int_x86.cc revision 2689fbad6b5ec1ae8f8c8791a80c6fd3cf24144d
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Compare two 64-bit values
28 *    x = y     return  0
29 *    x < y     return -1
30 *    x > y     return  1
31 */
32void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
33                            RegLocation rl_src2) {
34  if (Gen64Bit()) {
35    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
36    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
37    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
38    RegStorage temp_reg = AllocTemp();
39    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
40    NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondG);   // result = (src1 > src2) ? 1 : 0
41    NewLIR2(kX86Set8R, temp_reg.GetReg(), kX86CondL);  // temp = (src1 >= src2) ? 0 : 1
42    NewLIR2(kX86Sub8RR, rl_result.reg.GetReg(), temp_reg.GetReg());
43    NewLIR2(kX86Movsx8qRR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
44
45    StoreValue(rl_dest, rl_result);
46    FreeTemp(temp_reg);
47    return;
48  }
49
50  FlushAllRegs();
51  LockCallTemps();  // Prepare for explicit register usage
52  RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
53  RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_r2, rs_r3);
54  LoadValueDirectWideFixed(rl_src1, r_tmp1);
55  LoadValueDirectWideFixed(rl_src2, r_tmp2);
56  // Compute (r1:r0) = (r1:r0) - (r3:r2)
57  OpRegReg(kOpSub, rs_r0, rs_r2);  // r0 = r0 - r2
58  OpRegReg(kOpSbc, rs_r1, rs_r3);  // r1 = r1 - r3 - CF
59  NewLIR2(kX86Set8R, rs_r2.GetReg(), kX86CondL);  // r2 = (r1:r0) < (r3:r2) ? 1 : 0
60  NewLIR2(kX86Movzx8RR, rs_r2.GetReg(), rs_r2.GetReg());
61  OpReg(kOpNeg, rs_r2);         // r2 = -r2
62  OpRegReg(kOpOr, rs_r0, rs_r1);   // r0 = high | low - sets ZF
63  NewLIR2(kX86Set8R, rs_r0.GetReg(), kX86CondNz);  // r0 = (r1:r0) != (r3:r2) ? 1 : 0
64  NewLIR2(kX86Movzx8RR, r0, r0);
65  OpRegReg(kOpOr, rs_r0, rs_r2);   // r0 = r0 | r2
66  RegLocation rl_result = LocCReturn();
67  StoreValue(rl_dest, rl_result);
68}
69
70X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
71  switch (cond) {
72    case kCondEq: return kX86CondEq;
73    case kCondNe: return kX86CondNe;
74    case kCondCs: return kX86CondC;
75    case kCondCc: return kX86CondNc;
76    case kCondUlt: return kX86CondC;
77    case kCondUge: return kX86CondNc;
78    case kCondMi: return kX86CondS;
79    case kCondPl: return kX86CondNs;
80    case kCondVs: return kX86CondO;
81    case kCondVc: return kX86CondNo;
82    case kCondHi: return kX86CondA;
83    case kCondLs: return kX86CondBe;
84    case kCondGe: return kX86CondGe;
85    case kCondLt: return kX86CondL;
86    case kCondGt: return kX86CondG;
87    case kCondLe: return kX86CondLe;
88    case kCondAl:
89    case kCondNv: LOG(FATAL) << "Should not reach here";
90  }
91  return kX86CondO;
92}
93
94LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
95  NewLIR2(kX86Cmp32RR, src1.GetReg(), src2.GetReg());
96  X86ConditionCode cc = X86ConditionEncoding(cond);
97  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
98                        cc);
99  branch->target = target;
100  return branch;
101}
102
103LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg,
104                                int check_value, LIR* target) {
105  if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
106    // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
107    NewLIR2(kX86Test32RR, reg.GetReg(), reg.GetReg());
108  } else {
109    NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg.GetReg(), check_value);
110  }
111  X86ConditionCode cc = X86ConditionEncoding(cond);
112  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
113  branch->target = target;
114  return branch;
115}
116
117LIR* X86Mir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
118  // If src or dest is a pair, we'll be using low reg.
119  if (r_dest.IsPair()) {
120    r_dest = r_dest.GetLow();
121  }
122  if (r_src.IsPair()) {
123    r_src = r_src.GetLow();
124  }
125  if (r_dest.IsFloat() || r_src.IsFloat())
126    return OpFpRegCopy(r_dest, r_src);
127  LIR* res = RawLIR(current_dalvik_offset_, r_dest.Is64Bit() ? kX86Mov64RR : kX86Mov32RR,
128                    r_dest.GetReg(), r_src.GetReg());
129  if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
130    res->flags.is_nop = true;
131  }
132  return res;
133}
134
135void X86Mir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
136  if (r_dest != r_src) {
137    LIR *res = OpRegCopyNoInsert(r_dest, r_src);
138    AppendLIR(res);
139  }
140}
141
142void X86Mir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
143  if (r_dest != r_src) {
144    bool dest_fp = r_dest.IsFloat();
145    bool src_fp = r_src.IsFloat();
146    if (dest_fp) {
147      if (src_fp) {
148        OpRegCopy(r_dest, r_src);
149      } else {
150        // TODO: Prevent this from happening in the code. The result is often
151        // unused or could have been loaded more easily from memory.
152        if (!r_src.IsPair()) {
153          DCHECK(!r_dest.IsPair());
154          NewLIR2(kX86MovqxrRR, r_dest.GetReg(), r_src.GetReg());
155        } else {
156          NewLIR2(kX86MovdxrRR, r_dest.GetReg(), r_src.GetLowReg());
157          RegStorage r_tmp = AllocTempDouble();
158          NewLIR2(kX86MovdxrRR, r_tmp.GetReg(), r_src.GetHighReg());
159          NewLIR2(kX86PunpckldqRR, r_dest.GetReg(), r_tmp.GetReg());
160          FreeTemp(r_tmp);
161        }
162      }
163    } else {
164      if (src_fp) {
165        if (!r_dest.IsPair()) {
166          DCHECK(!r_src.IsPair());
167          NewLIR2(kX86MovqrxRR, r_dest.GetReg(), r_src.GetReg());
168        } else {
169          NewLIR2(kX86MovdrxRR, r_dest.GetLowReg(), r_src.GetReg());
170          RegStorage temp_reg = AllocTempDouble();
171          NewLIR2(kX86MovsdRR, temp_reg.GetReg(), r_src.GetReg());
172          NewLIR2(kX86PsrlqRI, temp_reg.GetReg(), 32);
173          NewLIR2(kX86MovdrxRR, r_dest.GetHighReg(), temp_reg.GetReg());
174        }
175      } else {
176        DCHECK_EQ(r_dest.IsPair(), r_src.IsPair());
177        if (!r_src.IsPair()) {
178          // Just copy the register directly.
179          OpRegCopy(r_dest, r_src);
180        } else {
181          // Handle overlap
182          if (r_src.GetHighReg() == r_dest.GetLowReg() &&
183              r_src.GetLowReg() == r_dest.GetHighReg()) {
184            // Deal with cycles.
185            RegStorage temp_reg = AllocTemp();
186            OpRegCopy(temp_reg, r_dest.GetHigh());
187            OpRegCopy(r_dest.GetHigh(), r_dest.GetLow());
188            OpRegCopy(r_dest.GetLow(), temp_reg);
189            FreeTemp(temp_reg);
190          } else if (r_src.GetHighReg() == r_dest.GetLowReg()) {
191            OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
192            OpRegCopy(r_dest.GetLow(), r_src.GetLow());
193          } else {
194            OpRegCopy(r_dest.GetLow(), r_src.GetLow());
195            OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
196          }
197        }
198      }
199    }
200  }
201}
202
203void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
204  RegLocation rl_result;
205  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
206  RegLocation rl_dest = mir_graph_->GetDest(mir);
207  // Avoid using float regs here.
208  RegisterClass src_reg_class = rl_src.ref ? kRefReg : kCoreReg;
209  RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg;
210  rl_src = LoadValue(rl_src, src_reg_class);
211  ConditionCode ccode = mir->meta.ccode;
212
213  // The kMirOpSelect has two variants, one for constants and one for moves.
214  const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
215
216  if (is_constant_case) {
217    int true_val = mir->dalvikInsn.vB;
218    int false_val = mir->dalvikInsn.vC;
219    rl_result = EvalLoc(rl_dest, result_reg_class, true);
220
221    /*
222     * For ccode == kCondEq:
223     *
224     * 1) When the true case is zero and result_reg is not same as src_reg:
225     *     xor result_reg, result_reg
226     *     cmp $0, src_reg
227     *     mov t1, $false_case
228     *     cmovnz result_reg, t1
229     * 2) When the false case is zero and result_reg is not same as src_reg:
230     *     xor result_reg, result_reg
231     *     cmp $0, src_reg
232     *     mov t1, $true_case
233     *     cmovz result_reg, t1
234     * 3) All other cases (we do compare first to set eflags):
235     *     cmp $0, src_reg
236     *     mov result_reg, $false_case
237     *     mov t1, $true_case
238     *     cmovz result_reg, t1
239     */
240    // FIXME: depending on how you use registers you could get a false != mismatch when dealing
241    // with different views of the same underlying physical resource (i.e. solo32 vs. solo64).
242    const bool result_reg_same_as_src =
243        (rl_src.location == kLocPhysReg && rl_src.reg.GetReg() == rl_result.reg.GetReg());
244    const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
245    const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
246    const bool catch_all_case = !(true_zero_case || false_zero_case);
247
248    if (true_zero_case || false_zero_case) {
249      OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
250    }
251
252    if (true_zero_case || false_zero_case || catch_all_case) {
253      OpRegImm(kOpCmp, rl_src.reg, 0);
254    }
255
256    if (catch_all_case) {
257      OpRegImm(kOpMov, rl_result.reg, false_val);
258    }
259
260    if (true_zero_case || false_zero_case || catch_all_case) {
261      ConditionCode cc = true_zero_case ? NegateComparison(ccode) : ccode;
262      int immediateForTemp = true_zero_case ? false_val : true_val;
263      RegStorage temp1_reg = AllocTypedTemp(false, result_reg_class);
264      OpRegImm(kOpMov, temp1_reg, immediateForTemp);
265
266      OpCondRegReg(kOpCmov, cc, rl_result.reg, temp1_reg);
267
268      FreeTemp(temp1_reg);
269    }
270  } else {
271    RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
272    RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
273    rl_true = LoadValue(rl_true, result_reg_class);
274    rl_false = LoadValue(rl_false, result_reg_class);
275    rl_result = EvalLoc(rl_dest, result_reg_class, true);
276
277    /*
278     * For ccode == kCondEq:
279     *
280     * 1) When true case is already in place:
281     *     cmp $0, src_reg
282     *     cmovnz result_reg, false_reg
283     * 2) When false case is already in place:
284     *     cmp $0, src_reg
285     *     cmovz result_reg, true_reg
286     * 3) When neither cases are in place:
287     *     cmp $0, src_reg
288     *     mov result_reg, false_reg
289     *     cmovz result_reg, true_reg
290     */
291
292    // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
293    OpRegImm(kOpCmp, rl_src.reg, 0);
294
295    if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
296      OpCondRegReg(kOpCmov, NegateComparison(ccode), rl_result.reg, rl_false.reg);
297    } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
298      OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
299    } else {
300      OpRegCopy(rl_result.reg, rl_false.reg);
301      OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
302    }
303  }
304
305  StoreValue(rl_dest, rl_result);
306}
307
308void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
309  LIR* taken = &block_label_list_[bb->taken];
310  RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
311  RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
312  ConditionCode ccode = mir->meta.ccode;
313
314  if (rl_src1.is_const) {
315    std::swap(rl_src1, rl_src2);
316    ccode = FlipComparisonOrder(ccode);
317  }
318  if (rl_src2.is_const) {
319    // Do special compare/branch against simple const operand
320    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
321    GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
322    return;
323  }
324
325  if (Gen64Bit()) {
326    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
327    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
328
329    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
330    OpCondBranch(ccode, taken);
331    return;
332  }
333
334  FlushAllRegs();
335  LockCallTemps();  // Prepare for explicit register usage
336  RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
337  RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_r2, rs_r3);
338  LoadValueDirectWideFixed(rl_src1, r_tmp1);
339  LoadValueDirectWideFixed(rl_src2, r_tmp2);
340
341  // Swap operands and condition code to prevent use of zero flag.
342  if (ccode == kCondLe || ccode == kCondGt) {
343    // Compute (r3:r2) = (r3:r2) - (r1:r0)
344    OpRegReg(kOpSub, rs_r2, rs_r0);  // r2 = r2 - r0
345    OpRegReg(kOpSbc, rs_r3, rs_r1);  // r3 = r3 - r1 - CF
346  } else {
347    // Compute (r1:r0) = (r1:r0) - (r3:r2)
348    OpRegReg(kOpSub, rs_r0, rs_r2);  // r0 = r0 - r2
349    OpRegReg(kOpSbc, rs_r1, rs_r3);  // r1 = r1 - r3 - CF
350  }
351  switch (ccode) {
352    case kCondEq:
353    case kCondNe:
354      OpRegReg(kOpOr, rs_r0, rs_r1);  // r0 = r0 | r1
355      break;
356    case kCondLe:
357      ccode = kCondGe;
358      break;
359    case kCondGt:
360      ccode = kCondLt;
361      break;
362    case kCondLt:
363    case kCondGe:
364      break;
365    default:
366      LOG(FATAL) << "Unexpected ccode: " << ccode;
367  }
368  OpCondBranch(ccode, taken);
369}
370
371void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
372                                          int64_t val, ConditionCode ccode) {
373  int32_t val_lo = Low32Bits(val);
374  int32_t val_hi = High32Bits(val);
375  LIR* taken = &block_label_list_[bb->taken];
376  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
377  bool is_equality_test = ccode == kCondEq || ccode == kCondNe;
378
379  if (Gen64Bit()) {
380    if (is_equality_test && val == 0) {
381      // We can simplify of comparing for ==, != to 0.
382      NewLIR2(kX86Test64RR, rl_src1.reg.GetReg(), rl_src1.reg.GetReg());
383    } else if (is_equality_test && val_hi == 0 && val_lo > 0) {
384      OpRegImm(kOpCmp, rl_src1.reg, val_lo);
385    } else {
386      RegStorage tmp = AllocTypedTempWide(false, kCoreReg);
387      LoadConstantWide(tmp, val);
388      OpRegReg(kOpCmp, rl_src1.reg, tmp);
389      FreeTemp(tmp);
390    }
391    OpCondBranch(ccode, taken);
392    return;
393  }
394
395  if (is_equality_test && val != 0) {
396    rl_src1 = ForceTempWide(rl_src1);
397  }
398  RegStorage low_reg = rl_src1.reg.GetLow();
399  RegStorage high_reg = rl_src1.reg.GetHigh();
400
401  if (is_equality_test) {
402    // We can simplify of comparing for ==, != to 0.
403    if (val == 0) {
404      if (IsTemp(low_reg)) {
405        OpRegReg(kOpOr, low_reg, high_reg);
406        // We have now changed it; ignore the old values.
407        Clobber(rl_src1.reg);
408      } else {
409        RegStorage t_reg = AllocTemp();
410        OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
411        FreeTemp(t_reg);
412      }
413      OpCondBranch(ccode, taken);
414      return;
415    }
416
417    // Need to compute the actual value for ==, !=.
418    OpRegImm(kOpSub, low_reg, val_lo);
419    NewLIR2(kX86Sbb32RI, high_reg.GetReg(), val_hi);
420    OpRegReg(kOpOr, high_reg, low_reg);
421    Clobber(rl_src1.reg);
422  } else if (ccode == kCondLe || ccode == kCondGt) {
423    // Swap operands and condition code to prevent use of zero flag.
424    RegStorage tmp = AllocTypedTempWide(false, kCoreReg);
425    LoadConstantWide(tmp, val);
426    OpRegReg(kOpSub, tmp.GetLow(), low_reg);
427    OpRegReg(kOpSbc, tmp.GetHigh(), high_reg);
428    ccode = (ccode == kCondLe) ? kCondGe : kCondLt;
429    FreeTemp(tmp);
430  } else {
431    // We can use a compare for the low word to set CF.
432    OpRegImm(kOpCmp, low_reg, val_lo);
433    if (IsTemp(high_reg)) {
434      NewLIR2(kX86Sbb32RI, high_reg.GetReg(), val_hi);
435      // We have now changed it; ignore the old values.
436      Clobber(rl_src1.reg);
437    } else {
438      // mov temp_reg, high_reg; sbb temp_reg, high_constant
439      RegStorage t_reg = AllocTemp();
440      OpRegCopy(t_reg, high_reg);
441      NewLIR2(kX86Sbb32RI, t_reg.GetReg(), val_hi);
442      FreeTemp(t_reg);
443    }
444  }
445
446  OpCondBranch(ccode, taken);
447}
448
449void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
450  // It does not make sense to calculate magic and shift for zero divisor.
451  DCHECK_NE(divisor, 0);
452
453  /* According to H.S.Warren's Hacker's Delight Chapter 10 and
454   * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
455   * The magic number M and shift S can be calculated in the following way:
456   * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
457   * where divisor(d) >=2.
458   * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
459   * where divisor(d) <= -2.
460   * Thus nc can be calculated like:
461   * nc = 2^31 + 2^31 % d - 1, where d >= 2
462   * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
463   *
464   * So the shift p is the smallest p satisfying
465   * 2^p > nc * (d - 2^p % d), where d >= 2
466   * 2^p > nc * (d + 2^p % d), where d <= -2.
467   *
468   * the magic number M is calcuated by
469   * M = (2^p + d - 2^p % d) / d, where d >= 2
470   * M = (2^p - d - 2^p % d) / d, where d <= -2.
471   *
472   * Notice that p is always bigger than or equal to 32, so we just return 32-p as
473   * the shift number S.
474   */
475
476  int32_t p = 31;
477  const uint32_t two31 = 0x80000000U;
478
479  // Initialize the computations.
480  uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
481  uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
482  uint32_t abs_nc = tmp - 1 - tmp % abs_d;
483  uint32_t quotient1 = two31 / abs_nc;
484  uint32_t remainder1 = two31 % abs_nc;
485  uint32_t quotient2 = two31 / abs_d;
486  uint32_t remainder2 = two31 % abs_d;
487
488  /*
489   * To avoid handling both positive and negative divisor, Hacker's Delight
490   * introduces a method to handle these 2 cases together to avoid duplication.
491   */
492  uint32_t delta;
493  do {
494    p++;
495    quotient1 = 2 * quotient1;
496    remainder1 = 2 * remainder1;
497    if (remainder1 >= abs_nc) {
498      quotient1++;
499      remainder1 = remainder1 - abs_nc;
500    }
501    quotient2 = 2 * quotient2;
502    remainder2 = 2 * remainder2;
503    if (remainder2 >= abs_d) {
504      quotient2++;
505      remainder2 = remainder2 - abs_d;
506    }
507    delta = abs_d - remainder2;
508  } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
509
510  magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
511  shift = p - 32;
512}
513
514RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div) {
515  LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
516  return rl_dest;
517}
518
519RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
520                                     int imm, bool is_div) {
521  // Use a multiply (and fixup) to perform an int div/rem by a constant.
522
523  // We have to use fixed registers, so flush all the temps.
524  FlushAllRegs();
525  LockCallTemps();  // Prepare for explicit register usage.
526
527  // Assume that the result will be in EDX.
528  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_r2, INVALID_SREG, INVALID_SREG};
529
530  // handle div/rem by 1 special case.
531  if (imm == 1) {
532    if (is_div) {
533      // x / 1 == x.
534      StoreValue(rl_result, rl_src);
535    } else {
536      // x % 1 == 0.
537      LoadConstantNoClobber(rs_r0, 0);
538      // For this case, return the result in EAX.
539      rl_result.reg.SetReg(r0);
540    }
541  } else if (imm == -1) {  // handle 0x80000000 / -1 special case.
542    if (is_div) {
543      LIR *minint_branch = 0;
544      LoadValueDirectFixed(rl_src, rs_r0);
545      OpRegImm(kOpCmp, rs_r0, 0x80000000);
546      minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
547
548      // for x != MIN_INT, x / -1 == -x.
549      NewLIR1(kX86Neg32R, r0);
550
551      LIR* branch_around = NewLIR1(kX86Jmp8, 0);
552      // The target for cmp/jmp above.
553      minint_branch->target = NewLIR0(kPseudoTargetLabel);
554      // EAX already contains the right value (0x80000000),
555      branch_around->target = NewLIR0(kPseudoTargetLabel);
556    } else {
557      // x % -1 == 0.
558      LoadConstantNoClobber(rs_r0, 0);
559    }
560    // For this case, return the result in EAX.
561    rl_result.reg.SetReg(r0);
562  } else {
563    CHECK(imm <= -2 || imm >= 2);
564    // Use H.S.Warren's Hacker's Delight Chapter 10 and
565    // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
566    int magic, shift;
567    CalculateMagicAndShift(imm, magic, shift);
568
569    /*
570     * For imm >= 2,
571     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
572     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
573     * For imm <= -2,
574     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
575     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
576     * We implement this algorithm in the following way:
577     * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
578     * 2. if imm > 0 and magic < 0, add numerator to EDX
579     *    if imm < 0 and magic > 0, sub numerator from EDX
580     * 3. if S !=0, SAR S bits for EDX
581     * 4. add 1 to EDX if EDX < 0
582     * 5. Thus, EDX is the quotient
583     */
584
585    // Numerator into EAX.
586    RegStorage numerator_reg;
587    if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
588      // We will need the value later.
589      if (rl_src.location == kLocPhysReg) {
590        // We can use it directly.
591        DCHECK(rl_src.reg.GetReg() != rs_r0.GetReg() && rl_src.reg.GetReg() != rs_r2.GetReg());
592        numerator_reg = rl_src.reg;
593      } else {
594        numerator_reg = rs_r1;
595        LoadValueDirectFixed(rl_src, numerator_reg);
596      }
597      OpRegCopy(rs_r0, numerator_reg);
598    } else {
599      // Only need this once.  Just put it into EAX.
600      LoadValueDirectFixed(rl_src, rs_r0);
601    }
602
603    // EDX = magic.
604    LoadConstantNoClobber(rs_r2, magic);
605
606    // EDX:EAX = magic & dividend.
607    NewLIR1(kX86Imul32DaR, rs_r2.GetReg());
608
609    if (imm > 0 && magic < 0) {
610      // Add numerator to EDX.
611      DCHECK(numerator_reg.Valid());
612      NewLIR2(kX86Add32RR, rs_r2.GetReg(), numerator_reg.GetReg());
613    } else if (imm < 0 && magic > 0) {
614      DCHECK(numerator_reg.Valid());
615      NewLIR2(kX86Sub32RR, rs_r2.GetReg(), numerator_reg.GetReg());
616    }
617
618    // Do we need the shift?
619    if (shift != 0) {
620      // Shift EDX by 'shift' bits.
621      NewLIR2(kX86Sar32RI, rs_r2.GetReg(), shift);
622    }
623
624    // Add 1 to EDX if EDX < 0.
625
626    // Move EDX to EAX.
627    OpRegCopy(rs_r0, rs_r2);
628
629    // Move sign bit to bit 0, zeroing the rest.
630    NewLIR2(kX86Shr32RI, rs_r2.GetReg(), 31);
631
632    // EDX = EDX + EAX.
633    NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r0.GetReg());
634
635    // Quotient is in EDX.
636    if (!is_div) {
637      // We need to compute the remainder.
638      // Remainder is divisor - (quotient * imm).
639      DCHECK(numerator_reg.Valid());
640      OpRegCopy(rs_r0, numerator_reg);
641
642      // EAX = numerator * imm.
643      OpRegRegImm(kOpMul, rs_r2, rs_r2, imm);
644
645      // EDX -= EAX.
646      NewLIR2(kX86Sub32RR, rs_r0.GetReg(), rs_r2.GetReg());
647
648      // For this case, return the result in EAX.
649      rl_result.reg.SetReg(r0);
650    }
651  }
652
653  return rl_result;
654}
655
656RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
657                                  bool is_div) {
658  LOG(FATAL) << "Unexpected use of GenDivRem for x86";
659  return rl_dest;
660}
661
662RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
663                                  RegLocation rl_src2, bool is_div, bool check_zero) {
664  // We have to use fixed registers, so flush all the temps.
665  FlushAllRegs();
666  LockCallTemps();  // Prepare for explicit register usage.
667
668  // Load LHS into EAX.
669  LoadValueDirectFixed(rl_src1, rs_r0);
670
671  // Load RHS into EBX.
672  LoadValueDirectFixed(rl_src2, rs_r1);
673
674  // Copy LHS sign bit into EDX.
675  NewLIR0(kx86Cdq32Da);
676
677  if (check_zero) {
678    // Handle division by zero case.
679    GenDivZeroCheck(rs_r1);
680  }
681
682  // Have to catch 0x80000000/-1 case, or we will get an exception!
683  OpRegImm(kOpCmp, rs_r1, -1);
684  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
685
686  // RHS is -1.
687  OpRegImm(kOpCmp, rs_r0, 0x80000000);
688  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
689
690  // In 0x80000000/-1 case.
691  if (!is_div) {
692    // For DIV, EAX is already right. For REM, we need EDX 0.
693    LoadConstantNoClobber(rs_r2, 0);
694  }
695  LIR* done = NewLIR1(kX86Jmp8, 0);
696
697  // Expected case.
698  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
699  minint_branch->target = minus_one_branch->target;
700  NewLIR1(kX86Idivmod32DaR, rs_r1.GetReg());
701  done->target = NewLIR0(kPseudoTargetLabel);
702
703  // Result is in EAX for div and EDX for rem.
704  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_r0, INVALID_SREG, INVALID_SREG};
705  if (!is_div) {
706    rl_result.reg.SetReg(r2);
707  }
708  return rl_result;
709}
710
711bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
712  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
713
714  // Get the two arguments to the invoke and place them in GP registers.
715  RegLocation rl_src1 = info->args[0];
716  RegLocation rl_src2 = info->args[1];
717  rl_src1 = LoadValue(rl_src1, kCoreReg);
718  rl_src2 = LoadValue(rl_src2, kCoreReg);
719
720  RegLocation rl_dest = InlineTarget(info);
721  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
722
723  /*
724   * If the result register is the same as the second element, then we need to be careful.
725   * The reason is that the first copy will inadvertently clobber the second element with
726   * the first one thus yielding the wrong result. Thus we do a swap in that case.
727   */
728  if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
729    std::swap(rl_src1, rl_src2);
730  }
731
732  // Pick the first integer as min/max.
733  OpRegCopy(rl_result.reg, rl_src1.reg);
734
735  // If the integers are both in the same register, then there is nothing else to do
736  // because they are equal and we have already moved one into the result.
737  if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
738    // It is possible we didn't pick correctly so do the actual comparison now.
739    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
740
741    // Conditionally move the other integer into the destination register.
742    ConditionCode condition_code = is_min ? kCondGt : kCondLt;
743    OpCondRegReg(kOpCmov, condition_code, rl_result.reg, rl_src2.reg);
744  }
745
746  StoreValue(rl_dest, rl_result);
747  return true;
748}
749
750bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
751  RegLocation rl_src_address = info->args[0];  // long address
752  rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
753  RegLocation rl_dest = size == k64 ? InlineTargetWide(info) : InlineTarget(info);
754  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
755  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
756  // Unaligned access is allowed on x86.
757  LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, kNotVolatile);
758  if (size == k64) {
759    StoreValueWide(rl_dest, rl_result);
760  } else {
761    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
762    StoreValue(rl_dest, rl_result);
763  }
764  return true;
765}
766
767bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
768  RegLocation rl_src_address = info->args[0];  // long address
769  rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
770  RegLocation rl_src_value = info->args[2];  // [size] value
771  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
772  if (size == k64) {
773    // Unaligned access is allowed on x86.
774    RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
775    StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile);
776  } else {
777    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
778    // Unaligned access is allowed on x86.
779    RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
780    StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile);
781  }
782  return true;
783}
784
785void X86Mir2Lir::OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset) {
786  NewLIR5(kX86Lea32RA, r_base.GetReg(), reg1.GetReg(), reg2.GetReg(), scale, offset);
787}
788
789void X86Mir2Lir::OpTlsCmp(ThreadOffset<4> offset, int val) {
790  DCHECK_EQ(kX86, cu_->instruction_set);
791  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
792}
793
794void X86Mir2Lir::OpTlsCmp(ThreadOffset<8> offset, int val) {
795  DCHECK_EQ(kX86_64, cu_->instruction_set);
796  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
797}
798
799static bool IsInReg(X86Mir2Lir *pMir2Lir, const RegLocation &rl, RegStorage reg) {
800  return rl.reg.Valid() && rl.reg.GetReg() == reg.GetReg() && (pMir2Lir->IsLive(reg) || rl.home);
801}
802
803bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
804  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
805  // Unused - RegLocation rl_src_unsafe = info->args[0];
806  RegLocation rl_src_obj = info->args[1];  // Object - known non-null
807  RegLocation rl_src_offset = info->args[2];  // long low
808  rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
809  RegLocation rl_src_expected = info->args[4];  // int, long or Object
810  // If is_long, high half is in info->args[5]
811  RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
812  // If is_long, high half is in info->args[7]
813
814  if (is_long) {
815    // TODO: avoid unnecessary loads of SI and DI when the values are in registers.
816    // TODO: CFI support.
817    FlushAllRegs();
818    LockCallTemps();
819    RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_rAX, rs_rDX);
820    RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_rBX, rs_rCX);
821    LoadValueDirectWideFixed(rl_src_expected, r_tmp1);
822    LoadValueDirectWideFixed(rl_src_new_value, r_tmp2);
823    // FIXME: needs 64-bit update.
824    const bool obj_in_di = IsInReg(this, rl_src_obj, rs_rDI);
825    const bool obj_in_si = IsInReg(this, rl_src_obj, rs_rSI);
826    DCHECK(!obj_in_si || !obj_in_di);
827    const bool off_in_di = IsInReg(this, rl_src_offset, rs_rDI);
828    const bool off_in_si = IsInReg(this, rl_src_offset, rs_rSI);
829    DCHECK(!off_in_si || !off_in_di);
830    // If obj/offset is in a reg, use that reg. Otherwise, use the empty reg.
831    RegStorage rs_obj = obj_in_di ? rs_rDI : obj_in_si ? rs_rSI : !off_in_di ? rs_rDI : rs_rSI;
832    RegStorage rs_off = off_in_si ? rs_rSI : off_in_di ? rs_rDI : !obj_in_si ? rs_rSI : rs_rDI;
833    bool push_di = (!obj_in_di && !off_in_di) && (rs_obj == rs_rDI || rs_off == rs_rDI);
834    bool push_si = (!obj_in_si && !off_in_si) && (rs_obj == rs_rSI || rs_off == rs_rSI);
835    if (push_di) {
836      NewLIR1(kX86Push32R, rs_rDI.GetReg());
837      MarkTemp(rs_rDI);
838      LockTemp(rs_rDI);
839    }
840    if (push_si) {
841      NewLIR1(kX86Push32R, rs_rSI.GetReg());
842      MarkTemp(rs_rSI);
843      LockTemp(rs_rSI);
844    }
845    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
846    const size_t push_offset = (push_si ? 4u : 0u) + (push_di ? 4u : 0u);
847    if (!obj_in_si && !obj_in_di) {
848      LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rs_obj);
849      // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
850      DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
851      int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - push_offset / 4u;
852      AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
853    }
854    if (!off_in_si && !off_in_di) {
855      LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rs_off);
856      // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
857      DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
858      int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - push_offset / 4u;
859      AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
860    }
861    NewLIR4(kX86LockCmpxchg64A, rs_obj.GetReg(), rs_off.GetReg(), 0, 0);
862
863    // After a store we need to insert barrier in case of potential load. Since the
864    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
865    GenMemBarrier(kStoreLoad);
866
867
868    if (push_si) {
869      FreeTemp(rs_rSI);
870      UnmarkTemp(rs_rSI);
871      NewLIR1(kX86Pop32R, rs_rSI.GetReg());
872    }
873    if (push_di) {
874      FreeTemp(rs_rDI);
875      UnmarkTemp(rs_rDI);
876      NewLIR1(kX86Pop32R, rs_rDI.GetReg());
877    }
878    FreeCallTemps();
879  } else {
880    // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
881    FlushReg(rs_r0);
882    Clobber(rs_r0);
883    LockTemp(rs_r0);
884
885    RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
886    RegLocation rl_new_value = LoadValue(rl_src_new_value);
887
888    if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
889      // Mark card for object assuming new value is stored.
890      FreeTemp(rs_r0);  // Temporarily release EAX for MarkGCCard().
891      MarkGCCard(rl_new_value.reg, rl_object.reg);
892      LockTemp(rs_r0);
893    }
894
895    RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
896    LoadValueDirect(rl_src_expected, rs_r0);
897    NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0, rl_new_value.reg.GetReg());
898
899    // After a store we need to insert barrier in case of potential load. Since the
900    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
901    GenMemBarrier(kStoreLoad);
902
903    FreeTemp(rs_r0);
904  }
905
906  // Convert ZF to boolean
907  RegLocation rl_dest = InlineTarget(info);  // boolean place for result
908  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
909  RegStorage result_reg = rl_result.reg;
910
911  // For 32-bit, SETcc only works with EAX..EDX.
912  if (!IsByteRegister(result_reg)) {
913    result_reg = AllocateByteRegister();
914  }
915  NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondZ);
916  NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), result_reg.GetReg());
917  if (IsTemp(result_reg)) {
918    FreeTemp(result_reg);
919  }
920  StoreValue(rl_dest, rl_result);
921  return true;
922}
923
924LIR* X86Mir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
925  CHECK(base_of_code_ != nullptr);
926
927  // Address the start of the method
928  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
929  if (rl_method.wide) {
930    LoadValueDirectWideFixed(rl_method, reg);
931  } else {
932    LoadValueDirectFixed(rl_method, reg);
933  }
934  store_method_addr_used_ = true;
935
936  // Load the proper value from the literal area.
937  // We don't know the proper offset for the value, so pick one that will force
938  // 4 byte offset.  We will fix this up in the assembler later to have the right
939  // value.
940  ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
941  LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg.GetReg(), reg.GetReg(), 256,
942                    0, 0, target);
943  res->target = target;
944  res->flags.fixup = kFixupLoad;
945  store_method_addr_used_ = true;
946  return res;
947}
948
949LIR* X86Mir2Lir::OpVldm(RegStorage r_base, int count) {
950  LOG(FATAL) << "Unexpected use of OpVldm for x86";
951  return NULL;
952}
953
954LIR* X86Mir2Lir::OpVstm(RegStorage r_base, int count) {
955  LOG(FATAL) << "Unexpected use of OpVstm for x86";
956  return NULL;
957}
958
959void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
960                                               RegLocation rl_result, int lit,
961                                               int first_bit, int second_bit) {
962  RegStorage t_reg = AllocTemp();
963  OpRegRegImm(kOpLsl, t_reg, rl_src.reg, second_bit - first_bit);
964  OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, t_reg);
965  FreeTemp(t_reg);
966  if (first_bit != 0) {
967    OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
968  }
969}
970
971void X86Mir2Lir::GenDivZeroCheckWide(RegStorage reg) {
972  if (Gen64Bit()) {
973    DCHECK(reg.Is64Bit());
974
975    NewLIR2(kX86Cmp64RI8, reg.GetReg(), 0);
976  } else {
977    DCHECK(reg.IsPair());
978
979    // We are not supposed to clobber the incoming storage, so allocate a temporary.
980    RegStorage t_reg = AllocTemp();
981    // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
982    OpRegRegReg(kOpOr, t_reg, reg.GetLow(), reg.GetHigh());
983    // The temp is no longer needed so free it at this time.
984    FreeTemp(t_reg);
985  }
986
987  // In case of zero, throw ArithmeticException.
988  GenDivZeroCheck(kCondEq);
989}
990
991void X86Mir2Lir::GenArrayBoundsCheck(RegStorage index,
992                                     RegStorage array_base,
993                                     int len_offset) {
994  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
995   public:
996    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch,
997                             RegStorage index, RegStorage array_base, int32_t len_offset)
998        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
999          index_(index), array_base_(array_base), len_offset_(len_offset) {
1000    }
1001
1002    void Compile() OVERRIDE {
1003      m2l_->ResetRegPool();
1004      m2l_->ResetDefTracking();
1005      GenerateTargetLabel(kPseudoThrowTarget);
1006
1007      RegStorage new_index = index_;
1008      // Move index out of kArg1, either directly to kArg0, or to kArg2.
1009      if (index_.GetReg() == m2l_->TargetReg(kArg1).GetReg()) {
1010        if (array_base_.GetReg() == m2l_->TargetReg(kArg0).GetReg()) {
1011          m2l_->OpRegCopy(m2l_->TargetReg(kArg2), index_);
1012          new_index = m2l_->TargetReg(kArg2);
1013        } else {
1014          m2l_->OpRegCopy(m2l_->TargetReg(kArg0), index_);
1015          new_index = m2l_->TargetReg(kArg0);
1016        }
1017      }
1018      // Load array length to kArg1.
1019      m2l_->OpRegMem(kOpMov, m2l_->TargetReg(kArg1), array_base_, len_offset_);
1020      if (cu_->target64) {
1021        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
1022                                      new_index, m2l_->TargetReg(kArg1), true);
1023      } else {
1024        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
1025                                      new_index, m2l_->TargetReg(kArg1), true);
1026      }
1027    }
1028
1029   private:
1030    const RegStorage index_;
1031    const RegStorage array_base_;
1032    const int32_t len_offset_;
1033  };
1034
1035  OpRegMem(kOpCmp, index, array_base, len_offset);
1036  LIR* branch = OpCondBranch(kCondUge, nullptr);
1037  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch,
1038                                                    index, array_base, len_offset));
1039}
1040
1041void X86Mir2Lir::GenArrayBoundsCheck(int32_t index,
1042                                     RegStorage array_base,
1043                                     int32_t len_offset) {
1044  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
1045   public:
1046    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch,
1047                             int32_t index, RegStorage array_base, int32_t len_offset)
1048        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
1049          index_(index), array_base_(array_base), len_offset_(len_offset) {
1050    }
1051
1052    void Compile() OVERRIDE {
1053      m2l_->ResetRegPool();
1054      m2l_->ResetDefTracking();
1055      GenerateTargetLabel(kPseudoThrowTarget);
1056
1057      // Load array length to kArg1.
1058      m2l_->OpRegMem(kOpMov, m2l_->TargetReg(kArg1), array_base_, len_offset_);
1059      m2l_->LoadConstant(m2l_->TargetReg(kArg0), index_);
1060      if (cu_->target64) {
1061        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
1062                                      m2l_->TargetReg(kArg0), m2l_->TargetReg(kArg1), true);
1063      } else {
1064        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
1065                                      m2l_->TargetReg(kArg0), m2l_->TargetReg(kArg1), true);
1066      }
1067    }
1068
1069   private:
1070    const int32_t index_;
1071    const RegStorage array_base_;
1072    const int32_t len_offset_;
1073  };
1074
1075  NewLIR3(IS_SIMM8(index) ? kX86Cmp32MI8 : kX86Cmp32MI, array_base.GetReg(), len_offset, index);
1076  LIR* branch = OpCondBranch(kCondLs, nullptr);
1077  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch,
1078                                                    index, array_base, len_offset));
1079}
1080
1081// Test suspend flag, return target of taken suspend branch
1082LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
1083  if (cu_->target64) {
1084    OpTlsCmp(Thread::ThreadFlagsOffset<8>(), 0);
1085  } else {
1086    OpTlsCmp(Thread::ThreadFlagsOffset<4>(), 0);
1087  }
1088  return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
1089}
1090
1091// Decrement register and branch on condition
1092LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
1093  OpRegImm(kOpSub, reg, 1);
1094  return OpCondBranch(c_code, target);
1095}
1096
1097bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1098                                    RegLocation rl_src, RegLocation rl_dest, int lit) {
1099  LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
1100  return false;
1101}
1102
1103bool X86Mir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1104  LOG(FATAL) << "Unexpected use of easyMultiply in x86";
1105  return false;
1106}
1107
1108LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
1109  LOG(FATAL) << "Unexpected use of OpIT in x86";
1110  return NULL;
1111}
1112
1113void X86Mir2Lir::OpEndIT(LIR* it) {
1114  LOG(FATAL) << "Unexpected use of OpEndIT in x86";
1115}
1116
1117void X86Mir2Lir::GenImulRegImm(RegStorage dest, RegStorage src, int val) {
1118  switch (val) {
1119    case 0:
1120      NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
1121      break;
1122    case 1:
1123      OpRegCopy(dest, src);
1124      break;
1125    default:
1126      OpRegRegImm(kOpMul, dest, src, val);
1127      break;
1128  }
1129}
1130
1131void X86Mir2Lir::GenImulMemImm(RegStorage dest, int sreg, int displacement, int val) {
1132  // All memory accesses below reference dalvik regs.
1133  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1134
1135  LIR *m;
1136  switch (val) {
1137    case 0:
1138      NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
1139      break;
1140    case 1:
1141      LoadBaseDisp(rs_rX86_SP, displacement, dest, k32, kNotVolatile);
1142      break;
1143    default:
1144      m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest.GetReg(),
1145                  rs_rX86_SP.GetReg(), displacement, val);
1146      AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
1147      break;
1148  }
1149}
1150
1151void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1152                            RegLocation rl_src2) {
1153  // All memory accesses below reference dalvik regs.
1154  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1155
1156  if (Gen64Bit()) {
1157    if (rl_src1.is_const) {
1158      std::swap(rl_src1, rl_src2);
1159    }
1160    // Are we multiplying by a constant?
1161    if (rl_src2.is_const) {
1162      int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1163      if (val == 0) {
1164        RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1165        OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
1166        StoreValueWide(rl_dest, rl_result);
1167        return;
1168      } else if (val == 1) {
1169        StoreValueWide(rl_dest, rl_src1);
1170        return;
1171      } else if (val == 2) {
1172        GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
1173        return;
1174      } else if (IsPowerOfTwo(val)) {
1175        int shift_amount = LowestSetBit(val);
1176        if (!BadOverlap(rl_src1, rl_dest)) {
1177          rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1178          RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
1179                                                    rl_src1, shift_amount);
1180          StoreValueWide(rl_dest, rl_result);
1181          return;
1182        }
1183      }
1184    }
1185    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1186    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1187    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1188    if (rl_result.reg.GetReg() == rl_src1.reg.GetReg() &&
1189        rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
1190      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
1191    } else if (rl_result.reg.GetReg() != rl_src1.reg.GetReg() &&
1192               rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
1193      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src1.reg.GetReg());
1194    } else if (rl_result.reg.GetReg() == rl_src1.reg.GetReg() &&
1195               rl_result.reg.GetReg() != rl_src2.reg.GetReg()) {
1196      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
1197    } else {
1198      OpRegCopy(rl_result.reg, rl_src1.reg);
1199      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
1200    }
1201    StoreValueWide(rl_dest, rl_result);
1202    return;
1203  }
1204
1205  if (rl_src1.is_const) {
1206    std::swap(rl_src1, rl_src2);
1207  }
1208  // Are we multiplying by a constant?
1209  if (rl_src2.is_const) {
1210    // Do special compare/branch against simple const operand
1211    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1212    if (val == 0) {
1213      RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1214      OpRegReg(kOpXor, rl_result.reg.GetLow(), rl_result.reg.GetLow());
1215      OpRegReg(kOpXor, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());
1216      StoreValueWide(rl_dest, rl_result);
1217      return;
1218    } else if (val == 1) {
1219      StoreValueWide(rl_dest, rl_src1);
1220      return;
1221    } else if (val == 2) {
1222      GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
1223      return;
1224    } else if (IsPowerOfTwo(val)) {
1225      int shift_amount = LowestSetBit(val);
1226      if (!BadOverlap(rl_src1, rl_dest)) {
1227        rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1228        RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
1229                                                  rl_src1, shift_amount);
1230        StoreValueWide(rl_dest, rl_result);
1231        return;
1232      }
1233    }
1234
1235    // Okay, just bite the bullet and do it.
1236    int32_t val_lo = Low32Bits(val);
1237    int32_t val_hi = High32Bits(val);
1238    FlushAllRegs();
1239    LockCallTemps();  // Prepare for explicit register usage.
1240    rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1241    bool src1_in_reg = rl_src1.location == kLocPhysReg;
1242    int displacement = SRegOffset(rl_src1.s_reg_low);
1243
1244    // ECX <- 1H * 2L
1245    // EAX <- 1L * 2H
1246    if (src1_in_reg) {
1247      GenImulRegImm(rs_r1, rl_src1.reg.GetHigh(), val_lo);
1248      GenImulRegImm(rs_r0, rl_src1.reg.GetLow(), val_hi);
1249    } else {
1250      GenImulMemImm(rs_r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
1251      GenImulMemImm(rs_r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
1252    }
1253
1254    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1255    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r0.GetReg());
1256
1257    // EAX <- 2L
1258    LoadConstantNoClobber(rs_r0, val_lo);
1259
1260    // EDX:EAX <- 2L * 1L (double precision)
1261    if (src1_in_reg) {
1262      NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
1263    } else {
1264      LIR *m = NewLIR2(kX86Mul32DaM, rs_rX86_SP.GetReg(), displacement + LOWORD_OFFSET);
1265      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1266                              true /* is_load */, true /* is_64bit */);
1267    }
1268
1269    // EDX <- EDX + ECX (add high words)
1270    NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r1.GetReg());
1271
1272    // Result is EDX:EAX
1273    RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
1274                             RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
1275    StoreValueWide(rl_dest, rl_result);
1276    return;
1277  }
1278
1279  // Nope.  Do it the hard way
1280  // Check for V*V.  We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
1281  bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
1282                   mir_graph_->SRegToVReg(rl_src2.s_reg_low);
1283
1284  FlushAllRegs();
1285  LockCallTemps();  // Prepare for explicit register usage.
1286  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1287  rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1288
1289  // At this point, the VRs are in their home locations.
1290  bool src1_in_reg = rl_src1.location == kLocPhysReg;
1291  bool src2_in_reg = rl_src2.location == kLocPhysReg;
1292
1293  // ECX <- 1H
1294  if (src1_in_reg) {
1295    NewLIR2(kX86Mov32RR, rs_r1.GetReg(), rl_src1.reg.GetHighReg());
1296  } else {
1297    LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, rs_r1, k32,
1298                 kNotVolatile);
1299  }
1300
1301  if (is_square) {
1302    // Take advantage of the fact that the values are the same.
1303    // ECX <- ECX * 2L  (1H * 2L)
1304    if (src2_in_reg) {
1305      NewLIR2(kX86Imul32RR, rs_r1.GetReg(), rl_src2.reg.GetLowReg());
1306    } else {
1307      int displacement = SRegOffset(rl_src2.s_reg_low);
1308      LIR *m = NewLIR3(kX86Imul32RM, rs_r1.GetReg(), rs_rX86_SP.GetReg(),
1309                       displacement + LOWORD_OFFSET);
1310      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1311                              true /* is_load */, true /* is_64bit */);
1312    }
1313
1314    // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1315    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r1.GetReg());
1316  } else {
1317    // EAX <- 2H
1318    if (src2_in_reg) {
1319      NewLIR2(kX86Mov32RR, rs_r0.GetReg(), rl_src2.reg.GetHighReg());
1320    } else {
1321      LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, rs_r0, k32,
1322                   kNotVolatile);
1323    }
1324
1325    // EAX <- EAX * 1L  (2H * 1L)
1326    if (src1_in_reg) {
1327      NewLIR2(kX86Imul32RR, rs_r0.GetReg(), rl_src1.reg.GetLowReg());
1328    } else {
1329      int displacement = SRegOffset(rl_src1.s_reg_low);
1330      LIR *m = NewLIR3(kX86Imul32RM, rs_r0.GetReg(), rs_rX86_SP.GetReg(),
1331                       displacement + LOWORD_OFFSET);
1332      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1333                              true /* is_load */, true /* is_64bit */);
1334    }
1335
1336    // ECX <- ECX * 2L  (1H * 2L)
1337    if (src2_in_reg) {
1338      NewLIR2(kX86Imul32RR, rs_r1.GetReg(), rl_src2.reg.GetLowReg());
1339    } else {
1340      int displacement = SRegOffset(rl_src2.s_reg_low);
1341      LIR *m = NewLIR3(kX86Imul32RM, rs_r1.GetReg(), rs_rX86_SP.GetReg(),
1342                       displacement + LOWORD_OFFSET);
1343      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1344                              true /* is_load */, true /* is_64bit */);
1345    }
1346
1347    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1348    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r0.GetReg());
1349  }
1350
1351  // EAX <- 2L
1352  if (src2_in_reg) {
1353    NewLIR2(kX86Mov32RR, rs_r0.GetReg(), rl_src2.reg.GetLowReg());
1354  } else {
1355    LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, rs_r0, k32,
1356                 kNotVolatile);
1357  }
1358
1359  // EDX:EAX <- 2L * 1L (double precision)
1360  if (src1_in_reg) {
1361    NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
1362  } else {
1363    int displacement = SRegOffset(rl_src1.s_reg_low);
1364    LIR *m = NewLIR2(kX86Mul32DaM, rs_rX86_SP.GetReg(), displacement + LOWORD_OFFSET);
1365    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1366                            true /* is_load */, true /* is_64bit */);
1367  }
1368
1369  // EDX <- EDX + ECX (add high words)
1370  NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r1.GetReg());
1371
1372  // Result is EDX:EAX
1373  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
1374                           RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
1375  StoreValueWide(rl_dest, rl_result);
1376}
1377
1378void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1379                                   Instruction::Code op) {
1380  DCHECK_EQ(rl_dest.location, kLocPhysReg);
1381  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1382  if (rl_src.location == kLocPhysReg) {
1383    // Both operands are in registers.
1384    // But we must ensure that rl_src is in pair
1385    if (Gen64Bit()) {
1386      NewLIR2(x86op, rl_dest.reg.GetReg(), rl_src.reg.GetReg());
1387    } else {
1388      rl_src = LoadValueWide(rl_src, kCoreReg);
1389      if (rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
1390        // The registers are the same, so we would clobber it before the use.
1391        RegStorage temp_reg = AllocTemp();
1392        OpRegCopy(temp_reg, rl_dest.reg);
1393        rl_src.reg.SetHighReg(temp_reg.GetReg());
1394      }
1395      NewLIR2(x86op, rl_dest.reg.GetLowReg(), rl_src.reg.GetLowReg());
1396
1397      x86op = GetOpcode(op, rl_dest, rl_src, true);
1398      NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
1399      FreeTemp(rl_src.reg);  // ???
1400    }
1401    return;
1402  }
1403
1404  // RHS is in memory.
1405  DCHECK((rl_src.location == kLocDalvikFrame) ||
1406         (rl_src.location == kLocCompilerTemp));
1407  int r_base = TargetReg(kSp).GetReg();
1408  int displacement = SRegOffset(rl_src.s_reg_low);
1409
1410  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1411  LIR *lir = NewLIR3(x86op, Gen64Bit() ? rl_dest.reg.GetReg() : rl_dest.reg.GetLowReg(), r_base, displacement + LOWORD_OFFSET);
1412  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1413                          true /* is_load */, true /* is64bit */);
1414  if (!Gen64Bit()) {
1415    x86op = GetOpcode(op, rl_dest, rl_src, true);
1416    lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), r_base, displacement + HIWORD_OFFSET);
1417    AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1418                            true /* is_load */, true /* is64bit */);
1419  }
1420}
1421
1422void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1423  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
1424  if (rl_dest.location == kLocPhysReg) {
1425    // Ensure we are in a register pair
1426    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1427
1428    rl_src = UpdateLocWideTyped(rl_src, kCoreReg);
1429    GenLongRegOrMemOp(rl_result, rl_src, op);
1430    StoreFinalValueWide(rl_dest, rl_result);
1431    return;
1432  }
1433
1434  // It wasn't in registers, so it better be in memory.
1435  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1436         (rl_dest.location == kLocCompilerTemp));
1437  rl_src = LoadValueWide(rl_src, kCoreReg);
1438
1439  // Operate directly into memory.
1440  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1441  int r_base = TargetReg(kSp).GetReg();
1442  int displacement = SRegOffset(rl_dest.s_reg_low);
1443
1444  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1445  LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET,
1446                     Gen64Bit() ? rl_src.reg.GetReg() : rl_src.reg.GetLowReg());
1447  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1448                          true /* is_load */, true /* is64bit */);
1449  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1450                          false /* is_load */, true /* is64bit */);
1451  if (!Gen64Bit()) {
1452    x86op = GetOpcode(op, rl_dest, rl_src, true);
1453    lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
1454    AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1455                            true /* is_load */, true /* is64bit */);
1456    AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1457                            false /* is_load */, true /* is64bit */);
1458  }
1459  FreeTemp(rl_src.reg);
1460}
1461
1462void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1463                              RegLocation rl_src2, Instruction::Code op,
1464                              bool is_commutative) {
1465  // Is this really a 2 operand operation?
1466  switch (op) {
1467    case Instruction::ADD_LONG_2ADDR:
1468    case Instruction::SUB_LONG_2ADDR:
1469    case Instruction::AND_LONG_2ADDR:
1470    case Instruction::OR_LONG_2ADDR:
1471    case Instruction::XOR_LONG_2ADDR:
1472      if (GenerateTwoOperandInstructions()) {
1473        GenLongArith(rl_dest, rl_src2, op);
1474        return;
1475      }
1476      break;
1477
1478    default:
1479      break;
1480  }
1481
1482  if (rl_dest.location == kLocPhysReg) {
1483    RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1484
1485    // We are about to clobber the LHS, so it needs to be a temp.
1486    rl_result = ForceTempWide(rl_result);
1487
1488    // Perform the operation using the RHS.
1489    rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1490    GenLongRegOrMemOp(rl_result, rl_src2, op);
1491
1492    // And now record that the result is in the temp.
1493    StoreFinalValueWide(rl_dest, rl_result);
1494    return;
1495  }
1496
1497  // It wasn't in registers, so it better be in memory.
1498  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1499         (rl_dest.location == kLocCompilerTemp));
1500  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1501  rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1502
1503  // Get one of the source operands into temporary register.
1504  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1505  if (Gen64Bit()) {
1506    if (IsTemp(rl_src1.reg)) {
1507      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1508    } else if (is_commutative) {
1509      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1510      // We need at least one of them to be a temporary.
1511      if (!IsTemp(rl_src2.reg)) {
1512        rl_src1 = ForceTempWide(rl_src1);
1513        GenLongRegOrMemOp(rl_src1, rl_src2, op);
1514      } else {
1515        GenLongRegOrMemOp(rl_src2, rl_src1, op);
1516        StoreFinalValueWide(rl_dest, rl_src2);
1517        return;
1518      }
1519    } else {
1520      // Need LHS to be the temp.
1521      rl_src1 = ForceTempWide(rl_src1);
1522      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1523    }
1524  } else {
1525    if (IsTemp(rl_src1.reg.GetLow()) && IsTemp(rl_src1.reg.GetHigh())) {
1526      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1527    } else if (is_commutative) {
1528      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1529      // We need at least one of them to be a temporary.
1530      if (!(IsTemp(rl_src2.reg.GetLow()) && IsTemp(rl_src2.reg.GetHigh()))) {
1531        rl_src1 = ForceTempWide(rl_src1);
1532        GenLongRegOrMemOp(rl_src1, rl_src2, op);
1533      } else {
1534        GenLongRegOrMemOp(rl_src2, rl_src1, op);
1535        StoreFinalValueWide(rl_dest, rl_src2);
1536        return;
1537      }
1538    } else {
1539      // Need LHS to be the temp.
1540      rl_src1 = ForceTempWide(rl_src1);
1541      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1542    }
1543  }
1544
1545  StoreFinalValueWide(rl_dest, rl_src1);
1546}
1547
1548void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
1549                            RegLocation rl_src1, RegLocation rl_src2) {
1550  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1551}
1552
1553void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1554                            RegLocation rl_src1, RegLocation rl_src2) {
1555  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1556}
1557
1558void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1559                            RegLocation rl_src1, RegLocation rl_src2) {
1560  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1561}
1562
1563void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1564                           RegLocation rl_src1, RegLocation rl_src2) {
1565  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1566}
1567
1568void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1569                            RegLocation rl_src1, RegLocation rl_src2) {
1570  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1571}
1572
1573void X86Mir2Lir::GenNotLong(RegLocation rl_dest, RegLocation rl_src) {
1574  if (Gen64Bit()) {
1575    rl_src = LoadValueWide(rl_src, kCoreReg);
1576    RegLocation rl_result;
1577    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1578    OpRegCopy(rl_result.reg, rl_src.reg);
1579    OpReg(kOpNot, rl_result.reg);
1580    StoreValueWide(rl_dest, rl_result);
1581  } else {
1582    LOG(FATAL) << "Unexpected use GenNotLong()";
1583  }
1584}
1585
1586void X86Mir2Lir::GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1587                           RegLocation rl_src2, bool is_div) {
1588  if (!Gen64Bit()) {
1589    LOG(FATAL) << "Unexpected use GenDivRemLong()";
1590    return;
1591  }
1592
1593  // We have to use fixed registers, so flush all the temps.
1594  FlushAllRegs();
1595  LockCallTemps();  // Prepare for explicit register usage.
1596
1597  // Load LHS into RAX.
1598  LoadValueDirectWideFixed(rl_src1, rs_r0q);
1599
1600  // Load RHS into RCX.
1601  LoadValueDirectWideFixed(rl_src2, rs_r1q);
1602
1603  // Copy LHS sign bit into RDX.
1604  NewLIR0(kx86Cqo64Da);
1605
1606  // Handle division by zero case.
1607  GenDivZeroCheckWide(rs_r1q);
1608
1609  // Have to catch 0x8000000000000000/-1 case, or we will get an exception!
1610  NewLIR2(kX86Cmp64RI8, rs_r1q.GetReg(), -1);
1611  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
1612
1613  // RHS is -1.
1614  LoadConstantWide(rs_r6q, 0x8000000000000000);
1615  NewLIR2(kX86Cmp64RR, rs_r0q.GetReg(), rs_r6q.GetReg());
1616  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
1617
1618  // In 0x8000000000000000/-1 case.
1619  if (!is_div) {
1620    // For DIV, RAX is already right. For REM, we need RDX 0.
1621    NewLIR2(kX86Xor64RR, rs_r2q.GetReg(), rs_r2q.GetReg());
1622  }
1623  LIR* done = NewLIR1(kX86Jmp8, 0);
1624
1625  // Expected case.
1626  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
1627  minint_branch->target = minus_one_branch->target;
1628  NewLIR1(kX86Idivmod64DaR, rs_r1q.GetReg());
1629  done->target = NewLIR0(kPseudoTargetLabel);
1630
1631  // Result is in RAX for div and RDX for rem.
1632  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, rs_r0q, INVALID_SREG, INVALID_SREG};
1633  if (!is_div) {
1634    rl_result.reg.SetReg(r2q);
1635  }
1636
1637  StoreValueWide(rl_dest, rl_result);
1638}
1639
1640void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1641  rl_src = LoadValueWide(rl_src, kCoreReg);
1642  RegLocation rl_result;
1643  if (Gen64Bit()) {
1644    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1645    OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1646  } else {
1647    rl_result = ForceTempWide(rl_src);
1648    if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
1649        ((rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()))) {
1650      // The registers are the same, so we would clobber it before the use.
1651      RegStorage temp_reg = AllocTemp();
1652      OpRegCopy(temp_reg, rl_result.reg);
1653      rl_result.reg.SetHighReg(temp_reg.GetReg());
1654    }
1655    OpRegReg(kOpNeg, rl_result.reg.GetLow(), rl_result.reg.GetLow());    // rLow = -rLow
1656    OpRegImm(kOpAdc, rl_result.reg.GetHigh(), 0);                   // rHigh = rHigh + CF
1657    OpRegReg(kOpNeg, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());  // rHigh = -rHigh
1658  }
1659  StoreValueWide(rl_dest, rl_result);
1660}
1661
1662void X86Mir2Lir::OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset) {
1663  DCHECK_EQ(kX86, cu_->instruction_set);
1664  X86OpCode opcode = kX86Bkpt;
1665  switch (op) {
1666  case kOpCmp: opcode = kX86Cmp32RT;  break;
1667  case kOpMov: opcode = kX86Mov32RT;  break;
1668  default:
1669    LOG(FATAL) << "Bad opcode: " << op;
1670    break;
1671  }
1672  NewLIR2(opcode, r_dest.GetReg(), thread_offset.Int32Value());
1673}
1674
1675void X86Mir2Lir::OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset) {
1676  DCHECK_EQ(kX86_64, cu_->instruction_set);
1677  X86OpCode opcode = kX86Bkpt;
1678  if (Gen64Bit() && r_dest.Is64BitSolo()) {
1679    switch (op) {
1680    case kOpCmp: opcode = kX86Cmp64RT;  break;
1681    case kOpMov: opcode = kX86Mov64RT;  break;
1682    default:
1683      LOG(FATAL) << "Bad opcode(OpRegThreadMem 64): " << op;
1684      break;
1685    }
1686  } else {
1687    switch (op) {
1688    case kOpCmp: opcode = kX86Cmp32RT;  break;
1689    case kOpMov: opcode = kX86Mov32RT;  break;
1690    default:
1691      LOG(FATAL) << "Bad opcode: " << op;
1692      break;
1693    }
1694  }
1695  NewLIR2(opcode, r_dest.GetReg(), thread_offset.Int32Value());
1696}
1697
1698/*
1699 * Generate array load
1700 */
1701void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1702                             RegLocation rl_index, RegLocation rl_dest, int scale) {
1703  RegisterClass reg_class = RegClassBySize(size);
1704  int len_offset = mirror::Array::LengthOffset().Int32Value();
1705  RegLocation rl_result;
1706  rl_array = LoadValue(rl_array, kRefReg);
1707
1708  int data_offset;
1709  if (size == k64 || size == kDouble) {
1710    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1711  } else {
1712    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1713  }
1714
1715  bool constant_index = rl_index.is_const;
1716  int32_t constant_index_value = 0;
1717  if (!constant_index) {
1718    rl_index = LoadValue(rl_index, kCoreReg);
1719  } else {
1720    constant_index_value = mir_graph_->ConstantValue(rl_index);
1721    // If index is constant, just fold it into the data offset
1722    data_offset += constant_index_value << scale;
1723    // treat as non array below
1724    rl_index.reg = RegStorage::InvalidReg();
1725  }
1726
1727  /* null object? */
1728  GenNullCheck(rl_array.reg, opt_flags);
1729
1730  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1731    if (constant_index) {
1732      GenArrayBoundsCheck(constant_index_value, rl_array.reg, len_offset);
1733    } else {
1734      GenArrayBoundsCheck(rl_index.reg, rl_array.reg, len_offset);
1735    }
1736  }
1737  rl_result = EvalLoc(rl_dest, reg_class, true);
1738  LoadBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_result.reg, size);
1739  if ((size == k64) || (size == kDouble)) {
1740    StoreValueWide(rl_dest, rl_result);
1741  } else {
1742    StoreValue(rl_dest, rl_result);
1743  }
1744}
1745
1746/*
1747 * Generate array store
1748 *
1749 */
1750void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1751                             RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1752  RegisterClass reg_class = RegClassBySize(size);
1753  int len_offset = mirror::Array::LengthOffset().Int32Value();
1754  int data_offset;
1755
1756  if (size == k64 || size == kDouble) {
1757    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1758  } else {
1759    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1760  }
1761
1762  rl_array = LoadValue(rl_array, kRefReg);
1763  bool constant_index = rl_index.is_const;
1764  int32_t constant_index_value = 0;
1765  if (!constant_index) {
1766    rl_index = LoadValue(rl_index, kCoreReg);
1767  } else {
1768    // If index is constant, just fold it into the data offset
1769    constant_index_value = mir_graph_->ConstantValue(rl_index);
1770    data_offset += constant_index_value << scale;
1771    // treat as non array below
1772    rl_index.reg = RegStorage::InvalidReg();
1773  }
1774
1775  /* null object? */
1776  GenNullCheck(rl_array.reg, opt_flags);
1777
1778  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1779    if (constant_index) {
1780      GenArrayBoundsCheck(constant_index_value, rl_array.reg, len_offset);
1781    } else {
1782      GenArrayBoundsCheck(rl_index.reg, rl_array.reg, len_offset);
1783    }
1784  }
1785  if ((size == k64) || (size == kDouble)) {
1786    rl_src = LoadValueWide(rl_src, reg_class);
1787  } else {
1788    rl_src = LoadValue(rl_src, reg_class);
1789  }
1790  // If the src reg can't be byte accessed, move it to a temp first.
1791  if ((size == kSignedByte || size == kUnsignedByte) && !IsByteRegister(rl_src.reg)) {
1792    RegStorage temp = AllocTemp();
1793    OpRegCopy(temp, rl_src.reg);
1794    StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, temp, size);
1795  } else {
1796    StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_src.reg, size);
1797  }
1798  if (card_mark) {
1799    // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
1800    if (!constant_index) {
1801      FreeTemp(rl_index.reg);
1802    }
1803    MarkGCCard(rl_src.reg, rl_array.reg);
1804  }
1805}
1806
1807RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1808                                          RegLocation rl_src, int shift_amount) {
1809  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1810  if (Gen64Bit()) {
1811    OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1812    switch (opcode) {
1813      case Instruction::SHL_LONG:
1814      case Instruction::SHL_LONG_2ADDR:
1815        op = kOpLsl;
1816        break;
1817      case Instruction::SHR_LONG:
1818      case Instruction::SHR_LONG_2ADDR:
1819        op = kOpAsr;
1820        break;
1821      case Instruction::USHR_LONG:
1822      case Instruction::USHR_LONG_2ADDR:
1823        op = kOpLsr;
1824        break;
1825      default:
1826        LOG(FATAL) << "Unexpected case";
1827    }
1828    OpRegRegImm(op, rl_result.reg, rl_src.reg, shift_amount);
1829  } else {
1830    switch (opcode) {
1831      case Instruction::SHL_LONG:
1832      case Instruction::SHL_LONG_2ADDR:
1833        DCHECK_NE(shift_amount, 1);  // Prevent a double store from happening.
1834        if (shift_amount == 32) {
1835          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1836          LoadConstant(rl_result.reg.GetLow(), 0);
1837        } else if (shift_amount > 31) {
1838          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1839          NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
1840          LoadConstant(rl_result.reg.GetLow(), 0);
1841        } else {
1842          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetLow());
1843          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1844          NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetLowReg(),
1845                  shift_amount);
1846          NewLIR2(kX86Sal32RI, rl_result.reg.GetLowReg(), shift_amount);
1847        }
1848        break;
1849      case Instruction::SHR_LONG:
1850      case Instruction::SHR_LONG_2ADDR:
1851        if (shift_amount == 32) {
1852          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1853          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1854          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1855        } else if (shift_amount > 31) {
1856          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1857          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1858          NewLIR2(kX86Sar32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
1859          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1860        } else {
1861          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetLow());
1862          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1863          NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(),
1864                  shift_amount);
1865          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
1866        }
1867        break;
1868      case Instruction::USHR_LONG:
1869      case Instruction::USHR_LONG_2ADDR:
1870        if (shift_amount == 32) {
1871          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1872          LoadConstant(rl_result.reg.GetHigh(), 0);
1873        } else if (shift_amount > 31) {
1874          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1875          NewLIR2(kX86Shr32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
1876          LoadConstant(rl_result.reg.GetHigh(), 0);
1877        } else {
1878          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetLow());
1879          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1880          NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(),
1881                  shift_amount);
1882          NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
1883        }
1884        break;
1885      default:
1886        LOG(FATAL) << "Unexpected case";
1887    }
1888  }
1889  return rl_result;
1890}
1891
1892void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1893                                   RegLocation rl_src, RegLocation rl_shift) {
1894  // Per spec, we only care about low 6 bits of shift amount.
1895  int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1896  if (shift_amount == 0) {
1897    rl_src = LoadValueWide(rl_src, kCoreReg);
1898    StoreValueWide(rl_dest, rl_src);
1899    return;
1900  } else if (shift_amount == 1 &&
1901            (opcode ==  Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1902    // Need to handle this here to avoid calling StoreValueWide twice.
1903    GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1904    return;
1905  }
1906  if (BadOverlap(rl_src, rl_dest)) {
1907    GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1908    return;
1909  }
1910  rl_src = LoadValueWide(rl_src, kCoreReg);
1911  RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1912  StoreValueWide(rl_dest, rl_result);
1913}
1914
1915void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
1916                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1917  bool isConstSuccess = false;
1918  switch (opcode) {
1919    case Instruction::ADD_LONG:
1920    case Instruction::AND_LONG:
1921    case Instruction::OR_LONG:
1922    case Instruction::XOR_LONG:
1923      if (rl_src2.is_const) {
1924        isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1925      } else {
1926        DCHECK(rl_src1.is_const);
1927        isConstSuccess = GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1928      }
1929      break;
1930    case Instruction::SUB_LONG:
1931    case Instruction::SUB_LONG_2ADDR:
1932      if (rl_src2.is_const) {
1933        isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1934      } else {
1935        GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1936        isConstSuccess = true;
1937      }
1938      break;
1939    case Instruction::ADD_LONG_2ADDR:
1940    case Instruction::OR_LONG_2ADDR:
1941    case Instruction::XOR_LONG_2ADDR:
1942    case Instruction::AND_LONG_2ADDR:
1943      if (rl_src2.is_const) {
1944        if (GenerateTwoOperandInstructions()) {
1945          isConstSuccess = GenLongImm(rl_dest, rl_src2, opcode);
1946        } else {
1947          isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1948        }
1949      } else {
1950        DCHECK(rl_src1.is_const);
1951        isConstSuccess = GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1952      }
1953      break;
1954    default:
1955      isConstSuccess = false;
1956      break;
1957  }
1958
1959  if (!isConstSuccess) {
1960    // Default - bail to non-const handler.
1961    GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1962  }
1963}
1964
1965bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1966  switch (op) {
1967    case Instruction::AND_LONG_2ADDR:
1968    case Instruction::AND_LONG:
1969      return value == -1;
1970    case Instruction::OR_LONG:
1971    case Instruction::OR_LONG_2ADDR:
1972    case Instruction::XOR_LONG:
1973    case Instruction::XOR_LONG_2ADDR:
1974      return value == 0;
1975    default:
1976      return false;
1977  }
1978}
1979
1980X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1981                                bool is_high_op) {
1982  bool rhs_in_mem = rhs.location != kLocPhysReg;
1983  bool dest_in_mem = dest.location != kLocPhysReg;
1984  bool is64Bit = Gen64Bit();
1985  DCHECK(!rhs_in_mem || !dest_in_mem);
1986  switch (op) {
1987    case Instruction::ADD_LONG:
1988    case Instruction::ADD_LONG_2ADDR:
1989      if (dest_in_mem) {
1990        return is64Bit ? kX86Add64MR : is_high_op ? kX86Adc32MR : kX86Add32MR;
1991      } else if (rhs_in_mem) {
1992        return is64Bit ? kX86Add64RM : is_high_op ? kX86Adc32RM : kX86Add32RM;
1993      }
1994      return is64Bit ? kX86Add64RR : is_high_op ? kX86Adc32RR : kX86Add32RR;
1995    case Instruction::SUB_LONG:
1996    case Instruction::SUB_LONG_2ADDR:
1997      if (dest_in_mem) {
1998        return is64Bit ? kX86Sub64MR : is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1999      } else if (rhs_in_mem) {
2000        return is64Bit ? kX86Sub64RM : is_high_op ? kX86Sbb32RM : kX86Sub32RM;
2001      }
2002      return is64Bit ? kX86Sub64RR : is_high_op ? kX86Sbb32RR : kX86Sub32RR;
2003    case Instruction::AND_LONG_2ADDR:
2004    case Instruction::AND_LONG:
2005      if (dest_in_mem) {
2006        return is64Bit ? kX86And64MR : kX86And32MR;
2007      }
2008      if (is64Bit) {
2009        return rhs_in_mem ? kX86And64RM : kX86And64RR;
2010      }
2011      return rhs_in_mem ? kX86And32RM : kX86And32RR;
2012    case Instruction::OR_LONG:
2013    case Instruction::OR_LONG_2ADDR:
2014      if (dest_in_mem) {
2015        return is64Bit ? kX86Or64MR : kX86Or32MR;
2016      }
2017      if (is64Bit) {
2018        return rhs_in_mem ? kX86Or64RM : kX86Or64RR;
2019      }
2020      return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
2021    case Instruction::XOR_LONG:
2022    case Instruction::XOR_LONG_2ADDR:
2023      if (dest_in_mem) {
2024        return is64Bit ? kX86Xor64MR : kX86Xor32MR;
2025      }
2026      if (is64Bit) {
2027        return rhs_in_mem ? kX86Xor64RM : kX86Xor64RR;
2028      }
2029      return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
2030    default:
2031      LOG(FATAL) << "Unexpected opcode: " << op;
2032      return kX86Add32RR;
2033  }
2034}
2035
2036X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
2037                                int32_t value) {
2038  bool in_mem = loc.location != kLocPhysReg;
2039  bool is64Bit = Gen64Bit();
2040  bool byte_imm = IS_SIMM8(value);
2041  DCHECK(in_mem || !loc.reg.IsFloat());
2042  switch (op) {
2043    case Instruction::ADD_LONG:
2044    case Instruction::ADD_LONG_2ADDR:
2045      if (byte_imm) {
2046        if (in_mem) {
2047          return is64Bit ? kX86Add64MI8 : is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
2048        }
2049        return is64Bit ? kX86Add64RI8 : is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
2050      }
2051      if (in_mem) {
2052        return is64Bit ? kX86Add64MI : is_high_op ? kX86Adc32MI : kX86Add32MI;
2053      }
2054      return is64Bit ? kX86Add64RI : is_high_op ? kX86Adc32RI : kX86Add32RI;
2055    case Instruction::SUB_LONG:
2056    case Instruction::SUB_LONG_2ADDR:
2057      if (byte_imm) {
2058        if (in_mem) {
2059          return is64Bit ? kX86Sub64MI8 : is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
2060        }
2061        return is64Bit ? kX86Sub64RI8 : is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
2062      }
2063      if (in_mem) {
2064        return is64Bit ? kX86Sub64MI : is_high_op ? kX86Sbb32MI : kX86Sub32MI;
2065      }
2066      return is64Bit ? kX86Sub64RI : is_high_op ? kX86Sbb32RI : kX86Sub32RI;
2067    case Instruction::AND_LONG_2ADDR:
2068    case Instruction::AND_LONG:
2069      if (byte_imm) {
2070        if (is64Bit) {
2071          return in_mem ? kX86And64MI8 : kX86And64RI8;
2072        }
2073        return in_mem ? kX86And32MI8 : kX86And32RI8;
2074      }
2075      if (is64Bit) {
2076        return in_mem ? kX86And64MI : kX86And64RI;
2077      }
2078      return in_mem ? kX86And32MI : kX86And32RI;
2079    case Instruction::OR_LONG:
2080    case Instruction::OR_LONG_2ADDR:
2081      if (byte_imm) {
2082        if (is64Bit) {
2083          return in_mem ? kX86Or64MI8 : kX86Or64RI8;
2084        }
2085        return in_mem ? kX86Or32MI8 : kX86Or32RI8;
2086      }
2087      if (is64Bit) {
2088        return in_mem ? kX86Or64MI : kX86Or64RI;
2089      }
2090      return in_mem ? kX86Or32MI : kX86Or32RI;
2091    case Instruction::XOR_LONG:
2092    case Instruction::XOR_LONG_2ADDR:
2093      if (byte_imm) {
2094        if (is64Bit) {
2095          return in_mem ? kX86Xor64MI8 : kX86Xor64RI8;
2096        }
2097        return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
2098      }
2099      if (is64Bit) {
2100        return in_mem ? kX86Xor64MI : kX86Xor64RI;
2101      }
2102      return in_mem ? kX86Xor32MI : kX86Xor32RI;
2103    default:
2104      LOG(FATAL) << "Unexpected opcode: " << op;
2105      return kX86Add32MI;
2106  }
2107}
2108
2109bool X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
2110  DCHECK(rl_src.is_const);
2111  int64_t val = mir_graph_->ConstantValueWide(rl_src);
2112
2113  if (Gen64Bit()) {
2114    // We can do with imm only if it fits 32 bit
2115    if (val != (static_cast<int64_t>(static_cast<int32_t>(val)))) {
2116      return false;
2117    }
2118
2119    rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2120
2121    if ((rl_dest.location == kLocDalvikFrame) ||
2122        (rl_dest.location == kLocCompilerTemp)) {
2123      int r_base = TargetReg(kSp).GetReg();
2124      int displacement = SRegOffset(rl_dest.s_reg_low);
2125
2126      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2127      X86OpCode x86op = GetOpcode(op, rl_dest, false, val);
2128      LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, val);
2129      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2130                              true /* is_load */, true /* is64bit */);
2131      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2132                              false /* is_load */, true /* is64bit */);
2133      return true;
2134    }
2135
2136    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2137    DCHECK_EQ(rl_result.location, kLocPhysReg);
2138    DCHECK(!rl_result.reg.IsFloat());
2139
2140    X86OpCode x86op = GetOpcode(op, rl_result, false, val);
2141    NewLIR2(x86op, rl_result.reg.GetReg(), val);
2142
2143    StoreValueWide(rl_dest, rl_result);
2144    return true;
2145  }
2146
2147  int32_t val_lo = Low32Bits(val);
2148  int32_t val_hi = High32Bits(val);
2149  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2150
2151  // Can we just do this into memory?
2152  if ((rl_dest.location == kLocDalvikFrame) ||
2153      (rl_dest.location == kLocCompilerTemp)) {
2154    int r_base = TargetReg(kSp).GetReg();
2155    int displacement = SRegOffset(rl_dest.s_reg_low);
2156
2157    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2158    if (!IsNoOp(op, val_lo)) {
2159      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
2160      LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, val_lo);
2161      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2162                              true /* is_load */, true /* is64bit */);
2163      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2164                              false /* is_load */, true /* is64bit */);
2165    }
2166    if (!IsNoOp(op, val_hi)) {
2167      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
2168      LIR *lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, val_hi);
2169      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
2170                                true /* is_load */, true /* is64bit */);
2171      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
2172                                false /* is_load */, true /* is64bit */);
2173    }
2174    return true;
2175  }
2176
2177  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2178  DCHECK_EQ(rl_result.location, kLocPhysReg);
2179  DCHECK(!rl_result.reg.IsFloat());
2180
2181  if (!IsNoOp(op, val_lo)) {
2182    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
2183    NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
2184  }
2185  if (!IsNoOp(op, val_hi)) {
2186    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
2187    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
2188  }
2189  StoreValueWide(rl_dest, rl_result);
2190  return true;
2191}
2192
2193bool X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
2194                                RegLocation rl_src2, Instruction::Code op) {
2195  DCHECK(rl_src2.is_const);
2196  int64_t val = mir_graph_->ConstantValueWide(rl_src2);
2197
2198  if (Gen64Bit()) {
2199    // We can do with imm only if it fits 32 bit
2200    if (val != (static_cast<int64_t>(static_cast<int32_t>(val)))) {
2201      return false;
2202    }
2203    if (rl_dest.location == kLocPhysReg &&
2204        rl_src1.location == kLocPhysReg && !rl_dest.reg.IsFloat()) {
2205      X86OpCode x86op = GetOpcode(op, rl_dest, false, val);
2206      OpRegCopy(rl_dest.reg, rl_src1.reg);
2207      NewLIR2(x86op, rl_dest.reg.GetReg(), val);
2208      StoreFinalValueWide(rl_dest, rl_dest);
2209      return true;
2210    }
2211
2212    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2213    // We need the values to be in a temporary
2214    RegLocation rl_result = ForceTempWide(rl_src1);
2215
2216    X86OpCode x86op = GetOpcode(op, rl_result, false, val);
2217    NewLIR2(x86op, rl_result.reg.GetReg(), val);
2218
2219    StoreFinalValueWide(rl_dest, rl_result);
2220    return true;
2221  }
2222
2223  int32_t val_lo = Low32Bits(val);
2224  int32_t val_hi = High32Bits(val);
2225  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2226  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
2227
2228  // Can we do this directly into the destination registers?
2229  if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
2230      rl_dest.reg.GetLowReg() == rl_src1.reg.GetLowReg() &&
2231      rl_dest.reg.GetHighReg() == rl_src1.reg.GetHighReg() && !rl_dest.reg.IsFloat()) {
2232    if (!IsNoOp(op, val_lo)) {
2233      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
2234      NewLIR2(x86op, rl_dest.reg.GetLowReg(), val_lo);
2235    }
2236    if (!IsNoOp(op, val_hi)) {
2237      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
2238      NewLIR2(x86op, rl_dest.reg.GetHighReg(), val_hi);
2239    }
2240
2241    StoreFinalValueWide(rl_dest, rl_dest);
2242    return true;
2243  }
2244
2245  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2246  DCHECK_EQ(rl_src1.location, kLocPhysReg);
2247
2248  // We need the values to be in a temporary
2249  RegLocation rl_result = ForceTempWide(rl_src1);
2250  if (!IsNoOp(op, val_lo)) {
2251    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
2252    NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
2253  }
2254  if (!IsNoOp(op, val_hi)) {
2255    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
2256    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
2257  }
2258
2259  StoreFinalValueWide(rl_dest, rl_result);
2260  return true;
2261}
2262
2263// For final classes there are no sub-classes to check and so we can answer the instance-of
2264// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
2265void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
2266                                    RegLocation rl_dest, RegLocation rl_src) {
2267  RegLocation object = LoadValue(rl_src, kRefReg);
2268  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2269  RegStorage result_reg = rl_result.reg;
2270
2271  // For 32-bit, SETcc only works with EAX..EDX.
2272  if (result_reg == object.reg || !IsByteRegister(result_reg)) {
2273    result_reg = AllocateByteRegister();
2274  }
2275
2276  // Assume that there is no match.
2277  LoadConstant(result_reg, 0);
2278  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
2279
2280  // We will use this register to compare to memory below.
2281  // References are 32 bit in memory, and 64 bit in registers (in 64 bit mode).
2282  // For this reason, force allocation of a 32 bit register to use, so that the
2283  // compare to memory will be done using a 32 bit comparision.
2284  // The LoadRefDisp(s) below will work normally, even in 64 bit mode.
2285  RegStorage check_class = AllocTemp();
2286
2287  // If Method* is already in a register, we can save a copy.
2288  RegLocation rl_method = mir_graph_->GetMethodLoc();
2289  int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::HeapReference<mirror::Class*>)).Int32Value() +
2290    (sizeof(mirror::HeapReference<mirror::Class*>) * type_idx);
2291
2292  if (rl_method.location == kLocPhysReg) {
2293    if (use_declaring_class) {
2294      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2295                  check_class, kNotVolatile);
2296    } else {
2297      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2298                  check_class, kNotVolatile);
2299      LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
2300    }
2301  } else {
2302    LoadCurrMethodDirect(check_class);
2303    if (use_declaring_class) {
2304      LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2305                  check_class, kNotVolatile);
2306    } else {
2307      LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2308                  check_class, kNotVolatile);
2309      LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
2310    }
2311  }
2312
2313  // Compare the computed class to the class in the object.
2314  DCHECK_EQ(object.location, kLocPhysReg);
2315  OpRegMem(kOpCmp, check_class, object.reg, mirror::Object::ClassOffset().Int32Value());
2316
2317  // Set the low byte of the result to 0 or 1 from the compare condition code.
2318  NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondEq);
2319
2320  LIR* target = NewLIR0(kPseudoTargetLabel);
2321  null_branchover->target = target;
2322  FreeTemp(check_class);
2323  if (IsTemp(result_reg)) {
2324    OpRegCopy(rl_result.reg, result_reg);
2325    FreeTemp(result_reg);
2326  }
2327  StoreValue(rl_dest, rl_result);
2328}
2329
2330void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
2331                                            bool type_known_abstract, bool use_declaring_class,
2332                                            bool can_assume_type_is_in_dex_cache,
2333                                            uint32_t type_idx, RegLocation rl_dest,
2334                                            RegLocation rl_src) {
2335  FlushAllRegs();
2336  // May generate a call - use explicit registers.
2337  LockCallTemps();
2338  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 gets current Method*.
2339  RegStorage class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*.
2340  // Reference must end up in kArg0.
2341  if (needs_access_check) {
2342    // Check we have access to type_idx and if not throw IllegalAccessError,
2343    // Caller function returns Class* in kArg0.
2344    if (cu_->target64) {
2345      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
2346                           type_idx, true);
2347    } else {
2348      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
2349                           type_idx, true);
2350    }
2351    OpRegCopy(class_reg, TargetReg(kRet0));
2352    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
2353  } else if (use_declaring_class) {
2354    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
2355    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2356                class_reg, kNotVolatile);
2357  } else {
2358    // Load dex cache entry into class_reg (kArg2).
2359    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
2360    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2361                class_reg, kNotVolatile);
2362    int32_t offset_of_type =
2363        mirror::Array::DataOffset(sizeof(mirror::HeapReference<mirror::Class*>)).Int32Value() +
2364        (sizeof(mirror::HeapReference<mirror::Class*>) * type_idx);
2365    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
2366    if (!can_assume_type_is_in_dex_cache) {
2367      // Need to test presence of type in dex cache at runtime.
2368      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
2369      // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
2370      if (cu_->target64) {
2371        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx, true);
2372      } else {
2373        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx, true);
2374      }
2375      OpRegCopy(TargetReg(kArg2), TargetReg(kRet0));  // Align usage with fast path.
2376      LoadValueDirectFixed(rl_src, TargetReg(kArg0));  /* Reload Ref. */
2377      // Rejoin code paths
2378      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
2379      hop_branch->target = hop_target;
2380    }
2381  }
2382  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
2383  RegLocation rl_result = GetReturn(kRefReg);
2384
2385  // On x86-64 kArg0 is not EAX, so we have to copy ref from kArg0 to EAX.
2386  if (Gen64Bit()) {
2387    OpRegCopy(rl_result.reg, TargetReg(kArg0));
2388  }
2389
2390  // For 32-bit, SETcc only works with EAX..EDX.
2391  DCHECK_LT(rl_result.reg.GetRegNum(), 4);
2392
2393  // Is the class NULL?
2394  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
2395
2396  /* Load object->klass_. */
2397  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
2398  LoadRefDisp(TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1),
2399              kNotVolatile);
2400  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
2401  LIR* branchover = nullptr;
2402  if (type_known_final) {
2403    // Ensure top 3 bytes of result are 0.
2404    LoadConstant(rl_result.reg, 0);
2405    OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
2406    // Set the low byte of the result to 0 or 1 from the compare condition code.
2407    NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondEq);
2408  } else {
2409    if (!type_known_abstract) {
2410      LoadConstant(rl_result.reg, 1);     // Assume result succeeds.
2411      branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
2412    }
2413    OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
2414    if (cu_->target64) {
2415      OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial));
2416    } else {
2417      OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
2418    }
2419  }
2420  // TODO: only clobber when type isn't final?
2421  ClobberCallerSave();
2422  /* Branch targets here. */
2423  LIR* target = NewLIR0(kPseudoTargetLabel);
2424  StoreValue(rl_dest, rl_result);
2425  branch1->target = target;
2426  if (branchover != nullptr) {
2427    branchover->target = target;
2428  }
2429}
2430
2431void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
2432                            RegLocation rl_lhs, RegLocation rl_rhs) {
2433  OpKind op = kOpBkpt;
2434  bool is_div_rem = false;
2435  bool unary = false;
2436  bool shift_op = false;
2437  bool is_two_addr = false;
2438  RegLocation rl_result;
2439  switch (opcode) {
2440    case Instruction::NEG_INT:
2441      op = kOpNeg;
2442      unary = true;
2443      break;
2444    case Instruction::NOT_INT:
2445      op = kOpMvn;
2446      unary = true;
2447      break;
2448    case Instruction::ADD_INT_2ADDR:
2449      is_two_addr = true;
2450      // Fallthrough
2451    case Instruction::ADD_INT:
2452      op = kOpAdd;
2453      break;
2454    case Instruction::SUB_INT_2ADDR:
2455      is_two_addr = true;
2456      // Fallthrough
2457    case Instruction::SUB_INT:
2458      op = kOpSub;
2459      break;
2460    case Instruction::MUL_INT_2ADDR:
2461      is_two_addr = true;
2462      // Fallthrough
2463    case Instruction::MUL_INT:
2464      op = kOpMul;
2465      break;
2466    case Instruction::DIV_INT_2ADDR:
2467      is_two_addr = true;
2468      // Fallthrough
2469    case Instruction::DIV_INT:
2470      op = kOpDiv;
2471      is_div_rem = true;
2472      break;
2473    /* NOTE: returns in kArg1 */
2474    case Instruction::REM_INT_2ADDR:
2475      is_two_addr = true;
2476      // Fallthrough
2477    case Instruction::REM_INT:
2478      op = kOpRem;
2479      is_div_rem = true;
2480      break;
2481    case Instruction::AND_INT_2ADDR:
2482      is_two_addr = true;
2483      // Fallthrough
2484    case Instruction::AND_INT:
2485      op = kOpAnd;
2486      break;
2487    case Instruction::OR_INT_2ADDR:
2488      is_two_addr = true;
2489      // Fallthrough
2490    case Instruction::OR_INT:
2491      op = kOpOr;
2492      break;
2493    case Instruction::XOR_INT_2ADDR:
2494      is_two_addr = true;
2495      // Fallthrough
2496    case Instruction::XOR_INT:
2497      op = kOpXor;
2498      break;
2499    case Instruction::SHL_INT_2ADDR:
2500      is_two_addr = true;
2501      // Fallthrough
2502    case Instruction::SHL_INT:
2503      shift_op = true;
2504      op = kOpLsl;
2505      break;
2506    case Instruction::SHR_INT_2ADDR:
2507      is_two_addr = true;
2508      // Fallthrough
2509    case Instruction::SHR_INT:
2510      shift_op = true;
2511      op = kOpAsr;
2512      break;
2513    case Instruction::USHR_INT_2ADDR:
2514      is_two_addr = true;
2515      // Fallthrough
2516    case Instruction::USHR_INT:
2517      shift_op = true;
2518      op = kOpLsr;
2519      break;
2520    default:
2521      LOG(FATAL) << "Invalid word arith op: " << opcode;
2522  }
2523
2524  // Can we convert to a two address instruction?
2525  if (!is_two_addr &&
2526        (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
2527         mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
2528    is_two_addr = true;
2529  }
2530
2531  if (!GenerateTwoOperandInstructions()) {
2532    is_two_addr = false;
2533  }
2534
2535  // Get the div/rem stuff out of the way.
2536  if (is_div_rem) {
2537    rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
2538    StoreValue(rl_dest, rl_result);
2539    return;
2540  }
2541
2542  // If we generate any memory access below, it will reference a dalvik reg.
2543  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2544
2545  if (unary) {
2546    rl_lhs = LoadValue(rl_lhs, kCoreReg);
2547    rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2548    rl_result = EvalLoc(rl_dest, kCoreReg, true);
2549    OpRegReg(op, rl_result.reg, rl_lhs.reg);
2550  } else {
2551    if (shift_op) {
2552      // X86 doesn't require masking and must use ECX.
2553      RegStorage t_reg = TargetReg(kCount);  // rCX
2554      LoadValueDirectFixed(rl_rhs, t_reg);
2555      if (is_two_addr) {
2556        // Can we do this directly into memory?
2557        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2558        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2559        if (rl_result.location != kLocPhysReg) {
2560          // Okay, we can do this into memory
2561          OpMemReg(op, rl_result, t_reg.GetReg());
2562          FreeTemp(t_reg);
2563          return;
2564        } else if (!rl_result.reg.IsFloat()) {
2565          // Can do this directly into the result register
2566          OpRegReg(op, rl_result.reg, t_reg);
2567          FreeTemp(t_reg);
2568          StoreFinalValue(rl_dest, rl_result);
2569          return;
2570        }
2571      }
2572      // Three address form, or we can't do directly.
2573      rl_lhs = LoadValue(rl_lhs, kCoreReg);
2574      rl_result = EvalLoc(rl_dest, kCoreReg, true);
2575      OpRegRegReg(op, rl_result.reg, rl_lhs.reg, t_reg);
2576      FreeTemp(t_reg);
2577    } else {
2578      // Multiply is 3 operand only (sort of).
2579      if (is_two_addr && op != kOpMul) {
2580        // Can we do this directly into memory?
2581        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2582        if (rl_result.location == kLocPhysReg) {
2583          // Ensure res is in a core reg
2584          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2585          // Can we do this from memory directly?
2586          rl_rhs = UpdateLocTyped(rl_rhs, kCoreReg);
2587          if (rl_rhs.location != kLocPhysReg) {
2588            OpRegMem(op, rl_result.reg, rl_rhs);
2589            StoreFinalValue(rl_dest, rl_result);
2590            return;
2591          } else if (!rl_rhs.reg.IsFloat()) {
2592            OpRegReg(op, rl_result.reg, rl_rhs.reg);
2593            StoreFinalValue(rl_dest, rl_result);
2594            return;
2595          }
2596        }
2597        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2598        // It might happen rl_rhs and rl_dest are the same VR
2599        // in this case rl_dest is in reg after LoadValue while
2600        // rl_result is not updated yet, so do this
2601        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2602        if (rl_result.location != kLocPhysReg) {
2603          // Okay, we can do this into memory.
2604          OpMemReg(op, rl_result, rl_rhs.reg.GetReg());
2605          return;
2606        } else if (!rl_result.reg.IsFloat()) {
2607          // Can do this directly into the result register.
2608          OpRegReg(op, rl_result.reg, rl_rhs.reg);
2609          StoreFinalValue(rl_dest, rl_result);
2610          return;
2611        } else {
2612          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2613          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2614          OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2615        }
2616      } else {
2617        // Try to use reg/memory instructions.
2618        rl_lhs = UpdateLocTyped(rl_lhs, kCoreReg);
2619        rl_rhs = UpdateLocTyped(rl_rhs, kCoreReg);
2620        // We can't optimize with FP registers.
2621        if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2622          // Something is difficult, so fall back to the standard case.
2623          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2624          rl_rhs = LoadValue(rl_rhs, kCoreReg);
2625          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2626          OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2627        } else {
2628          // We can optimize by moving to result and using memory operands.
2629          if (rl_rhs.location != kLocPhysReg) {
2630            // Force LHS into result.
2631            // We should be careful with order here
2632            // If rl_dest and rl_lhs points to the same VR we should load first
2633            // If the are different we should find a register first for dest
2634            if (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
2635                mir_graph_->SRegToVReg(rl_lhs.s_reg_low)) {
2636              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2637              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2638              // No-op if these are the same.
2639              OpRegCopy(rl_result.reg, rl_lhs.reg);
2640            } else {
2641              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2642              LoadValueDirect(rl_lhs, rl_result.reg);
2643            }
2644            OpRegMem(op, rl_result.reg, rl_rhs);
2645          } else if (rl_lhs.location != kLocPhysReg) {
2646            // RHS is in a register; LHS is in memory.
2647            if (op != kOpSub) {
2648              // Force RHS into result and operate on memory.
2649              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2650              OpRegCopy(rl_result.reg, rl_rhs.reg);
2651              OpRegMem(op, rl_result.reg, rl_lhs);
2652            } else {
2653              // Subtraction isn't commutative.
2654              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2655              rl_rhs = LoadValue(rl_rhs, kCoreReg);
2656              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2657              OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2658            }
2659          } else {
2660            // Both are in registers.
2661            rl_lhs = LoadValue(rl_lhs, kCoreReg);
2662            rl_rhs = LoadValue(rl_rhs, kCoreReg);
2663            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2664            OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2665          }
2666        }
2667      }
2668    }
2669  }
2670  StoreValue(rl_dest, rl_result);
2671}
2672
2673bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2674  // If we have non-core registers, then we can't do good things.
2675  if (rl_lhs.location == kLocPhysReg && rl_lhs.reg.IsFloat()) {
2676    return false;
2677  }
2678  if (rl_rhs.location == kLocPhysReg && rl_rhs.reg.IsFloat()) {
2679    return false;
2680  }
2681
2682  // Everything will be fine :-).
2683  return true;
2684}
2685
2686void X86Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
2687  if (!Gen64Bit()) {
2688    Mir2Lir::GenIntToLong(rl_dest, rl_src);
2689    return;
2690  }
2691  rl_src = UpdateLoc(rl_src);
2692  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2693  if (rl_src.location == kLocPhysReg) {
2694    NewLIR2(kX86MovsxdRR, rl_result.reg.GetReg(), rl_src.reg.GetReg());
2695  } else {
2696    int displacement = SRegOffset(rl_src.s_reg_low);
2697    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2698    LIR *m = NewLIR3(kX86MovsxdRM, rl_result.reg.GetReg(), rs_rX86_SP.GetReg(),
2699                     displacement + LOWORD_OFFSET);
2700    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
2701                            true /* is_load */, true /* is_64bit */);
2702  }
2703  StoreValueWide(rl_dest, rl_result);
2704}
2705
2706void X86Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
2707                        RegLocation rl_src1, RegLocation rl_shift) {
2708  if (!Gen64Bit()) {
2709    Mir2Lir::GenShiftOpLong(opcode, rl_dest, rl_src1, rl_shift);
2710    return;
2711  }
2712
2713  bool is_two_addr = false;
2714  OpKind op = kOpBkpt;
2715  RegLocation rl_result;
2716
2717  switch (opcode) {
2718    case Instruction::SHL_LONG_2ADDR:
2719      is_two_addr = true;
2720      // Fallthrough
2721    case Instruction::SHL_LONG:
2722      op = kOpLsl;
2723      break;
2724    case Instruction::SHR_LONG_2ADDR:
2725      is_two_addr = true;
2726      // Fallthrough
2727    case Instruction::SHR_LONG:
2728      op = kOpAsr;
2729      break;
2730    case Instruction::USHR_LONG_2ADDR:
2731      is_two_addr = true;
2732      // Fallthrough
2733    case Instruction::USHR_LONG:
2734      op = kOpLsr;
2735      break;
2736    default:
2737      op = kOpBkpt;
2738  }
2739
2740  // X86 doesn't require masking and must use ECX.
2741  RegStorage t_reg = TargetReg(kCount);  // rCX
2742  LoadValueDirectFixed(rl_shift, t_reg);
2743  if (is_two_addr) {
2744    // Can we do this directly into memory?
2745    rl_result = UpdateLocWideTyped(rl_dest, kCoreReg);
2746    if (rl_result.location != kLocPhysReg) {
2747      // Okay, we can do this into memory
2748      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2749      OpMemReg(op, rl_result, t_reg.GetReg());
2750    } else if (!rl_result.reg.IsFloat()) {
2751      // Can do this directly into the result register
2752      OpRegReg(op, rl_result.reg, t_reg);
2753      StoreFinalValueWide(rl_dest, rl_result);
2754    }
2755  } else {
2756    // Three address form, or we can't do directly.
2757    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2758    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2759    OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
2760    StoreFinalValueWide(rl_dest, rl_result);
2761  }
2762
2763  FreeTemp(t_reg);
2764}
2765
2766}  // namespace art
2767