codegen_x86.h revision 90969af6deb19b1dbe356d62fe68d8f5698d3d8f
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
18#define ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
19
20#include "dex/compiler_internals.h"
21#include "x86_lir.h"
22
23#include <map>
24
25namespace art {
26
27class X86Mir2Lir : public Mir2Lir {
28 protected:
29  class InToRegStorageMapper {
30   public:
31    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref) = 0;
32    virtual ~InToRegStorageMapper() {}
33  };
34
35  class InToRegStorageX86_64Mapper : public InToRegStorageMapper {
36   public:
37    explicit InToRegStorageX86_64Mapper(Mir2Lir* ml) : ml_(ml), cur_core_reg_(0), cur_fp_reg_(0) {}
38    virtual ~InToRegStorageX86_64Mapper() {}
39    virtual RegStorage GetNextReg(bool is_double_or_float, bool is_wide, bool is_ref);
40   protected:
41    Mir2Lir* ml_;
42   private:
43    int cur_core_reg_;
44    int cur_fp_reg_;
45  };
46
47  class InToRegStorageMapping {
48   public:
49    InToRegStorageMapping() : max_mapped_in_(0), is_there_stack_mapped_(false),
50    initialized_(false) {}
51    void Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper);
52    int GetMaxMappedIn() { return max_mapped_in_; }
53    bool IsThereStackMapped() { return is_there_stack_mapped_; }
54    RegStorage Get(int in_position);
55    bool IsInitialized() { return initialized_; }
56   private:
57    std::map<int, RegStorage> mapping_;
58    int max_mapped_in_;
59    bool is_there_stack_mapped_;
60    bool initialized_;
61  };
62
63 public:
64  X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
65
66  // Required for target - codegen helpers.
67  bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src,
68                          RegLocation rl_dest, int lit);
69  bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE;
70  LIR* CheckSuspendUsingLoad() OVERRIDE;
71  RegStorage LoadHelper(ThreadOffset<4> offset) OVERRIDE;
72  RegStorage LoadHelper(ThreadOffset<8> offset) OVERRIDE;
73  LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
74                    OpSize size, VolatileKind is_volatile) OVERRIDE;
75  LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale,
76                       OpSize size) OVERRIDE;
77  LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
78                           RegStorage r_dest, OpSize size) OVERRIDE;
79  LIR* LoadConstantNoClobber(RegStorage r_dest, int value);
80  LIR* LoadConstantWide(RegStorage r_dest, int64_t value);
81  LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
82                     OpSize size, VolatileKind is_volatile) OVERRIDE;
83  LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale,
84                        OpSize size) OVERRIDE;
85  LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement,
86                            RegStorage r_src, OpSize size) OVERRIDE;
87  void MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg);
88
89  // Required for target - register utilities.
90  RegStorage TargetReg(SpecialTargetRegister reg) OVERRIDE;
91  RegStorage TargetReg32(SpecialTargetRegister reg);
92  RegStorage TargetReg(SpecialTargetRegister symbolic_reg, WideKind wide_kind) OVERRIDE {
93    if (wide_kind == kWide) {
94      if (cu_->target64) {
95        return As64BitReg(TargetReg32(symbolic_reg));
96      } else {
97        // x86: construct a pair.
98        DCHECK((kArg0 <= symbolic_reg && symbolic_reg < kArg3) ||
99               (kFArg0 <= symbolic_reg && symbolic_reg < kFArg3) ||
100               (kRet0 == symbolic_reg));
101        return RegStorage::MakeRegPair(TargetReg32(symbolic_reg),
102                                 TargetReg32(static_cast<SpecialTargetRegister>(symbolic_reg + 1)));
103      }
104    } else if (wide_kind == kRef && cu_->target64) {
105      return As64BitReg(TargetReg32(symbolic_reg));
106    } else {
107      return TargetReg32(symbolic_reg);
108    }
109  }
110  RegStorage TargetPtrReg(SpecialTargetRegister symbolic_reg) OVERRIDE {
111    return TargetReg(symbolic_reg, cu_->target64 ? kWide : kNotWide);
112  }
113  RegStorage GetArgMappingToPhysicalReg(int arg_num);
114  RegStorage GetCoreArgMappingToPhysicalReg(int core_arg_num);
115  RegLocation GetReturnAlt();
116  RegLocation GetReturnWideAlt();
117  RegLocation LocCReturn();
118  RegLocation LocCReturnRef();
119  RegLocation LocCReturnDouble();
120  RegLocation LocCReturnFloat();
121  RegLocation LocCReturnWide();
122  ResourceMask GetRegMaskCommon(const RegStorage& reg) const OVERRIDE;
123  void AdjustSpillMask();
124  void ClobberCallerSave();
125  void FreeCallTemps();
126  void LockCallTemps();
127  void CompilerInitializeRegAlloc();
128  int VectorRegisterSize();
129  int NumReservableVectorRegisters(bool fp_used);
130
131  // Required for target - miscellaneous.
132  void AssembleLIR();
133  int AssignInsnOffsets();
134  void AssignOffsets();
135  AssemblerStatus AssembleInstructions(CodeOffset start_addr);
136  void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) OVERRIDE;
137  void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
138                                ResourceMask* use_mask, ResourceMask* def_mask) OVERRIDE;
139  const char* GetTargetInstFmt(int opcode);
140  const char* GetTargetInstName(int opcode);
141  std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr);
142  ResourceMask GetPCUseDefEncoding() const OVERRIDE;
143  uint64_t GetTargetInstFlags(int opcode);
144  size_t GetInsnSize(LIR* lir) OVERRIDE;
145  bool IsUnconditionalBranch(LIR* lir);
146
147  // Check support for volatile load/store of a given size.
148  bool SupportsVolatileLoadStore(OpSize size) OVERRIDE;
149  // Get the register class for load/store of a field.
150  RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE;
151
152  // Required for target - Dalvik-level generators.
153  void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
154                         RegLocation rl_src2);
155  void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index,
156                   RegLocation rl_dest, int scale);
157  void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
158                   RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark);
159  void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
160                         RegLocation rl_src1, RegLocation rl_shift);
161  void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
162                  RegLocation rl_src2);
163  void GenAddLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
164                  RegLocation rl_src2);
165  void GenAndLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
166                  RegLocation rl_src2);
167  void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
168                        RegLocation rl_src2);
169  void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
170                       RegLocation rl_src2);
171  void GenRemFP(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_double);
172  void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
173                RegLocation rl_src2);
174  void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src);
175  bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object);
176  bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long);
177  bool GenInlinedSqrt(CallInfo* info);
178  bool GenInlinedAbsFloat(CallInfo* info) OVERRIDE;
179  bool GenInlinedAbsDouble(CallInfo* info) OVERRIDE;
180  bool GenInlinedPeek(CallInfo* info, OpSize size);
181  bool GenInlinedPoke(CallInfo* info, OpSize size);
182  void GenNotLong(RegLocation rl_dest, RegLocation rl_src);
183  void GenNegLong(RegLocation rl_dest, RegLocation rl_src);
184  void GenOrLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
185                 RegLocation rl_src2);
186  void GenSubLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
187                  RegLocation rl_src2);
188  void GenXorLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
189                  RegLocation rl_src2);
190  void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
191                     RegLocation rl_src2, bool is_div);
192  // TODO: collapse reg_lo, reg_hi
193  RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div);
194  RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div);
195  void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
196  void GenDivZeroCheckWide(RegStorage reg);
197  void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset);
198  void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset);
199  void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method);
200  void GenExitSequence();
201  void GenSpecialExitSequence();
202  void GenFillArrayData(DexOffset table_offset, RegLocation rl_src);
203  void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double);
204  void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir);
205  void GenSelect(BasicBlock* bb, MIR* mir);
206  void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
207                        int32_t true_val, int32_t false_val, RegStorage rs_dest,
208                        int dest_reg_class) OVERRIDE;
209  // Optimized version for selection of 0 and 1.
210  void GenSelectConst01(RegStorage left_op, RegStorage right_op, ConditionCode code, bool true_val,
211                        RegStorage rs_dest);
212  bool GenMemBarrier(MemBarrierKind barrier_kind);
213  void GenMoveException(RegLocation rl_dest);
214  void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
215                                     int first_bit, int second_bit);
216  void GenNegDouble(RegLocation rl_dest, RegLocation rl_src);
217  void GenNegFloat(RegLocation rl_dest, RegLocation rl_src);
218  void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
219  void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
220  void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
221
222  /*
223   * @brief Generate a two address long operation with a constant value
224   * @param rl_dest location of result
225   * @param rl_src constant source operand
226   * @param op Opcode to be generated
227   * @return success or not
228   */
229  bool GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
230  /*
231   * @brief Generate a three address long operation with a constant value
232   * @param rl_dest location of result
233   * @param rl_src1 source operand
234   * @param rl_src2 constant source operand
235   * @param op Opcode to be generated
236   * @return success or not
237   */
238  bool GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
239                      Instruction::Code op);
240
241  /**
242   * @brief Generate a long arithmetic operation.
243   * @param rl_dest The destination.
244   * @param rl_src1 First operand.
245   * @param rl_src2 Second operand.
246   * @param op The DEX opcode for the operation.
247   * @param is_commutative The sources can be swapped if needed.
248   */
249  virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
250                            Instruction::Code op, bool is_commutative);
251
252  /**
253   * @brief Generate a two operand long arithmetic operation.
254   * @param rl_dest The destination.
255   * @param rl_src Second operand.
256   * @param op The DEX opcode for the operation.
257   */
258  void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
259
260  /**
261   * @brief Generate a long operation.
262   * @param rl_dest The destination.  Must be in a register
263   * @param rl_src The other operand.  May be in a register or in memory.
264   * @param op The DEX opcode for the operation.
265   */
266  virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op);
267
268  /**
269   * @brief Implement instanceof a final class with x86 specific code.
270   * @param use_declaring_class 'true' if we can use the class itself.
271   * @param type_idx Type index to use if use_declaring_class is 'false'.
272   * @param rl_dest Result to be set to 0 or 1.
273   * @param rl_src Object to be tested.
274   */
275  void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
276                          RegLocation rl_src);
277  /*
278   *
279   * @brief Implement Set up instanceof a class with x86 specific code.
280   * @param needs_access_check 'true' if we must check the access.
281   * @param type_known_final 'true' if the type is known to be a final class.
282   * @param type_known_abstract 'true' if the type is known to be an abstract class.
283   * @param use_declaring_class 'true' if the type can be loaded off the current Method*.
284   * @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
285   * @param type_idx Type index to use if use_declaring_class is 'false'.
286   * @param rl_dest Result to be set to 0 or 1.
287   * @param rl_src Object to be tested.
288   */
289  void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
290                                  bool type_known_abstract, bool use_declaring_class,
291                                  bool can_assume_type_is_in_dex_cache,
292                                  uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
293
294  void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
295                      RegLocation rl_src1, RegLocation rl_shift);
296
297  // Single operation generators.
298  LIR* OpUnconditionalBranch(LIR* target);
299  LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target);
300  LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target);
301  LIR* OpCondBranch(ConditionCode cc, LIR* target);
302  LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target);
303  LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src);
304  LIR* OpIT(ConditionCode cond, const char* guide);
305  void OpEndIT(LIR* it);
306  LIR* OpMem(OpKind op, RegStorage r_base, int disp);
307  LIR* OpPcRelLoad(RegStorage reg, LIR* target);
308  LIR* OpReg(OpKind op, RegStorage r_dest_src);
309  void OpRegCopy(RegStorage r_dest, RegStorage r_src);
310  LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src);
311  LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value);
312  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset);
313  LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value);
314  LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value);
315  LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2);
316  LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type);
317  LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type);
318  LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src);
319  LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value);
320  LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2);
321  LIR* OpTestSuspend(LIR* target);
322  LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) OVERRIDE;
323  LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) OVERRIDE;
324  LIR* OpVldm(RegStorage r_base, int count);
325  LIR* OpVstm(RegStorage r_base, int count);
326  void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset);
327  void OpRegCopyWide(RegStorage dest, RegStorage src);
328  void OpTlsCmp(ThreadOffset<4> offset, int val) OVERRIDE;
329  void OpTlsCmp(ThreadOffset<8> offset, int val) OVERRIDE;
330
331  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset);
332  void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset);
333  void SpillCoreRegs();
334  void UnSpillCoreRegs();
335  void UnSpillFPRegs();
336  void SpillFPRegs();
337  static const X86EncodingMap EncodingMap[kX86Last];
338  bool InexpensiveConstantInt(int32_t value);
339  bool InexpensiveConstantFloat(int32_t value);
340  bool InexpensiveConstantLong(int64_t value);
341  bool InexpensiveConstantDouble(int64_t value);
342
343  /*
344   * @brief Should try to optimize for two address instructions?
345   * @return true if we try to avoid generating three operand instructions.
346   */
347  virtual bool GenerateTwoOperandInstructions() const { return true; }
348
349  /*
350   * @brief x86 specific codegen for int operations.
351   * @param opcode Operation to perform.
352   * @param rl_dest Destination for the result.
353   * @param rl_lhs Left hand operand.
354   * @param rl_rhs Right hand operand.
355   */
356  void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs,
357                     RegLocation rl_rhs);
358
359  /*
360   * @brief Dump a RegLocation using printf
361   * @param loc Register location to dump
362   */
363  static void DumpRegLocation(RegLocation loc);
364
365  /*
366   * @brief Load the Method* of a dex method into the register.
367   * @param target_method The MethodReference of the method to be invoked.
368   * @param type How the method will be invoked.
369   * @param register that will contain the code address.
370   * @note register will be passed to TargetReg to get physical register.
371   */
372  void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
373                         SpecialTargetRegister symbolic_reg);
374
375  /*
376   * @brief Load the Class* of a Dex Class type into the register.
377   * @param type How the method will be invoked.
378   * @param register that will contain the code address.
379   * @note register will be passed to TargetReg to get physical register.
380   */
381  void LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg);
382
383  void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
384
385  int GenDalvikArgsNoRange(CallInfo* info, int call_state, LIR** pcrLabel,
386                           NextCallInsn next_call_insn,
387                           const MethodReference& target_method,
388                           uint32_t vtable_idx,
389                           uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
390                           bool skip_this);
391
392  int GenDalvikArgsRange(CallInfo* info, int call_state, LIR** pcrLabel,
393                         NextCallInsn next_call_insn,
394                         const MethodReference& target_method,
395                         uint32_t vtable_idx,
396                         uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
397                         bool skip_this);
398
399  /*
400   * @brief Generate a relative call to the method that will be patched at link time.
401   * @param target_method The MethodReference of the method to be invoked.
402   * @param type How the method will be invoked.
403   * @returns Call instruction
404   */
405  virtual LIR * CallWithLinkerFixup(const MethodReference& target_method, InvokeType type);
406
407  /*
408   * @brief Handle x86 specific literals
409   */
410  void InstallLiteralPools();
411
412  /*
413   * @brief Generate the debug_frame CFI information.
414   * @returns pointer to vector containing CFE information
415   */
416  static std::vector<uint8_t>* ReturnCommonCallFrameInformation();
417
418  /*
419   * @brief Generate the debug_frame FDE information.
420   * @returns pointer to vector containing CFE information
421   */
422  std::vector<uint8_t>* ReturnCallFrameInformation();
423
424 protected:
425  // Casting of RegStorage
426  RegStorage As32BitReg(RegStorage reg) {
427    DCHECK(!reg.IsPair());
428    if ((kFailOnSizeError || kReportSizeError) && !reg.Is64Bit()) {
429      if (kFailOnSizeError) {
430        LOG(FATAL) << "Expected 64b register " << reg.GetReg();
431      } else {
432        LOG(WARNING) << "Expected 64b register " << reg.GetReg();
433        return reg;
434      }
435    }
436    RegStorage ret_val = RegStorage(RegStorage::k32BitSolo,
437                                    reg.GetRawBits() & RegStorage::kRegTypeMask);
438    DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k32SoloStorageMask)
439                             ->GetReg().GetReg(),
440              ret_val.GetReg());
441    return ret_val;
442  }
443
444  RegStorage As64BitReg(RegStorage reg) {
445    DCHECK(!reg.IsPair());
446    if ((kFailOnSizeError || kReportSizeError) && !reg.Is32Bit()) {
447      if (kFailOnSizeError) {
448        LOG(FATAL) << "Expected 32b register " << reg.GetReg();
449      } else {
450        LOG(WARNING) << "Expected 32b register " << reg.GetReg();
451        return reg;
452      }
453    }
454    RegStorage ret_val = RegStorage(RegStorage::k64BitSolo,
455                                    reg.GetRawBits() & RegStorage::kRegTypeMask);
456    DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k64SoloStorageMask)
457                             ->GetReg().GetReg(),
458              ret_val.GetReg());
459    return ret_val;
460  }
461
462  size_t ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index,
463                     int32_t raw_base, int32_t displacement);
464  void CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg);
465  void EmitPrefix(const X86EncodingMap* entry,
466                  int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b);
467  void EmitOpcode(const X86EncodingMap* entry);
468  void EmitPrefixAndOpcode(const X86EncodingMap* entry,
469                           int32_t reg_r, int32_t reg_x, int32_t reg_b);
470  void EmitDisp(uint8_t base, int32_t disp);
471  void EmitModrmThread(uint8_t reg_or_opcode);
472  void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp);
473  void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale,
474                        int32_t disp);
475  void EmitImm(const X86EncodingMap* entry, int64_t imm);
476  void EmitNullary(const X86EncodingMap* entry);
477  void EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg);
478  void EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg);
479  void EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
480  void EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
481                   int32_t disp);
482  void EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_reg);
483  void EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, int32_t disp);
484  void EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base,
485                    int32_t raw_index, int scale, int32_t disp);
486  void EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
487                    int32_t disp, int32_t raw_reg);
488  void EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
489  void EmitArrayImm(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale,
490                    int32_t raw_disp, int32_t imm);
491  void EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp);
492  void EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2);
493  void EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t imm);
494  void EmitRegMemImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
495                     int32_t imm);
496  void EmitMemRegImm(const X86EncodingMap* entry, int32_t base, int32_t disp, int32_t raw_reg1,
497                     int32_t imm);
498  void EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
499  void EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm);
500  void EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm);
501  void EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm);
502  void EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl);
503  void EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_cl);
504  void EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm);
505  void EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc);
506  void EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t cc);
507  void EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t cc);
508  void EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp,
509                      int32_t cc);
510
511  void EmitJmp(const X86EncodingMap* entry, int32_t rel);
512  void EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc);
513  void EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp);
514  void EmitCallImmediate(const X86EncodingMap* entry, int32_t disp);
515  void EmitCallThread(const X86EncodingMap* entry, int32_t disp);
516  void EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table,
517                 int32_t raw_index, int scale, int32_t table_or_disp);
518  void EmitMacro(const X86EncodingMap* entry, int32_t raw_reg, int32_t offset);
519  void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir);
520  void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
521                                int64_t val, ConditionCode ccode);
522  void GenConstWide(RegLocation rl_dest, int64_t value);
523  void GenMultiplyVectorSignedByte(BasicBlock *bb, MIR *mir);
524  void GenShiftByteVector(BasicBlock *bb, MIR *mir);
525  void AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4);
526  void MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4);
527  void AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir);
528
529  static bool ProvidesFullMemoryBarrier(X86OpCode opcode);
530
531  /*
532   * @brief Ensure that a temporary register is byte addressable.
533   * @returns a temporary guarenteed to be byte addressable.
534   */
535  virtual RegStorage AllocateByteRegister();
536
537  /*
538   * @brief Use a wide temporary as a 128-bit register
539   * @returns a 128-bit temporary register.
540   */
541  virtual RegStorage Get128BitRegister(RegStorage reg);
542
543  /*
544   * @brief Check if a register is byte addressable.
545   * @returns true if a register is byte addressable.
546   */
547  bool IsByteRegister(RegStorage reg);
548  bool GenInlinedArrayCopyCharArray(CallInfo* info) OVERRIDE;
549
550  /*
551   * @brief generate inline code for fast case of Strng.indexOf.
552   * @param info Call parameters
553   * @param zero_based 'true' if the index into the string is 0.
554   * @returns 'true' if the call was inlined, 'false' if a regular call needs to be
555   * generated.
556   */
557  bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
558
559  /**
560   * @brief Reserve a fixed number of vector  registers from the register pool
561   * @details The mir->dalvikInsn.vA specifies an N such that vector registers
562   * [0..N-1] are removed from the temporary pool. The caller must call
563   * ReturnVectorRegisters before calling ReserveVectorRegisters again.
564   * Also sets the num_reserved_vector_regs_ to the specified value
565   * @param mir whose vA specifies the number of registers to reserve
566   */
567  void ReserveVectorRegisters(MIR* mir);
568
569  /**
570   * @brief Return all the reserved vector registers to the temp pool
571   * @details Returns [0..num_reserved_vector_regs_]
572   */
573  void ReturnVectorRegisters();
574
575  /*
576   * @brief Load 128 bit constant into vector register.
577   * @param bb The basic block in which the MIR is from.
578   * @param mir The MIR whose opcode is kMirConstVector
579   * @note vA is the TypeSize for the register.
580   * @note vB is the destination XMM register. arg[0..3] are 32 bit constant values.
581   */
582  void GenConst128(BasicBlock* bb, MIR* mir);
583
584  /*
585   * @brief MIR to move a vectorized register to another.
586   * @param bb The basic block in which the MIR is from.
587   * @param mir The MIR whose opcode is kMirConstVector.
588   * @note vA: TypeSize
589   * @note vB: destination
590   * @note vC: source
591   */
592  void GenMoveVector(BasicBlock *bb, MIR *mir);
593
594  /*
595   * @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know the type of the vector.
596   * @param bb The basic block in which the MIR is from.
597   * @param mir The MIR whose opcode is kMirConstVector.
598   * @note vA: TypeSize
599   * @note vB: destination and source
600   * @note vC: source
601   */
602  void GenMultiplyVector(BasicBlock *bb, MIR *mir);
603
604  /*
605   * @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the type of the vector.
606   * @param bb The basic block in which the MIR is from.
607   * @param mir The MIR whose opcode is kMirConstVector.
608   * @note vA: TypeSize
609   * @note vB: destination and source
610   * @note vC: source
611   */
612  void GenAddVector(BasicBlock *bb, MIR *mir);
613
614  /*
615   * @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the type of the vector.
616   * @param bb The basic block in which the MIR is from.
617   * @param mir The MIR whose opcode is kMirConstVector.
618   * @note vA: TypeSize
619   * @note vB: destination and source
620   * @note vC: source
621   */
622  void GenSubtractVector(BasicBlock *bb, MIR *mir);
623
624  /*
625   * @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the type of the vector.
626   * @param bb The basic block in which the MIR is from.
627   * @param mir The MIR whose opcode is kMirConstVector.
628   * @note vA: TypeSize
629   * @note vB: destination and source
630   * @note vC: immediate
631   */
632  void GenShiftLeftVector(BasicBlock *bb, MIR *mir);
633
634  /*
635   * @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to know the type of the vector.
636   * @param bb The basic block in which the MIR is from.
637   * @param mir The MIR whose opcode is kMirConstVector.
638   * @note vA: TypeSize
639   * @note vB: destination and source
640   * @note vC: immediate
641   */
642  void GenSignedShiftRightVector(BasicBlock *bb, MIR *mir);
643
644  /*
645   * @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA to know the type of the vector.
646   * @param bb The basic block in which the MIR is from..
647   * @param mir The MIR whose opcode is kMirConstVector.
648   * @note vA: TypeSize
649   * @note vB: destination and source
650   * @note vC: immediate
651   */
652  void GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir);
653
654  /*
655   * @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the type of the vector.
656   * @note vA: TypeSize
657   * @note vB: destination and source
658   * @note vC: source
659   */
660  void GenAndVector(BasicBlock *bb, MIR *mir);
661
662  /*
663   * @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the type of the vector.
664   * @param bb The basic block in which the MIR is from.
665   * @param mir The MIR whose opcode is kMirConstVector.
666   * @note vA: TypeSize
667   * @note vB: destination and source
668   * @note vC: source
669   */
670  void GenOrVector(BasicBlock *bb, MIR *mir);
671
672  /*
673   * @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the type of the vector.
674   * @param bb The basic block in which the MIR is from.
675   * @param mir The MIR whose opcode is kMirConstVector.
676   * @note vA: TypeSize
677   * @note vB: destination and source
678   * @note vC: source
679   */
680  void GenXorVector(BasicBlock *bb, MIR *mir);
681
682  /*
683   * @brief Reduce a 128-bit packed element into a single VR by taking lower bits
684   * @param bb The basic block in which the MIR is from.
685   * @param mir The MIR whose opcode is kMirConstVector.
686   * @details Instruction does a horizontal addition of the packed elements and then adds it to VR.
687   * @note vA: TypeSize
688   * @note vB: destination and source VR (not vector register)
689   * @note vC: source (vector register)
690   */
691  void GenAddReduceVector(BasicBlock *bb, MIR *mir);
692
693  /*
694   * @brief Extract a packed element into a single VR.
695   * @param bb The basic block in which the MIR is from.
696   * @param mir The MIR whose opcode is kMirConstVector.
697   * @note vA: TypeSize
698   * @note vB: destination VR (not vector register)
699   * @note vC: source (vector register)
700   * @note arg[0]: The index to use for extraction from vector register (which packed element).
701   */
702  void GenReduceVector(BasicBlock *bb, MIR *mir);
703
704  /*
705   * @brief Create a vector value, with all TypeSize values equal to vC
706   * @param bb The basic block in which the MIR is from.
707   * @param mir The MIR whose opcode is kMirConstVector.
708   * @note vA: TypeSize.
709   * @note vB: destination vector register.
710   * @note vC: source VR (not vector register).
711   */
712  void GenSetVector(BasicBlock *bb, MIR *mir);
713
714  /*
715   * @brief Generate code for a vector opcode.
716   * @param bb The basic block in which the MIR is from.
717   * @param mir The MIR whose opcode is a non-standard opcode.
718   */
719  void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
720
721  /*
722   * @brief Return the correct x86 opcode for the Dex operation
723   * @param op Dex opcode for the operation
724   * @param loc Register location of the operand
725   * @param is_high_op 'true' if this is an operation on the high word
726   * @param value Immediate value for the operation.  Used for byte variants
727   * @returns the correct x86 opcode to perform the operation
728   */
729  X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value);
730
731  /*
732   * @brief Return the correct x86 opcode for the Dex operation
733   * @param op Dex opcode for the operation
734   * @param dest location of the destination.  May be register or memory.
735   * @param rhs Location for the rhs of the operation.  May be in register or memory.
736   * @param is_high_op 'true' if this is an operation on the high word
737   * @returns the correct x86 opcode to perform the operation
738   * @note at most one location may refer to memory
739   */
740  X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
741                      bool is_high_op);
742
743  /*
744   * @brief Is this operation a no-op for this opcode and value
745   * @param op Dex opcode for the operation
746   * @param value Immediate value for the operation.
747   * @returns 'true' if the operation will have no effect
748   */
749  bool IsNoOp(Instruction::Code op, int32_t value);
750
751  /**
752   * @brief Calculate magic number and shift for a given divisor
753   * @param divisor divisor number for calculation
754   * @param magic hold calculated magic number
755   * @param shift hold calculated shift
756   */
757  void CalculateMagicAndShift(int divisor, int& magic, int& shift);
758
759  /*
760   * @brief Generate an integer div or rem operation.
761   * @param rl_dest Destination Location.
762   * @param rl_src1 Numerator Location.
763   * @param rl_src2 Divisor Location.
764   * @param is_div 'true' if this is a division, 'false' for a remainder.
765   * @param check_zero 'true' if an exception should be generated if the divisor is 0.
766   */
767  RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2,
768                        bool is_div, bool check_zero);
769
770  /*
771   * @brief Generate an integer div or rem operation by a literal.
772   * @param rl_dest Destination Location.
773   * @param rl_src Numerator Location.
774   * @param lit Divisor.
775   * @param is_div 'true' if this is a division, 'false' for a remainder.
776   */
777  RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div);
778
779  /*
780   * Generate code to implement long shift operations.
781   * @param opcode The DEX opcode to specify the shift type.
782   * @param rl_dest The destination.
783   * @param rl_src The value to be shifted.
784   * @param shift_amount How much to shift.
785   * @returns the RegLocation of the result.
786   */
787  RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
788                                RegLocation rl_src, int shift_amount);
789  /*
790   * Generate an imul of a register by a constant or a better sequence.
791   * @param dest Destination Register.
792   * @param src Source Register.
793   * @param val Constant multiplier.
794   */
795  void GenImulRegImm(RegStorage dest, RegStorage src, int val);
796
797  /*
798   * Generate an imul of a memory location by a constant or a better sequence.
799   * @param dest Destination Register.
800   * @param sreg Symbolic register.
801   * @param displacement Displacement on stack of Symbolic Register.
802   * @param val Constant multiplier.
803   */
804  void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val);
805
806  /*
807   * @brief Compare memory to immediate, and branch if condition true.
808   * @param cond The condition code that when true will branch to the target.
809   * @param temp_reg A temporary register that can be used if compare memory is not
810   * supported by the architecture.
811   * @param base_reg The register holding the base address.
812   * @param offset The offset from the base.
813   * @param check_value The immediate to compare to.
814   */
815  LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
816                         int offset, int check_value, LIR* target);
817
818  /*
819   * Can this operation be using core registers without temporaries?
820   * @param rl_lhs Left hand operand.
821   * @param rl_rhs Right hand operand.
822   * @returns 'true' if the operation can proceed without needing temporary regs.
823   */
824  bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs);
825
826  /**
827   * @brief Generates inline code for conversion of long to FP by using x87/
828   * @param rl_dest The destination of the FP.
829   * @param rl_src The source of the long.
830   * @param is_double 'true' if dealing with double, 'false' for float.
831   */
832  virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double);
833
834  /*
835   * @brief Perform MIR analysis before compiling method.
836   * @note Invokes Mir2LiR::Materialize after analysis.
837   */
838  void Materialize();
839
840  /*
841   * Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register
842   * without regard to data type.  In practice, this can result in UpdateLoc returning a
843   * location record for a Dalvik float value in a core register, and vis-versa.  For targets
844   * which can inexpensively move data between core and float registers, this can often be a win.
845   * However, for x86 this is generally not a win.  These variants of UpdateLoc()
846   * take a register class argument - and will return an in-register location record only if
847   * the value is live in a temp register of the correct class.  Additionally, if the value is in
848   * a temp register of the wrong register class, it will be clobbered.
849   */
850  RegLocation UpdateLocTyped(RegLocation loc, int reg_class);
851  RegLocation UpdateLocWideTyped(RegLocation loc, int reg_class);
852
853  /*
854   * @brief Analyze MIR before generating code, to prepare for the code generation.
855   */
856  void AnalyzeMIR();
857
858  /*
859   * @brief Analyze one basic block.
860   * @param bb Basic block to analyze.
861   */
862  void AnalyzeBB(BasicBlock * bb);
863
864  /*
865   * @brief Analyze one extended MIR instruction
866   * @param opcode MIR instruction opcode.
867   * @param bb Basic block containing instruction.
868   * @param mir Extended instruction to analyze.
869   */
870  void AnalyzeExtendedMIR(int opcode, BasicBlock * bb, MIR *mir);
871
872  /*
873   * @brief Analyze one MIR instruction
874   * @param opcode MIR instruction opcode.
875   * @param bb Basic block containing instruction.
876   * @param mir Instruction to analyze.
877   */
878  virtual void AnalyzeMIR(int opcode, BasicBlock * bb, MIR *mir);
879
880  /*
881   * @brief Analyze one MIR float/double instruction
882   * @param opcode MIR instruction opcode.
883   * @param bb Basic block containing instruction.
884   * @param mir Instruction to analyze.
885   */
886  void AnalyzeFPInstruction(int opcode, BasicBlock * bb, MIR *mir);
887
888  /*
889   * @brief Analyze one use of a double operand.
890   * @param rl_use Double RegLocation for the operand.
891   */
892  void AnalyzeDoubleUse(RegLocation rl_use);
893
894  /*
895   * @brief Analyze one invoke-static MIR instruction
896   * @param opcode MIR instruction opcode.
897   * @param bb Basic block containing instruction.
898   * @param mir Instruction to analyze.
899   */
900  void AnalyzeInvokeStatic(int opcode, BasicBlock * bb, MIR *mir);
901
902  // Information derived from analysis of MIR
903
904  // The compiler temporary for the code address of the method.
905  CompilerTemp *base_of_code_;
906
907  // Have we decided to compute a ptr to code and store in temporary VR?
908  bool store_method_addr_;
909
910  // Have we used the stored method address?
911  bool store_method_addr_used_;
912
913  // Instructions to remove if we didn't use the stored method address.
914  LIR* setup_method_address_[2];
915
916  // Instructions needing patching with Method* values.
917  GrowableArray<LIR*> method_address_insns_;
918
919  // Instructions needing patching with Class Type* values.
920  GrowableArray<LIR*> class_type_address_insns_;
921
922  // Instructions needing patching with PC relative code addresses.
923  GrowableArray<LIR*> call_method_insns_;
924
925  // Prologue decrement of stack pointer.
926  LIR* stack_decrement_;
927
928  // Epilogue increment of stack pointer.
929  LIR* stack_increment_;
930
931  // The list of const vector literals.
932  LIR *const_vectors_;
933
934  /*
935   * @brief Search for a matching vector literal
936   * @param mir A kMirOpConst128b MIR instruction to match.
937   * @returns pointer to matching LIR constant, or nullptr if not found.
938   */
939  LIR *ScanVectorLiteral(MIR *mir);
940
941  /*
942   * @brief Add a constant vector literal
943   * @param mir A kMirOpConst128b MIR instruction to match.
944   */
945  LIR *AddVectorLiteral(MIR *mir);
946
947  InToRegStorageMapping in_to_reg_storage_mapping_;
948
949  bool WideGPRsAreAliases() OVERRIDE {
950    return cu_->target64;  // On 64b, we have 64b GPRs.
951  }
952  bool WideFPRsAreAliases() OVERRIDE {
953    return true;  // xmm registers have 64b views even on x86.
954  }
955
956 private:
957  // The number of vector registers [0..N] reserved by a call to ReserveVectorRegisters
958  int num_reserved_vector_regs_;
959};
960
961}  // namespace art
962
963#endif  // ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_
964