codegen_x86.h revision 59a42afc2b23d2e241a7e301e2cd68a94fba51e5
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
18#define ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
19
20#include "dex/compiler_internals.h"
21#include "x86_lir.h"
22
23#include <map>
24
25namespace art {
26
27class X86Mir2Lir : public Mir2Lir {
28 protected:
29  class InToRegStorageMapper {
30   public:
31    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref) = 0;
32    virtual ~InToRegStorageMapper() {}
33  };
34
35  class InToRegStorageX86_64Mapper : public InToRegStorageMapper {
36   public:
37    explicit InToRegStorageX86_64Mapper(Mir2Lir* ml) : ml_(ml), cur_core_reg_(0), cur_fp_reg_(0) {}
38    virtual ~InToRegStorageX86_64Mapper() {}
39    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref);
40   protected:
41    Mir2Lir* ml_;
42   private:
43    int cur_core_reg_;
44    int cur_fp_reg_;
45  };
46
47  class InToRegStorageMapping {
48   public:
49    InToRegStorageMapping() : max_mapped_in_(0), is_there_stack_mapped_(false),
50    initialized_(false) {}
51    void Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper);
52    int GetMaxMappedIn() { return max_mapped_in_; }
53    bool IsThereStackMapped() { return is_there_stack_mapped_; }
54    RegStorage Get(int in_position);
55    bool IsInitialized() { return initialized_; }
56   private:
57    std::map<int, RegStorage> mapping_;
58    int max_mapped_in_;
59    bool is_there_stack_mapped_;
60    bool initialized_;
61  };
62
63 public:
64  X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
65
66  // Required for target - codegen helpers.
67  bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src,
68                          RegLocation rl_dest, int lit);
69  bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE;
70  LIR* CheckSuspendUsingLoad() OVERRIDE;
71  RegStorage LoadHelper(ThreadOffset<4> offset) OVERRIDE;
72  RegStorage LoadHelper(ThreadOffset<8> offset) OVERRIDE;
73  LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
74                    OpSize size, VolatileKind is_volatile) OVERRIDE;
75  LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale,
76                       OpSize size) OVERRIDE;
77  LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
78                           RegStorage r_dest, OpSize size) OVERRIDE;
79  LIR* LoadConstantNoClobber(RegStorage r_dest, int value);
80  LIR* LoadConstantWide(RegStorage r_dest, int64_t value);
81  LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
82                     OpSize size, VolatileKind is_volatile) OVERRIDE;
83  LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale,
84                        OpSize size) OVERRIDE;
85  LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
86                            RegStorage r_src, OpSize size) OVERRIDE;
87  void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg);
88
89  // Required for target - register utilities.
90  RegStorage TargetReg(SpecialTargetRegister reg) OVERRIDE;
91  RegStorage TargetReg32(SpecialTargetRegister reg);
92  RegStorage TargetReg(SpecialTargetRegister symbolic_reg, bool is_wide) OVERRIDE {
93    RegStorage reg = TargetReg32(symbolic_reg);
94    if (is_wide) {
95      return (reg.Is64Bit()) ? reg : As64BitReg(reg);
96    } else {
97      return (reg.Is32Bit()) ? reg : As32BitReg(reg);
98    }
99  }
100  RegStorage TargetRefReg(SpecialTargetRegister symbolic_reg) OVERRIDE {
101    return TargetReg(symbolic_reg, cu_->target64);
102  }
103  RegStorage TargetPtrReg(SpecialTargetRegister symbolic_reg) OVERRIDE {
104    return TargetReg(symbolic_reg, cu_->target64);
105  }
106  RegStorage GetArgMappingToPhysicalReg(int arg_num);
107  RegStorage GetCoreArgMappingToPhysicalReg(int core_arg_num);
108  RegLocation GetReturnAlt();
109  RegLocation GetReturnWideAlt();
110  RegLocation LocCReturn();
111  RegLocation LocCReturnRef();
112  RegLocation LocCReturnDouble();
113  RegLocation LocCReturnFloat();
114  RegLocation LocCReturnWide();
115  ResourceMask GetRegMaskCommon(const RegStorage& reg) const OVERRIDE;
116  void AdjustSpillMask();
117  void ClobberCallerSave();
118  void FreeCallTemps();
119  void LockCallTemps();
120  void CompilerInitializeRegAlloc();
121  int VectorRegisterSize();
122  int NumReservableVectorRegisters(bool fp_used);
123
124  // Required for target - miscellaneous.
125  void AssembleLIR();
126  int AssignInsnOffsets();
127  void AssignOffsets();
128  AssemblerStatus AssembleInstructions(CodeOffset start_addr);
129  void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) OVERRIDE;
130  void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
131                                ResourceMask* use_mask, ResourceMask* def_mask) OVERRIDE;
132  const char* GetTargetInstFmt(int opcode);
133  const char* GetTargetInstName(int opcode);
134  std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr);
135  ResourceMask GetPCUseDefEncoding() const OVERRIDE;
136  uint64_t GetTargetInstFlags(int opcode);
137  size_t GetInsnSize(LIR* lir) OVERRIDE;
138  bool IsUnconditionalBranch(LIR* lir);
139
140  // Check support for volatile load/store of a given size.
141  bool SupportsVolatileLoadStore(OpSize size) OVERRIDE;
142  // Get the register class for load/store of a field.
143  RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE;
144
145  // Required for target - Dalvik-level generators.
146  void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
147                         RegLocation rl_src2);
148  void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index,
149                   RegLocation rl_dest, int scale);
150  void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
151                   RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark);
152  void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
153                         RegLocation rl_src1, RegLocation rl_shift);
154  void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
155                  RegLocation rl_src2);
156  void GenAddLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
157                  RegLocation rl_src2);
158  void GenAndLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
159                  RegLocation rl_src2);
160  void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
161                        RegLocation rl_src2);
162  void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
163                       RegLocation rl_src2);
164  void GenRemFP(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_double);
165  void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
166                RegLocation rl_src2);
167  void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src);
168  bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object);
169  bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long);
170  bool GenInlinedSqrt(CallInfo* info);
171  bool GenInlinedAbsFloat(CallInfo* info) OVERRIDE;
172  bool GenInlinedAbsDouble(CallInfo* info) OVERRIDE;
173  bool GenInlinedPeek(CallInfo* info, OpSize size);
174  bool GenInlinedPoke(CallInfo* info, OpSize size);
175  void GenNotLong(RegLocation rl_dest, RegLocation rl_src);
176  void GenNegLong(RegLocation rl_dest, RegLocation rl_src);
177  void GenOrLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
178                 RegLocation rl_src2);
179  void GenSubLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
180                  RegLocation rl_src2);
181  void GenXorLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
182                  RegLocation rl_src2);
183  void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
184                     RegLocation rl_src2, bool is_div);
185  // TODO: collapse reg_lo, reg_hi
186  RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div);
187  RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div);
188  void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
189  void GenDivZeroCheckWide(RegStorage reg);
190  void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset);
191  void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset);
192  void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method);
193  void GenExitSequence();
194  void GenSpecialExitSequence();
195  void GenFillArrayData(DexOffset table_offset, RegLocation rl_src);
196  void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double);
197  void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir);
198  void GenSelect(BasicBlock* bb, MIR* mir);
199  bool GenMemBarrier(MemBarrierKind barrier_kind);
200  void GenMoveException(RegLocation rl_dest);
201  void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
202                                     int first_bit, int second_bit);
203  void GenNegDouble(RegLocation rl_dest, RegLocation rl_src);
204  void GenNegFloat(RegLocation rl_dest, RegLocation rl_src);
205  void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
206  void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
207  void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
208
209  /*
210   * @brief Generate a two address long operation with a constant value
211   * @param rl_dest location of result
212   * @param rl_src constant source operand
213   * @param op Opcode to be generated
214   * @return success or not
215   */
216  bool GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
217  /*
218   * @brief Generate a three address long operation with a constant value
219   * @param rl_dest location of result
220   * @param rl_src1 source operand
221   * @param rl_src2 constant source operand
222   * @param op Opcode to be generated
223   * @return success or not
224   */
225  bool GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
226                      Instruction::Code op);
227
228  /**
229   * @brief Generate a long arithmetic operation.
230   * @param rl_dest The destination.
231   * @param rl_src1 First operand.
232   * @param rl_src2 Second operand.
233   * @param op The DEX opcode for the operation.
234   * @param is_commutative The sources can be swapped if needed.
235   */
236  virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
237                            Instruction::Code op, bool is_commutative);
238
239  /**
240   * @brief Generate a two operand long arithmetic operation.
241   * @param rl_dest The destination.
242   * @param rl_src Second operand.
243   * @param op The DEX opcode for the operation.
244   */
245  void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
246
247  /**
248   * @brief Generate a long operation.
249   * @param rl_dest The destination.  Must be in a register
250   * @param rl_src The other operand.  May be in a register or in memory.
251   * @param op The DEX opcode for the operation.
252   */
253  virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
254
255  /**
256   * @brief Implement instanceof a final class with x86 specific code.
257   * @param use_declaring_class 'true' if we can use the class itself.
258   * @param type_idx Type index to use if use_declaring_class is 'false'.
259   * @param rl_dest Result to be set to 0 or 1.
260   * @param rl_src Object to be tested.
261   */
262  void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
263                          RegLocation rl_src);
264  /*
265   *
266   * @brief Implement Set up instanceof a class with x86 specific code.
267   * @param needs_access_check 'true' if we must check the access.
268   * @param type_known_final 'true' if the type is known to be a final class.
269   * @param type_known_abstract 'true' if the type is known to be an abstract class.
270   * @param use_declaring_class 'true' if the type can be loaded off the current Method*.
271   * @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
272   * @param type_idx Type index to use if use_declaring_class is 'false'.
273   * @param rl_dest Result to be set to 0 or 1.
274   * @param rl_src Object to be tested.
275   */
276  void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
277                                  bool type_known_abstract, bool use_declaring_class,
278                                  bool can_assume_type_is_in_dex_cache,
279                                  uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
280
281  void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
282                      RegLocation rl_src1, RegLocation rl_shift);
283
284  // Single operation generators.
285  LIR* OpUnconditionalBranch(LIR* target);
286  LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target);
287  LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target);
288  LIR* OpCondBranch(ConditionCode cc, LIR* target);
289  LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target);
290  LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src);
291  LIR* OpIT(ConditionCode cond, const char* guide);
292  void OpEndIT(LIR* it);
293  LIR* OpMem(OpKind op, RegStorage r_base, int disp);
294  LIR* OpPcRelLoad(RegStorage reg, LIR* target);
295  LIR* OpReg(OpKind op, RegStorage r_dest_src);
296  void OpRegCopy(RegStorage r_dest, RegStorage r_src);
297  LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src);
298  LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value);
299  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset);
300  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value);
301  LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value);
302  LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2);
303  LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type);
304  LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type);
305  LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src);
306  LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value);
307  LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2);
308  LIR* OpTestSuspend(LIR* target);
309  LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) OVERRIDE;
310  LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) OVERRIDE;
311  LIR* OpVldm(RegStorage r_base, int count);
312  LIR* OpVstm(RegStorage r_base, int count);
313  void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset);
314  void OpRegCopyWide(RegStorage dest, RegStorage src);
315  void OpTlsCmp(ThreadOffset<4> offset, int val) OVERRIDE;
316  void OpTlsCmp(ThreadOffset<8> offset, int val) OVERRIDE;
317
318  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset);
319  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset);
320  void SpillCoreRegs();
321  void UnSpillCoreRegs();
322  void UnSpillFPRegs();
323  void SpillFPRegs();
324  static const X86EncodingMap EncodingMap[kX86Last];
325  bool InexpensiveConstantInt(int32_t value);
326  bool InexpensiveConstantFloat(int32_t value);
327  bool InexpensiveConstantLong(int64_t value);
328  bool InexpensiveConstantDouble(int64_t value);
329
330  /*
331   * @brief Should try to optimize for two address instructions?
332   * @return true if we try to avoid generating three operand instructions.
333   */
334  virtual bool GenerateTwoOperandInstructions() const { return true; }
335
336  /*
337   * @brief x86 specific codegen for int operations.
338   * @param opcode Operation to perform.
339   * @param rl_dest Destination for the result.
340   * @param rl_lhs Left hand operand.
341   * @param rl_rhs Right hand operand.
342   */
343  void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs,
344                     RegLocation rl_rhs);
345
346  /*
347   * @brief Dump a RegLocation using printf
348   * @param loc Register location to dump
349   */
350  static void DumpRegLocation(RegLocation loc);
351
352  /*
353   * @brief Load the Method* of a dex method into the register.
354   * @param target_method The MethodReference of the method to be invoked.
355   * @param type How the method will be invoked.
356   * @param register that will contain the code address.
357   * @note register will be passed to TargetReg to get physical register.
358   */
359  void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
360                         SpecialTargetRegister symbolic_reg);
361
362  /*
363   * @brief Load the Class* of a Dex Class type into the register.
364   * @param type How the method will be invoked.
365   * @param register that will contain the code address.
366   * @note register will be passed to TargetReg to get physical register.
367   */
368  void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
369
370  void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
371
372  int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
373                           NextCallInsn next_call_insn,
374                           const MethodReference& target_method,
375                           uint32_t vtable_idx,
376                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
377                           bool skip_this);
378
379  int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
380                         NextCallInsn next_call_insn,
381                         const MethodReference& target_method,
382                         uint32_t vtable_idx,
383                         uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
384                         bool skip_this);
385
386  /*
387   * @brief Generate a relative call to the method that will be patched at link time.
388   * @param target_method The MethodReference of the method to be invoked.
389   * @param type How the method will be invoked.
390   * @returns Call instruction
391   */
392  virtual LIR * CallWithLinkerFixup(const MethodReference& target_method, InvokeType type);
393
394  /*
395   * @brief Handle x86 specific literals
396   */
397  void InstallLiteralPools();
398
399  /*
400   * @brief Generate the debug_frame CFI information.
401   * @returns pointer to vector containing CFE information
402   */
403  static std::vector<uint8_t>* ReturnCommonCallFrameInformation();
404
405  /*
406   * @brief Generate the debug_frame FDE information.
407   * @returns pointer to vector containing CFE information
408   */
409  std::vector<uint8_t>* ReturnCallFrameInformation();
410
411 protected:
412  // Casting of RegStorage
413  RegStorage As32BitReg(RegStorage reg) {
414    DCHECK(!reg.IsPair());
415    if ((kFailOnSizeError || kReportSizeError) && !reg.Is64Bit()) {
416      if (kFailOnSizeError) {
417        LOG(FATAL) << "Expected 64b register " << reg.GetReg();
418      } else {
419        LOG(WARNING) << "Expected 64b register " << reg.GetReg();
420        return reg;
421      }
422    }
423    RegStorage ret_val = RegStorage(RegStorage::k32BitSolo,
424                                    reg.GetRawBits() & RegStorage::kRegTypeMask);
425    DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k32SoloStorageMask)
426                             ->GetReg().GetReg(),
427              ret_val.GetReg());
428    return ret_val;
429  }
430
431  RegStorage As64BitReg(RegStorage reg) {
432    DCHECK(!reg.IsPair());
433    if ((kFailOnSizeError || kReportSizeError) && !reg.Is32Bit()) {
434      if (kFailOnSizeError) {
435        LOG(FATAL) << "Expected 32b register " << reg.GetReg();
436      } else {
437        LOG(WARNING) << "Expected 32b register " << reg.GetReg();
438        return reg;
439      }
440    }
441    RegStorage ret_val = RegStorage(RegStorage::k64BitSolo,
442                                    reg.GetRawBits() & RegStorage::kRegTypeMask);
443    DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k64SoloStorageMask)
444                             ->GetReg().GetReg(),
445              ret_val.GetReg());
446    return ret_val;
447  }
448
449  size_t ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
450                     int32_t raw_base, int32_t displacement);
451  void CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg);
452  void EmitPrefix(const X86EncodingMap* entry,
453                  int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b);
454  void EmitOpcode(const X86EncodingMap* entry);
455  void EmitPrefixAndOpcode(const X86EncodingMap* entry,
456                           int32_t reg_r, int32_t reg_x, int32_t reg_b);
457  void EmitDisp(uint8_t base, int32_t disp);
458  void EmitModrmThread(uint8_t reg_or_opcode);
459  void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp);
460  void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale,
461                        int32_t disp);
462  void EmitImm(const X86EncodingMap* entry, int64_t imm);
463  void EmitNullary(const X86EncodingMap* entry);
464  void EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg);
465  void EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg);
466  void EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
467  void EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
468                   int32_t disp);
469  void EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_reg);
470  void EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, int32_t disp);
471  void EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
472                    int32_t raw_index, int scale, int32_t disp);
473  void EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
474                    int32_t disp, int32_t raw_reg);
475  void EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
476  void EmitArrayImm(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
477                    int32_t raw_disp, int32_t imm);
478  void EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp);
479  void EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2);
480  void EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t imm);
481  void EmitRegMemImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
482                     int32_t imm);
483  void EmitMemRegImm(const X86EncodingMap* entry, int32_t base, int32_t disp, int32_t raw_reg1,
484                     int32_t imm);
485  void EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
486  void EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm);
487  void EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm);
488  void EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
489  void EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl);
490  void EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_cl);
491  void EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
492  void EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc);
493  void EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t cc);
494  void EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t cc);
495  void EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
496                      int32_t cc);
497
498  void EmitJmp(const X86EncodingMap* entry, int32_t rel);
499  void EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc);
500  void EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
501  void EmitCallImmediate(const X86EncodingMap* entry, int32_t disp);
502  void EmitCallThread(const X86EncodingMap* entry, int32_t disp);
503  void EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
504                 int32_t raw_index, int scale, int32_t table_or_disp);
505  void EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset);
506  void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir);
507  void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
508                                int64_t val, ConditionCode ccode);
509  void GenConstWide(RegLocation rl_dest, int64_t value);
510  void GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir);
511  void GenShiftByteVector(BasicBlock *bb, MIR *mir);
512  void AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4);
513  void MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4);
514  void AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir);
515
516  static bool ProvidesFullMemoryBarrier(X86OpCode opcode);
517
518  /*
519   * @brief Ensure that a temporary register is byte addressable.
520   * @returns a temporary guarenteed to be byte addressable.
521   */
522  virtual RegStorage AllocateByteRegister();
523
524  /*
525   * @brief Use a wide temporary as a 128-bit register
526   * @returns a 128-bit temporary register.
527   */
528  virtual RegStorage Get128BitRegister(RegStorage reg);
529
530  /*
531   * @brief Check if a register is byte addressable.
532   * @returns true if a register is byte addressable.
533   */
534  bool IsByteRegister(RegStorage reg);
535  bool GenInlinedArrayCopyCharArray(CallInfo* info) OVERRIDE;
536
537  /*
538   * @brief generate inline code for fast case of Strng.indexOf.
539   * @param info Call parameters
540   * @param zero_based 'true' if the index into the string is 0.
541   * @returns 'true' if the call was inlined, 'false' if a regular call needs to be
542   * generated.
543   */
544  bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
545
546  /**
547   * @brief Reserve a fixed number of vector  registers from the register pool
548   * @details The mir->dalvikInsn.vA specifies an N such that vector registers
549   * [0..N-1] are removed from the temporary pool. The caller must call
550   * ReturnVectorRegisters before calling ReserveVectorRegisters again.
551   * Also sets the num_reserved_vector_regs_ to the specified value
552   * @param mir whose vA specifies the number of registers to reserve
553   */
554  void ReserveVectorRegisters(MIR* mir);
555
556  /**
557   * @brief Return all the reserved vector registers to the temp pool
558   * @details Returns [0..num_reserved_vector_regs_]
559   */
560  void ReturnVectorRegisters();
561
562  /*
563   * @brief Load 128 bit constant into vector register.
564   * @param bb The basic block in which the MIR is from.
565   * @param mir The MIR whose opcode is kMirConstVector
566   * @note vA is the TypeSize for the register.
567   * @note vB is the destination XMM register. arg[0..3] are 32 bit constant values.
568   */
569  void GenConst128(BasicBlock* bb, MIR* mir);
570
571  /*
572   * @brief MIR to move a vectorized register to another.
573   * @param bb The basic block in which the MIR is from.
574   * @param mir The MIR whose opcode is kMirConstVector.
575   * @note vA: TypeSize
576   * @note vB: destination
577   * @note vC: source
578   */
579  void GenMoveVector(BasicBlock *bb, MIR *mir);
580
581  /*
582   * @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know the type of the vector.
583   * @param bb The basic block in which the MIR is from.
584   * @param mir The MIR whose opcode is kMirConstVector.
585   * @note vA: TypeSize
586   * @note vB: destination and source
587   * @note vC: source
588   */
589  void GenMultiplyVector(BasicBlock *bb, MIR *mir);
590
591  /*
592   * @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the type of the vector.
593   * @param bb The basic block in which the MIR is from.
594   * @param mir The MIR whose opcode is kMirConstVector.
595   * @note vA: TypeSize
596   * @note vB: destination and source
597   * @note vC: source
598   */
599  void GenAddVector(BasicBlock *bb, MIR *mir);
600
601  /*
602   * @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the type of the vector.
603   * @param bb The basic block in which the MIR is from.
604   * @param mir The MIR whose opcode is kMirConstVector.
605   * @note vA: TypeSize
606   * @note vB: destination and source
607   * @note vC: source
608   */
609  void GenSubtractVector(BasicBlock *bb, MIR *mir);
610
611  /*
612   * @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the type of the vector.
613   * @param bb The basic block in which the MIR is from.
614   * @param mir The MIR whose opcode is kMirConstVector.
615   * @note vA: TypeSize
616   * @note vB: destination and source
617   * @note vC: immediate
618   */
619  void GenShiftLeftVector(BasicBlock *bb, MIR *mir);
620
621  /*
622   * @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to know the type of the vector.
623   * @param bb The basic block in which the MIR is from.
624   * @param mir The MIR whose opcode is kMirConstVector.
625   * @note vA: TypeSize
626   * @note vB: destination and source
627   * @note vC: immediate
628   */
629  void GenSignedShiftRightVector(BasicBlock *bb, MIR *mir);
630
631  /*
632   * @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA to know the type of the vector.
633   * @param bb The basic block in which the MIR is from..
634   * @param mir The MIR whose opcode is kMirConstVector.
635   * @note vA: TypeSize
636   * @note vB: destination and source
637   * @note vC: immediate
638   */
639  void GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir);
640
641  /*
642   * @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the type of the vector.
643   * @note vA: TypeSize
644   * @note vB: destination and source
645   * @note vC: source
646   */
647  void GenAndVector(BasicBlock *bb, MIR *mir);
648
649  /*
650   * @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the type of the vector.
651   * @param bb The basic block in which the MIR is from.
652   * @param mir The MIR whose opcode is kMirConstVector.
653   * @note vA: TypeSize
654   * @note vB: destination and source
655   * @note vC: source
656   */
657  void GenOrVector(BasicBlock *bb, MIR *mir);
658
659  /*
660   * @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the type of the vector.
661   * @param bb The basic block in which the MIR is from.
662   * @param mir The MIR whose opcode is kMirConstVector.
663   * @note vA: TypeSize
664   * @note vB: destination and source
665   * @note vC: source
666   */
667  void GenXorVector(BasicBlock *bb, MIR *mir);
668
669  /*
670   * @brief Reduce a 128-bit packed element into a single VR by taking lower bits
671   * @param bb The basic block in which the MIR is from.
672   * @param mir The MIR whose opcode is kMirConstVector.
673   * @details Instruction does a horizontal addition of the packed elements and then adds it to VR.
674   * @note vA: TypeSize
675   * @note vB: destination and source VR (not vector register)
676   * @note vC: source (vector register)
677   */
678  void GenAddReduceVector(BasicBlock *bb, MIR *mir);
679
680  /*
681   * @brief Extract a packed element into a single VR.
682   * @param bb The basic block in which the MIR is from.
683   * @param mir The MIR whose opcode is kMirConstVector.
684   * @note vA: TypeSize
685   * @note vB: destination VR (not vector register)
686   * @note vC: source (vector register)
687   * @note arg[0]: The index to use for extraction from vector register (which packed element).
688   */
689  void GenReduceVector(BasicBlock *bb, MIR *mir);
690
691  /*
692   * @brief Create a vector value, with all TypeSize values equal to vC
693   * @param bb The basic block in which the MIR is from.
694   * @param mir The MIR whose opcode is kMirConstVector.
695   * @note vA: TypeSize.
696   * @note vB: destination vector register.
697   * @note vC: source VR (not vector register).
698   */
699  void GenSetVector(BasicBlock *bb, MIR *mir);
700
701  /*
702   * @brief Generate code for a vector opcode.
703   * @param bb The basic block in which the MIR is from.
704   * @param mir The MIR whose opcode is a non-standard opcode.
705   */
706  void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
707
708  /*
709   * @brief Return the correct x86 opcode for the Dex operation
710   * @param op Dex opcode for the operation
711   * @param loc Register location of the operand
712   * @param is_high_op 'true' if this is an operation on the high word
713   * @param value Immediate value for the operation.  Used for byte variants
714   * @returns the correct x86 opcode to perform the operation
715   */
716  X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value);
717
718  /*
719   * @brief Return the correct x86 opcode for the Dex operation
720   * @param op Dex opcode for the operation
721   * @param dest location of the destination.  May be register or memory.
722   * @param rhs Location for the rhs of the operation.  May be in register or memory.
723   * @param is_high_op 'true' if this is an operation on the high word
724   * @returns the correct x86 opcode to perform the operation
725   * @note at most one location may refer to memory
726   */
727  X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
728                      bool is_high_op);
729
730  /*
731   * @brief Is this operation a no-op for this opcode and value
732   * @param op Dex opcode for the operation
733   * @param value Immediate value for the operation.
734   * @returns 'true' if the operation will have no effect
735   */
736  bool IsNoOp(Instruction::Code op, int32_t value);
737
738  /**
739   * @brief Calculate magic number and shift for a given divisor
740   * @param divisor divisor number for calculation
741   * @param magic hold calculated magic number
742   * @param shift hold calculated shift
743   */
744  void CalculateMagicAndShift(int divisor, int& magic, int& shift);
745
746  /*
747   * @brief Generate an integer div or rem operation.
748   * @param rl_dest Destination Location.
749   * @param rl_src1 Numerator Location.
750   * @param rl_src2 Divisor Location.
751   * @param is_div 'true' if this is a division, 'false' for a remainder.
752   * @param check_zero 'true' if an exception should be generated if the divisor is 0.
753   */
754  RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
755                        bool is_div, bool check_zero);
756
757  /*
758   * @brief Generate an integer div or rem operation by a literal.
759   * @param rl_dest Destination Location.
760   * @param rl_src Numerator Location.
761   * @param lit Divisor.
762   * @param is_div 'true' if this is a division, 'false' for a remainder.
763   */
764  RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div);
765
766  /*
767   * Generate code to implement long shift operations.
768   * @param opcode The DEX opcode to specify the shift type.
769   * @param rl_dest The destination.
770   * @param rl_src The value to be shifted.
771   * @param shift_amount How much to shift.
772   * @returns the RegLocation of the result.
773   */
774  RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
775                                RegLocation rl_src, int shift_amount);
776  /*
777   * Generate an imul of a register by a constant or a better sequence.
778   * @param dest Destination Register.
779   * @param src Source Register.
780   * @param val Constant multiplier.
781   */
782  void GenImulRegImm(RegStorage dest, RegStorage src, int val);
783
784  /*
785   * Generate an imul of a memory location by a constant or a better sequence.
786   * @param dest Destination Register.
787   * @param sreg Symbolic register.
788   * @param displacement Displacement on stack of Symbolic Register.
789   * @param val Constant multiplier.
790   */
791  void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val);
792
793  /*
794   * @brief Compare memory to immediate, and branch if condition true.
795   * @param cond The condition code that when true will branch to the target.
796   * @param temp_reg A temporary register that can be used if compare memory is not
797   * supported by the architecture.
798   * @param base_reg The register holding the base address.
799   * @param offset The offset from the base.
800   * @param check_value The immediate to compare to.
801   */
802  LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
803                         int offset, int check_value, LIR* target);
804
805  /*
806   * Can this operation be using core registers without temporaries?
807   * @param rl_lhs Left hand operand.
808   * @param rl_rhs Right hand operand.
809   * @returns 'true' if the operation can proceed without needing temporary regs.
810   */
811  bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs);
812
813  /**
814   * @brief Generates inline code for conversion of long to FP by using x87/
815   * @param rl_dest The destination of the FP.
816   * @param rl_src The source of the long.
817   * @param is_double 'true' if dealing with double, 'false' for float.
818   */
819  virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double);
820
821  /*
822   * @brief Perform MIR analysis before compiling method.
823   * @note Invokes Mir2LiR::Materialize after analysis.
824   */
825  void Materialize();
826
827  /*
828   * Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register
829   * without regard to data type.  In practice, this can result in UpdateLoc returning a
830   * location record for a Dalvik float value in a core register, and vis-versa.  For targets
831   * which can inexpensively move data between core and float registers, this can often be a win.
832   * However, for x86 this is generally not a win.  These variants of UpdateLoc()
833   * take a register class argument - and will return an in-register location record only if
834   * the value is live in a temp register of the correct class.  Additionally, if the value is in
835   * a temp register of the wrong register class, it will be clobbered.
836   */
837  RegLocation UpdateLocTyped(RegLocation loc, int reg_class);
838  RegLocation UpdateLocWideTyped(RegLocation loc, int reg_class);
839
840  /*
841   * @brief Analyze MIR before generating code, to prepare for the code generation.
842   */
843  void AnalyzeMIR();
844
845  /*
846   * @brief Analyze one basic block.
847   * @param bb Basic block to analyze.
848   */
849  void AnalyzeBB(BasicBlock * bb);
850
851  /*
852   * @brief Analyze one extended MIR instruction
853   * @param opcode MIR instruction opcode.
854   * @param bb Basic block containing instruction.
855   * @param mir Extended instruction to analyze.
856   */
857  void AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir);
858
859  /*
860   * @brief Analyze one MIR instruction
861   * @param opcode MIR instruction opcode.
862   * @param bb Basic block containing instruction.
863   * @param mir Instruction to analyze.
864   */
865  virtual void AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir);
866
867  /*
868   * @brief Analyze one MIR float/double instruction
869   * @param opcode MIR instruction opcode.
870   * @param bb Basic block containing instruction.
871   * @param mir Instruction to analyze.
872   */
873  void AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir);
874
875  /*
876   * @brief Analyze one use of a double operand.
877   * @param rl_use Double RegLocation for the operand.
878   */
879  void AnalyzeDoubleUse(RegLocation rl_use);
880
881  /*
882   * @brief Analyze one invoke-static MIR instruction
883   * @param opcode MIR instruction opcode.
884   * @param bb Basic block containing instruction.
885   * @param mir Instruction to analyze.
886   */
887  void AnalyzeInvokeStatic(int opcode, BasicBlock * bb, MIR *mir);
888
889  // Information derived from analysis of MIR
890
891  // The compiler temporary for the code address of the method.
892  CompilerTemp *base_of_code_;
893
894  // Have we decided to compute a ptr to code and store in temporary VR?
895  bool store_method_addr_;
896
897  // Have we used the stored method address?
898  bool store_method_addr_used_;
899
900  // Instructions to remove if we didn't use the stored method address.
901  LIR* setup_method_address_[2];
902
903  // Instructions needing patching with Method* values.
904  GrowableArray<LIR*> method_address_insns_;
905
906  // Instructions needing patching with Class Type* values.
907  GrowableArray<LIR*> class_type_address_insns_;
908
909  // Instructions needing patching with PC relative code addresses.
910  GrowableArray<LIR*> call_method_insns_;
911
912  // Prologue decrement of stack pointer.
913  LIR* stack_decrement_;
914
915  // Epilogue increment of stack pointer.
916  LIR* stack_increment_;
917
918  // The list of const vector literals.
919  LIR *const_vectors_;
920
921  /*
922   * @brief Search for a matching vector literal
923   * @param mir A kMirOpConst128b MIR instruction to match.
924   * @returns pointer to matching LIR constant, or nullptr if not found.
925   */
926  LIR *ScanVectorLiteral(MIR *mir);
927
928  /*
929   * @brief Add a constant vector literal
930   * @param mir A kMirOpConst128b MIR instruction to match.
931   */
932  LIR *AddVectorLiteral(MIR *mir);
933
934  InToRegStorageMapping in_to_reg_storage_mapping_;
935
936  bool WideGPRsAreAliases() OVERRIDE {
937    return cu_->target64;  // On 64b, we have 64b GPRs.
938  }
939  bool WideFPRsAreAliases() OVERRIDE {
940    return true;  // xmm registers have 64b views even on x86.
941  }
942
943 private:
944  // The number of vector registers [0..N] reserved by a call to ReserveVectorRegisters
945  int num_reserved_vector_regs_;
946};
947
948}  // namespace art
949
950#endif  // ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
951