int_x86.cc revision 08df4b3da75366e5db37e696eaa7e855cba01deb
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code, RegStorage reg1, RegStorage base,
30                                int offset, ThrowKind kind) {
31  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32                    current_dalvik_offset_, reg1.GetReg(), base.GetReg(), offset);
33  OpRegMem(kOpCmp, reg1, base, offset);
34  LIR* branch = OpCondBranch(c_code, tgt);
35  // Remember branch target - will process later
36  throw_launchpads_.Insert(tgt);
37  return branch;
38}
39
40/*
41 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code, RegStorage base, int offset,
44                                  int check_value, ThrowKind kind) {
45  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46                    current_dalvik_offset_, base.GetReg(), check_value, 0);
47  NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base.GetReg(), offset, check_value);
48  LIR* branch = OpCondBranch(c_code, tgt);
49  // Remember branch target - will process later
50  throw_launchpads_.Insert(tgt);
51  return branch;
52}
53
54/*
55 * Compare two 64-bit values
56 *    x = y     return  0
57 *    x < y     return -1
58 *    x > y     return  1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
61                            RegLocation rl_src2) {
62  FlushAllRegs();
63  LockCallTemps();  // Prepare for explicit register usage
64  RegStorage r_tmp1(RegStorage::k64BitPair, r0, r1);
65  RegStorage r_tmp2(RegStorage::k64BitPair, r2, r3);
66  LoadValueDirectWideFixed(rl_src1, r_tmp1);
67  LoadValueDirectWideFixed(rl_src2, r_tmp2);
68  // Compute (r1:r0) = (r1:r0) - (r3:r2)
69  OpRegReg(kOpSub, rs_r0, rs_r2);  // r0 = r0 - r2
70  OpRegReg(kOpSbc, rs_r1, rs_r3);  // r1 = r1 - r3 - CF
71  NewLIR2(kX86Set8R, r2, kX86CondL);  // r2 = (r1:r0) < (r3:r2) ? 1 : 0
72  NewLIR2(kX86Movzx8RR, r2, r2);
73  OpReg(kOpNeg, rs_r2);         // r2 = -r2
74  OpRegReg(kOpOr, rs_r0, rs_r1);   // r0 = high | low - sets ZF
75  NewLIR2(kX86Set8R, r0, kX86CondNz);  // r0 = (r1:r0) != (r3:r2) ? 1 : 0
76  NewLIR2(kX86Movzx8RR, r0, r0);
77  OpRegReg(kOpOr, rs_r0, rs_r2);   // r0 = r0 | r2
78  RegLocation rl_result = LocCReturn();
79  StoreValue(rl_dest, rl_result);
80}
81
82X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
83  switch (cond) {
84    case kCondEq: return kX86CondEq;
85    case kCondNe: return kX86CondNe;
86    case kCondCs: return kX86CondC;
87    case kCondCc: return kX86CondNc;
88    case kCondUlt: return kX86CondC;
89    case kCondUge: return kX86CondNc;
90    case kCondMi: return kX86CondS;
91    case kCondPl: return kX86CondNs;
92    case kCondVs: return kX86CondO;
93    case kCondVc: return kX86CondNo;
94    case kCondHi: return kX86CondA;
95    case kCondLs: return kX86CondBe;
96    case kCondGe: return kX86CondGe;
97    case kCondLt: return kX86CondL;
98    case kCondGt: return kX86CondG;
99    case kCondLe: return kX86CondLe;
100    case kCondAl:
101    case kCondNv: LOG(FATAL) << "Should not reach here";
102  }
103  return kX86CondO;
104}
105
106LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
107  NewLIR2(kX86Cmp32RR, src1.GetReg(), src2.GetReg());
108  X86ConditionCode cc = X86ConditionEncoding(cond);
109  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
110                        cc);
111  branch->target = target;
112  return branch;
113}
114
115LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg,
116                                int check_value, LIR* target) {
117  if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
118    // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
119    NewLIR2(kX86Test32RR, reg.GetReg(), reg.GetReg());
120  } else {
121    NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg.GetReg(), check_value);
122  }
123  X86ConditionCode cc = X86ConditionEncoding(cond);
124  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
125  branch->target = target;
126  return branch;
127}
128
129LIR* X86Mir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
130  // If src or dest is a pair, we'll be using low reg.
131  if (r_dest.IsPair()) {
132    r_dest = r_dest.GetLow();
133  }
134  if (r_src.IsPair()) {
135    r_src = r_src.GetLow();
136  }
137  if (X86_FPREG(r_dest.GetReg()) || X86_FPREG(r_src.GetReg()))
138    return OpFpRegCopy(r_dest, r_src);
139  LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
140                    r_dest.GetReg(), r_src.GetReg());
141  if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
142    res->flags.is_nop = true;
143  }
144  return res;
145}
146
147LIR* X86Mir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
148  LIR *res = OpRegCopyNoInsert(r_dest, r_src);
149  AppendLIR(res);
150  return res;
151}
152
153void X86Mir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
154  // FIXME: handle k64BitSolo when we start using them.
155  DCHECK(r_dest.IsPair());
156  DCHECK(r_src.IsPair());
157  bool dest_fp = X86_FPREG(r_dest.GetLowReg());
158  bool src_fp = X86_FPREG(r_src.GetLowReg());
159  if (dest_fp) {
160    if (src_fp) {
161      // TODO: we ought to handle this case here - reserve OpRegCopy for 32-bit copies.
162      OpRegCopy(RegStorage::Solo64(S2d(r_dest.GetLowReg(), r_dest.GetHighReg())),
163                RegStorage::Solo64(S2d(r_src.GetLowReg(), r_src.GetHighReg())));
164    } else {
165      // TODO: Prevent this from happening in the code. The result is often
166      // unused or could have been loaded more easily from memory.
167      NewLIR2(kX86MovdxrRR, r_dest.GetLowReg(), r_src.GetLowReg());
168      RegStorage r_tmp = AllocTempDouble();
169      NewLIR2(kX86MovdxrRR, r_tmp.GetLowReg(), r_src.GetHighReg());
170      NewLIR2(kX86PunpckldqRR, r_dest.GetLowReg(), r_tmp.GetLowReg());
171      FreeTemp(r_tmp);
172    }
173  } else {
174    if (src_fp) {
175      NewLIR2(kX86MovdrxRR, r_dest.GetLowReg(), r_src.GetLowReg());
176      NewLIR2(kX86PsrlqRI, r_src.GetLowReg(), 32);
177      NewLIR2(kX86MovdrxRR, r_dest.GetHighReg(), r_src.GetLowReg());
178    } else {
179      // Handle overlap
180      if (r_src.GetHighReg() == r_dest.GetLowReg() && r_src.GetLowReg() == r_dest.GetHighReg()) {
181        // Deal with cycles.
182        RegStorage temp_reg = AllocTemp();
183        OpRegCopy(temp_reg, r_dest.GetHigh());
184        OpRegCopy(r_dest.GetHigh(), r_dest.GetLow());
185        OpRegCopy(r_dest.GetLow(), temp_reg);
186        FreeTemp(temp_reg);
187      } else if (r_src.GetHighReg() == r_dest.GetLowReg()) {
188        OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
189        OpRegCopy(r_dest.GetLow(), r_src.GetLow());
190      } else {
191        OpRegCopy(r_dest.GetLow(), r_src.GetLow());
192        OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
193      }
194    }
195  }
196}
197
198void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
199  RegLocation rl_result;
200  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
201  RegLocation rl_dest = mir_graph_->GetDest(mir);
202  rl_src = LoadValue(rl_src, kCoreReg);
203  ConditionCode ccode = mir->meta.ccode;
204
205  // The kMirOpSelect has two variants, one for constants and one for moves.
206  const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
207
208  if (is_constant_case) {
209    int true_val = mir->dalvikInsn.vB;
210    int false_val = mir->dalvikInsn.vC;
211    rl_result = EvalLoc(rl_dest, kCoreReg, true);
212
213    /*
214     * For ccode == kCondEq:
215     *
216     * 1) When the true case is zero and result_reg is not same as src_reg:
217     *     xor result_reg, result_reg
218     *     cmp $0, src_reg
219     *     mov t1, $false_case
220     *     cmovnz result_reg, t1
221     * 2) When the false case is zero and result_reg is not same as src_reg:
222     *     xor result_reg, result_reg
223     *     cmp $0, src_reg
224     *     mov t1, $true_case
225     *     cmovz result_reg, t1
226     * 3) All other cases (we do compare first to set eflags):
227     *     cmp $0, src_reg
228     *     mov result_reg, $false_case
229     *     mov t1, $true_case
230     *     cmovz result_reg, t1
231     */
232    const bool result_reg_same_as_src =
233        (rl_src.location == kLocPhysReg && rl_src.reg.GetReg() == rl_result.reg.GetReg());
234    const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
235    const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
236    const bool catch_all_case = !(true_zero_case || false_zero_case);
237
238    if (true_zero_case || false_zero_case) {
239      OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
240    }
241
242    if (true_zero_case || false_zero_case || catch_all_case) {
243      OpRegImm(kOpCmp, rl_src.reg, 0);
244    }
245
246    if (catch_all_case) {
247      OpRegImm(kOpMov, rl_result.reg, false_val);
248    }
249
250    if (true_zero_case || false_zero_case || catch_all_case) {
251      ConditionCode cc = true_zero_case ? NegateComparison(ccode) : ccode;
252      int immediateForTemp = true_zero_case ? false_val : true_val;
253      RegStorage temp1_reg = AllocTemp();
254      OpRegImm(kOpMov, temp1_reg, immediateForTemp);
255
256      OpCondRegReg(kOpCmov, cc, rl_result.reg, temp1_reg);
257
258      FreeTemp(temp1_reg);
259    }
260  } else {
261    RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
262    RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
263    rl_true = LoadValue(rl_true, kCoreReg);
264    rl_false = LoadValue(rl_false, kCoreReg);
265    rl_result = EvalLoc(rl_dest, kCoreReg, true);
266
267    /*
268     * For ccode == kCondEq:
269     *
270     * 1) When true case is already in place:
271     *     cmp $0, src_reg
272     *     cmovnz result_reg, false_reg
273     * 2) When false case is already in place:
274     *     cmp $0, src_reg
275     *     cmovz result_reg, true_reg
276     * 3) When neither cases are in place:
277     *     cmp $0, src_reg
278     *     mov result_reg, false_reg
279     *     cmovz result_reg, true_reg
280     */
281
282    // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
283    OpRegImm(kOpCmp, rl_src.reg, 0);
284
285    if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
286      OpCondRegReg(kOpCmov, NegateComparison(ccode), rl_result.reg, rl_false.reg);
287    } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
288      OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
289    } else {
290      OpRegCopy(rl_result.reg, rl_false.reg);
291      OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
292    }
293  }
294
295  StoreValue(rl_dest, rl_result);
296}
297
298void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
299  LIR* taken = &block_label_list_[bb->taken];
300  RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
301  RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
302  ConditionCode ccode = mir->meta.ccode;
303
304  if (rl_src1.is_const) {
305    std::swap(rl_src1, rl_src2);
306    ccode = FlipComparisonOrder(ccode);
307  }
308  if (rl_src2.is_const) {
309    // Do special compare/branch against simple const operand
310    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
311    GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
312    return;
313  }
314
315  FlushAllRegs();
316  LockCallTemps();  // Prepare for explicit register usage
317  RegStorage r_tmp1(RegStorage::k64BitPair, r0, r1);
318  RegStorage r_tmp2(RegStorage::k64BitPair, r2, r3);
319  LoadValueDirectWideFixed(rl_src1, r_tmp1);
320  LoadValueDirectWideFixed(rl_src2, r_tmp2);
321  // Swap operands and condition code to prevent use of zero flag.
322  if (ccode == kCondLe || ccode == kCondGt) {
323    // Compute (r3:r2) = (r3:r2) - (r1:r0)
324    OpRegReg(kOpSub, rs_r2, rs_r0);  // r2 = r2 - r0
325    OpRegReg(kOpSbc, rs_r3, rs_r1);  // r3 = r3 - r1 - CF
326  } else {
327    // Compute (r1:r0) = (r1:r0) - (r3:r2)
328    OpRegReg(kOpSub, rs_r0, rs_r2);  // r0 = r0 - r2
329    OpRegReg(kOpSbc, rs_r1, rs_r3);  // r1 = r1 - r3 - CF
330  }
331  switch (ccode) {
332    case kCondEq:
333    case kCondNe:
334      OpRegReg(kOpOr, rs_r0, rs_r1);  // r0 = r0 | r1
335      break;
336    case kCondLe:
337      ccode = kCondGe;
338      break;
339    case kCondGt:
340      ccode = kCondLt;
341      break;
342    case kCondLt:
343    case kCondGe:
344      break;
345    default:
346      LOG(FATAL) << "Unexpected ccode: " << ccode;
347  }
348  OpCondBranch(ccode, taken);
349}
350
351void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
352                                          int64_t val, ConditionCode ccode) {
353  int32_t val_lo = Low32Bits(val);
354  int32_t val_hi = High32Bits(val);
355  LIR* taken = &block_label_list_[bb->taken];
356  LIR* not_taken = &block_label_list_[bb->fall_through];
357  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
358  RegStorage low_reg = rl_src1.reg.GetLow();
359  RegStorage high_reg = rl_src1.reg.GetHigh();
360
361  if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
362    RegStorage t_reg = AllocTemp();
363    OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
364    FreeTemp(t_reg);
365    OpCondBranch(ccode, taken);
366    return;
367  }
368
369  OpRegImm(kOpCmp, high_reg, val_hi);
370  switch (ccode) {
371    case kCondEq:
372    case kCondNe:
373      OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
374      break;
375    case kCondLt:
376      OpCondBranch(kCondLt, taken);
377      OpCondBranch(kCondGt, not_taken);
378      ccode = kCondUlt;
379      break;
380    case kCondLe:
381      OpCondBranch(kCondLt, taken);
382      OpCondBranch(kCondGt, not_taken);
383      ccode = kCondLs;
384      break;
385    case kCondGt:
386      OpCondBranch(kCondGt, taken);
387      OpCondBranch(kCondLt, not_taken);
388      ccode = kCondHi;
389      break;
390    case kCondGe:
391      OpCondBranch(kCondGt, taken);
392      OpCondBranch(kCondLt, not_taken);
393      ccode = kCondUge;
394      break;
395    default:
396      LOG(FATAL) << "Unexpected ccode: " << ccode;
397  }
398  OpCmpImmBranch(ccode, low_reg, val_lo, taken);
399}
400
401void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
402  // It does not make sense to calculate magic and shift for zero divisor.
403  DCHECK_NE(divisor, 0);
404
405  /* According to H.S.Warren's Hacker's Delight Chapter 10 and
406   * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
407   * The magic number M and shift S can be calculated in the following way:
408   * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
409   * where divisor(d) >=2.
410   * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
411   * where divisor(d) <= -2.
412   * Thus nc can be calculated like:
413   * nc = 2^31 + 2^31 % d - 1, where d >= 2
414   * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
415   *
416   * So the shift p is the smallest p satisfying
417   * 2^p > nc * (d - 2^p % d), where d >= 2
418   * 2^p > nc * (d + 2^p % d), where d <= -2.
419   *
420   * the magic number M is calcuated by
421   * M = (2^p + d - 2^p % d) / d, where d >= 2
422   * M = (2^p - d - 2^p % d) / d, where d <= -2.
423   *
424   * Notice that p is always bigger than or equal to 32, so we just return 32-p as
425   * the shift number S.
426   */
427
428  int32_t p = 31;
429  const uint32_t two31 = 0x80000000U;
430
431  // Initialize the computations.
432  uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
433  uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
434  uint32_t abs_nc = tmp - 1 - tmp % abs_d;
435  uint32_t quotient1 = two31 / abs_nc;
436  uint32_t remainder1 = two31 % abs_nc;
437  uint32_t quotient2 = two31 / abs_d;
438  uint32_t remainder2 = two31 % abs_d;
439
440  /*
441   * To avoid handling both positive and negative divisor, Hacker's Delight
442   * introduces a method to handle these 2 cases together to avoid duplication.
443   */
444  uint32_t delta;
445  do {
446    p++;
447    quotient1 = 2 * quotient1;
448    remainder1 = 2 * remainder1;
449    if (remainder1 >= abs_nc) {
450      quotient1++;
451      remainder1 = remainder1 - abs_nc;
452    }
453    quotient2 = 2 * quotient2;
454    remainder2 = 2 * remainder2;
455    if (remainder2 >= abs_d) {
456      quotient2++;
457      remainder2 = remainder2 - abs_d;
458    }
459    delta = abs_d - remainder2;
460  } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
461
462  magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
463  shift = p - 32;
464}
465
466RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div) {
467  LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
468  return rl_dest;
469}
470
471RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
472                                     int imm, bool is_div) {
473  // Use a multiply (and fixup) to perform an int div/rem by a constant.
474
475  // We have to use fixed registers, so flush all the temps.
476  FlushAllRegs();
477  LockCallTemps();  // Prepare for explicit register usage.
478
479  // Assume that the result will be in EDX.
480  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, rs_r2,
481                           INVALID_SREG, INVALID_SREG};
482
483  // handle div/rem by 1 special case.
484  if (imm == 1) {
485    if (is_div) {
486      // x / 1 == x.
487      StoreValue(rl_result, rl_src);
488    } else {
489      // x % 1 == 0.
490      LoadConstantNoClobber(rs_r0, 0);
491      // For this case, return the result in EAX.
492      rl_result.reg.SetReg(r0);
493    }
494  } else if (imm == -1) {  // handle 0x80000000 / -1 special case.
495    if (is_div) {
496      LIR *minint_branch = 0;
497      LoadValueDirectFixed(rl_src, rs_r0);
498      OpRegImm(kOpCmp, rs_r0, 0x80000000);
499      minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
500
501      // for x != MIN_INT, x / -1 == -x.
502      NewLIR1(kX86Neg32R, r0);
503
504      LIR* branch_around = NewLIR1(kX86Jmp8, 0);
505      // The target for cmp/jmp above.
506      minint_branch->target = NewLIR0(kPseudoTargetLabel);
507      // EAX already contains the right value (0x80000000),
508      branch_around->target = NewLIR0(kPseudoTargetLabel);
509    } else {
510      // x % -1 == 0.
511      LoadConstantNoClobber(rs_r0, 0);
512    }
513    // For this case, return the result in EAX.
514    rl_result.reg.SetReg(r0);
515  } else {
516    CHECK(imm <= -2 || imm >= 2);
517    // Use H.S.Warren's Hacker's Delight Chapter 10 and
518    // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
519    int magic, shift;
520    CalculateMagicAndShift(imm, magic, shift);
521
522    /*
523     * For imm >= 2,
524     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
525     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
526     * For imm <= -2,
527     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
528     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
529     * We implement this algorithm in the following way:
530     * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
531     * 2. if imm > 0 and magic < 0, add numerator to EDX
532     *    if imm < 0 and magic > 0, sub numerator from EDX
533     * 3. if S !=0, SAR S bits for EDX
534     * 4. add 1 to EDX if EDX < 0
535     * 5. Thus, EDX is the quotient
536     */
537
538    // Numerator into EAX.
539    RegStorage numerator_reg;
540    if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
541      // We will need the value later.
542      if (rl_src.location == kLocPhysReg) {
543        // We can use it directly.
544        DCHECK(rl_src.reg.GetReg() != r0 && rl_src.reg.GetReg() != r2);
545        numerator_reg = rl_src.reg;
546      } else {
547        numerator_reg = rs_r1;
548        LoadValueDirectFixed(rl_src, numerator_reg);
549      }
550      OpRegCopy(rs_r0, numerator_reg);
551    } else {
552      // Only need this once.  Just put it into EAX.
553      LoadValueDirectFixed(rl_src, rs_r0);
554    }
555
556    // EDX = magic.
557    LoadConstantNoClobber(rs_r2, magic);
558
559    // EDX:EAX = magic & dividend.
560    NewLIR1(kX86Imul32DaR, r2);
561
562    if (imm > 0 && magic < 0) {
563      // Add numerator to EDX.
564      DCHECK(numerator_reg.Valid());
565      NewLIR2(kX86Add32RR, r2, numerator_reg.GetReg());
566    } else if (imm < 0 && magic > 0) {
567      DCHECK(numerator_reg.Valid());
568      NewLIR2(kX86Sub32RR, r2, numerator_reg.GetReg());
569    }
570
571    // Do we need the shift?
572    if (shift != 0) {
573      // Shift EDX by 'shift' bits.
574      NewLIR2(kX86Sar32RI, r2, shift);
575    }
576
577    // Add 1 to EDX if EDX < 0.
578
579    // Move EDX to EAX.
580    OpRegCopy(rs_r0, rs_r2);
581
582    // Move sign bit to bit 0, zeroing the rest.
583    NewLIR2(kX86Shr32RI, r2, 31);
584
585    // EDX = EDX + EAX.
586    NewLIR2(kX86Add32RR, r2, r0);
587
588    // Quotient is in EDX.
589    if (!is_div) {
590      // We need to compute the remainder.
591      // Remainder is divisor - (quotient * imm).
592      DCHECK(numerator_reg.Valid());
593      OpRegCopy(rs_r0, numerator_reg);
594
595      // EAX = numerator * imm.
596      OpRegRegImm(kOpMul, rs_r2, rs_r2, imm);
597
598      // EDX -= EAX.
599      NewLIR2(kX86Sub32RR, r0, r2);
600
601      // For this case, return the result in EAX.
602      rl_result.reg.SetReg(r0);
603    }
604  }
605
606  return rl_result;
607}
608
609RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
610                                  bool is_div) {
611  LOG(FATAL) << "Unexpected use of GenDivRem for x86";
612  return rl_dest;
613}
614
615RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
616                                  RegLocation rl_src2, bool is_div, bool check_zero) {
617  // We have to use fixed registers, so flush all the temps.
618  FlushAllRegs();
619  LockCallTemps();  // Prepare for explicit register usage.
620
621  // Load LHS into EAX.
622  LoadValueDirectFixed(rl_src1, rs_r0);
623
624  // Load RHS into EBX.
625  LoadValueDirectFixed(rl_src2, rs_r1);
626
627  // Copy LHS sign bit into EDX.
628  NewLIR0(kx86Cdq32Da);
629
630  if (check_zero) {
631    // Handle division by zero case.
632    GenImmedCheck(kCondEq, rs_r1, 0, kThrowDivZero);
633  }
634
635  // Have to catch 0x80000000/-1 case, or we will get an exception!
636  OpRegImm(kOpCmp, rs_r1, -1);
637  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
638
639  // RHS is -1.
640  OpRegImm(kOpCmp, rs_r0, 0x80000000);
641  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
642
643  // In 0x80000000/-1 case.
644  if (!is_div) {
645    // For DIV, EAX is already right. For REM, we need EDX 0.
646    LoadConstantNoClobber(rs_r2, 0);
647  }
648  LIR* done = NewLIR1(kX86Jmp8, 0);
649
650  // Expected case.
651  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
652  minint_branch->target = minus_one_branch->target;
653  NewLIR1(kX86Idivmod32DaR, r1);
654  done->target = NewLIR0(kPseudoTargetLabel);
655
656  // Result is in EAX for div and EDX for rem.
657  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, rs_r0,
658                           INVALID_SREG, INVALID_SREG};
659  if (!is_div) {
660    rl_result.reg.SetReg(r2);
661  }
662  return rl_result;
663}
664
665bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
666  DCHECK_EQ(cu_->instruction_set, kX86);
667
668  // Get the two arguments to the invoke and place them in GP registers.
669  RegLocation rl_src1 = info->args[0];
670  RegLocation rl_src2 = info->args[1];
671  rl_src1 = LoadValue(rl_src1, kCoreReg);
672  rl_src2 = LoadValue(rl_src2, kCoreReg);
673
674  RegLocation rl_dest = InlineTarget(info);
675  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
676
677  /*
678   * If the result register is the same as the second element, then we need to be careful.
679   * The reason is that the first copy will inadvertently clobber the second element with
680   * the first one thus yielding the wrong result. Thus we do a swap in that case.
681   */
682  if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
683    std::swap(rl_src1, rl_src2);
684  }
685
686  // Pick the first integer as min/max.
687  OpRegCopy(rl_result.reg, rl_src1.reg);
688
689  // If the integers are both in the same register, then there is nothing else to do
690  // because they are equal and we have already moved one into the result.
691  if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
692    // It is possible we didn't pick correctly so do the actual comparison now.
693    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
694
695    // Conditionally move the other integer into the destination register.
696    ConditionCode condition_code = is_min ? kCondGt : kCondLt;
697    OpCondRegReg(kOpCmov, condition_code, rl_result.reg, rl_src2.reg);
698  }
699
700  StoreValue(rl_dest, rl_result);
701  return true;
702}
703
704bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
705  RegLocation rl_src_address = info->args[0];  // long address
706  rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
707  RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
708  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
709  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
710  if (size == kLong) {
711    // Unaligned access is allowed on x86.
712    LoadBaseDispWide(rl_address.reg, 0, rl_result.reg, INVALID_SREG);
713    StoreValueWide(rl_dest, rl_result);
714  } else {
715    DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
716    // Unaligned access is allowed on x86.
717    LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, INVALID_SREG);
718    StoreValue(rl_dest, rl_result);
719  }
720  return true;
721}
722
723bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
724  RegLocation rl_src_address = info->args[0];  // long address
725  rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
726  RegLocation rl_src_value = info->args[2];  // [size] value
727  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
728  if (size == kLong) {
729    // Unaligned access is allowed on x86.
730    RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
731    StoreBaseDispWide(rl_address.reg, 0, rl_value.reg);
732  } else {
733    DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
734    // Unaligned access is allowed on x86.
735    RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
736    StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size);
737  }
738  return true;
739}
740
741void X86Mir2Lir::OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset) {
742  NewLIR5(kX86Lea32RA, r_base.GetReg(), reg1.GetReg(), reg2.GetReg(), scale, offset);
743}
744
745void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
746  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
747}
748
749static bool IsInReg(X86Mir2Lir *pMir2Lir, const RegLocation &rl, RegStorage reg) {
750  return rl.reg.Valid() && rl.reg.GetReg() == reg.GetReg() && (pMir2Lir->IsLive(reg) || rl.home);
751}
752
753bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
754  DCHECK_EQ(cu_->instruction_set, kX86);
755  // Unused - RegLocation rl_src_unsafe = info->args[0];
756  RegLocation rl_src_obj = info->args[1];  // Object - known non-null
757  RegLocation rl_src_offset = info->args[2];  // long low
758  rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
759  RegLocation rl_src_expected = info->args[4];  // int, long or Object
760  // If is_long, high half is in info->args[5]
761  RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
762  // If is_long, high half is in info->args[7]
763
764  if (is_long) {
765    // TODO: avoid unnecessary loads of SI and DI when the values are in registers.
766    // TODO: CFI support.
767    FlushAllRegs();
768    LockCallTemps();
769    RegStorage r_tmp1(RegStorage::k64BitPair, rAX, rDX);
770    RegStorage r_tmp2(RegStorage::k64BitPair, rBX, rCX);
771    LoadValueDirectWideFixed(rl_src_expected, r_tmp1);
772    LoadValueDirectWideFixed(rl_src_new_value, r_tmp2);
773    NewLIR1(kX86Push32R, rDI);
774    MarkTemp(rDI);
775    LockTemp(rDI);
776    NewLIR1(kX86Push32R, rSI);
777    MarkTemp(rSI);
778    LockTemp(rSI);
779    const int push_offset = 4 /* push edi */ + 4 /* push esi */;
780    int srcObjSp = IsInReg(this, rl_src_obj, rs_rSI) ? 0
781                : (IsInReg(this, rl_src_obj, rs_rDI) ? 4
782                : (SRegOffset(rl_src_obj.s_reg_low) + push_offset));
783    LoadWordDisp(TargetReg(kSp), srcObjSp, rs_rDI);
784    int srcOffsetSp = IsInReg(this, rl_src_offset, rs_rSI) ? 0
785                   : (IsInReg(this, rl_src_offset, rs_rDI) ? 4
786                   : (SRegOffset(rl_src_offset.s_reg_low) + push_offset));
787    LoadWordDisp(TargetReg(kSp), srcOffsetSp, rs_rSI);
788    NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
789
790    // After a store we need to insert barrier in case of potential load. Since the
791    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
792    GenMemBarrier(kStoreLoad);
793
794    FreeTemp(rSI);
795    UnmarkTemp(rSI);
796    NewLIR1(kX86Pop32R, rSI);
797    FreeTemp(rDI);
798    UnmarkTemp(rDI);
799    NewLIR1(kX86Pop32R, rDI);
800    FreeCallTemps();
801  } else {
802    // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
803    FlushReg(rs_r0);
804    LockTemp(rs_r0);
805
806    RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
807    RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
808
809    if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
810      // Mark card for object assuming new value is stored.
811      FreeTemp(r0);  // Temporarily release EAX for MarkGCCard().
812      MarkGCCard(rl_new_value.reg, rl_object.reg);
813      LockTemp(r0);
814    }
815
816    RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
817    LoadValueDirect(rl_src_expected, rs_r0);
818    NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0, rl_new_value.reg.GetReg());
819
820    // After a store we need to insert barrier in case of potential load. Since the
821    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
822    GenMemBarrier(kStoreLoad);
823
824    FreeTemp(r0);
825  }
826
827  // Convert ZF to boolean
828  RegLocation rl_dest = InlineTarget(info);  // boolean place for result
829  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
830  NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondZ);
831  NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
832  StoreValue(rl_dest, rl_result);
833  return true;
834}
835
836LIR* X86Mir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
837  CHECK(base_of_code_ != nullptr);
838
839  // Address the start of the method
840  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
841  LoadValueDirectFixed(rl_method, reg);
842  store_method_addr_used_ = true;
843
844  // Load the proper value from the literal area.
845  // We don't know the proper offset for the value, so pick one that will force
846  // 4 byte offset.  We will fix this up in the assembler later to have the right
847  // value.
848  LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg.GetReg(), reg.GetReg(), 256,
849                    0, 0, target);
850  res->target = target;
851  res->flags.fixup = kFixupLoad;
852  SetMemRefType(res, true, kLiteral);
853  store_method_addr_used_ = true;
854  return res;
855}
856
857LIR* X86Mir2Lir::OpVldm(RegStorage r_base, int count) {
858  LOG(FATAL) << "Unexpected use of OpVldm for x86";
859  return NULL;
860}
861
862LIR* X86Mir2Lir::OpVstm(RegStorage r_base, int count) {
863  LOG(FATAL) << "Unexpected use of OpVstm for x86";
864  return NULL;
865}
866
867void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
868                                               RegLocation rl_result, int lit,
869                                               int first_bit, int second_bit) {
870  RegStorage t_reg = AllocTemp();
871  OpRegRegImm(kOpLsl, t_reg, rl_src.reg, second_bit - first_bit);
872  OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, t_reg);
873  FreeTemp(t_reg);
874  if (first_bit != 0) {
875    OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
876  }
877}
878
879void X86Mir2Lir::GenDivZeroCheck(RegStorage reg) {
880  DCHECK(reg.IsPair());  // TODO: allow 64BitSolo.
881  // We are not supposed to clobber the incoming storage, so allocate a temporary.
882  RegStorage t_reg = AllocTemp();
883
884  // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
885  OpRegRegReg(kOpOr, t_reg, reg.GetLow(), reg.GetHigh());
886
887  // In case of zero, throw ArithmeticException.
888  GenCheck(kCondEq, kThrowDivZero);
889
890  // The temp is no longer needed so free it at this time.
891  FreeTemp(t_reg);
892}
893
894// Test suspend flag, return target of taken suspend branch
895LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
896  OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
897  return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
898}
899
900// Decrement register and branch on condition
901LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
902  OpRegImm(kOpSub, reg, 1);
903  return OpCondBranch(c_code, target);
904}
905
906bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
907                                    RegLocation rl_src, RegLocation rl_dest, int lit) {
908  LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
909  return false;
910}
911
912bool X86Mir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
913  LOG(FATAL) << "Unexpected use of easyMultiply in x86";
914  return false;
915}
916
917LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
918  LOG(FATAL) << "Unexpected use of OpIT in x86";
919  return NULL;
920}
921
922void X86Mir2Lir::GenImulRegImm(RegStorage dest, RegStorage src, int val) {
923  switch (val) {
924    case 0:
925      NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
926      break;
927    case 1:
928      OpRegCopy(dest, src);
929      break;
930    default:
931      OpRegRegImm(kOpMul, dest, src, val);
932      break;
933  }
934}
935
936void X86Mir2Lir::GenImulMemImm(RegStorage dest, int sreg, int displacement, int val) {
937  LIR *m;
938  switch (val) {
939    case 0:
940      NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
941      break;
942    case 1:
943      LoadBaseDisp(rs_rX86_SP, displacement, dest, kWord, sreg);
944      break;
945    default:
946      m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest.GetReg(), rX86_SP,
947                  displacement, val);
948      AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
949      break;
950  }
951}
952
953void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
954                            RegLocation rl_src2) {
955  if (rl_src1.is_const) {
956    std::swap(rl_src1, rl_src2);
957  }
958  // Are we multiplying by a constant?
959  if (rl_src2.is_const) {
960    // Do special compare/branch against simple const operand
961    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
962    if (val == 0) {
963      RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
964      OpRegReg(kOpXor, rl_result.reg.GetLow(), rl_result.reg.GetLow());
965      OpRegReg(kOpXor, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());
966      StoreValueWide(rl_dest, rl_result);
967      return;
968    } else if (val == 1) {
969      StoreValueWide(rl_dest, rl_src1);
970      return;
971    } else if (val == 2) {
972      GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
973      return;
974    } else if (IsPowerOfTwo(val)) {
975      int shift_amount = LowestSetBit(val);
976      if (!BadOverlap(rl_src1, rl_dest)) {
977        rl_src1 = LoadValueWide(rl_src1, kCoreReg);
978        RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
979                                                  rl_src1, shift_amount);
980        StoreValueWide(rl_dest, rl_result);
981        return;
982      }
983    }
984
985    // Okay, just bite the bullet and do it.
986    int32_t val_lo = Low32Bits(val);
987    int32_t val_hi = High32Bits(val);
988    FlushAllRegs();
989    LockCallTemps();  // Prepare for explicit register usage.
990    rl_src1 = UpdateLocWide(rl_src1);
991    bool src1_in_reg = rl_src1.location == kLocPhysReg;
992    int displacement = SRegOffset(rl_src1.s_reg_low);
993
994    // ECX <- 1H * 2L
995    // EAX <- 1L * 2H
996    if (src1_in_reg) {
997      GenImulRegImm(rs_r1, rl_src1.reg.GetHigh(), val_lo);
998      GenImulRegImm(rs_r0, rl_src1.reg.GetLow(), val_hi);
999    } else {
1000      GenImulMemImm(rs_r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
1001      GenImulMemImm(rs_r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
1002    }
1003
1004    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1005    NewLIR2(kX86Add32RR, r1, r0);
1006
1007    // EAX <- 2L
1008    LoadConstantNoClobber(rs_r0, val_lo);
1009
1010    // EDX:EAX <- 2L * 1L (double precision)
1011    if (src1_in_reg) {
1012      NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
1013    } else {
1014      LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1015      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1016                              true /* is_load */, true /* is_64bit */);
1017    }
1018
1019    // EDX <- EDX + ECX (add high words)
1020    NewLIR2(kX86Add32RR, r2, r1);
1021
1022    // Result is EDX:EAX
1023    RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
1024                             RegStorage::MakeRegPair(rs_r0, rs_r2),
1025                             INVALID_SREG, INVALID_SREG};
1026    StoreValueWide(rl_dest, rl_result);
1027    return;
1028  }
1029
1030  // Nope.  Do it the hard way
1031  // Check for V*V.  We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
1032  bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
1033                   mir_graph_->SRegToVReg(rl_src2.s_reg_low);
1034
1035  FlushAllRegs();
1036  LockCallTemps();  // Prepare for explicit register usage.
1037  rl_src1 = UpdateLocWide(rl_src1);
1038  rl_src2 = UpdateLocWide(rl_src2);
1039
1040  // At this point, the VRs are in their home locations.
1041  bool src1_in_reg = rl_src1.location == kLocPhysReg;
1042  bool src2_in_reg = rl_src2.location == kLocPhysReg;
1043
1044  // ECX <- 1H
1045  if (src1_in_reg) {
1046    NewLIR2(kX86Mov32RR, r1, rl_src1.reg.GetHighReg());
1047  } else {
1048    LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, rs_r1,
1049                 kWord, GetSRegHi(rl_src1.s_reg_low));
1050  }
1051
1052  if (is_square) {
1053    // Take advantage of the fact that the values are the same.
1054    // ECX <- ECX * 2L  (1H * 2L)
1055    if (src2_in_reg) {
1056      NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetLowReg());
1057    } else {
1058      int displacement = SRegOffset(rl_src2.s_reg_low);
1059      LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1060      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1061                              true /* is_load */, true /* is_64bit */);
1062    }
1063
1064    // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1065    NewLIR2(kX86Add32RR, r1, r1);
1066  } else {
1067    // EAX <- 2H
1068    if (src2_in_reg) {
1069      NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetHighReg());
1070    } else {
1071      LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, rs_r0,
1072                   kWord, GetSRegHi(rl_src2.s_reg_low));
1073    }
1074
1075    // EAX <- EAX * 1L  (2H * 1L)
1076    if (src1_in_reg) {
1077      NewLIR2(kX86Imul32RR, r0, rl_src1.reg.GetLowReg());
1078    } else {
1079      int displacement = SRegOffset(rl_src1.s_reg_low);
1080      LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1081      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1082                              true /* is_load */, true /* is_64bit */);
1083    }
1084
1085    // ECX <- ECX * 2L  (1H * 2L)
1086    if (src2_in_reg) {
1087      NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetLowReg());
1088    } else {
1089      int displacement = SRegOffset(rl_src2.s_reg_low);
1090      LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1091      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1092                              true /* is_load */, true /* is_64bit */);
1093    }
1094
1095    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1096    NewLIR2(kX86Add32RR, r1, r0);
1097  }
1098
1099  // EAX <- 2L
1100  if (src2_in_reg) {
1101    NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetLowReg());
1102  } else {
1103    LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, rs_r0,
1104                 kWord, rl_src2.s_reg_low);
1105  }
1106
1107  // EDX:EAX <- 2L * 1L (double precision)
1108  if (src1_in_reg) {
1109    NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
1110  } else {
1111    int displacement = SRegOffset(rl_src1.s_reg_low);
1112    LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1113    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1114                            true /* is_load */, true /* is_64bit */);
1115  }
1116
1117  // EDX <- EDX + ECX (add high words)
1118  NewLIR2(kX86Add32RR, r2, r1);
1119
1120  // Result is EDX:EAX
1121  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
1122                           RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
1123  StoreValueWide(rl_dest, rl_result);
1124}
1125
1126void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1127                                   Instruction::Code op) {
1128  DCHECK_EQ(rl_dest.location, kLocPhysReg);
1129  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1130  if (rl_src.location == kLocPhysReg) {
1131    // Both operands are in registers.
1132    // But we must ensure that rl_src is in pair
1133    rl_src = EvalLocWide(rl_src, kCoreReg, true);
1134    if (rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
1135      // The registers are the same, so we would clobber it before the use.
1136      RegStorage temp_reg = AllocTemp();
1137      OpRegCopy(temp_reg, rl_dest.reg);
1138      rl_src.reg.SetHighReg(temp_reg.GetReg());
1139    }
1140    NewLIR2(x86op, rl_dest.reg.GetLowReg(), rl_src.reg.GetLowReg());
1141
1142    x86op = GetOpcode(op, rl_dest, rl_src, true);
1143    NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
1144    FreeTemp(rl_src.reg);
1145    return;
1146  }
1147
1148  // RHS is in memory.
1149  DCHECK((rl_src.location == kLocDalvikFrame) ||
1150         (rl_src.location == kLocCompilerTemp));
1151  int r_base = TargetReg(kSp).GetReg();
1152  int displacement = SRegOffset(rl_src.s_reg_low);
1153
1154  LIR *lir = NewLIR3(x86op, rl_dest.reg.GetLowReg(), r_base, displacement + LOWORD_OFFSET);
1155  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1156                          true /* is_load */, true /* is64bit */);
1157  x86op = GetOpcode(op, rl_dest, rl_src, true);
1158  lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), r_base, displacement + HIWORD_OFFSET);
1159  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1160                          true /* is_load */, true /* is64bit */);
1161}
1162
1163void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1164  rl_dest = UpdateLocWide(rl_dest);
1165  if (rl_dest.location == kLocPhysReg) {
1166    // Ensure we are in a register pair
1167    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1168
1169    rl_src = UpdateLocWide(rl_src);
1170    GenLongRegOrMemOp(rl_result, rl_src, op);
1171    StoreFinalValueWide(rl_dest, rl_result);
1172    return;
1173  }
1174
1175  // It wasn't in registers, so it better be in memory.
1176  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1177         (rl_dest.location == kLocCompilerTemp));
1178  rl_src = LoadValueWide(rl_src, kCoreReg);
1179
1180  // Operate directly into memory.
1181  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1182  int r_base = TargetReg(kSp).GetReg();
1183  int displacement = SRegOffset(rl_dest.s_reg_low);
1184
1185  LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, rl_src.reg.GetLowReg());
1186  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1187                          false /* is_load */, true /* is64bit */);
1188  x86op = GetOpcode(op, rl_dest, rl_src, true);
1189  lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
1190  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1191                          false /* is_load */, true /* is64bit */);
1192  FreeTemp(rl_src.reg);
1193}
1194
1195void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1196                              RegLocation rl_src2, Instruction::Code op,
1197                              bool is_commutative) {
1198  // Is this really a 2 operand operation?
1199  switch (op) {
1200    case Instruction::ADD_LONG_2ADDR:
1201    case Instruction::SUB_LONG_2ADDR:
1202    case Instruction::AND_LONG_2ADDR:
1203    case Instruction::OR_LONG_2ADDR:
1204    case Instruction::XOR_LONG_2ADDR:
1205      GenLongArith(rl_dest, rl_src2, op);
1206      return;
1207    default:
1208      break;
1209  }
1210
1211  if (rl_dest.location == kLocPhysReg) {
1212    RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1213
1214    // We are about to clobber the LHS, so it needs to be a temp.
1215    rl_result = ForceTempWide(rl_result);
1216
1217    // Perform the operation using the RHS.
1218    rl_src2 = UpdateLocWide(rl_src2);
1219    GenLongRegOrMemOp(rl_result, rl_src2, op);
1220
1221    // And now record that the result is in the temp.
1222    StoreFinalValueWide(rl_dest, rl_result);
1223    return;
1224  }
1225
1226  // It wasn't in registers, so it better be in memory.
1227  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1228         (rl_dest.location == kLocCompilerTemp));
1229  rl_src1 = UpdateLocWide(rl_src1);
1230  rl_src2 = UpdateLocWide(rl_src2);
1231
1232  // Get one of the source operands into temporary register.
1233  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1234  if (IsTemp(rl_src1.reg.GetLowReg()) && IsTemp(rl_src1.reg.GetHighReg())) {
1235    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1236  } else if (is_commutative) {
1237    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1238    // We need at least one of them to be a temporary.
1239    if (!(IsTemp(rl_src2.reg.GetLowReg()) && IsTemp(rl_src2.reg.GetHighReg()))) {
1240      rl_src1 = ForceTempWide(rl_src1);
1241      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1242    } else {
1243      GenLongRegOrMemOp(rl_src2, rl_src1, op);
1244      StoreFinalValueWide(rl_dest, rl_src2);
1245      return;
1246    }
1247  } else {
1248    // Need LHS to be the temp.
1249    rl_src1 = ForceTempWide(rl_src1);
1250    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1251  }
1252
1253  StoreFinalValueWide(rl_dest, rl_src1);
1254}
1255
1256void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
1257                            RegLocation rl_src1, RegLocation rl_src2) {
1258  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1259}
1260
1261void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1262                            RegLocation rl_src1, RegLocation rl_src2) {
1263  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1264}
1265
1266void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1267                            RegLocation rl_src1, RegLocation rl_src2) {
1268  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1269}
1270
1271void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1272                           RegLocation rl_src1, RegLocation rl_src2) {
1273  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1274}
1275
1276void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1277                            RegLocation rl_src1, RegLocation rl_src2) {
1278  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1279}
1280
1281void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1282  rl_src = LoadValueWide(rl_src, kCoreReg);
1283  RegLocation rl_result = ForceTempWide(rl_src);
1284  if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
1285      ((rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()))) {
1286    // The registers are the same, so we would clobber it before the use.
1287    RegStorage temp_reg = AllocTemp();
1288    OpRegCopy(temp_reg, rl_result.reg);
1289    rl_result.reg.SetHighReg(temp_reg.GetReg());
1290  }
1291  OpRegReg(kOpNeg, rl_result.reg.GetLow(), rl_result.reg.GetLow());    // rLow = -rLow
1292  OpRegImm(kOpAdc, rl_result.reg.GetHigh(), 0);                   // rHigh = rHigh + CF
1293  OpRegReg(kOpNeg, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());  // rHigh = -rHigh
1294  StoreValueWide(rl_dest, rl_result);
1295}
1296
1297void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
1298  X86OpCode opcode = kX86Bkpt;
1299  switch (op) {
1300  case kOpCmp: opcode = kX86Cmp32RT;  break;
1301  case kOpMov: opcode = kX86Mov32RT;  break;
1302  default:
1303    LOG(FATAL) << "Bad opcode: " << op;
1304    break;
1305  }
1306  NewLIR2(opcode, r_dest, thread_offset.Int32Value());
1307}
1308
1309/*
1310 * Generate array load
1311 */
1312void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1313                             RegLocation rl_index, RegLocation rl_dest, int scale) {
1314  RegisterClass reg_class = oat_reg_class_by_size(size);
1315  int len_offset = mirror::Array::LengthOffset().Int32Value();
1316  RegLocation rl_result;
1317  rl_array = LoadValue(rl_array, kCoreReg);
1318
1319  int data_offset;
1320  if (size == kLong || size == kDouble) {
1321    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1322  } else {
1323    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1324  }
1325
1326  bool constant_index = rl_index.is_const;
1327  int32_t constant_index_value = 0;
1328  if (!constant_index) {
1329    rl_index = LoadValue(rl_index, kCoreReg);
1330  } else {
1331    constant_index_value = mir_graph_->ConstantValue(rl_index);
1332    // If index is constant, just fold it into the data offset
1333    data_offset += constant_index_value << scale;
1334    // treat as non array below
1335    rl_index.reg = RegStorage::InvalidReg();
1336  }
1337
1338  /* null object? */
1339  GenNullCheck(rl_array.reg, opt_flags);
1340
1341  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1342    if (constant_index) {
1343      GenMemImmedCheck(kCondLs, rl_array.reg, len_offset,
1344                       constant_index_value, kThrowConstantArrayBounds);
1345    } else {
1346      GenRegMemCheck(kCondUge, rl_index.reg, rl_array.reg, len_offset, kThrowArrayBounds);
1347    }
1348  }
1349  rl_result = EvalLoc(rl_dest, reg_class, true);
1350  if ((size == kLong) || (size == kDouble)) {
1351    LoadBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_result.reg.GetLow(),
1352                        rl_result.reg.GetHigh(), size, INVALID_SREG);
1353    StoreValueWide(rl_dest, rl_result);
1354  } else {
1355    LoadBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_result.reg,
1356                        RegStorage::InvalidReg(), size, INVALID_SREG);
1357    StoreValue(rl_dest, rl_result);
1358  }
1359}
1360
1361/*
1362 * Generate array store
1363 *
1364 */
1365void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1366                             RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1367  RegisterClass reg_class = oat_reg_class_by_size(size);
1368  int len_offset = mirror::Array::LengthOffset().Int32Value();
1369  int data_offset;
1370
1371  if (size == kLong || size == kDouble) {
1372    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1373  } else {
1374    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1375  }
1376
1377  rl_array = LoadValue(rl_array, kCoreReg);
1378  bool constant_index = rl_index.is_const;
1379  int32_t constant_index_value = 0;
1380  if (!constant_index) {
1381    rl_index = LoadValue(rl_index, kCoreReg);
1382  } else {
1383    // If index is constant, just fold it into the data offset
1384    constant_index_value = mir_graph_->ConstantValue(rl_index);
1385    data_offset += constant_index_value << scale;
1386    // treat as non array below
1387    rl_index.reg = RegStorage::InvalidReg();
1388  }
1389
1390  /* null object? */
1391  GenNullCheck(rl_array.reg, opt_flags);
1392
1393  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1394    if (constant_index) {
1395      GenMemImmedCheck(kCondLs, rl_array.reg, len_offset,
1396                       constant_index_value, kThrowConstantArrayBounds);
1397    } else {
1398      GenRegMemCheck(kCondUge, rl_index.reg, rl_array.reg, len_offset, kThrowArrayBounds);
1399    }
1400  }
1401  if ((size == kLong) || (size == kDouble)) {
1402    rl_src = LoadValueWide(rl_src, reg_class);
1403  } else {
1404    rl_src = LoadValue(rl_src, reg_class);
1405  }
1406  // If the src reg can't be byte accessed, move it to a temp first.
1407  if ((size == kSignedByte || size == kUnsignedByte) && rl_src.reg.GetReg() >= 4) {
1408    RegStorage temp = AllocTemp();
1409    OpRegCopy(temp, rl_src.reg);
1410    StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, temp,
1411                         RegStorage::InvalidReg(), size, INVALID_SREG);
1412  } else {
1413    if (rl_src.wide) {
1414      StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_src.reg.GetLow(),
1415                           rl_src.reg.GetHigh(), size, INVALID_SREG);
1416    } else {
1417      StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_src.reg,
1418                           RegStorage::InvalidReg(), size, INVALID_SREG);
1419    }
1420  }
1421  if (card_mark) {
1422    // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
1423    if (!constant_index) {
1424      FreeTemp(rl_index.reg.GetReg());
1425    }
1426    MarkGCCard(rl_src.reg, rl_array.reg);
1427  }
1428}
1429
1430RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1431                                          RegLocation rl_src, int shift_amount) {
1432  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1433  switch (opcode) {
1434    case Instruction::SHL_LONG:
1435    case Instruction::SHL_LONG_2ADDR:
1436      DCHECK_NE(shift_amount, 1);  // Prevent a double store from happening.
1437      if (shift_amount == 32) {
1438        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1439        LoadConstant(rl_result.reg.GetLow(), 0);
1440      } else if (shift_amount > 31) {
1441        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1442        FreeTemp(rl_src.reg.GetHighReg());
1443        NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
1444        LoadConstant(rl_result.reg.GetLow(), 0);
1445      } else {
1446        OpRegCopy(rl_result.reg, rl_src.reg);
1447        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1448        NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetLowReg(), shift_amount);
1449        NewLIR2(kX86Sal32RI, rl_result.reg.GetLowReg(), shift_amount);
1450      }
1451      break;
1452    case Instruction::SHR_LONG:
1453    case Instruction::SHR_LONG_2ADDR:
1454      if (shift_amount == 32) {
1455        OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1456        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1457        NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1458      } else if (shift_amount > 31) {
1459        OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1460        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1461        NewLIR2(kX86Sar32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
1462        NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1463      } else {
1464        OpRegCopy(rl_result.reg, rl_src.reg);
1465        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1466        NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(), shift_amount);
1467        NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
1468      }
1469      break;
1470    case Instruction::USHR_LONG:
1471    case Instruction::USHR_LONG_2ADDR:
1472      if (shift_amount == 32) {
1473        OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1474        LoadConstant(rl_result.reg.GetHigh(), 0);
1475      } else if (shift_amount > 31) {
1476        OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1477        NewLIR2(kX86Shr32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
1478        LoadConstant(rl_result.reg.GetHigh(), 0);
1479      } else {
1480        OpRegCopy(rl_result.reg, rl_src.reg);
1481        OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1482        NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(), shift_amount);
1483        NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
1484      }
1485      break;
1486    default:
1487      LOG(FATAL) << "Unexpected case";
1488  }
1489  return rl_result;
1490}
1491
1492void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1493                                   RegLocation rl_src, RegLocation rl_shift) {
1494  // Per spec, we only care about low 6 bits of shift amount.
1495  int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1496  if (shift_amount == 0) {
1497    rl_src = LoadValueWide(rl_src, kCoreReg);
1498    StoreValueWide(rl_dest, rl_src);
1499    return;
1500  } else if (shift_amount == 1 &&
1501            (opcode ==  Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1502    // Need to handle this here to avoid calling StoreValueWide twice.
1503    GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1504    return;
1505  }
1506  if (BadOverlap(rl_src, rl_dest)) {
1507    GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1508    return;
1509  }
1510  rl_src = LoadValueWide(rl_src, kCoreReg);
1511  RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1512  StoreValueWide(rl_dest, rl_result);
1513}
1514
1515void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
1516                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1517  switch (opcode) {
1518    case Instruction::ADD_LONG:
1519    case Instruction::AND_LONG:
1520    case Instruction::OR_LONG:
1521    case Instruction::XOR_LONG:
1522      if (rl_src2.is_const) {
1523        GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1524      } else {
1525        DCHECK(rl_src1.is_const);
1526        GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1527      }
1528      break;
1529    case Instruction::SUB_LONG:
1530    case Instruction::SUB_LONG_2ADDR:
1531      if (rl_src2.is_const) {
1532        GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1533      } else {
1534        GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1535      }
1536      break;
1537    case Instruction::ADD_LONG_2ADDR:
1538    case Instruction::OR_LONG_2ADDR:
1539    case Instruction::XOR_LONG_2ADDR:
1540    case Instruction::AND_LONG_2ADDR:
1541      if (rl_src2.is_const) {
1542        GenLongImm(rl_dest, rl_src2, opcode);
1543      } else {
1544        DCHECK(rl_src1.is_const);
1545        GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1546      }
1547      break;
1548    default:
1549      // Default - bail to non-const handler.
1550      GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1551      break;
1552  }
1553}
1554
1555bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1556  switch (op) {
1557    case Instruction::AND_LONG_2ADDR:
1558    case Instruction::AND_LONG:
1559      return value == -1;
1560    case Instruction::OR_LONG:
1561    case Instruction::OR_LONG_2ADDR:
1562    case Instruction::XOR_LONG:
1563    case Instruction::XOR_LONG_2ADDR:
1564      return value == 0;
1565    default:
1566      return false;
1567  }
1568}
1569
1570X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1571                                bool is_high_op) {
1572  bool rhs_in_mem = rhs.location != kLocPhysReg;
1573  bool dest_in_mem = dest.location != kLocPhysReg;
1574  DCHECK(!rhs_in_mem || !dest_in_mem);
1575  switch (op) {
1576    case Instruction::ADD_LONG:
1577    case Instruction::ADD_LONG_2ADDR:
1578      if (dest_in_mem) {
1579        return is_high_op ? kX86Adc32MR : kX86Add32MR;
1580      } else if (rhs_in_mem) {
1581        return is_high_op ? kX86Adc32RM : kX86Add32RM;
1582      }
1583      return is_high_op ? kX86Adc32RR : kX86Add32RR;
1584    case Instruction::SUB_LONG:
1585    case Instruction::SUB_LONG_2ADDR:
1586      if (dest_in_mem) {
1587        return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1588      } else if (rhs_in_mem) {
1589        return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1590      }
1591      return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1592    case Instruction::AND_LONG_2ADDR:
1593    case Instruction::AND_LONG:
1594      if (dest_in_mem) {
1595        return kX86And32MR;
1596      }
1597      return rhs_in_mem ? kX86And32RM : kX86And32RR;
1598    case Instruction::OR_LONG:
1599    case Instruction::OR_LONG_2ADDR:
1600      if (dest_in_mem) {
1601        return kX86Or32MR;
1602      }
1603      return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1604    case Instruction::XOR_LONG:
1605    case Instruction::XOR_LONG_2ADDR:
1606      if (dest_in_mem) {
1607        return kX86Xor32MR;
1608      }
1609      return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1610    default:
1611      LOG(FATAL) << "Unexpected opcode: " << op;
1612      return kX86Add32RR;
1613  }
1614}
1615
1616X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1617                                int32_t value) {
1618  bool in_mem = loc.location != kLocPhysReg;
1619  bool byte_imm = IS_SIMM8(value);
1620  DCHECK(in_mem || !IsFpReg(loc.reg));
1621  switch (op) {
1622    case Instruction::ADD_LONG:
1623    case Instruction::ADD_LONG_2ADDR:
1624      if (byte_imm) {
1625        if (in_mem) {
1626          return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1627        }
1628        return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1629      }
1630      if (in_mem) {
1631        return is_high_op ? kX86Adc32MI : kX86Add32MI;
1632      }
1633      return is_high_op ? kX86Adc32RI : kX86Add32RI;
1634    case Instruction::SUB_LONG:
1635    case Instruction::SUB_LONG_2ADDR:
1636      if (byte_imm) {
1637        if (in_mem) {
1638          return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1639        }
1640        return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1641      }
1642      if (in_mem) {
1643        return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1644      }
1645      return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1646    case Instruction::AND_LONG_2ADDR:
1647    case Instruction::AND_LONG:
1648      if (byte_imm) {
1649        return in_mem ? kX86And32MI8 : kX86And32RI8;
1650      }
1651      return in_mem ? kX86And32MI : kX86And32RI;
1652    case Instruction::OR_LONG:
1653    case Instruction::OR_LONG_2ADDR:
1654      if (byte_imm) {
1655        return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1656      }
1657      return in_mem ? kX86Or32MI : kX86Or32RI;
1658    case Instruction::XOR_LONG:
1659    case Instruction::XOR_LONG_2ADDR:
1660      if (byte_imm) {
1661        return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1662      }
1663      return in_mem ? kX86Xor32MI : kX86Xor32RI;
1664    default:
1665      LOG(FATAL) << "Unexpected opcode: " << op;
1666      return kX86Add32MI;
1667  }
1668}
1669
1670void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1671  DCHECK(rl_src.is_const);
1672  int64_t val = mir_graph_->ConstantValueWide(rl_src);
1673  int32_t val_lo = Low32Bits(val);
1674  int32_t val_hi = High32Bits(val);
1675  rl_dest = UpdateLocWide(rl_dest);
1676
1677  // Can we just do this into memory?
1678  if ((rl_dest.location == kLocDalvikFrame) ||
1679      (rl_dest.location == kLocCompilerTemp)) {
1680    int r_base = TargetReg(kSp).GetReg();
1681    int displacement = SRegOffset(rl_dest.s_reg_low);
1682
1683    if (!IsNoOp(op, val_lo)) {
1684      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1685      LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, val_lo);
1686      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1687                              false /* is_load */, true /* is64bit */);
1688    }
1689    if (!IsNoOp(op, val_hi)) {
1690      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1691      LIR *lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, val_hi);
1692      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1693                                false /* is_load */, true /* is64bit */);
1694    }
1695    return;
1696  }
1697
1698  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1699  DCHECK_EQ(rl_result.location, kLocPhysReg);
1700  DCHECK(!IsFpReg(rl_result.reg));
1701
1702  if (!IsNoOp(op, val_lo)) {
1703    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1704    NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
1705  }
1706  if (!IsNoOp(op, val_hi)) {
1707    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1708    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
1709  }
1710  StoreValueWide(rl_dest, rl_result);
1711}
1712
1713void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1714                                RegLocation rl_src2, Instruction::Code op) {
1715  DCHECK(rl_src2.is_const);
1716  int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1717  int32_t val_lo = Low32Bits(val);
1718  int32_t val_hi = High32Bits(val);
1719  rl_dest = UpdateLocWide(rl_dest);
1720  rl_src1 = UpdateLocWide(rl_src1);
1721
1722  // Can we do this directly into the destination registers?
1723  if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
1724      rl_dest.reg.GetLowReg() == rl_src1.reg.GetLowReg() &&
1725      rl_dest.reg.GetHighReg() == rl_src1.reg.GetHighReg() &&
1726      !IsFpReg(rl_dest.reg)) {
1727    if (!IsNoOp(op, val_lo)) {
1728      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1729      NewLIR2(x86op, rl_dest.reg.GetLowReg(), val_lo);
1730    }
1731    if (!IsNoOp(op, val_hi)) {
1732      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1733      NewLIR2(x86op, rl_dest.reg.GetHighReg(), val_hi);
1734    }
1735
1736    StoreFinalValueWide(rl_dest, rl_dest);
1737    return;
1738  }
1739
1740  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1741  DCHECK_EQ(rl_src1.location, kLocPhysReg);
1742
1743  // We need the values to be in a temporary
1744  RegLocation rl_result = ForceTempWide(rl_src1);
1745  if (!IsNoOp(op, val_lo)) {
1746    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1747    NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
1748  }
1749  if (!IsNoOp(op, val_hi)) {
1750    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1751    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
1752  }
1753
1754  StoreFinalValueWide(rl_dest, rl_result);
1755}
1756
1757// For final classes there are no sub-classes to check and so we can answer the instance-of
1758// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1759void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1760                                    RegLocation rl_dest, RegLocation rl_src) {
1761  RegLocation object = LoadValue(rl_src, kCoreReg);
1762  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1763  RegStorage result_reg = rl_result.reg;
1764
1765  // SETcc only works with EAX..EDX.
1766  if (result_reg == object.reg || result_reg.GetReg() >= 4) {
1767    result_reg = AllocTypedTemp(false, kCoreReg);
1768    DCHECK_LT(result_reg.GetReg(), 4);
1769  }
1770
1771  // Assume that there is no match.
1772  LoadConstant(result_reg, 0);
1773  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
1774
1775  RegStorage check_class = AllocTypedTemp(false, kCoreReg);
1776
1777  // If Method* is already in a register, we can save a copy.
1778  RegLocation rl_method = mir_graph_->GetMethodLoc();
1779  int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1780    (sizeof(mirror::Class*) * type_idx);
1781
1782  if (rl_method.location == kLocPhysReg) {
1783    if (use_declaring_class) {
1784      LoadWordDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1785                   check_class);
1786    } else {
1787      LoadWordDisp(rl_method.reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1788                   check_class);
1789      LoadWordDisp(check_class, offset_of_type, check_class);
1790    }
1791  } else {
1792    LoadCurrMethodDirect(check_class);
1793    if (use_declaring_class) {
1794      LoadWordDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1795                   check_class);
1796    } else {
1797      LoadWordDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1798                   check_class);
1799      LoadWordDisp(check_class, offset_of_type, check_class);
1800    }
1801  }
1802
1803  // Compare the computed class to the class in the object.
1804  DCHECK_EQ(object.location, kLocPhysReg);
1805  OpRegMem(kOpCmp, check_class, object.reg, mirror::Object::ClassOffset().Int32Value());
1806
1807  // Set the low byte of the result to 0 or 1 from the compare condition code.
1808  NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondEq);
1809
1810  LIR* target = NewLIR0(kPseudoTargetLabel);
1811  null_branchover->target = target;
1812  FreeTemp(check_class);
1813  if (IsTemp(result_reg)) {
1814    OpRegCopy(rl_result.reg, result_reg);
1815    FreeTemp(result_reg);
1816  }
1817  StoreValue(rl_dest, rl_result);
1818}
1819
1820void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1821                                            bool type_known_abstract, bool use_declaring_class,
1822                                            bool can_assume_type_is_in_dex_cache,
1823                                            uint32_t type_idx, RegLocation rl_dest,
1824                                            RegLocation rl_src) {
1825  FlushAllRegs();
1826  // May generate a call - use explicit registers.
1827  LockCallTemps();
1828  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 gets current Method*.
1829  RegStorage class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*.
1830  // Reference must end up in kArg0.
1831  if (needs_access_check) {
1832    // Check we have access to type_idx and if not throw IllegalAccessError,
1833    // Caller function returns Class* in kArg0.
1834    CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1835                         type_idx, true);
1836    OpRegCopy(class_reg, TargetReg(kRet0));
1837    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1838  } else if (use_declaring_class) {
1839    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1840    LoadWordDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1841                 class_reg);
1842  } else {
1843    // Load dex cache entry into class_reg (kArg2).
1844    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1845    LoadWordDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1846                 class_reg);
1847    int32_t offset_of_type =
1848        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1849        * type_idx);
1850    LoadWordDisp(class_reg, offset_of_type, class_reg);
1851    if (!can_assume_type_is_in_dex_cache) {
1852      // Need to test presence of type in dex cache at runtime.
1853      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1854      // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1855      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1856      OpRegCopy(TargetReg(kArg2), TargetReg(kRet0));  // Align usage with fast path.
1857      LoadValueDirectFixed(rl_src, TargetReg(kArg0));  /* Reload Ref. */
1858      // Rejoin code paths
1859      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1860      hop_branch->target = hop_target;
1861    }
1862  }
1863  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1864  RegLocation rl_result = GetReturn(false);
1865
1866  // SETcc only works with EAX..EDX.
1867  DCHECK_LT(rl_result.reg.GetReg(), 4);
1868
1869  // Is the class NULL?
1870  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1871
1872  /* Load object->klass_. */
1873  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1874  LoadWordDisp(TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1875  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1876  LIR* branchover = nullptr;
1877  if (type_known_final) {
1878    // Ensure top 3 bytes of result are 0.
1879    LoadConstant(rl_result.reg, 0);
1880    OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1881    // Set the low byte of the result to 0 or 1 from the compare condition code.
1882    NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondEq);
1883  } else {
1884    if (!type_known_abstract) {
1885      LoadConstant(rl_result.reg, 1);     // Assume result succeeds.
1886      branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1887    }
1888    OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1889    OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1890  }
1891  // TODO: only clobber when type isn't final?
1892  ClobberCallerSave();
1893  /* Branch targets here. */
1894  LIR* target = NewLIR0(kPseudoTargetLabel);
1895  StoreValue(rl_dest, rl_result);
1896  branch1->target = target;
1897  if (branchover != nullptr) {
1898    branchover->target = target;
1899  }
1900}
1901
1902void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1903                            RegLocation rl_lhs, RegLocation rl_rhs) {
1904  OpKind op = kOpBkpt;
1905  bool is_div_rem = false;
1906  bool unary = false;
1907  bool shift_op = false;
1908  bool is_two_addr = false;
1909  RegLocation rl_result;
1910  switch (opcode) {
1911    case Instruction::NEG_INT:
1912      op = kOpNeg;
1913      unary = true;
1914      break;
1915    case Instruction::NOT_INT:
1916      op = kOpMvn;
1917      unary = true;
1918      break;
1919    case Instruction::ADD_INT_2ADDR:
1920      is_two_addr = true;
1921      // Fallthrough
1922    case Instruction::ADD_INT:
1923      op = kOpAdd;
1924      break;
1925    case Instruction::SUB_INT_2ADDR:
1926      is_two_addr = true;
1927      // Fallthrough
1928    case Instruction::SUB_INT:
1929      op = kOpSub;
1930      break;
1931    case Instruction::MUL_INT_2ADDR:
1932      is_two_addr = true;
1933      // Fallthrough
1934    case Instruction::MUL_INT:
1935      op = kOpMul;
1936      break;
1937    case Instruction::DIV_INT_2ADDR:
1938      is_two_addr = true;
1939      // Fallthrough
1940    case Instruction::DIV_INT:
1941      op = kOpDiv;
1942      is_div_rem = true;
1943      break;
1944    /* NOTE: returns in kArg1 */
1945    case Instruction::REM_INT_2ADDR:
1946      is_two_addr = true;
1947      // Fallthrough
1948    case Instruction::REM_INT:
1949      op = kOpRem;
1950      is_div_rem = true;
1951      break;
1952    case Instruction::AND_INT_2ADDR:
1953      is_two_addr = true;
1954      // Fallthrough
1955    case Instruction::AND_INT:
1956      op = kOpAnd;
1957      break;
1958    case Instruction::OR_INT_2ADDR:
1959      is_two_addr = true;
1960      // Fallthrough
1961    case Instruction::OR_INT:
1962      op = kOpOr;
1963      break;
1964    case Instruction::XOR_INT_2ADDR:
1965      is_two_addr = true;
1966      // Fallthrough
1967    case Instruction::XOR_INT:
1968      op = kOpXor;
1969      break;
1970    case Instruction::SHL_INT_2ADDR:
1971      is_two_addr = true;
1972      // Fallthrough
1973    case Instruction::SHL_INT:
1974      shift_op = true;
1975      op = kOpLsl;
1976      break;
1977    case Instruction::SHR_INT_2ADDR:
1978      is_two_addr = true;
1979      // Fallthrough
1980    case Instruction::SHR_INT:
1981      shift_op = true;
1982      op = kOpAsr;
1983      break;
1984    case Instruction::USHR_INT_2ADDR:
1985      is_two_addr = true;
1986      // Fallthrough
1987    case Instruction::USHR_INT:
1988      shift_op = true;
1989      op = kOpLsr;
1990      break;
1991    default:
1992      LOG(FATAL) << "Invalid word arith op: " << opcode;
1993  }
1994
1995    // Can we convert to a two address instruction?
1996  if (!is_two_addr &&
1997        (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1998         mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1999      is_two_addr = true;
2000    }
2001
2002  // Get the div/rem stuff out of the way.
2003  if (is_div_rem) {
2004    rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
2005    StoreValue(rl_dest, rl_result);
2006    return;
2007  }
2008
2009  if (unary) {
2010    rl_lhs = LoadValue(rl_lhs, kCoreReg);
2011    rl_result = UpdateLoc(rl_dest);
2012    rl_result = EvalLoc(rl_dest, kCoreReg, true);
2013    OpRegReg(op, rl_result.reg, rl_lhs.reg);
2014  } else {
2015    if (shift_op) {
2016      // X86 doesn't require masking and must use ECX.
2017      RegStorage t_reg = TargetReg(kCount);  // rCX
2018      LoadValueDirectFixed(rl_rhs, t_reg);
2019      if (is_two_addr) {
2020        // Can we do this directly into memory?
2021        rl_result = UpdateLoc(rl_dest);
2022        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2023        if (rl_result.location != kLocPhysReg) {
2024          // Okay, we can do this into memory
2025          OpMemReg(op, rl_result, t_reg.GetReg());
2026          FreeTemp(t_reg);
2027          return;
2028        } else if (!IsFpReg(rl_result.reg.GetReg())) {
2029          // Can do this directly into the result register
2030          OpRegReg(op, rl_result.reg, t_reg);
2031          FreeTemp(t_reg);
2032          StoreFinalValue(rl_dest, rl_result);
2033          return;
2034        }
2035      }
2036      // Three address form, or we can't do directly.
2037      rl_lhs = LoadValue(rl_lhs, kCoreReg);
2038      rl_result = EvalLoc(rl_dest, kCoreReg, true);
2039      OpRegRegReg(op, rl_result.reg, rl_lhs.reg, t_reg);
2040      FreeTemp(t_reg);
2041    } else {
2042      // Multiply is 3 operand only (sort of).
2043      if (is_two_addr && op != kOpMul) {
2044        // Can we do this directly into memory?
2045        rl_result = UpdateLoc(rl_dest);
2046        if (rl_result.location == kLocPhysReg) {
2047          // Can we do this from memory directly?
2048          rl_rhs = UpdateLoc(rl_rhs);
2049          if (rl_rhs.location != kLocPhysReg) {
2050            OpRegMem(op, rl_result.reg, rl_rhs);
2051            StoreFinalValue(rl_dest, rl_result);
2052            return;
2053          } else if (!IsFpReg(rl_rhs.reg)) {
2054            OpRegReg(op, rl_result.reg, rl_rhs.reg);
2055            StoreFinalValue(rl_dest, rl_result);
2056            return;
2057          }
2058        }
2059        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2060        if (rl_result.location != kLocPhysReg) {
2061          // Okay, we can do this into memory.
2062          OpMemReg(op, rl_result, rl_rhs.reg.GetReg());
2063          return;
2064        } else if (!IsFpReg(rl_result.reg)) {
2065          // Can do this directly into the result register.
2066          OpRegReg(op, rl_result.reg, rl_rhs.reg);
2067          StoreFinalValue(rl_dest, rl_result);
2068          return;
2069        } else {
2070          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2071          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2072          OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2073        }
2074      } else {
2075        // Try to use reg/memory instructions.
2076        rl_lhs = UpdateLoc(rl_lhs);
2077        rl_rhs = UpdateLoc(rl_rhs);
2078        // We can't optimize with FP registers.
2079        if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2080          // Something is difficult, so fall back to the standard case.
2081          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2082          rl_rhs = LoadValue(rl_rhs, kCoreReg);
2083          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2084          OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2085        } else {
2086          // We can optimize by moving to result and using memory operands.
2087          if (rl_rhs.location != kLocPhysReg) {
2088            // Force LHS into result.
2089            // We should be careful with order here
2090            // If rl_dest and rl_lhs points to the same VR we should load first
2091            // If the are different we should find a register first for dest
2092            if (mir_graph_->SRegToVReg(rl_dest.s_reg_low) == mir_graph_->SRegToVReg(rl_lhs.s_reg_low)) {
2093              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2094              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2095            } else {
2096              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2097              LoadValueDirect(rl_lhs, rl_result.reg);
2098            }
2099            OpRegMem(op, rl_result.reg, rl_rhs);
2100          } else if (rl_lhs.location != kLocPhysReg) {
2101            // RHS is in a register; LHS is in memory.
2102            if (op != kOpSub) {
2103              // Force RHS into result and operate on memory.
2104              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2105              OpRegCopy(rl_result.reg, rl_rhs.reg);
2106              OpRegMem(op, rl_result.reg, rl_lhs);
2107            } else {
2108              // Subtraction isn't commutative.
2109              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2110              rl_rhs = LoadValue(rl_rhs, kCoreReg);
2111              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2112              OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2113            }
2114          } else {
2115            // Both are in registers.
2116            rl_lhs = LoadValue(rl_lhs, kCoreReg);
2117            rl_rhs = LoadValue(rl_rhs, kCoreReg);
2118            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2119            OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2120          }
2121        }
2122      }
2123    }
2124  }
2125  StoreValue(rl_dest, rl_result);
2126}
2127
2128bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2129  // If we have non-core registers, then we can't do good things.
2130  if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.reg.GetReg())) {
2131    return false;
2132  }
2133  if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.reg.GetReg())) {
2134    return false;
2135  }
2136
2137  // Everything will be fine :-).
2138  return true;
2139}
2140}  // namespace art
2141