /* RegMem8/imm8 */,
110  0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112  0x28 /* RegMem8/Reg8 */,     0x29 /* RegMem32/Reg32 */,
113  0x2A /* Reg8/RegMem8 */,     0x2B /* Reg32/RegMem32 */,
114  0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115  0x80, 0x5 /* RegMem8/imm8 */,
116  0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118  0x30 /* RegMem8/Reg8 */,     0x31 /* RegMem32/Reg32 */,
119  0x32 /* Reg8/RegMem8 */,     0x33 /* Reg32/RegMem32 */,
120  0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121  0x80, 0x6 /* RegMem8/imm8 */,
122  0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124  0x38 /* RegMem8/Reg8 */,     0x39 /* RegMem32/Reg32 */,
125  0x3A /* Reg8/RegMem8 */,     0x3B /* Reg32/RegMem32 */,
126  0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127  0x80, 0x7 /* RegMem8/imm8 */,
128  0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131  { kX86Imul16RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132  { kX86Imul16RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133  { kX86Imul16RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135  { kX86Imul32RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136  { kX86Imul32RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137  { kX86Imul32RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138  { kX86Imul32RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139  { kX86Imul32RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140  { kX86Imul32RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142  { kX86Mov8MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143  { kX86Mov8AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144  { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145  { kX86Mov8RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146  { kX86Mov8RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147  { kX86Mov8RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148  { kX86Mov8RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149  { kX86Mov8RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150  { kX86Mov8MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151  { kX86Mov8AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152  { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154  { kX86Mov16MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0x66,          0,    0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155  { kX86Mov16AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0x66,          0,    0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156  { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157  { kX86Mov16RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158  { kX86Mov16RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159  { kX86Mov16RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160  { kX86Mov16RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161  { kX86Mov16RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0x66,          0,    0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162  { kX86Mov16MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0x66,          0,    0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163  { kX86Mov16AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0x66,          0,    0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164  { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166  { kX86Mov32MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167  { kX86Mov32AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168  { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169  { kX86Mov32RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170  { kX86Mov32RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171  { kX86Mov32RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172  { kX86Mov32RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173  { kX86Mov32RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174  { kX86Mov32MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175  { kX86Mov32AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176  { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178  { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
180#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
181{ kX86 ## opname ## 8RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
182{ kX86 ## opname ## 8MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
183{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
184{ kX86 ## opname ## 8RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8RC", "!0r,cl" }, \
185{ kX86 ## opname ## 8MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8MC", "[!0r+!1d],cl" }, \
186{ kX86 ## opname ## 8AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
187  \
188{ kX86 ## opname ## 16RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
189{ kX86 ## opname ## 16MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
190{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
191{ kX86 ## opname ## 16RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16RC", "!0r,cl" }, \
192{ kX86 ## opname ## 16MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16MC", "[!0r+!1d],cl" }, \
193{ kX86 ## opname ## 16AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
194  \
195{ kX86 ## opname ## 32RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
196{ kX86 ## opname ## 32MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
197{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
198{ kX86 ## opname ## 32RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32RC", "!0r,cl" }, \
199{ kX86 ## opname ## 32MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32MC", "[!0r+!1d],cl" }, \
200{ kX86 ## opname ## 32AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
201
202  SHIFT_ENCODING_MAP(Rol, 0x0),
203  SHIFT_ENCODING_MAP(Ror, 0x1),
204  SHIFT_ENCODING_MAP(Rcl, 0x2),
205  SHIFT_ENCODING_MAP(Rcr, 0x3),
206  SHIFT_ENCODING_MAP(Sal, 0x4),
207  SHIFT_ENCODING_MAP(Shr, 0x5),
208  SHIFT_ENCODING_MAP(Sar, 0x7),
209#undef SHIFT_ENCODING_MAP
210
211  { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
212
213  { kX86Test8RI,  kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
214  { kX86Test8MI,  kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
215  { kX86Test8AI,  kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
216  { kX86Test16RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
217  { kX86Test16MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
218  { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
219  { kX86Test32RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
220  { kX86Test32MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
221  { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
222  { kX86Test32RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { 0,    0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
223
224#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
225                           reg, reg_kind, reg_flags, \
226                           mem, mem_kind, mem_flags, \
227                           arr, arr_kind, arr_flags, imm, \
228                           b_flags, hw_flags, w_flags, \
229                           b_format, hw_format, w_format) \
230{ kX86 ## opname ## 8 ## reg,  reg_kind,                      reg_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
231{ kX86 ## opname ## 8 ## mem,  mem_kind, IS_LOAD | is_store | mem_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
232{ kX86 ## opname ## 8 ## arr,  arr_kind, IS_LOAD | is_store | arr_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
233{ kX86 ## opname ## 16 ## reg, reg_kind,                      reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
234{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
235{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
236{ kX86 ## opname ## 32 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
237{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
238{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
239
240  UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0,           R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
241  UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
242
243  UNARY_ENCODING_MAP(Mul,     0x4, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
244  UNARY_ENCODING_MAP(Imul,    0x5, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
245  UNARY_ENCODING_MAP(Divmod,  0x6, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
246  UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
247#undef UNARY_ENCODING_MAP
248
249  { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0,                                 { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0 }, "Bswap32R", "!0r" },
250  { kX86Push32R,  kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0, 0, 0x50, 0,    0, 0, 0, 0 }, "Push32R",  "!0r" },
251  { kX86Pop32R,   kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD,  { 0, 0, 0x58, 0,    0, 0, 0, 0 }, "Pop32R",   "!0r" },
252
253#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
254{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE01,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
255{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
256{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
257
258  EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
259  { kX86MovsdMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
260  { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
261
262  EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
263  { kX86MovssMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
264  { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
265
266  EXT_0F_ENCODING_MAP(Cvtsi2sd,  0xF2, 0x2A, REG_DEF0),
267  EXT_0F_ENCODING_MAP(Cvtsi2ss,  0xF3, 0x2A, REG_DEF0),
268  EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
269  EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
270  EXT_0F_ENCODING_MAP(Cvtsd2si,  0xF2, 0x2D, REG_DEF0),
271  EXT_0F_ENCODING_MAP(Cvtss2si,  0xF3, 0x2D, REG_DEF0),
272  EXT_0F_ENCODING_MAP(Ucomisd,   0x66, 0x2E, SETS_CCODES),
273  EXT_0F_ENCODING_MAP(Ucomiss,   0x00, 0x2E, SETS_CCODES),
274  EXT_0F_ENCODING_MAP(Comisd,    0x66, 0x2F, SETS_CCODES),
275  EXT_0F_ENCODING_MAP(Comiss,    0x00, 0x2F, SETS_CCODES),
276  EXT_0F_ENCODING_MAP(Orps,      0x00, 0x56, REG_DEF0),
277  EXT_0F_ENCODING_MAP(Xorps,     0x00, 0x57, REG_DEF0),
278  EXT_0F_ENCODING_MAP(Addsd,     0xF2, 0x58, REG_DEF0),
279  EXT_0F_ENCODING_MAP(Addss,     0xF3, 0x58, REG_DEF0),
280  EXT_0F_ENCODING_MAP(Mulsd,     0xF2, 0x59, REG_DEF0),
281  EXT_0F_ENCODING_MAP(Mulss,     0xF3, 0x59, REG_DEF0),
282  EXT_0F_ENCODING_MAP(Cvtsd2ss,  0xF2, 0x5A, REG_DEF0),
283  EXT_0F_ENCODING_MAP(Cvtss2sd,  0xF3, 0x5A, REG_DEF0),
284  EXT_0F_ENCODING_MAP(Subsd,     0xF2, 0x5C, REG_DEF0),
285  EXT_0F_ENCODING_MAP(Subss,     0xF3, 0x5C, REG_DEF0),
286  EXT_0F_ENCODING_MAP(Divsd,     0xF2, 0x5E, REG_DEF0),
287  EXT_0F_ENCODING_MAP(Divss,     0xF3, 0x5E, REG_DEF0),
288
289  { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
290  { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
291  { kX86SqrtsdRR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0xF2, 0, 0x0F, 0x51, 0, 0, 0, 0 }, "SqrtsdRR", "!0r,!1r" },
292  { kX86FstpdM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0 }, "FstpdM", "[!0r,!1d]" },
293
294  EXT_0F_ENCODING_MAP(Movdxr,    0x66, 0x6E, REG_DEF0),
295  { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE01,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
296  { kX86MovdrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
297  { kX86MovdrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
298
299  { kX86Set8R, kRegCond,              IS_BINARY_OP   | REG_DEF0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
300  { kX86Set8M, kMemCond,   IS_STORE | IS_TERTIARY_OP | REG_USE0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
301  { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP     | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
302
303  // TODO: load/store?
304  // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
305  { kX86Mfence, kReg,                 NO_OPERAND,     { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
306
307  EXT_0F_ENCODING_MAP(Imul16,  0x66, 0xAF, REG_DEF0 | SETS_CCODES),
308  EXT_0F_ENCODING_MAP(Imul32,  0x00, 0xAF, REG_DEF0 | SETS_CCODES),
309
310  { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
311  { kX86CmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
312  { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
313  { kX86LockCmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
314  { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
315  { kX86LockCmpxchg8bM, kMem,   IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1d]" },
316  { kX86LockCmpxchg8bA, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
317
318  EXT_0F_ENCODING_MAP(Movzx8,  0x00, 0xB6, REG_DEF0),
319  EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
320  EXT_0F_ENCODING_MAP(Movsx8,  0x00, 0xBE, REG_DEF0),
321  EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
322#undef EXT_0F_ENCODING_MAP
323
324  { kX86Jcc8,  kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x70, 0,    0, 0, 0, 0 }, "Jcc8",  "!1c !0t" },
325  { kX86Jcc32, kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
326  { kX86Jmp8,  kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xEB, 0,    0, 0, 0, 0 }, "Jmp8",  "!0t" },
327  { kX86Jmp32, kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xE9, 0,    0, 0, 0, 0 }, "Jmp32", "!0t" },
328  { kX86JmpR,  kJmp,  IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xFF, 0,    0, 4, 0, 0 }, "JmpR",  "!0r" },
329  { kX86CallR, kCall, IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xE8, 0,    0, 0, 0, 0 }, "CallR", "!0r" },
330  { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0,        { 0,             0, 0xFF, 0,    0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
331  { kX86CallA, kCall, IS_QUAD_OP   | IS_BRANCH | IS_LOAD | REG_USE01,       { 0,             0, 0xFF, 0,    0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
332  { kX86CallT, kCall, IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
333  { kX86Ret,   kNullary, NO_OPERAND | IS_BRANCH,                            { 0,             0, 0xC3, 0,    0, 0, 0, 0 }, "Ret", "" },
334
335  { kX86StartOfMethod, kMacro,  IS_UNARY_OP | SETS_CCODES,             { 0, 0, 0,    0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
336  { kX86PcRelLoadRA,   kPcRel,  IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA",   "!0r,[!1r+!2r<<!3d+!4p]" },
337  { kX86PcRelAdr,      kPcRel,  IS_LOAD | IS_BINARY_OP | REG_DEF0,     { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr",      "!0r,!1d" },
338};
339
340static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
341  size_t size = 0;
342  if (entry->skeleton.prefix1 > 0) {
343    ++size;
344    if (entry->skeleton.prefix2 > 0) {
345      ++size;
346    }
347  }
348  ++size;  // opcode
349  if (entry->skeleton.opcode == 0x0F) {
350    ++size;
351    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
352      ++size;
353    }
354  }
355  ++size;  // modrm
356  if (has_sib || base == rX86_SP) {
357    // SP requires a SIB byte.
358    ++size;
359  }
360  if (displacement != 0 || base == rBP) {
361    // BP requires an explicit displacement, even when it's 0.
362    if (entry->opcode != kX86Lea32RA) {
363      DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
364    }
365    size += IS_SIMM8(displacement) ? 1 : 4;
366  }
367  size += entry->skeleton.immediate_bytes;
368  return size;
369}
370
371int X86Mir2Lir::GetInsnSize(LIR* lir) {
372  DCHECK(!IsPseudoLirOp(lir->opcode));
373  const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
374  switch (entry->kind) {
375    case kData:
376      return 4;  // 4 bytes of data
377    case kNop:
378      return lir->operands[0];  // length of nop is sole operand
379    case kNullary:
380      return 1;  // 1 byte of opcode
381    case kRegOpcode:  // lir operands - 0: reg
382      return ComputeSize(entry, 0, 0, false) - 1;  // substract 1 for modrm
383    case kReg:  // lir operands - 0: reg
384      return ComputeSize(entry, 0, 0, false);
385    case kMem:  // lir operands - 0: base, 1: disp
386      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
387    case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
388      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
389    case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
390      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
391    case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
392      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
393    case kThreadReg:  // lir operands - 0: disp, 1: reg
394      return ComputeSize(entry, 0, lir->operands[0], false);
395    case kRegReg:
396      return ComputeSize(entry, 0, 0, false);
397    case kRegRegStore:
398      return ComputeSize(entry, 0, 0, false);
399    case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
400      return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
401    case kRegArray:   // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
402      return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
403    case kRegThread:  // lir operands - 0: reg, 1: disp
404      return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
405    case kRegImm: {  // lir operands - 0: reg, 1: immediate
406      size_t size = ComputeSize(entry, 0, 0, false);
407      if (entry->skeleton.ax_opcode == 0) {
408        return size;
409      } else {
410        // AX opcodes don't require the modrm byte.
411        int reg = lir->operands[0];
412        return size - (reg == rAX ? 1 : 0);
413      }
414    }
415    case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
416      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
417    case kArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
418      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
419    case kThreadImm:  // lir operands - 0: disp, 1: imm
420      return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
421    case kRegRegImm:  // lir operands - 0: reg, 1: reg, 2: imm
422      return ComputeSize(entry, 0, 0, false);
423    case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
424      return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
425    case kRegArrayImm:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
426      return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
427    case kMovRegImm:  // lir operands - 0: reg, 1: immediate
428      return 1 + entry->skeleton.immediate_bytes;
429    case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
430      // Shift by immediate one has a shorter opcode.
431      return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
432    case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
433      // Shift by immediate one has a shorter opcode.
434      return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
435             (lir->operands[2] == 1 ? 1 : 0);
436    case kShiftArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
437      // Shift by immediate one has a shorter opcode.
438      return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
439             (lir->operands[4] == 1 ? 1 : 0);
440    case kShiftRegCl:
441      return ComputeSize(entry, 0, 0, false);
442    case kShiftMemCl:  // lir operands - 0: base, 1: disp, 2: cl
443      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
444    case kShiftArrayCl:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
445      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
446    case kRegCond:  // lir operands - 0: reg, 1: cond
447      return ComputeSize(entry, 0, 0, false);
448    case kMemCond:  // lir operands - 0: base, 1: disp, 2: cond
449      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
450    case kArrayCond:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
451      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
452    case kJcc:
453      if (lir->opcode == kX86Jcc8) {
454        return 2;  // opcode + rel8
455      } else {
456        DCHECK(lir->opcode == kX86Jcc32);
457        return 6;  // 2 byte opcode + rel32
458      }
459    case kJmp:
460      if (lir->opcode == kX86Jmp8) {
461        return 2;  // opcode + rel8
462      } else if (lir->opcode == kX86Jmp32) {
463        return 5;  // opcode + rel32
464      } else {
465        DCHECK(lir->opcode == kX86JmpR);
466        return 2;  // opcode + modrm
467      }
468    case kCall:
469      switch (lir->opcode) {
470        case kX86CallR: return 2;  // opcode modrm
471        case kX86CallM:  // lir operands - 0: base, 1: disp
472          return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
473        case kX86CallA:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
474          return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
475        case kX86CallT:  // lir operands - 0: disp
476          return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
477        default:
478          break;
479      }
480      break;
481    case kPcRel:
482      if (entry->opcode == kX86PcRelLoadRA) {
483        // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
484        return ComputeSize(entry, lir->operands[1], 0x12345678, true);
485      } else {
486        DCHECK(entry->opcode == kX86PcRelAdr);
487        return 5;  // opcode with reg + 4 byte immediate
488      }
489    case kMacro:
490      DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
491      return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
492          ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
493          (lir->operands[0] == rAX  ? 1 : 0);  // shorter ax encoding
494    default:
495      break;
496  }
497  UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
498  return 0;
499}
500
501void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry) {
502  if (entry->skeleton.prefix1 != 0) {
503    code_buffer_.push_back(entry->skeleton.prefix1);
504    if (entry->skeleton.prefix2 != 0) {
505      code_buffer_.push_back(entry->skeleton.prefix2);
506    }
507  } else {
508    DCHECK_EQ(0, entry->skeleton.prefix2);
509  }
510}
511
512void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
513  code_buffer_.push_back(entry->skeleton.opcode);
514  if (entry->skeleton.opcode == 0x0F) {
515    code_buffer_.push_back(entry->skeleton.extra_opcode1);
516    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
517      code_buffer_.push_back(entry->skeleton.extra_opcode2);
518    } else {
519      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
520    }
521  } else {
522    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
523    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
524  }
525}
526
527void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry) {
528  EmitPrefix(entry);
529  EmitOpcode(entry);
530}
531
532static uint8_t ModrmForDisp(int base, int disp) {
533  // BP requires an explicit disp, so do not omit it in the 0 case
534  if (disp == 0 && base != rBP) {
535    return 0;
536  } else if (IS_SIMM8(disp)) {
537    return 1;
538  } else {
539    return 2;
540  }
541}
542
543void X86Mir2Lir::EmitDisp(uint8_t base, int disp) {
544  // BP requires an explicit disp, so do not omit it in the 0 case
545  if (disp == 0 && base != rBP) {
546    return;
547  } else if (IS_SIMM8(disp)) {
548    code_buffer_.push_back(disp & 0xFF);
549  } else {
550    code_buffer_.push_back(disp & 0xFF);
551    code_buffer_.push_back((disp >> 8) & 0xFF);
552    code_buffer_.push_back((disp >> 16) & 0xFF);
553    code_buffer_.push_back((disp >> 24) & 0xFF);
554  }
555}
556
557void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp) {
558  DCHECK_LT(reg_or_opcode, 8);
559  DCHECK_LT(base, 8);
560  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
561  code_buffer_.push_back(modrm);
562  if (base == rX86_SP) {
563    // Special SIB for SP base
564    code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
565  }
566  EmitDisp(base, disp);
567}
568
569void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
570                                  int scale, int disp) {
571  DCHECK_LT(reg_or_opcode, 8);
572  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | rX86_SP;
573  code_buffer_.push_back(modrm);
574  DCHECK_LT(scale, 4);
575  DCHECK_LT(index, 8);
576  DCHECK_LT(base, 8);
577  uint8_t sib = (scale << 6) | (index << 3) | base;
578  code_buffer_.push_back(sib);
579  EmitDisp(base, disp);
580}
581
582void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int imm) {
583  switch (entry->skeleton.immediate_bytes) {
584    case 1:
585      DCHECK(IS_SIMM8(imm));
586      code_buffer_.push_back(imm & 0xFF);
587      break;
588    case 2:
589      DCHECK(IS_SIMM16(imm));
590      code_buffer_.push_back(imm & 0xFF);
591      code_buffer_.push_back((imm >> 8) & 0xFF);
592      break;
593    case 4:
594      code_buffer_.push_back(imm & 0xFF);
595      code_buffer_.push_back((imm >> 8) & 0xFF);
596      code_buffer_.push_back((imm >> 16) & 0xFF);
597      code_buffer_.push_back((imm >> 24) & 0xFF);
598      break;
599    default:
600      LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
601                 << ") for instruction: " << entry->name;
602      break;
603  }
604}
605
606void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg) {
607  EmitPrefixAndOpcode(entry);
608  // There's no 3-byte instruction with +rd
609  DCHECK(entry->skeleton.opcode != 0x0F ||
610         (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
611  DCHECK(!X86_FPREG(reg));
612  DCHECK_LT(reg, 8);
613  code_buffer_.back() += reg;
614  DCHECK_EQ(0, entry->skeleton.ax_opcode);
615  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
616}
617
618void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
619  EmitPrefixAndOpcode(entry);
620  if (X86_FPREG(reg)) {
621    reg = reg & X86_FP_REG_MASK;
622  }
623  if (reg >= 4) {
624    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
625        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
626  }
627  DCHECK_LT(reg, 8);
628  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
629  code_buffer_.push_back(modrm);
630  DCHECK_EQ(0, entry->skeleton.ax_opcode);
631  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
632}
633
634void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
635  EmitPrefix(entry);
636  code_buffer_.push_back(entry->skeleton.opcode);
637  DCHECK_NE(0x0F, entry->skeleton.opcode);
638  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
639  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
640  DCHECK_NE(rX86_SP, base);
641  EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
642  DCHECK_EQ(0, entry->skeleton.ax_opcode);
643  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
644}
645
646void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index,
647                             int scale, int disp) {
648  EmitPrefixAndOpcode(entry);
649  EmitModrmSibDisp(entry->skeleton.modrm_opcode, base, index, scale, disp);
650  DCHECK_EQ(0, entry->skeleton.ax_opcode);
651  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
652}
653
654void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
655                       uint8_t base, int disp, uint8_t reg) {
656  EmitPrefixAndOpcode(entry);
657  if (X86_FPREG(reg)) {
658    reg = reg & X86_FP_REG_MASK;
659  }
660  if (reg >= 4) {
661    DCHECK(strchr(entry->name, '8') == NULL ||
662           entry->opcode == kX86Movzx8RM || entry->opcode == kX86Movsx8RM)
663        << entry->name << " " << static_cast<int>(reg)
664        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
665  }
666  EmitModrmDisp(reg, base, disp);
667  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
668  DCHECK_EQ(0, entry->skeleton.ax_opcode);
669  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
670}
671
672void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
673                       uint8_t reg, uint8_t base, int disp) {
674  // Opcode will flip operands.
675  EmitMemReg(entry, base, disp, reg);
676}
677
678void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
679                              int scale, int disp) {
680  EmitPrefixAndOpcode(entry);
681  if (X86_FPREG(reg)) {
682    reg = reg & X86_FP_REG_MASK;
683  }
684  EmitModrmSibDisp(reg, base, index, scale, disp);
685  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
686  DCHECK_EQ(0, entry->skeleton.ax_opcode);
687  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
688}
689
690void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
691                  uint8_t reg) {
692  // Opcode will flip operands.
693  EmitRegArray(entry, reg, base, index, scale, disp);
694}
695
696void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
697  DCHECK_NE(entry->skeleton.prefix1, 0);
698  EmitPrefixAndOpcode(entry);
699  if (X86_FPREG(reg)) {
700    reg = reg & X86_FP_REG_MASK;
701  }
702  if (reg >= 4) {
703    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
704        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
705  }
706  DCHECK_LT(reg, 8);
707  uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
708  code_buffer_.push_back(modrm);
709  code_buffer_.push_back(disp & 0xFF);
710  code_buffer_.push_back((disp >> 8) & 0xFF);
711  code_buffer_.push_back((disp >> 16) & 0xFF);
712  code_buffer_.push_back((disp >> 24) & 0xFF);
713  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
714  DCHECK_EQ(0, entry->skeleton.ax_opcode);
715  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
716}
717
718void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
719  EmitPrefixAndOpcode(entry);
720  if (X86_FPREG(reg1)) {
721    reg1 = reg1 & X86_FP_REG_MASK;
722  }
723  if (X86_FPREG(reg2)) {
724    reg2 = reg2 & X86_FP_REG_MASK;
725  }
726  DCHECK_LT(reg1, 8);
727  DCHECK_LT(reg2, 8);
728  uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
729  code_buffer_.push_back(modrm);
730  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
731  DCHECK_EQ(0, entry->skeleton.ax_opcode);
732  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
733}
734
735void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
736                          uint8_t reg1, uint8_t reg2, int32_t imm) {
737  EmitPrefixAndOpcode(entry);
738  if (X86_FPREG(reg1)) {
739    reg1 = reg1 & X86_FP_REG_MASK;
740  }
741  if (X86_FPREG(reg2)) {
742    reg2 = reg2 & X86_FP_REG_MASK;
743  }
744  DCHECK_LT(reg1, 8);
745  DCHECK_LT(reg2, 8);
746  uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
747  code_buffer_.push_back(modrm);
748  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
749  DCHECK_EQ(0, entry->skeleton.ax_opcode);
750  EmitImm(entry, imm);
751}
752
753void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
754  if (entry->skeleton.prefix1 != 0) {
755    code_buffer_.push_back(entry->skeleton.prefix1);
756    if (entry->skeleton.prefix2 != 0) {
757      code_buffer_.push_back(entry->skeleton.prefix2);
758    }
759  } else {
760    DCHECK_EQ(0, entry->skeleton.prefix2);
761  }
762  if (reg == rAX && entry->skeleton.ax_opcode != 0) {
763    code_buffer_.push_back(entry->skeleton.ax_opcode);
764  } else {
765    EmitOpcode(entry);
766    if (X86_FPREG(reg)) {
767      reg = reg & X86_FP_REG_MASK;
768    }
769    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
770    code_buffer_.push_back(modrm);
771  }
772  EmitImm(entry, imm);
773}
774
775void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int32_t imm) {
776  EmitPrefixAndOpcode(entry);
777  EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
778  DCHECK_EQ(0, entry->skeleton.ax_opcode);
779  EmitImm(entry, imm);
780}
781
782void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
783  EmitPrefixAndOpcode(entry);
784  uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
785  code_buffer_.push_back(modrm);
786  code_buffer_.push_back(disp & 0xFF);
787  code_buffer_.push_back((disp >> 8) & 0xFF);
788  code_buffer_.push_back((disp >> 16) & 0xFF);
789  code_buffer_.push_back((disp >> 24) & 0xFF);
790  EmitImm(entry, imm);
791  DCHECK_EQ(entry->skeleton.ax_opcode, 0);
792}
793
794void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
795  DCHECK_LT(reg, 8);
796  code_buffer_.push_back(0xB8 + reg);
797  code_buffer_.push_back(imm & 0xFF);
798  code_buffer_.push_back((imm >> 8) & 0xFF);
799  code_buffer_.push_back((imm >> 16) & 0xFF);
800  code_buffer_.push_back((imm >> 24) & 0xFF);
801}
802
803void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
804  EmitPrefix(entry);
805  if (imm != 1) {
806    code_buffer_.push_back(entry->skeleton.opcode);
807  } else {
808    // Shorter encoding for 1 bit shift
809    code_buffer_.push_back(entry->skeleton.ax_opcode);
810  }
811  DCHECK_NE(0x0F, entry->skeleton.opcode);
812  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
813  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
814  if (reg >= 4) {
815    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
816        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
817  }
818  DCHECK_LT(reg, 8);
819  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
820  code_buffer_.push_back(modrm);
821  if (imm != 1) {
822    DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
823    DCHECK(IS_SIMM8(imm));
824    code_buffer_.push_back(imm & 0xFF);
825  }
826}
827
828void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
829  DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
830  EmitPrefix(entry);
831  code_buffer_.push_back(entry->skeleton.opcode);
832  DCHECK_NE(0x0F, entry->skeleton.opcode);
833  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
834  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
835  DCHECK_LT(reg, 8);
836  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
837  code_buffer_.push_back(modrm);
838  DCHECK_EQ(0, entry->skeleton.ax_opcode);
839  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
840}
841
842void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
843  if (entry->skeleton.prefix1 != 0) {
844    code_buffer_.push_back(entry->skeleton.prefix1);
845    if (entry->skeleton.prefix2 != 0) {
846      code_buffer_.push_back(entry->skeleton.prefix2);
847    }
848  } else {
849    DCHECK_EQ(0, entry->skeleton.prefix2);
850  }
851  DCHECK_EQ(0, entry->skeleton.ax_opcode);
852  DCHECK_EQ(0x0F, entry->skeleton.opcode);
853  code_buffer_.push_back(0x0F);
854  DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
855  code_buffer_.push_back(0x90 | condition);
856  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
857  DCHECK_LT(reg, 8);
858  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
859  code_buffer_.push_back(modrm);
860  DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
861}
862
863void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
864  if (entry->opcode == kX86Jmp8) {
865    DCHECK(IS_SIMM8(rel));
866    code_buffer_.push_back(0xEB);
867    code_buffer_.push_back(rel & 0xFF);
868  } else if (entry->opcode == kX86Jmp32) {
869    code_buffer_.push_back(0xE9);
870    code_buffer_.push_back(rel & 0xFF);
871    code_buffer_.push_back((rel >> 8) & 0xFF);
872    code_buffer_.push_back((rel >> 16) & 0xFF);
873    code_buffer_.push_back((rel >> 24) & 0xFF);
874  } else {
875    DCHECK(entry->opcode == kX86JmpR);
876    code_buffer_.push_back(entry->skeleton.opcode);
877    uint8_t reg = static_cast<uint8_t>(rel);
878    DCHECK_LT(reg, 8);
879    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
880    code_buffer_.push_back(modrm);
881  }
882}
883
884void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
885  DCHECK_LT(cc, 16);
886  if (entry->opcode == kX86Jcc8) {
887    DCHECK(IS_SIMM8(rel));
888    code_buffer_.push_back(0x70 | cc);
889    code_buffer_.push_back(rel & 0xFF);
890  } else {
891    DCHECK(entry->opcode == kX86Jcc32);
892    code_buffer_.push_back(0x0F);
893    code_buffer_.push_back(0x80 | cc);
894    code_buffer_.push_back(rel & 0xFF);
895    code_buffer_.push_back((rel >> 8) & 0xFF);
896    code_buffer_.push_back((rel >> 16) & 0xFF);
897    code_buffer_.push_back((rel >> 24) & 0xFF);
898  }
899}
900
901void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
902  EmitPrefixAndOpcode(entry);
903  EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
904  DCHECK_EQ(0, entry->skeleton.ax_opcode);
905  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
906}
907
908void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
909  DCHECK_NE(entry->skeleton.prefix1, 0);
910  EmitPrefixAndOpcode(entry);
911  uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
912  code_buffer_.push_back(modrm);
913  code_buffer_.push_back(disp & 0xFF);
914  code_buffer_.push_back((disp >> 8) & 0xFF);
915  code_buffer_.push_back((disp >> 16) & 0xFF);
916  code_buffer_.push_back((disp >> 24) & 0xFF);
917  DCHECK_EQ(0, entry->skeleton.ax_opcode);
918  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
919}
920
921void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
922                      int base_or_table, uint8_t index, int scale, int table_or_disp) {
923  int disp;
924  if (entry->opcode == kX86PcRelLoadRA) {
925    Mir2Lir::EmbeddedData *tab_rec =
926        reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
927    disp = tab_rec->offset;
928  } else {
929    DCHECK(entry->opcode == kX86PcRelAdr);
930    Mir2Lir::EmbeddedData *tab_rec =
931        reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(base_or_table));
932    disp = tab_rec->offset;
933  }
934  EmitPrefix(entry);
935  if (X86_FPREG(reg)) {
936    reg = reg & X86_FP_REG_MASK;
937  }
938  DCHECK_LT(reg, 8);
939  if (entry->opcode == kX86PcRelLoadRA) {
940    code_buffer_.push_back(entry->skeleton.opcode);
941    DCHECK_NE(0x0F, entry->skeleton.opcode);
942    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
943    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
944    uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
945    code_buffer_.push_back(modrm);
946    DCHECK_LT(scale, 4);
947    DCHECK_LT(index, 8);
948    DCHECK_LT(base_or_table, 8);
949    uint8_t base = static_cast<uint8_t>(base_or_table);
950    uint8_t sib = (scale << 6) | (index << 3) | base;
951    code_buffer_.push_back(sib);
952    DCHECK_EQ(0, entry->skeleton.immediate_bytes);
953  } else {
954    code_buffer_.push_back(entry->skeleton.opcode + reg);
955  }
956  code_buffer_.push_back(disp & 0xFF);
957  code_buffer_.push_back((disp >> 8) & 0xFF);
958  code_buffer_.push_back((disp >> 16) & 0xFF);
959  code_buffer_.push_back((disp >> 24) & 0xFF);
960  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
961  DCHECK_EQ(0, entry->skeleton.ax_opcode);
962}
963
964void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
965  DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
966  code_buffer_.push_back(0xE8);  // call +0
967  code_buffer_.push_back(0);
968  code_buffer_.push_back(0);
969  code_buffer_.push_back(0);
970  code_buffer_.push_back(0);
971
972  DCHECK_LT(reg, 8);
973  code_buffer_.push_back(0x58 + reg);  // pop reg
974
975  EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
976}
977
978void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
979  UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
980                         << BuildInsnString(entry->fmt, lir, 0);
981  for (int i = 0; i < GetInsnSize(lir); ++i) {
982    code_buffer_.push_back(0xCC);  // push breakpoint instruction - int 3
983  }
984}
985
986/*
987 * Assemble the LIR into binary instruction format.  Note that we may
988 * discover that pc-relative displacements may not fit the selected
989 * instruction.  In those cases we will try to substitute a new code
990 * sequence or request that the trace be shortened and retried.
991 */
992AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
993  LIR *lir;
994  AssemblerStatus res = kSuccess;  // Assume success
995
996  const bool kVerbosePcFixup = false;
997  for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
998    if (IsPseudoLirOp(lir->opcode)) {
999      continue;
1000    }
1001
1002    if (lir->flags.is_nop) {
1003      continue;
1004    }
1005
1006    if (lir->flags.fixup != kFixupNone) {
1007      switch (lir->opcode) {
1008        case kX86Jcc8: {
1009          LIR *target_lir = lir->target;
1010          DCHECK(target_lir != NULL);
1011          int delta = 0;
1012          CodeOffset pc;
1013          if (IS_SIMM8(lir->operands[0])) {
1014            pc = lir->offset + 2 /* opcode + rel8 */;
1015          } else {
1016            pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1017          }
1018          CodeOffset target = target_lir->offset;
1019          delta = target - pc;
1020          if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1021            if (kVerbosePcFixup) {
1022              LOG(INFO) << "Retry for JCC growth at " << lir->offset
1023                  << " delta: " << delta << " old delta: " << lir->operands[0];
1024            }
1025            lir->opcode = kX86Jcc32;
1026            SetupResourceMasks(lir);
1027            res = kRetryAll;
1028          }
1029          if (kVerbosePcFixup) {
1030            LOG(INFO) << "Source:";
1031            DumpLIRInsn(lir, 0);
1032            LOG(INFO) << "Target:";
1033            DumpLIRInsn(target_lir, 0);
1034            LOG(INFO) << "Delta " << delta;
1035          }
1036          lir->operands[0] = delta;
1037          break;
1038        }
1039        case kX86Jcc32: {
1040          LIR *target_lir = lir->target;
1041          DCHECK(target_lir != NULL);
1042          CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1043          CodeOffset target = target_lir->offset;
1044          int delta = target - pc;
1045          if (kVerbosePcFixup) {
1046            LOG(INFO) << "Source:";
1047            DumpLIRInsn(lir, 0);
1048            LOG(INFO) << "Target:";
1049            DumpLIRInsn(target_lir, 0);
1050            LOG(INFO) << "Delta " << delta;
1051          }
1052          lir->operands[0] = delta;
1053          break;
1054        }
1055        case kX86Jmp8: {
1056          LIR *target_lir = lir->target;
1057          DCHECK(target_lir != NULL);
1058          int delta = 0;
1059          CodeOffset pc;
1060          if (IS_SIMM8(lir->operands[0])) {
1061            pc = lir->offset + 2 /* opcode + rel8 */;
1062          } else {
1063            pc = lir->offset + 5 /* opcode + rel32 */;
1064          }
1065          CodeOffset target = target_lir->offset;
1066          delta = target - pc;
1067          if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1068            // Useless branch
1069            NopLIR(lir);
1070            if (kVerbosePcFixup) {
1071              LOG(INFO) << "Retry for useless branch at " << lir->offset;
1072            }
1073            res = kRetryAll;
1074          } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1075            if (kVerbosePcFixup) {
1076              LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1077            }
1078            lir->opcode = kX86Jmp32;
1079            SetupResourceMasks(lir);
1080            res = kRetryAll;
1081          }
1082          lir->operands[0] = delta;
1083          break;
1084        }
1085        case kX86Jmp32: {
1086          LIR *target_lir = lir->target;
1087          DCHECK(target_lir != NULL);
1088          CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1089          CodeOffset target = target_lir->offset;
1090          int delta = target - pc;
1091          lir->operands[0] = delta;
1092          break;
1093        }
1094        default:
1095          break;
1096      }
1097    }
1098
1099    /*
1100     * If one of the pc-relative instructions expanded we'll have
1101     * to make another pass.  Don't bother to fully assemble the
1102     * instruction.
1103     */
1104    if (res != kSuccess) {
1105      continue;
1106    }
1107    CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1108    const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1109    size_t starting_cbuf_size = code_buffer_.size();
1110    switch (entry->kind) {
1111      case kData:  // 4 bytes of data
1112        code_buffer_.push_back(lir->operands[0]);
1113        break;
1114      case kNullary:  // 1 byte of opcode
1115        DCHECK_EQ(0, entry->skeleton.prefix1);
1116        DCHECK_EQ(0, entry->skeleton.prefix2);
1117        EmitOpcode(entry);
1118        DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1119        DCHECK_EQ(0, entry->skeleton.ax_opcode);
1120        DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1121        break;
1122      case kRegOpcode:  // lir operands - 0: reg
1123        EmitOpRegOpcode(entry, lir->operands[0]);
1124        break;
1125      case kReg:  // lir operands - 0: reg
1126        EmitOpReg(entry, lir->operands[0]);
1127        break;
1128      case kMem:  // lir operands - 0: base, 1: disp
1129        EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1130        break;
1131      case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
1132        EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1133        break;
1134      case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
1135        EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1136        break;
1137      case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
1138        EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1139        break;
1140      case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1141        EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1142                     lir->operands[3], lir->operands[4]);
1143        break;
1144      case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
1145        EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1146        break;
1147      case kRegArray:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1148        EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1149                     lir->operands[3], lir->operands[4]);
1150        break;
1151      case kRegThread:  // lir operands - 0: reg, 1: disp
1152        EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1153        break;
1154      case kRegReg:  // lir operands - 0: reg1, 1: reg2
1155        EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1156        break;
1157      case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
1158        EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1159        break;
1160      case kRegRegImm:
1161        EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1162        break;
1163      case kRegImm:  // lir operands - 0: reg, 1: immediate
1164        EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1165        break;
1166      case kThreadImm:  // lir operands - 0: disp, 1: immediate
1167        EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1168        break;
1169      case kMovRegImm:  // lir operands - 0: reg, 1: immediate
1170        EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1171        break;
1172      case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
1173        EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1174        break;
1175      case kShiftRegCl:  // lir operands - 0: reg, 1: cl
1176        EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1177        break;
1178      case kRegCond:  // lir operands - 0: reg, 1: condition
1179        EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1180        break;
1181      case kJmp:  // lir operands - 0: rel
1182        EmitJmp(entry, lir->operands[0]);
1183        break;
1184      case kJcc:  // lir operands - 0: rel, 1: CC, target assigned
1185        EmitJcc(entry, lir->operands[0], lir->operands[1]);
1186        break;
1187      case kCall:
1188        switch (entry->opcode) {
1189          case kX86CallM:  // lir operands - 0: base, 1: disp
1190            EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1191            break;
1192          case kX86CallT:  // lir operands - 0: disp
1193            EmitCallThread(entry, lir->operands[0]);
1194            break;
1195          default:
1196            EmitUnimplemented(entry, lir);
1197            break;
1198        }
1199        break;
1200      case kPcRel:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1201        EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1202                  lir->operands[3], lir->operands[4]);
1203        break;
1204      case kMacro:
1205        EmitMacro(entry, lir->operands[0], lir->offset);
1206        break;
1207      default:
1208        EmitUnimplemented(entry, lir);
1209        break;
1210    }
1211    CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1212             code_buffer_.size() - starting_cbuf_size)
1213        << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1214  }
1215  return res;
1216}
1217
1218// LIR offset assignment.
1219// TODO: consolidate w/ Arm assembly mechanism.
1220int X86Mir2Lir::AssignInsnOffsets() {
1221  LIR* lir;
1222  int offset = 0;
1223
1224  for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1225    lir->offset = offset;
1226    if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
1227      if (!lir->flags.is_nop) {
1228        offset += lir->flags.size;
1229      }
1230    } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1231      if (offset & 0x2) {
1232        offset += 2;
1233        lir->operands[0] = 1;
1234      } else {
1235        lir->operands[0] = 0;
1236      }
1237    }
1238    /* Pseudo opcodes don't consume space */
1239  }
1240  return offset;
1241}
1242
1243/*
1244 * Walk the compilation unit and assign offsets to instructions
1245 * and literals and compute the total size of the compiled unit.
1246 * TODO: consolidate w/ Arm assembly mechanism.
1247 */
1248void X86Mir2Lir::AssignOffsets() {
1249  int offset = AssignInsnOffsets();
1250
1251  /* Const values have to be word aligned */
1252  offset = (offset + 3) & ~3;
1253
1254  /* Set up offsets for literals */
1255  data_offset_ = offset;
1256
1257  offset = AssignLiteralOffset(offset);
1258
1259  offset = AssignSwitchTablesOffset(offset);
1260
1261  offset = AssignFillArrayDataOffset(offset);
1262
1263  total_size_ = offset;
1264}
1265
1266/*
1267 * Go over each instruction in the list and calculate the offset from the top
1268 * before sending them off to the assembler. If out-of-range branch distance is
1269 * seen rearrange the instructions a bit to correct it.
1270 * TODO: consolidate w/ Arm assembly mechanism.
1271 */
1272void X86Mir2Lir::AssembleLIR() {
1273  cu_->NewTimingSplit("Assemble");
1274  AssignOffsets();
1275  int assembler_retries = 0;
1276  /*
1277   * Assemble here.  Note that we generate code with optimistic assumptions
1278   * and if found now to work, we'll have to redo the sequence and retry.
1279   */
1280
1281  while (true) {
1282    AssemblerStatus res = AssembleInstructions(0);
1283    if (res == kSuccess) {
1284      break;
1285    } else {
1286      assembler_retries++;
1287      if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1288        CodegenDump();
1289        LOG(FATAL) << "Assembler error - too many retries";
1290      }
1291      // Redo offsets and try again
1292      AssignOffsets();
1293      code_buffer_.clear();
1294    }
1295  }
1296
1297  // Install literals
1298  InstallLiteralPools();
1299
1300  // Install switch tables
1301  InstallSwitchTables();
1302
1303  // Install fill array data
1304  InstallFillArrayData();
1305
1306  // Create the mapping table and native offset to reference map.
1307  cu_->NewTimingSplit("PcMappingTable");
1308  CreateMappingTables();
1309
1310  cu_->NewTimingSplit("GcMap");
1311  CreateNativeGcMap();
1312}
1313
1314}  // namespace art
1315