assemble_x86.cc revision b1eba213afaf7fa6445de863ddc9680ab99762ea
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26  { kX8632BitData, kData,    IS_UNARY_OP,            { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data",  "0x!0d" },
27  { kX86Bkpt,      kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28  { kX86Nop,       kNop,     IS_UNARY_OP,            { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop",   "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31                     rm8_r8, rm32_r32, \
32                     r8_rm8, r32_rm32, \
33                     ax8_i8, ax32_i32, \
34                     rm8_i8, rm8_i8_modrm, \
35                     rm32_i32, rm32_i32_modrm, \
36                     rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48  \
49{ kX86 ## opname ## 16MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0,              0,        0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64  \
65{ kX86 ## opname ## 32MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82  0x00 /* RegMem8/Reg8 */,     0x01 /* RegMem32/Reg32 */,
83  0x02 /* Reg8/RegMem8 */,     0x03 /* Reg32/RegMem32 */,
84  0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85  0x80, 0x0 /* RegMem8/imm8 */,
86  0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88  0x08 /* RegMem8/Reg8 */,     0x09 /* RegMem32/Reg32 */,
89  0x0A /* Reg8/RegMem8 */,     0x0B /* Reg32/RegMem32 */,
90  0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91  0x80, 0x1 /* RegMem8/imm8 */,
92  0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94  0x10 /* RegMem8/Reg8 */,     0x11 /* RegMem32/Reg32 */,
95  0x12 /* Reg8/RegMem8 */,     0x13 /* Reg32/RegMem32 */,
96  0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97  0x80, 0x2 /* RegMem8/imm8 */,
98  0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100  0x18 /* RegMem8/Reg8 */,     0x19 /* RegMem32/Reg32 */,
101  0x1A /* Reg8/RegMem8 */,     0x1B /* Reg32/RegMem32 */,
102  0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103  0x80, 0x3 /* RegMem8/imm8 */,
104  0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106  0x20 /* RegMem8/Reg8 */,     0x21 /* RegMem32/Reg32 */,
107  0x22 /* Reg8/RegMem8 */,     0x23 /* Reg32/RegMem32 */,
108  0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109  0x80, 0x4 /* RegMem8/imm8 */,
110  0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112  0x28 /* RegMem8/Reg8 */,     0x29 /* RegMem32/Reg32 */,
113  0x2A /* Reg8/RegMem8 */,     0x2B /* Reg32/RegMem32 */,
114  0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115  0x80, 0x5 /* RegMem8/imm8 */,
116  0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118  0x30 /* RegMem8/Reg8 */,     0x31 /* RegMem32/Reg32 */,
119  0x32 /* Reg8/RegMem8 */,     0x33 /* Reg32/RegMem32 */,
120  0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121  0x80, 0x6 /* RegMem8/imm8 */,
122  0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124  0x38 /* RegMem8/Reg8 */,     0x39 /* RegMem32/Reg32 */,
125  0x3A /* Reg8/RegMem8 */,     0x3B /* Reg32/RegMem32 */,
126  0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127  0x80, 0x7 /* RegMem8/imm8 */,
128  0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131  { kX86Imul16RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132  { kX86Imul16RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133  { kX86Imul16RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135  { kX86Imul32RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136  { kX86Imul32RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137  { kX86Imul32RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138  { kX86Imul32RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139  { kX86Imul32RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140  { kX86Imul32RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142  { kX86Mov8MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143  { kX86Mov8AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144  { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145  { kX86Mov8RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146  { kX86Mov8RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147  { kX86Mov8RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148  { kX86Mov8RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149  { kX86Mov8RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150  { kX86Mov8MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151  { kX86Mov8AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152  { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154  { kX86Mov16MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0x66,          0,    0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155  { kX86Mov16AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0x66,          0,    0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156  { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157  { kX86Mov16RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158  { kX86Mov16RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159  { kX86Mov16RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160  { kX86Mov16RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161  { kX86Mov16RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0x66,          0,    0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162  { kX86Mov16MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0x66,          0,    0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163  { kX86Mov16AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0x66,          0,    0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164  { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166  { kX86Mov32MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167  { kX86Mov32AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168  { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169  { kX86Mov32RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170  { kX86Mov32RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171  { kX86Mov32RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172  { kX86Mov32RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173  { kX86Mov32RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174  { kX86Mov32MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175  { kX86Mov32AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176  { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178  { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
180#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
181{ kX86 ## opname ## 8RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
182{ kX86 ## opname ## 8MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
183{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
184{ kX86 ## opname ## 8RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8RC", "!0r,cl" }, \
185{ kX86 ## opname ## 8MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8MC", "[!0r+!1d],cl" }, \
186{ kX86 ## opname ## 8AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
187  \
188{ kX86 ## opname ## 16RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
189{ kX86 ## opname ## 16MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
190{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
191{ kX86 ## opname ## 16RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16RC", "!0r,cl" }, \
192{ kX86 ## opname ## 16MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16MC", "[!0r+!1d],cl" }, \
193{ kX86 ## opname ## 16AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
194  \
195{ kX86 ## opname ## 32RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
196{ kX86 ## opname ## 32MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
197{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
198{ kX86 ## opname ## 32RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32RC", "!0r,cl" }, \
199{ kX86 ## opname ## 32MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32MC", "[!0r+!1d],cl" }, \
200{ kX86 ## opname ## 32AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
201
202  SHIFT_ENCODING_MAP(Rol, 0x0),
203  SHIFT_ENCODING_MAP(Ror, 0x1),
204  SHIFT_ENCODING_MAP(Rcl, 0x2),
205  SHIFT_ENCODING_MAP(Rcr, 0x3),
206  SHIFT_ENCODING_MAP(Sal, 0x4),
207  SHIFT_ENCODING_MAP(Shr, 0x5),
208  SHIFT_ENCODING_MAP(Sar, 0x7),
209#undef SHIFT_ENCODING_MAP
210
211  { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
212
213  { kX86Test8RI,  kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
214  { kX86Test8MI,  kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
215  { kX86Test8AI,  kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
216  { kX86Test16RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
217  { kX86Test16MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
218  { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
219  { kX86Test32RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
220  { kX86Test32MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
221  { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
222  { kX86Test32RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { 0,    0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
223
224#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
225                           reg, reg_kind, reg_flags, \
226                           mem, mem_kind, mem_flags, \
227                           arr, arr_kind, arr_flags, imm, \
228                           b_flags, hw_flags, w_flags, \
229                           b_format, hw_format, w_format) \
230{ kX86 ## opname ## 8 ## reg,  reg_kind,                      reg_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
231{ kX86 ## opname ## 8 ## mem,  mem_kind, IS_LOAD | is_store | mem_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
232{ kX86 ## opname ## 8 ## arr,  arr_kind, IS_LOAD | is_store | arr_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
233{ kX86 ## opname ## 16 ## reg, reg_kind,                      reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
234{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
235{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
236{ kX86 ## opname ## 32 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
237{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
238{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
239
240  UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0,           R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
241  UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
242
243  UNARY_ENCODING_MAP(Mul,     0x4, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
244  UNARY_ENCODING_MAP(Imul,    0x5, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
245  UNARY_ENCODING_MAP(Divmod,  0x6, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
246  UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
247#undef UNARY_ENCODING_MAP
248
249#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
250{ kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE01,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
251{ kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
252{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
253
254  EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
255  { kX86MovsdMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
256  { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
257
258  EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
259  { kX86MovssMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
260  { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
261
262  EXT_0F_ENCODING_MAP(Cvtsi2sd,  0xF2, 0x2A, REG_DEF0),
263  EXT_0F_ENCODING_MAP(Cvtsi2ss,  0xF3, 0x2A, REG_DEF0),
264  EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
265  EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
266  EXT_0F_ENCODING_MAP(Cvtsd2si,  0xF2, 0x2D, REG_DEF0),
267  EXT_0F_ENCODING_MAP(Cvtss2si,  0xF3, 0x2D, REG_DEF0),
268  EXT_0F_ENCODING_MAP(Ucomisd,   0x66, 0x2E, SETS_CCODES),
269  EXT_0F_ENCODING_MAP(Ucomiss,   0x00, 0x2E, SETS_CCODES),
270  EXT_0F_ENCODING_MAP(Comisd,    0x66, 0x2F, SETS_CCODES),
271  EXT_0F_ENCODING_MAP(Comiss,    0x00, 0x2F, SETS_CCODES),
272  EXT_0F_ENCODING_MAP(Orps,      0x00, 0x56, REG_DEF0),
273  EXT_0F_ENCODING_MAP(Xorps,     0x00, 0x57, REG_DEF0),
274  EXT_0F_ENCODING_MAP(Addsd,     0xF2, 0x58, REG_DEF0),
275  EXT_0F_ENCODING_MAP(Addss,     0xF3, 0x58, REG_DEF0),
276  EXT_0F_ENCODING_MAP(Mulsd,     0xF2, 0x59, REG_DEF0),
277  EXT_0F_ENCODING_MAP(Mulss,     0xF3, 0x59, REG_DEF0),
278  EXT_0F_ENCODING_MAP(Cvtsd2ss,  0xF2, 0x5A, REG_DEF0),
279  EXT_0F_ENCODING_MAP(Cvtss2sd,  0xF3, 0x5A, REG_DEF0),
280  EXT_0F_ENCODING_MAP(Subsd,     0xF2, 0x5C, REG_DEF0),
281  EXT_0F_ENCODING_MAP(Subss,     0xF3, 0x5C, REG_DEF0),
282  EXT_0F_ENCODING_MAP(Divsd,     0xF2, 0x5E, REG_DEF0),
283  EXT_0F_ENCODING_MAP(Divss,     0xF3, 0x5E, REG_DEF0),
284
285  { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
286  { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
287
288  EXT_0F_ENCODING_MAP(Movdxr,    0x66, 0x6E, REG_DEF0),
289  { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE01,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
290  { kX86MovdrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
291  { kX86MovdrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
292
293  { kX86Set8R, kRegCond,              IS_BINARY_OP   | REG_DEF0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
294  { kX86Set8M, kMemCond,   IS_STORE | IS_TERTIARY_OP | REG_USE0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
295  { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP     | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
296
297  // TODO: load/store?
298  // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
299  { kX86Mfence, kReg,                 NO_OPERAND,     { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
300
301  EXT_0F_ENCODING_MAP(Imul16,  0x66, 0xAF, REG_DEF0 | SETS_CCODES),
302  EXT_0F_ENCODING_MAP(Imul32,  0x00, 0xAF, REG_DEF0 | SETS_CCODES),
303
304  { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
305  { kX86CmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
306  { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
307  { kX86LockCmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "!0r,!1r" },
308  { kX86LockCmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
309  { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
310
311  EXT_0F_ENCODING_MAP(Movzx8,  0x00, 0xB6, REG_DEF0),
312  EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
313  EXT_0F_ENCODING_MAP(Movsx8,  0x00, 0xBE, REG_DEF0),
314  EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
315#undef EXT_0F_ENCODING_MAP
316
317  { kX86Jcc8,  kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x70, 0,    0, 0, 0, 0 }, "Jcc8",  "!1c !0t" },
318  { kX86Jcc32, kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
319  { kX86Jmp8,  kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xEB, 0,    0, 0, 0, 0 }, "Jmp8",  "!0t" },
320  { kX86Jmp32, kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xE9, 0,    0, 0, 0, 0 }, "Jmp32", "!0t" },
321  { kX86JmpR,  kJmp,  IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xFF, 0,    0, 4, 0, 0 }, "JmpR",  "!0r" },
322  { kX86CallR, kCall, IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xE8, 0,    0, 0, 0, 0 }, "CallR", "!0r" },
323  { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0,        { 0,             0, 0xFF, 0,    0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
324  { kX86CallA, kCall, IS_QUAD_OP   | IS_BRANCH | IS_LOAD | REG_USE01,       { 0,             0, 0xFF, 0,    0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
325  { kX86CallT, kCall, IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
326  { kX86Ret,   kNullary, NO_OPERAND | IS_BRANCH,                            { 0,             0, 0xC3, 0,    0, 0, 0, 0 }, "Ret", "" },
327
328  { kX86StartOfMethod, kMacro,  IS_UNARY_OP | SETS_CCODES,             { 0, 0, 0,    0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
329  { kX86PcRelLoadRA,   kPcRel,  IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA",   "!0r,[!1r+!2r<<!3d+!4p]" },
330  { kX86PcRelAdr,      kPcRel,  IS_LOAD | IS_BINARY_OP | REG_DEF0,     { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr",      "!0r,!1d" },
331};
332
333static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
334  size_t size = 0;
335  if (entry->skeleton.prefix1 > 0) {
336    ++size;
337    if (entry->skeleton.prefix2 > 0) {
338      ++size;
339    }
340  }
341  ++size;  // opcode
342  if (entry->skeleton.opcode == 0x0F) {
343    ++size;
344    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
345      ++size;
346    }
347  }
348  ++size;  // modrm
349  if (has_sib || base == rX86_SP) {
350    // SP requires a SIB byte.
351    ++size;
352  }
353  if (displacement != 0 || base == rBP) {
354    // BP requires an explicit displacement, even when it's 0.
355    if (entry->opcode != kX86Lea32RA) {
356      DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
357    }
358    size += IS_SIMM8(displacement) ? 1 : 4;
359  }
360  size += entry->skeleton.immediate_bytes;
361  return size;
362}
363
364int X86Mir2Lir::GetInsnSize(LIR* lir) {
365  const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
366  switch (entry->kind) {
367    case kData:
368      return 4;  // 4 bytes of data
369    case kNop:
370      return lir->operands[0];  // length of nop is sole operand
371    case kNullary:
372      return 1;  // 1 byte of opcode
373    case kReg:  // lir operands - 0: reg
374      return ComputeSize(entry, 0, 0, false);
375    case kMem:  // lir operands - 0: base, 1: disp
376      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
377    case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
378      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
379    case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
380      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
381    case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
382      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
383    case kThreadReg:  // lir operands - 0: disp, 1: reg
384      return ComputeSize(entry, 0, lir->operands[0], false);
385    case kRegReg:
386      return ComputeSize(entry, 0, 0, false);
387    case kRegRegStore:
388      return ComputeSize(entry, 0, 0, false);
389    case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
390      return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
391    case kRegArray:   // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
392      return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
393    case kRegThread:  // lir operands - 0: reg, 1: disp
394      return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
395    case kRegImm: {  // lir operands - 0: reg, 1: immediate
396      size_t size = ComputeSize(entry, 0, 0, false);
397      if (entry->skeleton.ax_opcode == 0) {
398        return size;
399      } else {
400        // AX opcodes don't require the modrm byte.
401        int reg = lir->operands[0];
402        return size - (reg == rAX ? 1 : 0);
403      }
404    }
405    case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
406      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
407    case kArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
408      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
409    case kThreadImm:  // lir operands - 0: disp, 1: imm
410      return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
411    case kRegRegImm:  // lir operands - 0: reg, 1: reg, 2: imm
412      return ComputeSize(entry, 0, 0, false);
413    case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
414      return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
415    case kRegArrayImm:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
416      return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
417    case kMovRegImm:  // lir operands - 0: reg, 1: immediate
418      return 1 + entry->skeleton.immediate_bytes;
419    case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
420      // Shift by immediate one has a shorter opcode.
421      return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
422    case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
423      // Shift by immediate one has a shorter opcode.
424      return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
425             (lir->operands[2] == 1 ? 1 : 0);
426    case kShiftArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
427      // Shift by immediate one has a shorter opcode.
428      return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
429             (lir->operands[4] == 1 ? 1 : 0);
430    case kShiftRegCl:
431      return ComputeSize(entry, 0, 0, false);
432    case kShiftMemCl:  // lir operands - 0: base, 1: disp, 2: cl
433      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
434    case kShiftArrayCl:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
435      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
436    case kRegCond:  // lir operands - 0: reg, 1: cond
437      return ComputeSize(entry, 0, 0, false);
438    case kMemCond:  // lir operands - 0: base, 1: disp, 2: cond
439      return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
440    case kArrayCond:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
441      return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
442    case kJcc:
443      if (lir->opcode == kX86Jcc8) {
444        return 2;  // opcode + rel8
445      } else {
446        DCHECK(lir->opcode == kX86Jcc32);
447        return 6;  // 2 byte opcode + rel32
448      }
449    case kJmp:
450      if (lir->opcode == kX86Jmp8) {
451        return 2;  // opcode + rel8
452      } else if (lir->opcode == kX86Jmp32) {
453        return 5;  // opcode + rel32
454      } else {
455        DCHECK(lir->opcode == kX86JmpR);
456        return 2;  // opcode + modrm
457      }
458    case kCall:
459      switch (lir->opcode) {
460        case kX86CallR: return 2;  // opcode modrm
461        case kX86CallM:  // lir operands - 0: base, 1: disp
462          return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
463        case kX86CallA:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
464          return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
465        case kX86CallT:  // lir operands - 0: disp
466          return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
467        default:
468          break;
469      }
470      break;
471    case kPcRel:
472      if (entry->opcode == kX86PcRelLoadRA) {
473        // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
474        return ComputeSize(entry, lir->operands[1], 0x12345678, true);
475      } else {
476        DCHECK(entry->opcode == kX86PcRelAdr);
477        return 5; // opcode with reg + 4 byte immediate
478      }
479    case kMacro:
480      DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
481      return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
482          ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
483          (lir->operands[0] == rAX  ? 1 : 0);  // shorter ax encoding
484    default:
485      break;
486  }
487  UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
488  return 0;
489}
490
491static uint8_t ModrmForDisp(int base, int disp) {
492  // BP requires an explicit disp, so do not omit it in the 0 case
493  if (disp == 0 && base != rBP) {
494    return 0;
495  } else if (IS_SIMM8(disp)) {
496    return 1;
497  } else {
498    return 2;
499  }
500}
501
502void X86Mir2Lir::EmitDisp(int base, int disp) {
503  // BP requires an explicit disp, so do not omit it in the 0 case
504  if (disp == 0 && base != rBP) {
505    return;
506  } else if (IS_SIMM8(disp)) {
507    code_buffer_.push_back(disp & 0xFF);
508  } else {
509    code_buffer_.push_back(disp & 0xFF);
510    code_buffer_.push_back((disp >> 8) & 0xFF);
511    code_buffer_.push_back((disp >> 16) & 0xFF);
512    code_buffer_.push_back((disp >> 24) & 0xFF);
513  }
514}
515
516void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
517  if (entry->skeleton.prefix1 != 0) {
518    code_buffer_.push_back(entry->skeleton.prefix1);
519    if (entry->skeleton.prefix2 != 0) {
520      code_buffer_.push_back(entry->skeleton.prefix2);
521    }
522  } else {
523    DCHECK_EQ(0, entry->skeleton.prefix2);
524  }
525  code_buffer_.push_back(entry->skeleton.opcode);
526  if (entry->skeleton.opcode == 0x0F) {
527    code_buffer_.push_back(entry->skeleton.extra_opcode1);
528    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
529      code_buffer_.push_back(entry->skeleton.extra_opcode2);
530    } else {
531      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
532    }
533  } else {
534    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
535    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
536  }
537  if (X86_FPREG(reg)) {
538    reg = reg & X86_FP_REG_MASK;
539  }
540  if (reg >= 4) {
541    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
542        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
543  }
544  DCHECK_LT(reg, 8);
545  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
546  code_buffer_.push_back(modrm);
547  DCHECK_EQ(0, entry->skeleton.ax_opcode);
548  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
549}
550
551void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
552  if (entry->skeleton.prefix1 != 0) {
553    code_buffer_.push_back(entry->skeleton.prefix1);
554    if (entry->skeleton.prefix2 != 0) {
555      code_buffer_.push_back(entry->skeleton.prefix2);
556    }
557  } else {
558    DCHECK_EQ(0, entry->skeleton.prefix2);
559  }
560  code_buffer_.push_back(entry->skeleton.opcode);
561  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
562  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
563  DCHECK_LT(entry->skeleton.modrm_opcode, 8);
564  DCHECK_LT(base, 8);
565  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
566  code_buffer_.push_back(modrm);
567  EmitDisp(base, disp);
568  DCHECK_EQ(0, entry->skeleton.ax_opcode);
569  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
570}
571
572void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
573                       uint8_t base, int disp, uint8_t reg) {
574  if (entry->skeleton.prefix1 != 0) {
575    code_buffer_.push_back(entry->skeleton.prefix1);
576    if (entry->skeleton.prefix2 != 0) {
577      code_buffer_.push_back(entry->skeleton.prefix2);
578    }
579  } else {
580    DCHECK_EQ(0, entry->skeleton.prefix2);
581  }
582  code_buffer_.push_back(entry->skeleton.opcode);
583  if (entry->skeleton.opcode == 0x0F) {
584    code_buffer_.push_back(entry->skeleton.extra_opcode1);
585    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
586      code_buffer_.push_back(entry->skeleton.extra_opcode2);
587    } else {
588      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
589    }
590  } else {
591    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
592    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
593  }
594  if (X86_FPREG(reg)) {
595    reg = reg & X86_FP_REG_MASK;
596  }
597  if (reg >= 4) {
598    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
599        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
600  }
601  DCHECK_LT(reg, 8);
602  DCHECK_LT(base, 8);
603  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | base;
604  code_buffer_.push_back(modrm);
605  if (base == rX86_SP) {
606    // Special SIB for SP base
607    code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
608  }
609  EmitDisp(base, disp);
610  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
611  DCHECK_EQ(0, entry->skeleton.ax_opcode);
612  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
613}
614
615void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
616                       uint8_t reg, uint8_t base, int disp) {
617  // Opcode will flip operands.
618  EmitMemReg(entry, base, disp, reg);
619}
620
621void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
622                  int scale, int disp) {
623  if (entry->skeleton.prefix1 != 0) {
624    code_buffer_.push_back(entry->skeleton.prefix1);
625    if (entry->skeleton.prefix2 != 0) {
626      code_buffer_.push_back(entry->skeleton.prefix2);
627    }
628  } else {
629    DCHECK_EQ(0, entry->skeleton.prefix2);
630  }
631  code_buffer_.push_back(entry->skeleton.opcode);
632  if (entry->skeleton.opcode == 0x0F) {
633    code_buffer_.push_back(entry->skeleton.extra_opcode1);
634    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
635      code_buffer_.push_back(entry->skeleton.extra_opcode2);
636    } else {
637      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
638    }
639  } else {
640    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
641    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
642  }
643  if (X86_FPREG(reg)) {
644    reg = reg & X86_FP_REG_MASK;
645  }
646  DCHECK_LT(reg, 8);
647  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | rX86_SP;
648  code_buffer_.push_back(modrm);
649  DCHECK_LT(scale, 4);
650  DCHECK_LT(index, 8);
651  DCHECK_LT(base, 8);
652  uint8_t sib = (scale << 6) | (index << 3) | base;
653  code_buffer_.push_back(sib);
654  EmitDisp(base, disp);
655  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
656  DCHECK_EQ(0, entry->skeleton.ax_opcode);
657  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
658}
659
660void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
661                  uint8_t reg) {
662  // Opcode will flip operands.
663  EmitRegArray(entry, reg, base, index, scale, disp);
664}
665
666void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
667  DCHECK_NE(entry->skeleton.prefix1, 0);
668  code_buffer_.push_back(entry->skeleton.prefix1);
669  if (entry->skeleton.prefix2 != 0) {
670    code_buffer_.push_back(entry->skeleton.prefix2);
671  }
672  code_buffer_.push_back(entry->skeleton.opcode);
673  if (entry->skeleton.opcode == 0x0F) {
674    code_buffer_.push_back(entry->skeleton.extra_opcode1);
675    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
676      code_buffer_.push_back(entry->skeleton.extra_opcode2);
677    } else {
678      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
679    }
680  } else {
681    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
682    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
683  }
684  if (X86_FPREG(reg)) {
685    reg = reg & X86_FP_REG_MASK;
686  }
687  if (reg >= 4) {
688    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
689        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
690  }
691  DCHECK_LT(reg, 8);
692  uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
693  code_buffer_.push_back(modrm);
694  code_buffer_.push_back(disp & 0xFF);
695  code_buffer_.push_back((disp >> 8) & 0xFF);
696  code_buffer_.push_back((disp >> 16) & 0xFF);
697  code_buffer_.push_back((disp >> 24) & 0xFF);
698  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
699  DCHECK_EQ(0, entry->skeleton.ax_opcode);
700  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
701}
702
703void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
704  if (entry->skeleton.prefix1 != 0) {
705    code_buffer_.push_back(entry->skeleton.prefix1);
706    if (entry->skeleton.prefix2 != 0) {
707      code_buffer_.push_back(entry->skeleton.prefix2);
708    }
709  } else {
710    DCHECK_EQ(0, entry->skeleton.prefix2);
711  }
712  code_buffer_.push_back(entry->skeleton.opcode);
713  if (entry->skeleton.opcode == 0x0F) {
714    code_buffer_.push_back(entry->skeleton.extra_opcode1);
715    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
716      code_buffer_.push_back(entry->skeleton.extra_opcode2);
717    } else {
718      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
719    }
720  } else {
721    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
722    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
723  }
724  if (X86_FPREG(reg1)) {
725    reg1 = reg1 & X86_FP_REG_MASK;
726  }
727  if (X86_FPREG(reg2)) {
728    reg2 = reg2 & X86_FP_REG_MASK;
729  }
730  DCHECK_LT(reg1, 8);
731  DCHECK_LT(reg2, 8);
732  uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
733  code_buffer_.push_back(modrm);
734  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
735  DCHECK_EQ(0, entry->skeleton.ax_opcode);
736  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
737}
738
739void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
740                          uint8_t reg1, uint8_t reg2, int32_t imm) {
741  if (entry->skeleton.prefix1 != 0) {
742    code_buffer_.push_back(entry->skeleton.prefix1);
743    if (entry->skeleton.prefix2 != 0) {
744      code_buffer_.push_back(entry->skeleton.prefix2);
745    }
746  } else {
747    DCHECK_EQ(0, entry->skeleton.prefix2);
748  }
749  code_buffer_.push_back(entry->skeleton.opcode);
750  if (entry->skeleton.opcode == 0x0F) {
751    code_buffer_.push_back(entry->skeleton.extra_opcode1);
752    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
753      code_buffer_.push_back(entry->skeleton.extra_opcode2);
754    } else {
755      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
756    }
757  } else {
758    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
759    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
760  }
761  if (X86_FPREG(reg1)) {
762    reg1 = reg1 & X86_FP_REG_MASK;
763  }
764  if (X86_FPREG(reg2)) {
765    reg2 = reg2 & X86_FP_REG_MASK;
766  }
767  DCHECK_LT(reg1, 8);
768  DCHECK_LT(reg2, 8);
769  uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
770  code_buffer_.push_back(modrm);
771  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
772  DCHECK_EQ(0, entry->skeleton.ax_opcode);
773  switch (entry->skeleton.immediate_bytes) {
774    case 1:
775      DCHECK(IS_SIMM8(imm));
776      code_buffer_.push_back(imm & 0xFF);
777      break;
778    case 2:
779      DCHECK(IS_SIMM16(imm));
780      code_buffer_.push_back(imm & 0xFF);
781      code_buffer_.push_back((imm >> 8) & 0xFF);
782      break;
783    case 4:
784      code_buffer_.push_back(imm & 0xFF);
785      code_buffer_.push_back((imm >> 8) & 0xFF);
786      code_buffer_.push_back((imm >> 16) & 0xFF);
787      code_buffer_.push_back((imm >> 24) & 0xFF);
788      break;
789    default:
790      LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
791                 << ") for instruction: " << entry->name;
792      break;
793  }
794}
795
796void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
797  if (entry->skeleton.prefix1 != 0) {
798    code_buffer_.push_back(entry->skeleton.prefix1);
799    if (entry->skeleton.prefix2 != 0) {
800      code_buffer_.push_back(entry->skeleton.prefix2);
801    }
802  } else {
803    DCHECK_EQ(0, entry->skeleton.prefix2);
804  }
805  if (reg == rAX && entry->skeleton.ax_opcode != 0) {
806    code_buffer_.push_back(entry->skeleton.ax_opcode);
807  } else {
808    code_buffer_.push_back(entry->skeleton.opcode);
809    if (entry->skeleton.opcode == 0x0F) {
810      code_buffer_.push_back(entry->skeleton.extra_opcode1);
811      if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
812        code_buffer_.push_back(entry->skeleton.extra_opcode2);
813      } else {
814        DCHECK_EQ(0, entry->skeleton.extra_opcode2);
815      }
816    } else {
817      DCHECK_EQ(0, entry->skeleton.extra_opcode1);
818      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
819    }
820    if (X86_FPREG(reg)) {
821      reg = reg & X86_FP_REG_MASK;
822    }
823    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
824    code_buffer_.push_back(modrm);
825  }
826  switch (entry->skeleton.immediate_bytes) {
827    case 1:
828      DCHECK(IS_SIMM8(imm));
829      code_buffer_.push_back(imm & 0xFF);
830      break;
831    case 2:
832      DCHECK(IS_SIMM16(imm));
833      code_buffer_.push_back(imm & 0xFF);
834      code_buffer_.push_back((imm >> 8) & 0xFF);
835      break;
836    case 4:
837      code_buffer_.push_back(imm & 0xFF);
838      code_buffer_.push_back((imm >> 8) & 0xFF);
839      code_buffer_.push_back((imm >> 16) & 0xFF);
840      code_buffer_.push_back((imm >> 24) & 0xFF);
841      break;
842    default:
843      LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
844          << ") for instruction: " << entry->name;
845      break;
846  }
847}
848
849void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
850  if (entry->skeleton.prefix1 != 0) {
851    code_buffer_.push_back(entry->skeleton.prefix1);
852    if (entry->skeleton.prefix2 != 0) {
853      code_buffer_.push_back(entry->skeleton.prefix2);
854    }
855  } else {
856    DCHECK_EQ(0, entry->skeleton.prefix2);
857  }
858  code_buffer_.push_back(entry->skeleton.opcode);
859  if (entry->skeleton.opcode == 0x0F) {
860    code_buffer_.push_back(entry->skeleton.extra_opcode1);
861    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
862      code_buffer_.push_back(entry->skeleton.extra_opcode2);
863    } else {
864      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
865    }
866  } else {
867    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
868    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
869  }
870  uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
871  code_buffer_.push_back(modrm);
872  code_buffer_.push_back(disp & 0xFF);
873  code_buffer_.push_back((disp >> 8) & 0xFF);
874  code_buffer_.push_back((disp >> 16) & 0xFF);
875  code_buffer_.push_back((disp >> 24) & 0xFF);
876  switch (entry->skeleton.immediate_bytes) {
877    case 1:
878      DCHECK(IS_SIMM8(imm));
879      code_buffer_.push_back(imm & 0xFF);
880      break;
881    case 2:
882      DCHECK(IS_SIMM16(imm));
883      code_buffer_.push_back(imm & 0xFF);
884      code_buffer_.push_back((imm >> 8) & 0xFF);
885      break;
886    case 4:
887      code_buffer_.push_back(imm & 0xFF);
888      code_buffer_.push_back((imm >> 8) & 0xFF);
889      code_buffer_.push_back((imm >> 16) & 0xFF);
890      code_buffer_.push_back((imm >> 24) & 0xFF);
891      break;
892    default:
893      LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
894          << ") for instruction: " << entry->name;
895      break;
896  }
897  DCHECK_EQ(entry->skeleton.ax_opcode, 0);
898}
899
900void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
901  DCHECK_LT(reg, 8);
902  code_buffer_.push_back(0xB8 + reg);
903  code_buffer_.push_back(imm & 0xFF);
904  code_buffer_.push_back((imm >> 8) & 0xFF);
905  code_buffer_.push_back((imm >> 16) & 0xFF);
906  code_buffer_.push_back((imm >> 24) & 0xFF);
907}
908
909void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
910  if (entry->skeleton.prefix1 != 0) {
911    code_buffer_.push_back(entry->skeleton.prefix1);
912    if (entry->skeleton.prefix2 != 0) {
913      code_buffer_.push_back(entry->skeleton.prefix2);
914    }
915  } else {
916    DCHECK_EQ(0, entry->skeleton.prefix2);
917  }
918  if (imm != 1) {
919    code_buffer_.push_back(entry->skeleton.opcode);
920  } else {
921    // Shorter encoding for 1 bit shift
922    code_buffer_.push_back(entry->skeleton.ax_opcode);
923  }
924  if (entry->skeleton.opcode == 0x0F) {
925    code_buffer_.push_back(entry->skeleton.extra_opcode1);
926    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
927      code_buffer_.push_back(entry->skeleton.extra_opcode2);
928    } else {
929      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
930    }
931  } else {
932    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
933    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
934  }
935  if (reg >= 4) {
936    DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
937        << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
938  }
939  DCHECK_LT(reg, 8);
940  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
941  code_buffer_.push_back(modrm);
942  if (imm != 1) {
943    DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
944    DCHECK(IS_SIMM8(imm));
945    code_buffer_.push_back(imm & 0xFF);
946  }
947}
948
949void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
950  DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
951  if (entry->skeleton.prefix1 != 0) {
952    code_buffer_.push_back(entry->skeleton.prefix1);
953    if (entry->skeleton.prefix2 != 0) {
954      code_buffer_.push_back(entry->skeleton.prefix2);
955    }
956  } else {
957    DCHECK_EQ(0, entry->skeleton.prefix2);
958  }
959  code_buffer_.push_back(entry->skeleton.opcode);
960  DCHECK_EQ(0, entry->skeleton.extra_opcode1);
961  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
962  DCHECK_LT(reg, 8);
963  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
964  code_buffer_.push_back(modrm);
965  DCHECK_EQ(0, entry->skeleton.ax_opcode);
966  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
967}
968
969void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
970  if (entry->skeleton.prefix1 != 0) {
971    code_buffer_.push_back(entry->skeleton.prefix1);
972    if (entry->skeleton.prefix2 != 0) {
973      code_buffer_.push_back(entry->skeleton.prefix2);
974    }
975  } else {
976    DCHECK_EQ(0, entry->skeleton.prefix2);
977  }
978  DCHECK_EQ(0, entry->skeleton.ax_opcode);
979  DCHECK_EQ(0x0F, entry->skeleton.opcode);
980  code_buffer_.push_back(0x0F);
981  DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
982  code_buffer_.push_back(0x90 | condition);
983  DCHECK_EQ(0, entry->skeleton.extra_opcode2);
984  DCHECK_LT(reg, 8);
985  uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
986  code_buffer_.push_back(modrm);
987  DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
988}
989
990void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
991  if (entry->opcode == kX86Jmp8) {
992    DCHECK(IS_SIMM8(rel));
993    code_buffer_.push_back(0xEB);
994    code_buffer_.push_back(rel & 0xFF);
995  } else if (entry->opcode == kX86Jmp32) {
996    code_buffer_.push_back(0xE9);
997    code_buffer_.push_back(rel & 0xFF);
998    code_buffer_.push_back((rel >> 8) & 0xFF);
999    code_buffer_.push_back((rel >> 16) & 0xFF);
1000    code_buffer_.push_back((rel >> 24) & 0xFF);
1001  } else {
1002    DCHECK(entry->opcode == kX86JmpR);
1003    code_buffer_.push_back(entry->skeleton.opcode);
1004    uint8_t reg = static_cast<uint8_t>(rel);
1005    DCHECK_LT(reg, 8);
1006    uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
1007    code_buffer_.push_back(modrm);
1008  }
1009}
1010
1011void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
1012  DCHECK_LT(cc, 16);
1013  if (entry->opcode == kX86Jcc8) {
1014    DCHECK(IS_SIMM8(rel));
1015    code_buffer_.push_back(0x70 | cc);
1016    code_buffer_.push_back(rel & 0xFF);
1017  } else {
1018    DCHECK(entry->opcode == kX86Jcc32);
1019    code_buffer_.push_back(0x0F);
1020    code_buffer_.push_back(0x80 | cc);
1021    code_buffer_.push_back(rel & 0xFF);
1022    code_buffer_.push_back((rel >> 8) & 0xFF);
1023    code_buffer_.push_back((rel >> 16) & 0xFF);
1024    code_buffer_.push_back((rel >> 24) & 0xFF);
1025  }
1026}
1027
1028void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
1029  if (entry->skeleton.prefix1 != 0) {
1030    code_buffer_.push_back(entry->skeleton.prefix1);
1031    if (entry->skeleton.prefix2 != 0) {
1032      code_buffer_.push_back(entry->skeleton.prefix2);
1033    }
1034  } else {
1035    DCHECK_EQ(0, entry->skeleton.prefix2);
1036  }
1037  code_buffer_.push_back(entry->skeleton.opcode);
1038  if (entry->skeleton.opcode == 0x0F) {
1039    code_buffer_.push_back(entry->skeleton.extra_opcode1);
1040    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
1041      code_buffer_.push_back(entry->skeleton.extra_opcode2);
1042    } else {
1043      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1044    }
1045  } else {
1046    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1047    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1048  }
1049  uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
1050  code_buffer_.push_back(modrm);
1051  if (base == rX86_SP) {
1052    // Special SIB for SP base
1053    code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
1054  }
1055  EmitDisp(base, disp);
1056  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1057  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1058}
1059
1060void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
1061  DCHECK_NE(entry->skeleton.prefix1, 0);
1062  code_buffer_.push_back(entry->skeleton.prefix1);
1063  if (entry->skeleton.prefix2 != 0) {
1064    code_buffer_.push_back(entry->skeleton.prefix2);
1065  }
1066  code_buffer_.push_back(entry->skeleton.opcode);
1067  if (entry->skeleton.opcode == 0x0F) {
1068    code_buffer_.push_back(entry->skeleton.extra_opcode1);
1069    if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
1070      code_buffer_.push_back(entry->skeleton.extra_opcode2);
1071    } else {
1072      DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1073    }
1074  } else {
1075    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1076    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1077  }
1078  uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
1079  code_buffer_.push_back(modrm);
1080  code_buffer_.push_back(disp & 0xFF);
1081  code_buffer_.push_back((disp >> 8) & 0xFF);
1082  code_buffer_.push_back((disp >> 16) & 0xFF);
1083  code_buffer_.push_back((disp >> 24) & 0xFF);
1084  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1085  DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1086}
1087
1088void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
1089                      int base_or_table, uint8_t index, int scale, int table_or_disp) {
1090  int disp;
1091  if (entry->opcode == kX86PcRelLoadRA) {
1092    Mir2Lir::SwitchTable *tab_rec = reinterpret_cast<Mir2Lir::SwitchTable*>(table_or_disp);
1093    disp = tab_rec->offset;
1094  } else {
1095    DCHECK(entry->opcode == kX86PcRelAdr);
1096    Mir2Lir::FillArrayData *tab_rec = reinterpret_cast<Mir2Lir::FillArrayData*>(base_or_table);
1097    disp = tab_rec->offset;
1098  }
1099  if (entry->skeleton.prefix1 != 0) {
1100    code_buffer_.push_back(entry->skeleton.prefix1);
1101    if (entry->skeleton.prefix2 != 0) {
1102      code_buffer_.push_back(entry->skeleton.prefix2);
1103    }
1104  } else {
1105    DCHECK_EQ(0, entry->skeleton.prefix2);
1106  }
1107  if (X86_FPREG(reg)) {
1108    reg = reg & X86_FP_REG_MASK;
1109  }
1110  DCHECK_LT(reg, 8);
1111  if (entry->opcode == kX86PcRelLoadRA) {
1112    code_buffer_.push_back(entry->skeleton.opcode);
1113    DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1114    DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1115    uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
1116    code_buffer_.push_back(modrm);
1117    DCHECK_LT(scale, 4);
1118    DCHECK_LT(index, 8);
1119    DCHECK_LT(base_or_table, 8);
1120    uint8_t base = static_cast<uint8_t>(base_or_table);
1121    uint8_t sib = (scale << 6) | (index << 3) | base;
1122    code_buffer_.push_back(sib);
1123    DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1124  } else {
1125    code_buffer_.push_back(entry->skeleton.opcode + reg);
1126  }
1127  code_buffer_.push_back(disp & 0xFF);
1128  code_buffer_.push_back((disp >> 8) & 0xFF);
1129  code_buffer_.push_back((disp >> 16) & 0xFF);
1130  code_buffer_.push_back((disp >> 24) & 0xFF);
1131  DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1132  DCHECK_EQ(0, entry->skeleton.ax_opcode);
1133}
1134
1135void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
1136  DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
1137  code_buffer_.push_back(0xE8);  // call +0
1138  code_buffer_.push_back(0);
1139  code_buffer_.push_back(0);
1140  code_buffer_.push_back(0);
1141  code_buffer_.push_back(0);
1142
1143  DCHECK_LT(reg, 8);
1144  code_buffer_.push_back(0x58 + reg);  // pop reg
1145
1146  EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
1147}
1148
1149void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1150  UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1151                         << BuildInsnString(entry->fmt, lir, 0);
1152  for (int i = 0; i < GetInsnSize(lir); ++i) {
1153    code_buffer_.push_back(0xCC);  // push breakpoint instruction - int 3
1154  }
1155}
1156
1157/*
1158 * Assemble the LIR into binary instruction format.  Note that we may
1159 * discover that pc-relative displacements may not fit the selected
1160 * instruction.  In those cases we will try to substitute a new code
1161 * sequence or request that the trace be shortened and retried.
1162 */
1163AssemblerStatus X86Mir2Lir::AssembleInstructions(uintptr_t start_addr) {
1164  LIR *lir;
1165  AssemblerStatus res = kSuccess;  // Assume success
1166
1167  const bool kVerbosePcFixup = false;
1168  for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1169    if (lir->opcode < 0) {
1170      continue;
1171    }
1172
1173    if (lir->flags.is_nop) {
1174      continue;
1175    }
1176
1177    if (lir->flags.pcRelFixup) {
1178      switch (lir->opcode) {
1179        case kX86Jcc8: {
1180          LIR *target_lir = lir->target;
1181          DCHECK(target_lir != NULL);
1182          int delta = 0;
1183          uintptr_t pc;
1184          if (IS_SIMM8(lir->operands[0])) {
1185            pc = lir->offset + 2 /* opcode + rel8 */;
1186          } else {
1187            pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1188          }
1189          uintptr_t target = target_lir->offset;
1190          delta = target - pc;
1191          if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1192            if (kVerbosePcFixup) {
1193              LOG(INFO) << "Retry for JCC growth at " << lir->offset
1194                  << " delta: " << delta << " old delta: " << lir->operands[0];
1195            }
1196            lir->opcode = kX86Jcc32;
1197            SetupResourceMasks(lir);
1198            res = kRetryAll;
1199          }
1200          if (kVerbosePcFixup) {
1201            LOG(INFO) << "Source:";
1202            DumpLIRInsn(lir, 0);
1203            LOG(INFO) << "Target:";
1204            DumpLIRInsn(target_lir, 0);
1205            LOG(INFO) << "Delta " << delta;
1206          }
1207          lir->operands[0] = delta;
1208          break;
1209        }
1210        case kX86Jcc32: {
1211          LIR *target_lir = lir->target;
1212          DCHECK(target_lir != NULL);
1213          uintptr_t pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1214          uintptr_t target = target_lir->offset;
1215          int delta = target - pc;
1216          if (kVerbosePcFixup) {
1217            LOG(INFO) << "Source:";
1218            DumpLIRInsn(lir, 0);
1219            LOG(INFO) << "Target:";
1220            DumpLIRInsn(target_lir, 0);
1221            LOG(INFO) << "Delta " << delta;
1222          }
1223          lir->operands[0] = delta;
1224          break;
1225        }
1226        case kX86Jmp8: {
1227          LIR *target_lir = lir->target;
1228          DCHECK(target_lir != NULL);
1229          int delta = 0;
1230          uintptr_t pc;
1231          if (IS_SIMM8(lir->operands[0])) {
1232            pc = lir->offset + 2 /* opcode + rel8 */;
1233          } else {
1234            pc = lir->offset + 5 /* opcode + rel32 */;
1235          }
1236          uintptr_t target = target_lir->offset;
1237          delta = target - pc;
1238          if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1239            // Useless branch
1240            lir->flags.is_nop = true;
1241            if (kVerbosePcFixup) {
1242              LOG(INFO) << "Retry for useless branch at " << lir->offset;
1243            }
1244            res = kRetryAll;
1245          } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1246            if (kVerbosePcFixup) {
1247              LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1248            }
1249            lir->opcode = kX86Jmp32;
1250            SetupResourceMasks(lir);
1251            res = kRetryAll;
1252          }
1253          lir->operands[0] = delta;
1254          break;
1255        }
1256        case kX86Jmp32: {
1257          LIR *target_lir = lir->target;
1258          DCHECK(target_lir != NULL);
1259          uintptr_t pc = lir->offset + 5 /* opcode + rel32 */;
1260          uintptr_t target = target_lir->offset;
1261          int delta = target - pc;
1262          lir->operands[0] = delta;
1263          break;
1264        }
1265        default:
1266          break;
1267      }
1268    }
1269
1270    /*
1271     * If one of the pc-relative instructions expanded we'll have
1272     * to make another pass.  Don't bother to fully assemble the
1273     * instruction.
1274     */
1275    if (res != kSuccess) {
1276      continue;
1277    }
1278    CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1279    const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1280    size_t starting_cbuf_size = code_buffer_.size();
1281    switch (entry->kind) {
1282      case kData:  // 4 bytes of data
1283        code_buffer_.push_back(lir->operands[0]);
1284        break;
1285      case kNullary:  // 1 byte of opcode
1286        DCHECK_EQ(0, entry->skeleton.prefix1);
1287        DCHECK_EQ(0, entry->skeleton.prefix2);
1288        code_buffer_.push_back(entry->skeleton.opcode);
1289        if (entry->skeleton.extra_opcode1 != 0) {
1290          code_buffer_.push_back(entry->skeleton.extra_opcode1);
1291          if (entry->skeleton.extra_opcode2 != 0) {
1292            code_buffer_.push_back(entry->skeleton.extra_opcode2);
1293          }
1294        } else {
1295          DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1296        }
1297        DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1298        DCHECK_EQ(0, entry->skeleton.ax_opcode);
1299        DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1300        break;
1301      case kReg:  // lir operands - 0: reg
1302        EmitOpReg(entry, lir->operands[0]);
1303        break;
1304      case kMem:  // lir operands - 0: base, 1: disp
1305        EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1306        break;
1307      case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
1308        EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1309        break;
1310      case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1311        EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1312                     lir->operands[3], lir->operands[4]);
1313        break;
1314      case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
1315        EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1316        break;
1317      case kRegArray:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1318        EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1319                     lir->operands[3], lir->operands[4]);
1320        break;
1321      case kRegThread:  // lir operands - 0: reg, 1: disp
1322        EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1323        break;
1324      case kRegReg:  // lir operands - 0: reg1, 1: reg2
1325        EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1326        break;
1327      case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
1328        EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1329        break;
1330      case kRegRegImm:
1331        EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1332        break;
1333      case kRegImm:  // lir operands - 0: reg, 1: immediate
1334        EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1335        break;
1336      case kThreadImm:  // lir operands - 0: disp, 1: immediate
1337        EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1338        break;
1339      case kMovRegImm:  // lir operands - 0: reg, 1: immediate
1340        EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1341        break;
1342      case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
1343        EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1344        break;
1345      case kShiftRegCl: // lir operands - 0: reg, 1: cl
1346        EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1347        break;
1348      case kRegCond:  // lir operands - 0: reg, 1: condition
1349        EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1350        break;
1351      case kJmp:  // lir operands - 0: rel
1352        EmitJmp(entry, lir->operands[0]);
1353        break;
1354      case kJcc:  // lir operands - 0: rel, 1: CC, target assigned
1355        EmitJcc(entry, lir->operands[0], lir->operands[1]);
1356        break;
1357      case kCall:
1358        switch (entry->opcode) {
1359          case kX86CallM:  // lir operands - 0: base, 1: disp
1360            EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1361            break;
1362          case kX86CallT:  // lir operands - 0: disp
1363            EmitCallThread(entry, lir->operands[0]);
1364            break;
1365          default:
1366            EmitUnimplemented(entry, lir);
1367            break;
1368        }
1369        break;
1370      case kPcRel:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1371        EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1372                  lir->operands[3], lir->operands[4]);
1373        break;
1374      case kMacro:
1375        EmitMacro(entry, lir->operands[0], lir->offset);
1376        break;
1377      default:
1378        EmitUnimplemented(entry, lir);
1379        break;
1380    }
1381    CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1382             code_buffer_.size() - starting_cbuf_size)
1383        << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1384  }
1385  return res;
1386}
1387
1388}  // namespace art
1389