codegen_x86.h revision 35e1e6ad4b50f1adbe9f93fe467766f042491896
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
18#define ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
19
20#include "dex/compiler_internals.h"
21#include "x86_lir.h"
22
23#include <map>
24
25namespace art {
26
27class X86Mir2Lir : public Mir2Lir {
28 protected:
29  class InToRegStorageMapper {
30   public:
31    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref) = 0;
32    virtual ~InToRegStorageMapper() {}
33  };
34
35  class InToRegStorageX86_64Mapper : public InToRegStorageMapper {
36   public:
37    explicit InToRegStorageX86_64Mapper(Mir2Lir* ml) : ml_(ml), cur_core_reg_(0), cur_fp_reg_(0) {}
38    virtual ~InToRegStorageX86_64Mapper() {}
39    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref);
40   protected:
41    Mir2Lir* ml_;
42   private:
43    int cur_core_reg_;
44    int cur_fp_reg_;
45  };
46
47  class InToRegStorageMapping {
48   public:
49    InToRegStorageMapping() : max_mapped_in_(0), is_there_stack_mapped_(false),
50    initialized_(false) {}
51    void Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper);
52    int GetMaxMappedIn() { return max_mapped_in_; }
53    bool IsThereStackMapped() { return is_there_stack_mapped_; }
54    RegStorage Get(int in_position);
55    bool IsInitialized() { return initialized_; }
56   private:
57    std::map<int, RegStorage> mapping_;
58    int max_mapped_in_;
59    bool is_there_stack_mapped_;
60    bool initialized_;
61  };
62
63 public:
64  X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
65
66  // Required for target - codegen helpers.
67  bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src,
68                          RegLocation rl_dest, int lit);
69  bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE;
70  LIR* CheckSuspendUsingLoad() OVERRIDE;
71  RegStorage LoadHelper(QuickEntrypointEnum trampoline) OVERRIDE;
72  LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
73                    OpSize size, VolatileKind is_volatile) OVERRIDE;
74  LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale,
75                       OpSize size) OVERRIDE;
76  LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
77                           RegStorage r_dest, OpSize size);
78  LIR* LoadConstantNoClobber(RegStorage r_dest, int value);
79  LIR* LoadConstantWide(RegStorage r_dest, int64_t value);
80  LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
81                     OpSize size, VolatileKind is_volatile) OVERRIDE;
82  LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale,
83                        OpSize size) OVERRIDE;
84  LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
85                            RegStorage r_src, OpSize size);
86  void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg);
87  void GenImplicitNullCheck(RegStorage reg, int opt_flags);
88
89  // Required for target - register utilities.
90  RegStorage TargetReg(SpecialTargetRegister reg) OVERRIDE;
91  RegStorage TargetReg32(SpecialTargetRegister reg);
92  RegStorage TargetReg(SpecialTargetRegister symbolic_reg, WideKind wide_kind) OVERRIDE {
93    if (wide_kind == kWide) {
94      if (cu_->target64) {
95        return As64BitReg(TargetReg32(symbolic_reg));
96      } else {
97        // x86: construct a pair.
98        DCHECK((kArg0 <= symbolic_reg && symbolic_reg < kArg3) ||
99               (kFArg0 <= symbolic_reg && symbolic_reg < kFArg3) ||
100               (kRet0 == symbolic_reg));
101        return RegStorage::MakeRegPair(TargetReg32(symbolic_reg),
102                                 TargetReg32(static_cast<SpecialTargetRegister>(symbolic_reg + 1)));
103      }
104    } else if (wide_kind == kRef && cu_->target64) {
105      return As64BitReg(TargetReg32(symbolic_reg));
106    } else {
107      return TargetReg32(symbolic_reg);
108    }
109  }
110  RegStorage TargetPtrReg(SpecialTargetRegister symbolic_reg) OVERRIDE {
111    return TargetReg(symbolic_reg, cu_->target64 ? kWide : kNotWide);
112  }
113  RegStorage GetArgMappingToPhysicalReg(int arg_num);
114  RegStorage GetCoreArgMappingToPhysicalReg(int core_arg_num);
115  RegLocation GetReturnAlt();
116  RegLocation GetReturnWideAlt();
117  RegLocation LocCReturn();
118  RegLocation LocCReturnRef();
119  RegLocation LocCReturnDouble();
120  RegLocation LocCReturnFloat();
121  RegLocation LocCReturnWide();
122  ResourceMask GetRegMaskCommon(const RegStorage& reg) const OVERRIDE;
123  void AdjustSpillMask();
124  void ClobberCallerSave();
125  void FreeCallTemps();
126  void LockCallTemps();
127  void CompilerInitializeRegAlloc();
128  int VectorRegisterSize();
129  int NumReservableVectorRegisters(bool fp_used);
130
131  // Required for target - miscellaneous.
132  void AssembleLIR();
133  int AssignInsnOffsets();
134  void AssignOffsets();
135  AssemblerStatus AssembleInstructions(CodeOffset start_addr);
136  void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) OVERRIDE;
137  void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
138                                ResourceMask* use_mask, ResourceMask* def_mask) OVERRIDE;
139  const char* GetTargetInstFmt(int opcode);
140  const char* GetTargetInstName(int opcode);
141  std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr);
142  ResourceMask GetPCUseDefEncoding() const OVERRIDE;
143  uint64_t GetTargetInstFlags(int opcode);
144  size_t GetInsnSize(LIR* lir) OVERRIDE;
145  bool IsUnconditionalBranch(LIR* lir);
146
147  // Get the register class for load/store of a field.
148  RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE;
149
150  // Required for target - Dalvik-level generators.
151  void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
152                         RegLocation rl_src2);
153  void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index,
154                   RegLocation rl_dest, int scale);
155  void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
156                   RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark);
157  void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
158                         RegLocation rl_src1, RegLocation rl_shift);
159  void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
160                  RegLocation rl_src2);
161  void GenAddLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
162                  RegLocation rl_src2);
163  void GenAndLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
164                  RegLocation rl_src2);
165  void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
166                        RegLocation rl_src2);
167  void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
168                       RegLocation rl_src2);
169  void GenRemFP(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_double);
170  void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
171                RegLocation rl_src2);
172  void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src);
173  bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object);
174  bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long);
175  bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double);
176  bool GenInlinedSqrt(CallInfo* info);
177  bool GenInlinedAbsFloat(CallInfo* info) OVERRIDE;
178  bool GenInlinedAbsDouble(CallInfo* info) OVERRIDE;
179  bool GenInlinedPeek(CallInfo* info, OpSize size);
180  bool GenInlinedPoke(CallInfo* info, OpSize size);
181  bool GenInlinedCharAt(CallInfo* info) OVERRIDE;
182  void GenNotLong(RegLocation rl_dest, RegLocation rl_src);
183  void GenNegLong(RegLocation rl_dest, RegLocation rl_src);
184  void GenOrLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
185                 RegLocation rl_src2);
186  void GenSubLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
187                  RegLocation rl_src2);
188  void GenXorLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
189                  RegLocation rl_src2);
190  void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
191                     RegLocation rl_src2, bool is_div);
192  // TODO: collapse reg_lo, reg_hi
193  RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div);
194  RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div);
195  void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
196  void GenDivZeroCheckWide(RegStorage reg);
197  void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset);
198  void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset);
199  void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method);
200  void GenExitSequence();
201  void GenSpecialExitSequence();
202  void GenFillArrayData(DexOffset table_offset, RegLocation rl_src);
203  void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double);
204  void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir);
205  void GenSelect(BasicBlock* bb, MIR* mir);
206  void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
207                        int32_t true_val, int32_t false_val, RegStorage rs_dest,
208                        int dest_reg_class) OVERRIDE;
209  bool GenMemBarrier(MemBarrierKind barrier_kind);
210  void GenMoveException(RegLocation rl_dest);
211  void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
212                                     int first_bit, int second_bit);
213  void GenNegDouble(RegLocation rl_dest, RegLocation rl_src);
214  void GenNegFloat(RegLocation rl_dest, RegLocation rl_src);
215  void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
216  void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
217  void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
218
219  /*
220   * @brief Generate a two address long operation with a constant value
221   * @param rl_dest location of result
222   * @param rl_src constant source operand
223   * @param op Opcode to be generated
224   * @return success or not
225   */
226  bool GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
227  /*
228   * @brief Generate a three address long operation with a constant value
229   * @param rl_dest location of result
230   * @param rl_src1 source operand
231   * @param rl_src2 constant source operand
232   * @param op Opcode to be generated
233   * @return success or not
234   */
235  bool GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
236                      Instruction::Code op);
237
238  /**
239   * @brief Generate a long arithmetic operation.
240   * @param rl_dest The destination.
241   * @param rl_src1 First operand.
242   * @param rl_src2 Second operand.
243   * @param op The DEX opcode for the operation.
244   * @param is_commutative The sources can be swapped if needed.
245   */
246  virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
247                            Instruction::Code op, bool is_commutative);
248
249  /**
250   * @brief Generate a two operand long arithmetic operation.
251   * @param rl_dest The destination.
252   * @param rl_src Second operand.
253   * @param op The DEX opcode for the operation.
254   */
255  void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
256
257  /**
258   * @brief Generate a long operation.
259   * @param rl_dest The destination.  Must be in a register
260   * @param rl_src The other operand.  May be in a register or in memory.
261   * @param op The DEX opcode for the operation.
262   */
263  virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
264
265  /**
266   * @brief Implement instanceof a final class with x86 specific code.
267   * @param use_declaring_class 'true' if we can use the class itself.
268   * @param type_idx Type index to use if use_declaring_class is 'false'.
269   * @param rl_dest Result to be set to 0 or 1.
270   * @param rl_src Object to be tested.
271   */
272  void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
273                          RegLocation rl_src);
274
275  void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
276                      RegLocation rl_src1, RegLocation rl_shift);
277
278  // Single operation generators.
279  LIR* OpUnconditionalBranch(LIR* target);
280  LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target);
281  LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target);
282  LIR* OpCondBranch(ConditionCode cc, LIR* target);
283  LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target);
284  LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src);
285  LIR* OpIT(ConditionCode cond, const char* guide);
286  void OpEndIT(LIR* it);
287  LIR* OpMem(OpKind op, RegStorage r_base, int disp);
288  LIR* OpPcRelLoad(RegStorage reg, LIR* target);
289  LIR* OpReg(OpKind op, RegStorage r_dest_src);
290  void OpRegCopy(RegStorage r_dest, RegStorage r_src);
291  LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src);
292  LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value);
293  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset);
294  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value);
295  LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value);
296  LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2);
297  LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type);
298  LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type);
299  LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src);
300  LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value);
301  LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2);
302  LIR* OpTestSuspend(LIR* target);
303  LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset);
304  LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset);
305  LIR* OpVldm(RegStorage r_base, int count);
306  LIR* OpVstm(RegStorage r_base, int count);
307  void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset);
308  void OpRegCopyWide(RegStorage dest, RegStorage src);
309  void OpTlsCmp(ThreadOffset<4> offset, int val);
310  void OpTlsCmp(ThreadOffset<8> offset, int val);
311
312  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset);
313  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset);
314  void SpillCoreRegs();
315  void UnSpillCoreRegs();
316  void UnSpillFPRegs();
317  void SpillFPRegs();
318  static const X86EncodingMap EncodingMap[kX86Last];
319  bool InexpensiveConstantInt(int32_t value);
320  bool InexpensiveConstantFloat(int32_t value);
321  bool InexpensiveConstantLong(int64_t value);
322  bool InexpensiveConstantDouble(int64_t value);
323
324  /*
325   * @brief Should try to optimize for two address instructions?
326   * @return true if we try to avoid generating three operand instructions.
327   */
328  virtual bool GenerateTwoOperandInstructions() const { return true; }
329
330  /*
331   * @brief x86 specific codegen for int operations.
332   * @param opcode Operation to perform.
333   * @param rl_dest Destination for the result.
334   * @param rl_lhs Left hand operand.
335   * @param rl_rhs Right hand operand.
336   */
337  void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs,
338                     RegLocation rl_rhs);
339
340  /*
341   * @brief Dump a RegLocation using printf
342   * @param loc Register location to dump
343   */
344  static void DumpRegLocation(RegLocation loc);
345
346  /*
347   * @brief Load the Method* of a dex method into the register.
348   * @param target_method The MethodReference of the method to be invoked.
349   * @param type How the method will be invoked.
350   * @param register that will contain the code address.
351   * @note register will be passed to TargetReg to get physical register.
352   */
353  void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
354                         SpecialTargetRegister symbolic_reg);
355
356  /*
357   * @brief Load the Class* of a Dex Class type into the register.
358   * @param type How the method will be invoked.
359   * @param register that will contain the code address.
360   * @note register will be passed to TargetReg to get physical register.
361   */
362  void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
363
364  void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
365
366  int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
367                           NextCallInsn next_call_insn,
368                           const MethodReference& target_method,
369                           uint32_t vtable_idx,
370                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
371                           bool skip_this);
372
373  int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
374                         NextCallInsn next_call_insn,
375                         const MethodReference& target_method,
376                         uint32_t vtable_idx,
377                         uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
378                         bool skip_this);
379
380  /*
381   * @brief Generate a relative call to the method that will be patched at link time.
382   * @param target_method The MethodReference of the method to be invoked.
383   * @param type How the method will be invoked.
384   * @returns Call instruction
385   */
386  virtual LIR * CallWithLinkerFixup(const MethodReference& target_method, InvokeType type);
387
388  /*
389   * @brief Handle x86 specific literals
390   */
391  void InstallLiteralPools();
392
393  /*
394   * @brief Generate the debug_frame CFI information.
395   * @returns pointer to vector containing CFE information
396   */
397  static std::vector<uint8_t>* ReturnCommonCallFrameInformation(bool is_x86_64);
398
399  /*
400   * @brief Generate the debug_frame FDE information.
401   * @returns pointer to vector containing CFE information
402   */
403  std::vector<uint8_t>* ReturnCallFrameInformation();
404
405  LIR* InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) OVERRIDE;
406
407 protected:
408  // Casting of RegStorage
409  RegStorage As32BitReg(RegStorage reg) {
410    DCHECK(!reg.IsPair());
411    if ((kFailOnSizeError || kReportSizeError) && !reg.Is64Bit()) {
412      if (kFailOnSizeError) {
413        LOG(FATAL) << "Expected 64b register " << reg.GetReg();
414      } else {
415        LOG(WARNING) << "Expected 64b register " << reg.GetReg();
416        return reg;
417      }
418    }
419    RegStorage ret_val = RegStorage(RegStorage::k32BitSolo,
420                                    reg.GetRawBits() & RegStorage::kRegTypeMask);
421    DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k32SoloStorageMask)
422                             ->GetReg().GetReg(),
423              ret_val.GetReg());
424    return ret_val;
425  }
426
427  RegStorage As64BitReg(RegStorage reg) {
428    DCHECK(!reg.IsPair());
429    if ((kFailOnSizeError || kReportSizeError) && !reg.Is32Bit()) {
430      if (kFailOnSizeError) {
431        LOG(FATAL) << "Expected 32b register " << reg.GetReg();
432      } else {
433        LOG(WARNING) << "Expected 32b register " << reg.GetReg();
434        return reg;
435      }
436    }
437    RegStorage ret_val = RegStorage(RegStorage::k64BitSolo,
438                                    reg.GetRawBits() & RegStorage::kRegTypeMask);
439    DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k64SoloStorageMask)
440                             ->GetReg().GetReg(),
441              ret_val.GetReg());
442    return ret_val;
443  }
444
445  size_t ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
446                     int32_t raw_base, int32_t displacement);
447  void CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg);
448  void EmitPrefix(const X86EncodingMap* entry,
449                  int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b);
450  void EmitOpcode(const X86EncodingMap* entry);
451  void EmitPrefixAndOpcode(const X86EncodingMap* entry,
452                           int32_t reg_r, int32_t reg_x, int32_t reg_b);
453  void EmitDisp(uint8_t base, int32_t disp);
454  void EmitModrmThread(uint8_t reg_or_opcode);
455  void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp);
456  void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale,
457                        int32_t disp);
458  void EmitImm(const X86EncodingMap* entry, int64_t imm);
459  void EmitNullary(const X86EncodingMap* entry);
460  void EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg);
461  void EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg);
462  void EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
463  void EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
464                   int32_t disp);
465  void EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_reg);
466  void EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, int32_t disp);
467  void EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
468                    int32_t raw_index, int scale, int32_t disp);
469  void EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
470                    int32_t disp, int32_t raw_reg);
471  void EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
472  void EmitArrayImm(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
473                    int32_t raw_disp, int32_t imm);
474  void EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp);
475  void EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2);
476  void EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t imm);
477  void EmitRegMemImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
478                     int32_t imm);
479  void EmitMemRegImm(const X86EncodingMap* entry, int32_t base, int32_t disp, int32_t raw_reg1,
480                     int32_t imm);
481  void EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
482  void EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm);
483  void EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm);
484  void EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
485  void EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl);
486  void EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_cl);
487  void EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
488  void EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc);
489  void EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t cc);
490  void EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t cc);
491  void EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
492                      int32_t cc);
493
494  void EmitJmp(const X86EncodingMap* entry, int32_t rel);
495  void EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc);
496  void EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
497  void EmitCallImmediate(const X86EncodingMap* entry, int32_t disp);
498  void EmitCallThread(const X86EncodingMap* entry, int32_t disp);
499  void EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
500                 int32_t raw_index, int scale, int32_t table_or_disp);
501  void EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset);
502  void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir);
503  void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
504                                int64_t val, ConditionCode ccode);
505  void GenConstWide(RegLocation rl_dest, int64_t value);
506  void GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir);
507  void GenShiftByteVector(BasicBlock *bb, MIR *mir);
508  void AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4);
509  void MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4);
510  void AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir);
511
512  static bool ProvidesFullMemoryBarrier(X86OpCode opcode);
513
514  /*
515   * @brief Ensure that a temporary register is byte addressable.
516   * @returns a temporary guarenteed to be byte addressable.
517   */
518  virtual RegStorage AllocateByteRegister();
519
520  /*
521   * @brief Use a wide temporary as a 128-bit register
522   * @returns a 128-bit temporary register.
523   */
524  virtual RegStorage Get128BitRegister(RegStorage reg);
525
526  /*
527   * @brief Check if a register is byte addressable.
528   * @returns true if a register is byte addressable.
529   */
530  bool IsByteRegister(RegStorage reg);
531  bool GenInlinedArrayCopyCharArray(CallInfo* info) OVERRIDE;
532
533  /*
534   * @brief generate inline code for fast case of Strng.indexOf.
535   * @param info Call parameters
536   * @param zero_based 'true' if the index into the string is 0.
537   * @returns 'true' if the call was inlined, 'false' if a regular call needs to be
538   * generated.
539   */
540  bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
541
542  /**
543   * @brief Reserve a fixed number of vector  registers from the register pool
544   * @details The mir->dalvikInsn.vA specifies an N such that vector registers
545   * [0..N-1] are removed from the temporary pool. The caller must call
546   * ReturnVectorRegisters before calling ReserveVectorRegisters again.
547   * Also sets the num_reserved_vector_regs_ to the specified value
548   * @param mir whose vA specifies the number of registers to reserve
549   */
550  void ReserveVectorRegisters(MIR* mir);
551
552  /**
553   * @brief Return all the reserved vector registers to the temp pool
554   * @details Returns [0..num_reserved_vector_regs_]
555   */
556  void ReturnVectorRegisters();
557
558  /*
559   * @brief Load 128 bit constant into vector register.
560   * @param bb The basic block in which the MIR is from.
561   * @param mir The MIR whose opcode is kMirConstVector
562   * @note vA is the TypeSize for the register.
563   * @note vB is the destination XMM register. arg[0..3] are 32 bit constant values.
564   */
565  void GenConst128(BasicBlock* bb, MIR* mir);
566
567  /*
568   * @brief MIR to move a vectorized register to another.
569   * @param bb The basic block in which the MIR is from.
570   * @param mir The MIR whose opcode is kMirConstVector.
571   * @note vA: TypeSize
572   * @note vB: destination
573   * @note vC: source
574   */
575  void GenMoveVector(BasicBlock *bb, MIR *mir);
576
577  /*
578   * @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know the type of the vector.
579   * @param bb The basic block in which the MIR is from.
580   * @param mir The MIR whose opcode is kMirConstVector.
581   * @note vA: TypeSize
582   * @note vB: destination and source
583   * @note vC: source
584   */
585  void GenMultiplyVector(BasicBlock *bb, MIR *mir);
586
587  /*
588   * @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the type of the vector.
589   * @param bb The basic block in which the MIR is from.
590   * @param mir The MIR whose opcode is kMirConstVector.
591   * @note vA: TypeSize
592   * @note vB: destination and source
593   * @note vC: source
594   */
595  void GenAddVector(BasicBlock *bb, MIR *mir);
596
597  /*
598   * @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the type of the vector.
599   * @param bb The basic block in which the MIR is from.
600   * @param mir The MIR whose opcode is kMirConstVector.
601   * @note vA: TypeSize
602   * @note vB: destination and source
603   * @note vC: source
604   */
605  void GenSubtractVector(BasicBlock *bb, MIR *mir);
606
607  /*
608   * @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the type of the vector.
609   * @param bb The basic block in which the MIR is from.
610   * @param mir The MIR whose opcode is kMirConstVector.
611   * @note vA: TypeSize
612   * @note vB: destination and source
613   * @note vC: immediate
614   */
615  void GenShiftLeftVector(BasicBlock *bb, MIR *mir);
616
617  /*
618   * @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to know the type of the vector.
619   * @param bb The basic block in which the MIR is from.
620   * @param mir The MIR whose opcode is kMirConstVector.
621   * @note vA: TypeSize
622   * @note vB: destination and source
623   * @note vC: immediate
624   */
625  void GenSignedShiftRightVector(BasicBlock *bb, MIR *mir);
626
627  /*
628   * @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA to know the type of the vector.
629   * @param bb The basic block in which the MIR is from..
630   * @param mir The MIR whose opcode is kMirConstVector.
631   * @note vA: TypeSize
632   * @note vB: destination and source
633   * @note vC: immediate
634   */
635  void GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir);
636
637  /*
638   * @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the type of the vector.
639   * @note vA: TypeSize
640   * @note vB: destination and source
641   * @note vC: source
642   */
643  void GenAndVector(BasicBlock *bb, MIR *mir);
644
645  /*
646   * @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the type of the vector.
647   * @param bb The basic block in which the MIR is from.
648   * @param mir The MIR whose opcode is kMirConstVector.
649   * @note vA: TypeSize
650   * @note vB: destination and source
651   * @note vC: source
652   */
653  void GenOrVector(BasicBlock *bb, MIR *mir);
654
655  /*
656   * @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the type of the vector.
657   * @param bb The basic block in which the MIR is from.
658   * @param mir The MIR whose opcode is kMirConstVector.
659   * @note vA: TypeSize
660   * @note vB: destination and source
661   * @note vC: source
662   */
663  void GenXorVector(BasicBlock *bb, MIR *mir);
664
665  /*
666   * @brief Reduce a 128-bit packed element into a single VR by taking lower bits
667   * @param bb The basic block in which the MIR is from.
668   * @param mir The MIR whose opcode is kMirConstVector.
669   * @details Instruction does a horizontal addition of the packed elements and then adds it to VR.
670   * @note vA: TypeSize
671   * @note vB: destination and source VR (not vector register)
672   * @note vC: source (vector register)
673   */
674  void GenAddReduceVector(BasicBlock *bb, MIR *mir);
675
676  /*
677   * @brief Extract a packed element into a single VR.
678   * @param bb The basic block in which the MIR is from.
679   * @param mir The MIR whose opcode is kMirConstVector.
680   * @note vA: TypeSize
681   * @note vB: destination VR (not vector register)
682   * @note vC: source (vector register)
683   * @note arg[0]: The index to use for extraction from vector register (which packed element).
684   */
685  void GenReduceVector(BasicBlock *bb, MIR *mir);
686
687  /*
688   * @brief Create a vector value, with all TypeSize values equal to vC
689   * @param bb The basic block in which the MIR is from.
690   * @param mir The MIR whose opcode is kMirConstVector.
691   * @note vA: TypeSize.
692   * @note vB: destination vector register.
693   * @note vC: source VR (not vector register).
694   */
695  void GenSetVector(BasicBlock *bb, MIR *mir);
696
697  /*
698   * @brief Generate code for a vector opcode.
699   * @param bb The basic block in which the MIR is from.
700   * @param mir The MIR whose opcode is a non-standard opcode.
701   */
702  void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
703
704  /*
705   * @brief Return the correct x86 opcode for the Dex operation
706   * @param op Dex opcode for the operation
707   * @param loc Register location of the operand
708   * @param is_high_op 'true' if this is an operation on the high word
709   * @param value Immediate value for the operation.  Used for byte variants
710   * @returns the correct x86 opcode to perform the operation
711   */
712  X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value);
713
714  /*
715   * @brief Return the correct x86 opcode for the Dex operation
716   * @param op Dex opcode for the operation
717   * @param dest location of the destination.  May be register or memory.
718   * @param rhs Location for the rhs of the operation.  May be in register or memory.
719   * @param is_high_op 'true' if this is an operation on the high word
720   * @returns the correct x86 opcode to perform the operation
721   * @note at most one location may refer to memory
722   */
723  X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
724                      bool is_high_op);
725
726  /*
727   * @brief Is this operation a no-op for this opcode and value
728   * @param op Dex opcode for the operation
729   * @param value Immediate value for the operation.
730   * @returns 'true' if the operation will have no effect
731   */
732  bool IsNoOp(Instruction::Code op, int32_t value);
733
734  /**
735   * @brief Calculate magic number and shift for a given divisor
736   * @param divisor divisor number for calculation
737   * @param magic hold calculated magic number
738   * @param shift hold calculated shift
739   */
740  void CalculateMagicAndShift(int divisor, int& magic, int& shift);
741
742  /*
743   * @brief Generate an integer div or rem operation.
744   * @param rl_dest Destination Location.
745   * @param rl_src1 Numerator Location.
746   * @param rl_src2 Divisor Location.
747   * @param is_div 'true' if this is a division, 'false' for a remainder.
748   * @param check_zero 'true' if an exception should be generated if the divisor is 0.
749   */
750  RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
751                        bool is_div, bool check_zero);
752
753  /*
754   * @brief Generate an integer div or rem operation by a literal.
755   * @param rl_dest Destination Location.
756   * @param rl_src Numerator Location.
757   * @param lit Divisor.
758   * @param is_div 'true' if this is a division, 'false' for a remainder.
759   */
760  RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div);
761
762  /*
763   * Generate code to implement long shift operations.
764   * @param opcode The DEX opcode to specify the shift type.
765   * @param rl_dest The destination.
766   * @param rl_src The value to be shifted.
767   * @param shift_amount How much to shift.
768   * @returns the RegLocation of the result.
769   */
770  RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
771                                RegLocation rl_src, int shift_amount);
772  /*
773   * Generate an imul of a register by a constant or a better sequence.
774   * @param dest Destination Register.
775   * @param src Source Register.
776   * @param val Constant multiplier.
777   */
778  void GenImulRegImm(RegStorage dest, RegStorage src, int val);
779
780  /*
781   * Generate an imul of a memory location by a constant or a better sequence.
782   * @param dest Destination Register.
783   * @param sreg Symbolic register.
784   * @param displacement Displacement on stack of Symbolic Register.
785   * @param val Constant multiplier.
786   */
787  void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val);
788
789  /*
790   * @brief Compare memory to immediate, and branch if condition true.
791   * @param cond The condition code that when true will branch to the target.
792   * @param temp_reg A temporary register that can be used if compare memory is not
793   * supported by the architecture.
794   * @param base_reg The register holding the base address.
795   * @param offset The offset from the base.
796   * @param check_value The immediate to compare to.
797   * @param target branch target (or nullptr)
798   * @param compare output for getting LIR for comparison (or nullptr)
799   */
800  LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
801                         int offset, int check_value, LIR* target, LIR** compare);
802
803  /*
804   * Can this operation be using core registers without temporaries?
805   * @param rl_lhs Left hand operand.
806   * @param rl_rhs Right hand operand.
807   * @returns 'true' if the operation can proceed without needing temporary regs.
808   */
809  bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs);
810
811  /**
812   * @brief Generates inline code for conversion of long to FP by using x87/
813   * @param rl_dest The destination of the FP.
814   * @param rl_src The source of the long.
815   * @param is_double 'true' if dealing with double, 'false' for float.
816   */
817  virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double);
818
819  /*
820   * @brief Perform MIR analysis before compiling method.
821   * @note Invokes Mir2LiR::Materialize after analysis.
822   */
823  void Materialize();
824
825  /*
826   * Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register
827   * without regard to data type.  In practice, this can result in UpdateLoc returning a
828   * location record for a Dalvik float value in a core register, and vis-versa.  For targets
829   * which can inexpensively move data between core and float registers, this can often be a win.
830   * However, for x86 this is generally not a win.  These variants of UpdateLoc()
831   * take a register class argument - and will return an in-register location record only if
832   * the value is live in a temp register of the correct class.  Additionally, if the value is in
833   * a temp register of the wrong register class, it will be clobbered.
834   */
835  RegLocation UpdateLocTyped(RegLocation loc, int reg_class);
836  RegLocation UpdateLocWideTyped(RegLocation loc, int reg_class);
837
838  /*
839   * @brief Analyze MIR before generating code, to prepare for the code generation.
840   */
841  void AnalyzeMIR();
842
843  /*
844   * @brief Analyze one basic block.
845   * @param bb Basic block to analyze.
846   */
847  void AnalyzeBB(BasicBlock * bb);
848
849  /*
850   * @brief Analyze one extended MIR instruction
851   * @param opcode MIR instruction opcode.
852   * @param bb Basic block containing instruction.
853   * @param mir Extended instruction to analyze.
854   */
855  void AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir);
856
857  /*
858   * @brief Analyze one MIR instruction
859   * @param opcode MIR instruction opcode.
860   * @param bb Basic block containing instruction.
861   * @param mir Instruction to analyze.
862   */
863  virtual void AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir);
864
865  /*
866   * @brief Analyze one MIR float/double instruction
867   * @param opcode MIR instruction opcode.
868   * @param bb Basic block containing instruction.
869   * @param mir Instruction to analyze.
870   */
871  void AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir);
872
873  /*
874   * @brief Analyze one use of a double operand.
875   * @param rl_use Double RegLocation for the operand.
876   */
877  void AnalyzeDoubleUse(RegLocation rl_use);
878
879  /*
880   * @brief Analyze one invoke-static MIR instruction
881   * @param opcode MIR instruction opcode.
882   * @param bb Basic block containing instruction.
883   * @param mir Instruction to analyze.
884   */
885  void AnalyzeInvokeStatic(int opcode, BasicBlock * bb, MIR *mir);
886
887  // Information derived from analysis of MIR
888
889  // The compiler temporary for the code address of the method.
890  CompilerTemp *base_of_code_;
891
892  // Have we decided to compute a ptr to code and store in temporary VR?
893  bool store_method_addr_;
894
895  // Have we used the stored method address?
896  bool store_method_addr_used_;
897
898  // Instructions to remove if we didn't use the stored method address.
899  LIR* setup_method_address_[2];
900
901  // Instructions needing patching with Method* values.
902  GrowableArray<LIR*> method_address_insns_;
903
904  // Instructions needing patching with Class Type* values.
905  GrowableArray<LIR*> class_type_address_insns_;
906
907  // Instructions needing patching with PC relative code addresses.
908  GrowableArray<LIR*> call_method_insns_;
909
910  // Prologue decrement of stack pointer.
911  LIR* stack_decrement_;
912
913  // Epilogue increment of stack pointer.
914  LIR* stack_increment_;
915
916  // The list of const vector literals.
917  LIR *const_vectors_;
918
919  /*
920   * @brief Search for a matching vector literal
921   * @param mir A kMirOpConst128b MIR instruction to match.
922   * @returns pointer to matching LIR constant, or nullptr if not found.
923   */
924  LIR *ScanVectorLiteral(MIR *mir);
925
926  /*
927   * @brief Add a constant vector literal
928   * @param mir A kMirOpConst128b MIR instruction to match.
929   */
930  LIR *AddVectorLiteral(MIR *mir);
931
932  InToRegStorageMapping in_to_reg_storage_mapping_;
933
934  bool WideGPRsAreAliases() OVERRIDE {
935    return cu_->target64;  // On 64b, we have 64b GPRs.
936  }
937  bool WideFPRsAreAliases() OVERRIDE {
938    return true;  // xmm registers have 64b views even on x86.
939  }
940
941 private:
942  // The number of vector registers [0..N] reserved by a call to ReserveVectorRegisters
943  int num_reserved_vector_regs_;
944};
945
946}  // namespace art
947
948#endif  // ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
949