int_x86.cc revision 79aa423fce400db3f551a3874e69e7cc4fb4f68f
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
30                                int reg1, int base, int offset, ThrowKind kind) {
31  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32                    current_dalvik_offset_, reg1, base, offset);
33  OpRegMem(kOpCmp, reg1, base, offset);
34  LIR* branch = OpCondBranch(c_code, tgt);
35  // Remember branch target - will process later
36  throw_launchpads_.Insert(tgt);
37  return branch;
38}
39
40/*
41 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44                                int base, int offset, int check_value, ThrowKind kind) {
45  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46                    current_dalvik_offset_, base, check_value, 0);
47  NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48  LIR* branch = OpCondBranch(c_code, tgt);
49  // Remember branch target - will process later
50  throw_launchpads_.Insert(tgt);
51  return branch;
52}
53
54/*
55 * Compare two 64-bit values
56 *    x = y     return  0
57 *    x < y     return -1
58 *    x > y     return  1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
61                            RegLocation rl_src2) {
62  FlushAllRegs();
63  LockCallTemps();  // Prepare for explicit register usage
64  LoadValueDirectWideFixed(rl_src1, r0, r1);
65  LoadValueDirectWideFixed(rl_src2, r2, r3);
66  // Compute (r1:r0) = (r1:r0) - (r3:r2)
67  OpRegReg(kOpSub, r0, r2);  // r0 = r0 - r2
68  OpRegReg(kOpSbc, r1, r3);  // r1 = r1 - r3 - CF
69  NewLIR2(kX86Set8R, r2, kX86CondL);  // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70  NewLIR2(kX86Movzx8RR, r2, r2);
71  OpReg(kOpNeg, r2);         // r2 = -r2
72  OpRegReg(kOpOr, r0, r1);   // r0 = high | low - sets ZF
73  NewLIR2(kX86Set8R, r0, kX86CondNz);  // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74  NewLIR2(kX86Movzx8RR, r0, r0);
75  OpRegReg(kOpOr, r0, r2);   // r0 = r0 | r2
76  RegLocation rl_result = LocCReturn();
77  StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81  switch (cond) {
82    case kCondEq: return kX86CondEq;
83    case kCondNe: return kX86CondNe;
84    case kCondCs: return kX86CondC;
85    case kCondCc: return kX86CondNc;
86    case kCondUlt: return kX86CondC;
87    case kCondUge: return kX86CondNc;
88    case kCondMi: return kX86CondS;
89    case kCondPl: return kX86CondNs;
90    case kCondVs: return kX86CondO;
91    case kCondVc: return kX86CondNo;
92    case kCondHi: return kX86CondA;
93    case kCondLs: return kX86CondBe;
94    case kCondGe: return kX86CondGe;
95    case kCondLt: return kX86CondL;
96    case kCondGt: return kX86CondG;
97    case kCondLe: return kX86CondLe;
98    case kCondAl:
99    case kCondNv: LOG(FATAL) << "Should not reach here";
100  }
101  return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
105                             LIR* target) {
106  NewLIR2(kX86Cmp32RR, src1, src2);
107  X86ConditionCode cc = X86ConditionEncoding(cond);
108  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109                        cc);
110  branch->target = target;
111  return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
115                                int check_value, LIR* target) {
116  if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117    // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118    NewLIR2(kX86Test32RR, reg, reg);
119  } else {
120    NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121  }
122  X86ConditionCode cc = X86ConditionEncoding(cond);
123  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124  branch->target = target;
125  return branch;
126}
127
128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
129  if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130    return OpFpRegCopy(r_dest, r_src);
131  LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132                    r_dest, r_src);
133  if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
134    res->flags.is_nop = true;
135  }
136  return res;
137}
138
139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
140  LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141  AppendLIR(res);
142  return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
146                               int src_lo, int src_hi) {
147  bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148  bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149  assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150  assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151  if (dest_fp) {
152    if (src_fp) {
153      OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154    } else {
155      // TODO: Prevent this from happening in the code. The result is often
156      // unused or could have been loaded more easily from memory.
157      NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
158      dest_hi = AllocTempDouble();
159      NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
160      NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
161      FreeTemp(dest_hi);
162    }
163  } else {
164    if (src_fp) {
165      NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
166      NewLIR2(kX86PsrlqRI, src_lo, 32);
167      NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
168    } else {
169      // Handle overlap
170      if (src_hi == dest_lo) {
171        OpRegCopy(dest_hi, src_hi);
172        OpRegCopy(dest_lo, src_lo);
173      } else {
174        OpRegCopy(dest_lo, src_lo);
175        OpRegCopy(dest_hi, src_hi);
176      }
177    }
178  }
179}
180
181void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
182  RegLocation rl_result;
183  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
184  RegLocation rl_dest = mir_graph_->GetDest(mir);
185  rl_src = LoadValue(rl_src, kCoreReg);
186
187  // The kMirOpSelect has two variants, one for constants and one for moves.
188  const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
189
190  if (is_constant_case) {
191    int true_val = mir->dalvikInsn.vB;
192    int false_val = mir->dalvikInsn.vC;
193    rl_result = EvalLoc(rl_dest, kCoreReg, true);
194
195    /*
196     * 1) When the true case is zero and result_reg is not same as src_reg:
197     *     xor result_reg, result_reg
198     *     cmp $0, src_reg
199     *     mov t1, $false_case
200     *     cmovnz result_reg, t1
201     * 2) When the false case is zero and result_reg is not same as src_reg:
202     *     xor result_reg, result_reg
203     *     cmp $0, src_reg
204     *     mov t1, $true_case
205     *     cmovz result_reg, t1
206     * 3) All other cases (we do compare first to set eflags):
207     *     cmp $0, src_reg
208     *     mov result_reg, $true_case
209     *     mov t1, $false_case
210     *     cmovnz result_reg, t1
211     */
212    const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.low_reg == rl_result.low_reg);
213    const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
214    const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
215    const bool catch_all_case = !(true_zero_case || false_zero_case);
216
217    if (true_zero_case || false_zero_case) {
218      OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
219    }
220
221    if (true_zero_case || false_zero_case || catch_all_case) {
222      OpRegImm(kOpCmp, rl_src.low_reg, 0);
223    }
224
225    if (catch_all_case) {
226      OpRegImm(kOpMov, rl_result.low_reg, true_val);
227    }
228
229    if (true_zero_case || false_zero_case || catch_all_case) {
230      int immediateForTemp = false_zero_case ? true_val : false_val;
231      int temp1_reg = AllocTemp();
232      OpRegImm(kOpMov, temp1_reg, immediateForTemp);
233
234      ConditionCode cc = false_zero_case ? kCondEq : kCondNe;
235      OpCondRegReg(kOpCmov, cc, rl_result.low_reg, temp1_reg);
236
237      FreeTemp(temp1_reg);
238    }
239  } else {
240    RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
241    RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
242    rl_true = LoadValue(rl_true, kCoreReg);
243    rl_false = LoadValue(rl_false, kCoreReg);
244    rl_result = EvalLoc(rl_dest, kCoreReg, true);
245
246    /*
247     * 1) When true case is already in place:
248     *     cmp $0, src_reg
249     *     cmovnz result_reg, false_reg
250     * 2) When false case is already in place:
251     *     cmp $0, src_reg
252     *     cmovz result_reg, true_reg
253     * 3) When neither cases are in place:
254     *     cmp $0, src_reg
255     *     mov result_reg, true_reg
256     *     cmovnz result_reg, false_reg
257     */
258
259    // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
260    OpRegImm(kOpCmp, rl_src.low_reg, 0);
261
262    if (rl_result.low_reg == rl_true.low_reg) {
263      OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
264    } else if (rl_result.low_reg == rl_false.low_reg) {
265      OpCondRegReg(kOpCmov, kCondEq, rl_result.low_reg, rl_true.low_reg);
266    } else {
267      OpRegCopy(rl_result.low_reg, rl_true.low_reg);
268      OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
269    }
270  }
271
272  StoreValue(rl_dest, rl_result);
273}
274
275void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
276  LIR* taken = &block_label_list_[bb->taken];
277  RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
278  RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
279  ConditionCode ccode = mir->meta.ccode;
280
281  if (rl_src1.is_const) {
282    std::swap(rl_src1, rl_src2);
283    ccode = FlipComparisonOrder(ccode);
284  }
285  if (rl_src2.is_const) {
286    // Do special compare/branch against simple const operand
287    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
288    GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
289    return;
290  }
291
292  FlushAllRegs();
293  LockCallTemps();  // Prepare for explicit register usage
294  LoadValueDirectWideFixed(rl_src1, r0, r1);
295  LoadValueDirectWideFixed(rl_src2, r2, r3);
296  // Swap operands and condition code to prevent use of zero flag.
297  if (ccode == kCondLe || ccode == kCondGt) {
298    // Compute (r3:r2) = (r3:r2) - (r1:r0)
299    OpRegReg(kOpSub, r2, r0);  // r2 = r2 - r0
300    OpRegReg(kOpSbc, r3, r1);  // r3 = r3 - r1 - CF
301  } else {
302    // Compute (r1:r0) = (r1:r0) - (r3:r2)
303    OpRegReg(kOpSub, r0, r2);  // r0 = r0 - r2
304    OpRegReg(kOpSbc, r1, r3);  // r1 = r1 - r3 - CF
305  }
306  switch (ccode) {
307    case kCondEq:
308    case kCondNe:
309      OpRegReg(kOpOr, r0, r1);  // r0 = r0 | r1
310      break;
311    case kCondLe:
312      ccode = kCondGe;
313      break;
314    case kCondGt:
315      ccode = kCondLt;
316      break;
317    case kCondLt:
318    case kCondGe:
319      break;
320    default:
321      LOG(FATAL) << "Unexpected ccode: " << ccode;
322  }
323  OpCondBranch(ccode, taken);
324}
325
326void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
327                                          int64_t val, ConditionCode ccode) {
328  int32_t val_lo = Low32Bits(val);
329  int32_t val_hi = High32Bits(val);
330  LIR* taken = &block_label_list_[bb->taken];
331  LIR* not_taken = &block_label_list_[bb->fall_through];
332  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
333  int32_t low_reg = rl_src1.low_reg;
334  int32_t high_reg = rl_src1.high_reg;
335
336  if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
337    int t_reg = AllocTemp();
338    OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
339    FreeTemp(t_reg);
340    OpCondBranch(ccode, taken);
341    return;
342  }
343
344  OpRegImm(kOpCmp, high_reg, val_hi);
345  switch (ccode) {
346    case kCondEq:
347    case kCondNe:
348      OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
349      break;
350    case kCondLt:
351      OpCondBranch(kCondLt, taken);
352      OpCondBranch(kCondGt, not_taken);
353      ccode = kCondUlt;
354      break;
355    case kCondLe:
356      OpCondBranch(kCondLt, taken);
357      OpCondBranch(kCondGt, not_taken);
358      ccode = kCondLs;
359      break;
360    case kCondGt:
361      OpCondBranch(kCondGt, taken);
362      OpCondBranch(kCondLt, not_taken);
363      ccode = kCondHi;
364      break;
365    case kCondGe:
366      OpCondBranch(kCondGt, taken);
367      OpCondBranch(kCondLt, not_taken);
368      ccode = kCondUge;
369      break;
370    default:
371      LOG(FATAL) << "Unexpected ccode: " << ccode;
372  }
373  OpCmpImmBranch(ccode, low_reg, val_lo, taken);
374}
375
376void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
377  // It does not make sense to calculate magic and shift for zero divisor.
378  DCHECK_NE(divisor, 0);
379
380  /* According to H.S.Warren's Hacker's Delight Chapter 10 and
381   * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
382   * The magic number M and shift S can be calculated in the following way:
383   * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
384   * where divisor(d) >=2.
385   * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
386   * where divisor(d) <= -2.
387   * Thus nc can be calculated like:
388   * nc = 2^31 + 2^31 % d - 1, where d >= 2
389   * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
390   *
391   * So the shift p is the smallest p satisfying
392   * 2^p > nc * (d - 2^p % d), where d >= 2
393   * 2^p > nc * (d + 2^p % d), where d <= -2.
394   *
395   * the magic number M is calcuated by
396   * M = (2^p + d - 2^p % d) / d, where d >= 2
397   * M = (2^p - d - 2^p % d) / d, where d <= -2.
398   *
399   * Notice that p is always bigger than or equal to 32, so we just return 32-p as
400   * the shift number S.
401   */
402
403  int32_t p = 31;
404  const uint32_t two31 = 0x80000000U;
405
406  // Initialize the computations.
407  uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
408  uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
409  uint32_t abs_nc = tmp - 1 - tmp % abs_d;
410  uint32_t quotient1 = two31 / abs_nc;
411  uint32_t remainder1 = two31 % abs_nc;
412  uint32_t quotient2 = two31 / abs_d;
413  uint32_t remainder2 = two31 % abs_d;
414
415  /*
416   * To avoid handling both positive and negative divisor, Hacker's Delight
417   * introduces a method to handle these 2 cases together to avoid duplication.
418   */
419  uint32_t delta;
420  do {
421    p++;
422    quotient1 = 2 * quotient1;
423    remainder1 = 2 * remainder1;
424    if (remainder1 >= abs_nc) {
425      quotient1++;
426      remainder1 = remainder1 - abs_nc;
427    }
428    quotient2 = 2 * quotient2;
429    remainder2 = 2 * remainder2;
430    if (remainder2 >= abs_d) {
431      quotient2++;
432      remainder2 = remainder2 - abs_d;
433    }
434    delta = abs_d - remainder2;
435  } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
436
437  magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
438  shift = p - 32;
439}
440
441RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
442                                     int lit, bool is_div) {
443  LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
444  return rl_dest;
445}
446
447RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
448                                     int imm, bool is_div) {
449  // Use a multiply (and fixup) to perform an int div/rem by a constant.
450
451  // We have to use fixed registers, so flush all the temps.
452  FlushAllRegs();
453  LockCallTemps();  // Prepare for explicit register usage.
454
455  // Assume that the result will be in EDX.
456  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
457                          r2, INVALID_REG, INVALID_SREG, INVALID_SREG};
458
459  // handle div/rem by 1 special case.
460  if (imm == 1) {
461    if (is_div) {
462      // x / 1 == x.
463      StoreValue(rl_result, rl_src);
464    } else {
465      // x % 1 == 0.
466      LoadConstantNoClobber(r0, 0);
467      // For this case, return the result in EAX.
468      rl_result.low_reg = r0;
469    }
470  } else if (imm == -1) {  // handle 0x80000000 / -1 special case.
471    if (is_div) {
472      LIR *minint_branch = 0;
473      LoadValueDirectFixed(rl_src, r0);
474      OpRegImm(kOpCmp, r0, 0x80000000);
475      minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
476
477      // for x != MIN_INT, x / -1 == -x.
478      NewLIR1(kX86Neg32R, r0);
479
480      LIR* branch_around = NewLIR1(kX86Jmp8, 0);
481      // The target for cmp/jmp above.
482      minint_branch->target = NewLIR0(kPseudoTargetLabel);
483      // EAX already contains the right value (0x80000000),
484      branch_around->target = NewLIR0(kPseudoTargetLabel);
485    } else {
486      // x % -1 == 0.
487      LoadConstantNoClobber(r0, 0);
488    }
489    // For this case, return the result in EAX.
490    rl_result.low_reg = r0;
491  } else {
492    CHECK(imm <= -2 || imm >= 2);
493    // Use H.S.Warren's Hacker's Delight Chapter 10 and
494    // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
495    int magic, shift;
496    CalculateMagicAndShift(imm, magic, shift);
497
498    /*
499     * For imm >= 2,
500     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
501     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
502     * For imm <= -2,
503     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
504     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
505     * We implement this algorithm in the following way:
506     * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
507     * 2. if imm > 0 and magic < 0, add numerator to EDX
508     *    if imm < 0 and magic > 0, sub numerator from EDX
509     * 3. if S !=0, SAR S bits for EDX
510     * 4. add 1 to EDX if EDX < 0
511     * 5. Thus, EDX is the quotient
512     */
513
514    // Numerator into EAX.
515    int numerator_reg = -1;
516    if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
517      // We will need the value later.
518      if (rl_src.location == kLocPhysReg) {
519        // We can use it directly.
520        DCHECK(rl_src.low_reg != r0 && rl_src.low_reg != r2);
521        numerator_reg = rl_src.low_reg;
522      } else {
523        LoadValueDirectFixed(rl_src, r1);
524        numerator_reg = r1;
525      }
526      OpRegCopy(r0, numerator_reg);
527    } else {
528      // Only need this once.  Just put it into EAX.
529      LoadValueDirectFixed(rl_src, r0);
530    }
531
532    // EDX = magic.
533    LoadConstantNoClobber(r2, magic);
534
535    // EDX:EAX = magic & dividend.
536    NewLIR1(kX86Imul32DaR, r2);
537
538    if (imm > 0 && magic < 0) {
539      // Add numerator to EDX.
540      DCHECK_NE(numerator_reg, -1);
541      NewLIR2(kX86Add32RR, r2, numerator_reg);
542    } else if (imm < 0 && magic > 0) {
543      DCHECK_NE(numerator_reg, -1);
544      NewLIR2(kX86Sub32RR, r2, numerator_reg);
545    }
546
547    // Do we need the shift?
548    if (shift != 0) {
549      // Shift EDX by 'shift' bits.
550      NewLIR2(kX86Sar32RI, r2, shift);
551    }
552
553    // Add 1 to EDX if EDX < 0.
554
555    // Move EDX to EAX.
556    OpRegCopy(r0, r2);
557
558    // Move sign bit to bit 0, zeroing the rest.
559    NewLIR2(kX86Shr32RI, r2, 31);
560
561    // EDX = EDX + EAX.
562    NewLIR2(kX86Add32RR, r2, r0);
563
564    // Quotient is in EDX.
565    if (!is_div) {
566      // We need to compute the remainder.
567      // Remainder is divisor - (quotient * imm).
568      DCHECK_NE(numerator_reg, -1);
569      OpRegCopy(r0, numerator_reg);
570
571      // EAX = numerator * imm.
572      OpRegRegImm(kOpMul, r2, r2, imm);
573
574      // EDX -= EAX.
575      NewLIR2(kX86Sub32RR, r0, r2);
576
577      // For this case, return the result in EAX.
578      rl_result.low_reg = r0;
579    }
580  }
581
582  return rl_result;
583}
584
585RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
586                                  int reg_hi, bool is_div) {
587  LOG(FATAL) << "Unexpected use of GenDivRem for x86";
588  return rl_dest;
589}
590
591RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
592                                  RegLocation rl_src2, bool is_div, bool check_zero) {
593  // We have to use fixed registers, so flush all the temps.
594  FlushAllRegs();
595  LockCallTemps();  // Prepare for explicit register usage.
596
597  // Load LHS into EAX.
598  LoadValueDirectFixed(rl_src1, r0);
599
600  // Load RHS into EBX.
601  LoadValueDirectFixed(rl_src2, r1);
602
603  // Copy LHS sign bit into EDX.
604  NewLIR0(kx86Cdq32Da);
605
606  if (check_zero) {
607    // Handle division by zero case.
608    GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
609  }
610
611  // Have to catch 0x80000000/-1 case, or we will get an exception!
612  OpRegImm(kOpCmp, r1, -1);
613  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
614
615  // RHS is -1.
616  OpRegImm(kOpCmp, r0, 0x80000000);
617  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
618
619  // In 0x80000000/-1 case.
620  if (!is_div) {
621    // For DIV, EAX is already right. For REM, we need EDX 0.
622    LoadConstantNoClobber(r2, 0);
623  }
624  LIR* done = NewLIR1(kX86Jmp8, 0);
625
626  // Expected case.
627  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
628  minint_branch->target = minus_one_branch->target;
629  NewLIR1(kX86Idivmod32DaR, r1);
630  done->target = NewLIR0(kPseudoTargetLabel);
631
632  // Result is in EAX for div and EDX for rem.
633  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
634                          r0, INVALID_REG, INVALID_SREG, INVALID_SREG};
635  if (!is_div) {
636    rl_result.low_reg = r2;
637  }
638  return rl_result;
639}
640
641bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
642  DCHECK_EQ(cu_->instruction_set, kX86);
643
644  // Get the two arguments to the invoke and place them in GP registers.
645  RegLocation rl_src1 = info->args[0];
646  RegLocation rl_src2 = info->args[1];
647  rl_src1 = LoadValue(rl_src1, kCoreReg);
648  rl_src2 = LoadValue(rl_src2, kCoreReg);
649
650  RegLocation rl_dest = InlineTarget(info);
651  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
652
653  /*
654   * If the result register is the same as the second element, then we need to be careful.
655   * The reason is that the first copy will inadvertently clobber the second element with
656   * the first one thus yielding the wrong result. Thus we do a swap in that case.
657   */
658  if (rl_result.low_reg == rl_src2.low_reg) {
659    std::swap(rl_src1, rl_src2);
660  }
661
662  // Pick the first integer as min/max.
663  OpRegCopy(rl_result.low_reg, rl_src1.low_reg);
664
665  // If the integers are both in the same register, then there is nothing else to do
666  // because they are equal and we have already moved one into the result.
667  if (rl_src1.low_reg != rl_src2.low_reg) {
668    // It is possible we didn't pick correctly so do the actual comparison now.
669    OpRegReg(kOpCmp, rl_src1.low_reg, rl_src2.low_reg);
670
671    // Conditionally move the other integer into the destination register.
672    ConditionCode condition_code = is_min ? kCondGt : kCondLt;
673    OpCondRegReg(kOpCmov, condition_code, rl_result.low_reg, rl_src2.low_reg);
674  }
675
676  StoreValue(rl_dest, rl_result);
677  return true;
678}
679
680bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
681  RegLocation rl_src_address = info->args[0];  // long address
682  rl_src_address.wide = 0;  // ignore high half in info->args[1]
683  RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
684  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
685  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
686  if (size == kLong) {
687    // Unaligned access is allowed on x86.
688    LoadBaseDispWide(rl_address.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
689    StoreValueWide(rl_dest, rl_result);
690  } else {
691    DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
692    // Unaligned access is allowed on x86.
693    LoadBaseDisp(rl_address.low_reg, 0, rl_result.low_reg, size, INVALID_SREG);
694    StoreValue(rl_dest, rl_result);
695  }
696  return true;
697}
698
699bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
700  RegLocation rl_src_address = info->args[0];  // long address
701  rl_src_address.wide = 0;  // ignore high half in info->args[1]
702  RegLocation rl_src_value = info->args[2];  // [size] value
703  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
704  if (size == kLong) {
705    // Unaligned access is allowed on x86.
706    RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
707    StoreBaseDispWide(rl_address.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
708  } else {
709    DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
710    // Unaligned access is allowed on x86.
711    RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
712    StoreBaseDisp(rl_address.low_reg, 0, rl_value.low_reg, size);
713  }
714  return true;
715}
716
717void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
718  NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
719}
720
721void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
722  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
723}
724
725bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
726  DCHECK_EQ(cu_->instruction_set, kX86);
727  // Unused - RegLocation rl_src_unsafe = info->args[0];
728  RegLocation rl_src_obj = info->args[1];  // Object - known non-null
729  RegLocation rl_src_offset = info->args[2];  // long low
730  rl_src_offset.wide = 0;  // ignore high half in info->args[3]
731  RegLocation rl_src_expected = info->args[4];  // int, long or Object
732  // If is_long, high half is in info->args[5]
733  RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
734  // If is_long, high half is in info->args[7]
735
736  if (is_long) {
737    FlushAllRegs();
738    LockCallTemps();
739    LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
740    LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
741    NewLIR1(kX86Push32R, rDI);
742    MarkTemp(rDI);
743    LockTemp(rDI);
744    NewLIR1(kX86Push32R, rSI);
745    MarkTemp(rSI);
746    LockTemp(rSI);
747    const int push_offset = 4 /* push edi */ + 4 /* push esi */;
748    LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI);
749    LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI);
750    NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
751    FreeTemp(rSI);
752    UnmarkTemp(rSI);
753    NewLIR1(kX86Pop32R, rSI);
754    FreeTemp(rDI);
755    UnmarkTemp(rDI);
756    NewLIR1(kX86Pop32R, rDI);
757    FreeCallTemps();
758  } else {
759    // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
760    FlushReg(r0);
761    LockTemp(r0);
762
763    // Release store semantics, get the barrier out of the way.  TODO: revisit
764    GenMemBarrier(kStoreLoad);
765
766    RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
767    RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
768
769    if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
770      // Mark card for object assuming new value is stored.
771      FreeTemp(r0);  // Temporarily release EAX for MarkGCCard().
772      MarkGCCard(rl_new_value.low_reg, rl_object.low_reg);
773      LockTemp(r0);
774    }
775
776    RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
777    LoadValueDirect(rl_src_expected, r0);
778    NewLIR5(kX86LockCmpxchgAR, rl_object.low_reg, rl_offset.low_reg, 0, 0, rl_new_value.low_reg);
779
780    FreeTemp(r0);
781  }
782
783  // Convert ZF to boolean
784  RegLocation rl_dest = InlineTarget(info);  // boolean place for result
785  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
786  NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondZ);
787  NewLIR2(kX86Movzx8RR, rl_result.low_reg, rl_result.low_reg);
788  StoreValue(rl_dest, rl_result);
789  return true;
790}
791
792LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
793  CHECK(base_of_code_ != nullptr);
794
795  // Address the start of the method
796  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
797  LoadValueDirectFixed(rl_method, reg);
798  store_method_addr_used_ = true;
799
800  // Load the proper value from the literal area.
801  // We don't know the proper offset for the value, so pick one that will force
802  // 4 byte offset.  We will fix this up in the assembler later to have the right
803  // value.
804  LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg, reg, 256, 0, 0, target);
805  res->target = target;
806  res->flags.fixup = kFixupLoad;
807  SetMemRefType(res, true, kLiteral);
808  store_method_addr_used_ = true;
809  return res;
810}
811
812LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
813  LOG(FATAL) << "Unexpected use of OpVldm for x86";
814  return NULL;
815}
816
817LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
818  LOG(FATAL) << "Unexpected use of OpVstm for x86";
819  return NULL;
820}
821
822void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
823                                               RegLocation rl_result, int lit,
824                                               int first_bit, int second_bit) {
825  int t_reg = AllocTemp();
826  OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit);
827  OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg);
828  FreeTemp(t_reg);
829  if (first_bit != 0) {
830    OpRegRegImm(kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit);
831  }
832}
833
834void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
835  // We are not supposed to clobber either of the provided registers, so allocate
836  // a temporary to use for the check.
837  int t_reg = AllocTemp();
838
839  // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
840  OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
841
842  // In case of zero, throw ArithmeticException.
843  GenCheck(kCondEq, kThrowDivZero);
844
845  // The temp is no longer needed so free it at this time.
846  FreeTemp(t_reg);
847}
848
849// Test suspend flag, return target of taken suspend branch
850LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
851  OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
852  return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
853}
854
855// Decrement register and branch on condition
856LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
857  OpRegImm(kOpSub, reg, 1);
858  return OpCondBranch(c_code, target);
859}
860
861bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
862                                    RegLocation rl_src, RegLocation rl_dest, int lit) {
863  LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
864  return false;
865}
866
867LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
868  LOG(FATAL) << "Unexpected use of OpIT in x86";
869  return NULL;
870}
871
872void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
873  switch (val) {
874    case 0:
875      NewLIR2(kX86Xor32RR, dest, dest);
876      break;
877    case 1:
878      OpRegCopy(dest, src);
879      break;
880    default:
881      OpRegRegImm(kOpMul, dest, src, val);
882      break;
883  }
884}
885
886void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
887  LIR *m;
888  switch (val) {
889    case 0:
890      NewLIR2(kX86Xor32RR, dest, dest);
891      break;
892    case 1:
893      LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
894      break;
895    default:
896      m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
897                  displacement, val);
898      AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
899      break;
900  }
901}
902
903void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
904                            RegLocation rl_src2) {
905  if (rl_src1.is_const) {
906    std::swap(rl_src1, rl_src2);
907  }
908  // Are we multiplying by a constant?
909  if (rl_src2.is_const) {
910    // Do special compare/branch against simple const operand
911    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
912    if (val == 0) {
913      RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
914      OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
915      OpRegReg(kOpXor, rl_result.high_reg, rl_result.high_reg);
916      StoreValueWide(rl_dest, rl_result);
917      return;
918    } else if (val == 1) {
919      rl_src1 = EvalLocWide(rl_src1, kCoreReg, true);
920      StoreValueWide(rl_dest, rl_src1);
921      return;
922    } else if (val == 2) {
923      GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
924      return;
925    } else if (IsPowerOfTwo(val)) {
926      int shift_amount = LowestSetBit(val);
927      if (!BadOverlap(rl_src1, rl_dest)) {
928        rl_src1 = LoadValueWide(rl_src1, kCoreReg);
929        RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
930                                                  rl_src1, shift_amount);
931        StoreValueWide(rl_dest, rl_result);
932        return;
933      }
934    }
935
936    // Okay, just bite the bullet and do it.
937    int32_t val_lo = Low32Bits(val);
938    int32_t val_hi = High32Bits(val);
939    FlushAllRegs();
940    LockCallTemps();  // Prepare for explicit register usage.
941    rl_src1 = UpdateLocWide(rl_src1);
942    bool src1_in_reg = rl_src1.location == kLocPhysReg;
943    int displacement = SRegOffset(rl_src1.s_reg_low);
944
945    // ECX <- 1H * 2L
946    // EAX <- 1L * 2H
947    if (src1_in_reg) {
948      GenImulRegImm(r1, rl_src1.high_reg, val_lo);
949      GenImulRegImm(r0, rl_src1.low_reg, val_hi);
950    } else {
951      GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
952      GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
953    }
954
955    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
956    NewLIR2(kX86Add32RR, r1, r0);
957
958    // EAX <- 2L
959    LoadConstantNoClobber(r0, val_lo);
960
961    // EDX:EAX <- 2L * 1L (double precision)
962    if (src1_in_reg) {
963      NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
964    } else {
965      LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
966      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
967                              true /* is_load */, true /* is_64bit */);
968    }
969
970    // EDX <- EDX + ECX (add high words)
971    NewLIR2(kX86Add32RR, r2, r1);
972
973    // Result is EDX:EAX
974    RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
975                             INVALID_SREG, INVALID_SREG};
976    StoreValueWide(rl_dest, rl_result);
977    return;
978  }
979
980  // Nope.  Do it the hard way
981  FlushAllRegs();
982  LockCallTemps();  // Prepare for explicit register usage.
983  rl_src1 = UpdateLocWide(rl_src1);
984  rl_src2 = UpdateLocWide(rl_src2);
985
986  // At this point, the VRs are in their home locations.
987  bool src1_in_reg = rl_src1.location == kLocPhysReg;
988  bool src2_in_reg = rl_src2.location == kLocPhysReg;
989
990  // ECX <- 1H
991  if (src1_in_reg) {
992    NewLIR2(kX86Mov32RR, r1, rl_src1.high_reg);
993  } else {
994    LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
995                 kWord, GetSRegHi(rl_src1.s_reg_low));
996  }
997
998  // EAX <- 2H
999  if (src2_in_reg) {
1000    NewLIR2(kX86Mov32RR, r0, rl_src2.high_reg);
1001  } else {
1002    LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
1003                 kWord, GetSRegHi(rl_src2.s_reg_low));
1004  }
1005
1006  // EAX <- EAX * 1L  (2H * 1L)
1007  if (src1_in_reg) {
1008    NewLIR2(kX86Imul32RR, r0, rl_src1.low_reg);
1009  } else {
1010    int displacement = SRegOffset(rl_src1.s_reg_low);
1011    LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1012    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1013                            true /* is_load */, true /* is_64bit */);
1014  }
1015
1016  // ECX <- ECX * 2L  (1H * 2L)
1017  if (src2_in_reg) {
1018    NewLIR2(kX86Imul32RR, r1, rl_src2.low_reg);
1019  } else {
1020    int displacement = SRegOffset(rl_src2.s_reg_low);
1021    LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1022    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1023                            true /* is_load */, true /* is_64bit */);
1024  }
1025
1026  // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1027  NewLIR2(kX86Add32RR, r1, r0);
1028
1029  // EAX <- 2L
1030  if (src2_in_reg) {
1031    NewLIR2(kX86Mov32RR, r0, rl_src2.low_reg);
1032  } else {
1033    LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1034                 kWord, rl_src2.s_reg_low);
1035  }
1036
1037  // EDX:EAX <- 2L * 1L (double precision)
1038  if (src1_in_reg) {
1039    NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
1040  } else {
1041    int displacement = SRegOffset(rl_src1.s_reg_low);
1042    LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1043    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1044                            true /* is_load */, true /* is_64bit */);
1045  }
1046
1047  // EDX <- EDX + ECX (add high words)
1048  NewLIR2(kX86Add32RR, r2, r1);
1049
1050  // Result is EDX:EAX
1051  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
1052                           INVALID_SREG, INVALID_SREG};
1053  StoreValueWide(rl_dest, rl_result);
1054}
1055
1056void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1057                                   Instruction::Code op) {
1058  DCHECK_EQ(rl_dest.location, kLocPhysReg);
1059  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1060  if (rl_src.location == kLocPhysReg) {
1061    // Both operands are in registers.
1062    if (rl_dest.low_reg == rl_src.high_reg) {
1063      // The registers are the same, so we would clobber it before the use.
1064      int temp_reg = AllocTemp();
1065      OpRegCopy(temp_reg, rl_dest.low_reg);
1066      rl_src.high_reg = temp_reg;
1067    }
1068    NewLIR2(x86op, rl_dest.low_reg, rl_src.low_reg);
1069
1070    x86op = GetOpcode(op, rl_dest, rl_src, true);
1071    NewLIR2(x86op, rl_dest.high_reg, rl_src.high_reg);
1072    FreeTemp(rl_src.low_reg);
1073    FreeTemp(rl_src.high_reg);
1074    return;
1075  }
1076
1077  // RHS is in memory.
1078  DCHECK((rl_src.location == kLocDalvikFrame) ||
1079         (rl_src.location == kLocCompilerTemp));
1080  int rBase = TargetReg(kSp);
1081  int displacement = SRegOffset(rl_src.s_reg_low);
1082
1083  LIR *lir = NewLIR3(x86op, rl_dest.low_reg, rBase, displacement + LOWORD_OFFSET);
1084  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1085                          true /* is_load */, true /* is64bit */);
1086  x86op = GetOpcode(op, rl_dest, rl_src, true);
1087  lir = NewLIR3(x86op, rl_dest.high_reg, rBase, displacement + HIWORD_OFFSET);
1088  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1089                          true /* is_load */, true /* is64bit */);
1090}
1091
1092void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1093  rl_dest = UpdateLocWide(rl_dest);
1094  if (rl_dest.location == kLocPhysReg) {
1095    // Ensure we are in a register pair
1096    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1097
1098    rl_src = UpdateLocWide(rl_src);
1099    GenLongRegOrMemOp(rl_result, rl_src, op);
1100    StoreFinalValueWide(rl_dest, rl_result);
1101    return;
1102  }
1103
1104  // It wasn't in registers, so it better be in memory.
1105  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1106         (rl_dest.location == kLocCompilerTemp));
1107  rl_src = LoadValueWide(rl_src, kCoreReg);
1108
1109  // Operate directly into memory.
1110  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1111  int rBase = TargetReg(kSp);
1112  int displacement = SRegOffset(rl_dest.s_reg_low);
1113
1114  LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.low_reg);
1115  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1116                          false /* is_load */, true /* is64bit */);
1117  x86op = GetOpcode(op, rl_dest, rl_src, true);
1118  lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.high_reg);
1119  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1120                          false /* is_load */, true /* is64bit */);
1121  FreeTemp(rl_src.low_reg);
1122  FreeTemp(rl_src.high_reg);
1123}
1124
1125void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1126                              RegLocation rl_src2, Instruction::Code op,
1127                              bool is_commutative) {
1128  // Is this really a 2 operand operation?
1129  switch (op) {
1130    case Instruction::ADD_LONG_2ADDR:
1131    case Instruction::SUB_LONG_2ADDR:
1132    case Instruction::AND_LONG_2ADDR:
1133    case Instruction::OR_LONG_2ADDR:
1134    case Instruction::XOR_LONG_2ADDR:
1135      GenLongArith(rl_dest, rl_src2, op);
1136      return;
1137    default:
1138      break;
1139  }
1140
1141  if (rl_dest.location == kLocPhysReg) {
1142    RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1143
1144    // We are about to clobber the LHS, so it needs to be a temp.
1145    rl_result = ForceTempWide(rl_result);
1146
1147    // Perform the operation using the RHS.
1148    rl_src2 = UpdateLocWide(rl_src2);
1149    GenLongRegOrMemOp(rl_result, rl_src2, op);
1150
1151    // And now record that the result is in the temp.
1152    StoreFinalValueWide(rl_dest, rl_result);
1153    return;
1154  }
1155
1156  // It wasn't in registers, so it better be in memory.
1157  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1158         (rl_dest.location == kLocCompilerTemp));
1159  rl_src1 = UpdateLocWide(rl_src1);
1160  rl_src2 = UpdateLocWide(rl_src2);
1161
1162  // Get one of the source operands into temporary register.
1163  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1164  if (IsTemp(rl_src1.low_reg) && IsTemp(rl_src1.high_reg)) {
1165    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1166  } else if (is_commutative) {
1167    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1168    // We need at least one of them to be a temporary.
1169    if (!(IsTemp(rl_src2.low_reg) && IsTemp(rl_src2.high_reg))) {
1170      rl_src1 = ForceTempWide(rl_src1);
1171    }
1172    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1173  } else {
1174    // Need LHS to be the temp.
1175    rl_src1 = ForceTempWide(rl_src1);
1176    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1177  }
1178
1179  StoreFinalValueWide(rl_dest, rl_src1);
1180}
1181
1182void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
1183                            RegLocation rl_src1, RegLocation rl_src2) {
1184  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1185}
1186
1187void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1188                            RegLocation rl_src1, RegLocation rl_src2) {
1189  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1190}
1191
1192void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1193                            RegLocation rl_src1, RegLocation rl_src2) {
1194  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1195}
1196
1197void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1198                           RegLocation rl_src1, RegLocation rl_src2) {
1199  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1200}
1201
1202void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1203                            RegLocation rl_src1, RegLocation rl_src2) {
1204  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1205}
1206
1207void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1208  rl_src = LoadValueWide(rl_src, kCoreReg);
1209  RegLocation rl_result = ForceTempWide(rl_src);
1210  if (rl_dest.low_reg == rl_src.high_reg) {
1211    // The registers are the same, so we would clobber it before the use.
1212    int temp_reg = AllocTemp();
1213    OpRegCopy(temp_reg, rl_result.low_reg);
1214    rl_result.high_reg = temp_reg;
1215  }
1216  OpRegReg(kOpNeg, rl_result.low_reg, rl_result.low_reg);    // rLow = -rLow
1217  OpRegImm(kOpAdc, rl_result.high_reg, 0);                   // rHigh = rHigh + CF
1218  OpRegReg(kOpNeg, rl_result.high_reg, rl_result.high_reg);  // rHigh = -rHigh
1219  StoreValueWide(rl_dest, rl_result);
1220}
1221
1222void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
1223  X86OpCode opcode = kX86Bkpt;
1224  switch (op) {
1225  case kOpCmp: opcode = kX86Cmp32RT;  break;
1226  case kOpMov: opcode = kX86Mov32RT;  break;
1227  default:
1228    LOG(FATAL) << "Bad opcode: " << op;
1229    break;
1230  }
1231  NewLIR2(opcode, r_dest, thread_offset.Int32Value());
1232}
1233
1234/*
1235 * Generate array load
1236 */
1237void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1238                             RegLocation rl_index, RegLocation rl_dest, int scale) {
1239  RegisterClass reg_class = oat_reg_class_by_size(size);
1240  int len_offset = mirror::Array::LengthOffset().Int32Value();
1241  RegLocation rl_result;
1242  rl_array = LoadValue(rl_array, kCoreReg);
1243
1244  int data_offset;
1245  if (size == kLong || size == kDouble) {
1246    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1247  } else {
1248    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1249  }
1250
1251  bool constant_index = rl_index.is_const;
1252  int32_t constant_index_value = 0;
1253  if (!constant_index) {
1254    rl_index = LoadValue(rl_index, kCoreReg);
1255  } else {
1256    constant_index_value = mir_graph_->ConstantValue(rl_index);
1257    // If index is constant, just fold it into the data offset
1258    data_offset += constant_index_value << scale;
1259    // treat as non array below
1260    rl_index.low_reg = INVALID_REG;
1261  }
1262
1263  /* null object? */
1264  GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1265
1266  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1267    if (constant_index) {
1268      GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1269                       constant_index_value, kThrowConstantArrayBounds);
1270    } else {
1271      GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1272                     len_offset, kThrowArrayBounds);
1273    }
1274  }
1275  rl_result = EvalLoc(rl_dest, reg_class, true);
1276  if ((size == kLong) || (size == kDouble)) {
1277    LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_result.low_reg,
1278                        rl_result.high_reg, size, INVALID_SREG);
1279    StoreValueWide(rl_dest, rl_result);
1280  } else {
1281    LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale,
1282                        data_offset, rl_result.low_reg, INVALID_REG, size,
1283                        INVALID_SREG);
1284    StoreValue(rl_dest, rl_result);
1285  }
1286}
1287
1288/*
1289 * Generate array store
1290 *
1291 */
1292void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1293                             RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1294  RegisterClass reg_class = oat_reg_class_by_size(size);
1295  int len_offset = mirror::Array::LengthOffset().Int32Value();
1296  int data_offset;
1297
1298  if (size == kLong || size == kDouble) {
1299    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1300  } else {
1301    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1302  }
1303
1304  rl_array = LoadValue(rl_array, kCoreReg);
1305  bool constant_index = rl_index.is_const;
1306  int32_t constant_index_value = 0;
1307  if (!constant_index) {
1308    rl_index = LoadValue(rl_index, kCoreReg);
1309  } else {
1310    // If index is constant, just fold it into the data offset
1311    constant_index_value = mir_graph_->ConstantValue(rl_index);
1312    data_offset += constant_index_value << scale;
1313    // treat as non array below
1314    rl_index.low_reg = INVALID_REG;
1315  }
1316
1317  /* null object? */
1318  GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1319
1320  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1321    if (constant_index) {
1322      GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1323                       constant_index_value, kThrowConstantArrayBounds);
1324    } else {
1325      GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1326                     len_offset, kThrowArrayBounds);
1327    }
1328  }
1329  if ((size == kLong) || (size == kDouble)) {
1330    rl_src = LoadValueWide(rl_src, reg_class);
1331  } else {
1332    rl_src = LoadValue(rl_src, reg_class);
1333  }
1334  // If the src reg can't be byte accessed, move it to a temp first.
1335  if ((size == kSignedByte || size == kUnsignedByte) && rl_src.low_reg >= 4) {
1336    int temp = AllocTemp();
1337    OpRegCopy(temp, rl_src.low_reg);
1338    StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, temp,
1339                         INVALID_REG, size, INVALID_SREG);
1340  } else {
1341    StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_src.low_reg,
1342                         rl_src.high_reg, size, INVALID_SREG);
1343  }
1344  if (card_mark) {
1345    // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
1346    if (!constant_index) {
1347      FreeTemp(rl_index.low_reg);
1348    }
1349    MarkGCCard(rl_src.low_reg, rl_array.low_reg);
1350  }
1351}
1352
1353RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1354                                          RegLocation rl_src, int shift_amount) {
1355  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1356  switch (opcode) {
1357    case Instruction::SHL_LONG:
1358    case Instruction::SHL_LONG_2ADDR:
1359      DCHECK_NE(shift_amount, 1);  // Prevent a double store from happening.
1360      if (shift_amount == 32) {
1361        OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1362        LoadConstant(rl_result.low_reg, 0);
1363      } else if (shift_amount > 31) {
1364        OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1365        FreeTemp(rl_src.high_reg);
1366        NewLIR2(kX86Sal32RI, rl_result.high_reg, shift_amount - 32);
1367        LoadConstant(rl_result.low_reg, 0);
1368      } else {
1369        OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1370        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1371        NewLIR3(kX86Shld32RRI, rl_result.high_reg, rl_result.low_reg, shift_amount);
1372        NewLIR2(kX86Sal32RI, rl_result.low_reg, shift_amount);
1373      }
1374      break;
1375    case Instruction::SHR_LONG:
1376    case Instruction::SHR_LONG_2ADDR:
1377      if (shift_amount == 32) {
1378        OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1379        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1380        NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1381      } else if (shift_amount > 31) {
1382        OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1383        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1384        NewLIR2(kX86Sar32RI, rl_result.low_reg, shift_amount - 32);
1385        NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1386      } else {
1387        OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1388        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1389        NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1390        NewLIR2(kX86Sar32RI, rl_result.high_reg, shift_amount);
1391      }
1392      break;
1393    case Instruction::USHR_LONG:
1394    case Instruction::USHR_LONG_2ADDR:
1395      if (shift_amount == 32) {
1396        OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1397        LoadConstant(rl_result.high_reg, 0);
1398      } else if (shift_amount > 31) {
1399        OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1400        NewLIR2(kX86Shr32RI, rl_result.low_reg, shift_amount - 32);
1401        LoadConstant(rl_result.high_reg, 0);
1402      } else {
1403        OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1404        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1405        NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1406        NewLIR2(kX86Shr32RI, rl_result.high_reg, shift_amount);
1407      }
1408      break;
1409    default:
1410      LOG(FATAL) << "Unexpected case";
1411  }
1412  return rl_result;
1413}
1414
1415void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1416                                   RegLocation rl_src, RegLocation rl_shift) {
1417  // Per spec, we only care about low 6 bits of shift amount.
1418  int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1419  if (shift_amount == 0) {
1420    rl_src = LoadValueWide(rl_src, kCoreReg);
1421    StoreValueWide(rl_dest, rl_src);
1422    return;
1423  } else if (shift_amount == 1 &&
1424            (opcode ==  Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1425    // Need to handle this here to avoid calling StoreValueWide twice.
1426    GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1427    return;
1428  }
1429  if (BadOverlap(rl_src, rl_dest)) {
1430    GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1431    return;
1432  }
1433  rl_src = LoadValueWide(rl_src, kCoreReg);
1434  RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1435  StoreValueWide(rl_dest, rl_result);
1436}
1437
1438void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
1439                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1440  switch (opcode) {
1441    case Instruction::ADD_LONG:
1442    case Instruction::AND_LONG:
1443    case Instruction::OR_LONG:
1444    case Instruction::XOR_LONG:
1445      if (rl_src2.is_const) {
1446        GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1447      } else {
1448        DCHECK(rl_src1.is_const);
1449        GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1450      }
1451      break;
1452    case Instruction::SUB_LONG:
1453    case Instruction::SUB_LONG_2ADDR:
1454      if (rl_src2.is_const) {
1455        GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1456      } else {
1457        GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1458      }
1459      break;
1460    case Instruction::ADD_LONG_2ADDR:
1461    case Instruction::OR_LONG_2ADDR:
1462    case Instruction::XOR_LONG_2ADDR:
1463    case Instruction::AND_LONG_2ADDR:
1464      if (rl_src2.is_const) {
1465        GenLongImm(rl_dest, rl_src2, opcode);
1466      } else {
1467        DCHECK(rl_src1.is_const);
1468        GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1469      }
1470      break;
1471    default:
1472      // Default - bail to non-const handler.
1473      GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1474      break;
1475  }
1476}
1477
1478bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1479  switch (op) {
1480    case Instruction::AND_LONG_2ADDR:
1481    case Instruction::AND_LONG:
1482      return value == -1;
1483    case Instruction::OR_LONG:
1484    case Instruction::OR_LONG_2ADDR:
1485    case Instruction::XOR_LONG:
1486    case Instruction::XOR_LONG_2ADDR:
1487      return value == 0;
1488    default:
1489      return false;
1490  }
1491}
1492
1493X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1494                                bool is_high_op) {
1495  bool rhs_in_mem = rhs.location != kLocPhysReg;
1496  bool dest_in_mem = dest.location != kLocPhysReg;
1497  DCHECK(!rhs_in_mem || !dest_in_mem);
1498  switch (op) {
1499    case Instruction::ADD_LONG:
1500    case Instruction::ADD_LONG_2ADDR:
1501      if (dest_in_mem) {
1502        return is_high_op ? kX86Adc32MR : kX86Add32MR;
1503      } else if (rhs_in_mem) {
1504        return is_high_op ? kX86Adc32RM : kX86Add32RM;
1505      }
1506      return is_high_op ? kX86Adc32RR : kX86Add32RR;
1507    case Instruction::SUB_LONG:
1508    case Instruction::SUB_LONG_2ADDR:
1509      if (dest_in_mem) {
1510        return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1511      } else if (rhs_in_mem) {
1512        return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1513      }
1514      return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1515    case Instruction::AND_LONG_2ADDR:
1516    case Instruction::AND_LONG:
1517      if (dest_in_mem) {
1518        return kX86And32MR;
1519      }
1520      return rhs_in_mem ? kX86And32RM : kX86And32RR;
1521    case Instruction::OR_LONG:
1522    case Instruction::OR_LONG_2ADDR:
1523      if (dest_in_mem) {
1524        return kX86Or32MR;
1525      }
1526      return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1527    case Instruction::XOR_LONG:
1528    case Instruction::XOR_LONG_2ADDR:
1529      if (dest_in_mem) {
1530        return kX86Xor32MR;
1531      }
1532      return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1533    default:
1534      LOG(FATAL) << "Unexpected opcode: " << op;
1535      return kX86Add32RR;
1536  }
1537}
1538
1539X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1540                                int32_t value) {
1541  bool in_mem = loc.location != kLocPhysReg;
1542  bool byte_imm = IS_SIMM8(value);
1543  DCHECK(in_mem || !IsFpReg(loc.low_reg));
1544  switch (op) {
1545    case Instruction::ADD_LONG:
1546    case Instruction::ADD_LONG_2ADDR:
1547      if (byte_imm) {
1548        if (in_mem) {
1549          return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1550        }
1551        return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1552      }
1553      if (in_mem) {
1554        return is_high_op ? kX86Adc32MI : kX86Add32MI;
1555      }
1556      return is_high_op ? kX86Adc32RI : kX86Add32RI;
1557    case Instruction::SUB_LONG:
1558    case Instruction::SUB_LONG_2ADDR:
1559      if (byte_imm) {
1560        if (in_mem) {
1561          return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1562        }
1563        return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1564      }
1565      if (in_mem) {
1566        return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1567      }
1568      return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1569    case Instruction::AND_LONG_2ADDR:
1570    case Instruction::AND_LONG:
1571      if (byte_imm) {
1572        return in_mem ? kX86And32MI8 : kX86And32RI8;
1573      }
1574      return in_mem ? kX86And32MI : kX86And32RI;
1575    case Instruction::OR_LONG:
1576    case Instruction::OR_LONG_2ADDR:
1577      if (byte_imm) {
1578        return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1579      }
1580      return in_mem ? kX86Or32MI : kX86Or32RI;
1581    case Instruction::XOR_LONG:
1582    case Instruction::XOR_LONG_2ADDR:
1583      if (byte_imm) {
1584        return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1585      }
1586      return in_mem ? kX86Xor32MI : kX86Xor32RI;
1587    default:
1588      LOG(FATAL) << "Unexpected opcode: " << op;
1589      return kX86Add32MI;
1590  }
1591}
1592
1593void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1594  DCHECK(rl_src.is_const);
1595  int64_t val = mir_graph_->ConstantValueWide(rl_src);
1596  int32_t val_lo = Low32Bits(val);
1597  int32_t val_hi = High32Bits(val);
1598  rl_dest = UpdateLocWide(rl_dest);
1599
1600  // Can we just do this into memory?
1601  if ((rl_dest.location == kLocDalvikFrame) ||
1602      (rl_dest.location == kLocCompilerTemp)) {
1603    int rBase = TargetReg(kSp);
1604    int displacement = SRegOffset(rl_dest.s_reg_low);
1605
1606    if (!IsNoOp(op, val_lo)) {
1607      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1608      LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1609      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1610                              false /* is_load */, true /* is64bit */);
1611    }
1612    if (!IsNoOp(op, val_hi)) {
1613      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1614      LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1615      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1616                                false /* is_load */, true /* is64bit */);
1617    }
1618    return;
1619  }
1620
1621  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1622  DCHECK_EQ(rl_result.location, kLocPhysReg);
1623  DCHECK(!IsFpReg(rl_result.low_reg));
1624
1625  if (!IsNoOp(op, val_lo)) {
1626    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1627    NewLIR2(x86op, rl_result.low_reg, val_lo);
1628  }
1629  if (!IsNoOp(op, val_hi)) {
1630    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1631    NewLIR2(x86op, rl_result.high_reg, val_hi);
1632  }
1633  StoreValueWide(rl_dest, rl_result);
1634}
1635
1636void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1637                                RegLocation rl_src2, Instruction::Code op) {
1638  DCHECK(rl_src2.is_const);
1639  int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1640  int32_t val_lo = Low32Bits(val);
1641  int32_t val_hi = High32Bits(val);
1642  rl_dest = UpdateLocWide(rl_dest);
1643  rl_src1 = UpdateLocWide(rl_src1);
1644
1645  // Can we do this directly into the destination registers?
1646  if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
1647      rl_dest.low_reg == rl_src1.low_reg && rl_dest.high_reg == rl_src1.high_reg &&
1648      !IsFpReg(rl_dest.low_reg)) {
1649    if (!IsNoOp(op, val_lo)) {
1650      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1651      NewLIR2(x86op, rl_dest.low_reg, val_lo);
1652    }
1653    if (!IsNoOp(op, val_hi)) {
1654      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1655      NewLIR2(x86op, rl_dest.high_reg, val_hi);
1656    }
1657    return;
1658  }
1659
1660  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1661  DCHECK_EQ(rl_src1.location, kLocPhysReg);
1662
1663  // We need the values to be in a temporary
1664  RegLocation rl_result = ForceTempWide(rl_src1);
1665  if (!IsNoOp(op, val_lo)) {
1666    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1667    NewLIR2(x86op, rl_result.low_reg, val_lo);
1668  }
1669  if (!IsNoOp(op, val_hi)) {
1670    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1671    NewLIR2(x86op, rl_result.high_reg, val_hi);
1672  }
1673
1674  StoreFinalValueWide(rl_dest, rl_result);
1675}
1676
1677// For final classes there are no sub-classes to check and so we can answer the instance-of
1678// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1679void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1680                                    RegLocation rl_dest, RegLocation rl_src) {
1681  RegLocation object = LoadValue(rl_src, kCoreReg);
1682  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1683  int result_reg = rl_result.low_reg;
1684
1685  // SETcc only works with EAX..EDX.
1686  if (result_reg == object.low_reg || result_reg >= 4) {
1687    result_reg = AllocTypedTemp(false, kCoreReg);
1688    DCHECK_LT(result_reg, 4);
1689  }
1690
1691  // Assume that there is no match.
1692  LoadConstant(result_reg, 0);
1693  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL);
1694
1695  int check_class = AllocTypedTemp(false, kCoreReg);
1696
1697  // If Method* is already in a register, we can save a copy.
1698  RegLocation rl_method = mir_graph_->GetMethodLoc();
1699  int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1700    (sizeof(mirror::Class*) * type_idx);
1701
1702  if (rl_method.location == kLocPhysReg) {
1703    if (use_declaring_class) {
1704      LoadWordDisp(rl_method.low_reg,
1705                   mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1706                   check_class);
1707    } else {
1708      LoadWordDisp(rl_method.low_reg,
1709                   mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1710                   check_class);
1711      LoadWordDisp(check_class, offset_of_type, check_class);
1712    }
1713  } else {
1714    LoadCurrMethodDirect(check_class);
1715    if (use_declaring_class) {
1716      LoadWordDisp(check_class,
1717                   mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1718                   check_class);
1719    } else {
1720      LoadWordDisp(check_class,
1721                   mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1722                   check_class);
1723      LoadWordDisp(check_class, offset_of_type, check_class);
1724    }
1725  }
1726
1727  // Compare the computed class to the class in the object.
1728  DCHECK_EQ(object.location, kLocPhysReg);
1729  OpRegMem(kOpCmp, check_class, object.low_reg,
1730           mirror::Object::ClassOffset().Int32Value());
1731
1732  // Set the low byte of the result to 0 or 1 from the compare condition code.
1733  NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1734
1735  LIR* target = NewLIR0(kPseudoTargetLabel);
1736  null_branchover->target = target;
1737  FreeTemp(check_class);
1738  if (IsTemp(result_reg)) {
1739    OpRegCopy(rl_result.low_reg, result_reg);
1740    FreeTemp(result_reg);
1741  }
1742  StoreValue(rl_dest, rl_result);
1743}
1744
1745void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1746                                            bool type_known_abstract, bool use_declaring_class,
1747                                            bool can_assume_type_is_in_dex_cache,
1748                                            uint32_t type_idx, RegLocation rl_dest,
1749                                            RegLocation rl_src) {
1750  FlushAllRegs();
1751  // May generate a call - use explicit registers.
1752  LockCallTemps();
1753  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 gets current Method*.
1754  int class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*.
1755  // Reference must end up in kArg0.
1756  if (needs_access_check) {
1757    // Check we have access to type_idx and if not throw IllegalAccessError,
1758    // Caller function returns Class* in kArg0.
1759    CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1760                         type_idx, true);
1761    OpRegCopy(class_reg, TargetReg(kRet0));
1762    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1763  } else if (use_declaring_class) {
1764    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1765    LoadWordDisp(TargetReg(kArg1),
1766                 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1767  } else {
1768    // Load dex cache entry into class_reg (kArg2).
1769    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1770    LoadWordDisp(TargetReg(kArg1),
1771                 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1772    int32_t offset_of_type =
1773        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1774        * type_idx);
1775    LoadWordDisp(class_reg, offset_of_type, class_reg);
1776    if (!can_assume_type_is_in_dex_cache) {
1777      // Need to test presence of type in dex cache at runtime.
1778      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1779      // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1780      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1781      OpRegCopy(TargetReg(kArg2), TargetReg(kRet0));  // Align usage with fast path.
1782      LoadValueDirectFixed(rl_src, TargetReg(kArg0));  /* Reload Ref. */
1783      // Rejoin code paths
1784      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1785      hop_branch->target = hop_target;
1786    }
1787  }
1788  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1789  RegLocation rl_result = GetReturn(false);
1790
1791  // SETcc only works with EAX..EDX.
1792  DCHECK_LT(rl_result.low_reg, 4);
1793
1794  // Is the class NULL?
1795  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1796
1797  /* Load object->klass_. */
1798  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1799  LoadWordDisp(TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1800  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1801  LIR* branchover = nullptr;
1802  if (type_known_final) {
1803    // Ensure top 3 bytes of result are 0.
1804    LoadConstant(rl_result.low_reg, 0);
1805    OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1806    // Set the low byte of the result to 0 or 1 from the compare condition code.
1807    NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondEq);
1808  } else {
1809    if (!type_known_abstract) {
1810      LoadConstant(rl_result.low_reg, 1);     // Assume result succeeds.
1811      branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1812    }
1813    OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1814    OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1815  }
1816  // TODO: only clobber when type isn't final?
1817  ClobberCallerSave();
1818  /* Branch targets here. */
1819  LIR* target = NewLIR0(kPseudoTargetLabel);
1820  StoreValue(rl_dest, rl_result);
1821  branch1->target = target;
1822  if (branchover != nullptr) {
1823    branchover->target = target;
1824  }
1825}
1826
1827void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1828                            RegLocation rl_lhs, RegLocation rl_rhs) {
1829  OpKind op = kOpBkpt;
1830  bool is_div_rem = false;
1831  bool unary = false;
1832  bool shift_op = false;
1833  bool is_two_addr = false;
1834  RegLocation rl_result;
1835  switch (opcode) {
1836    case Instruction::NEG_INT:
1837      op = kOpNeg;
1838      unary = true;
1839      break;
1840    case Instruction::NOT_INT:
1841      op = kOpMvn;
1842      unary = true;
1843      break;
1844    case Instruction::ADD_INT_2ADDR:
1845      is_two_addr = true;
1846      // Fallthrough
1847    case Instruction::ADD_INT:
1848      op = kOpAdd;
1849      break;
1850    case Instruction::SUB_INT_2ADDR:
1851      is_two_addr = true;
1852      // Fallthrough
1853    case Instruction::SUB_INT:
1854      op = kOpSub;
1855      break;
1856    case Instruction::MUL_INT_2ADDR:
1857      is_two_addr = true;
1858      // Fallthrough
1859    case Instruction::MUL_INT:
1860      op = kOpMul;
1861      break;
1862    case Instruction::DIV_INT_2ADDR:
1863      is_two_addr = true;
1864      // Fallthrough
1865    case Instruction::DIV_INT:
1866      op = kOpDiv;
1867      is_div_rem = true;
1868      break;
1869    /* NOTE: returns in kArg1 */
1870    case Instruction::REM_INT_2ADDR:
1871      is_two_addr = true;
1872      // Fallthrough
1873    case Instruction::REM_INT:
1874      op = kOpRem;
1875      is_div_rem = true;
1876      break;
1877    case Instruction::AND_INT_2ADDR:
1878      is_two_addr = true;
1879      // Fallthrough
1880    case Instruction::AND_INT:
1881      op = kOpAnd;
1882      break;
1883    case Instruction::OR_INT_2ADDR:
1884      is_two_addr = true;
1885      // Fallthrough
1886    case Instruction::OR_INT:
1887      op = kOpOr;
1888      break;
1889    case Instruction::XOR_INT_2ADDR:
1890      is_two_addr = true;
1891      // Fallthrough
1892    case Instruction::XOR_INT:
1893      op = kOpXor;
1894      break;
1895    case Instruction::SHL_INT_2ADDR:
1896      is_two_addr = true;
1897      // Fallthrough
1898    case Instruction::SHL_INT:
1899      shift_op = true;
1900      op = kOpLsl;
1901      break;
1902    case Instruction::SHR_INT_2ADDR:
1903      is_two_addr = true;
1904      // Fallthrough
1905    case Instruction::SHR_INT:
1906      shift_op = true;
1907      op = kOpAsr;
1908      break;
1909    case Instruction::USHR_INT_2ADDR:
1910      is_two_addr = true;
1911      // Fallthrough
1912    case Instruction::USHR_INT:
1913      shift_op = true;
1914      op = kOpLsr;
1915      break;
1916    default:
1917      LOG(FATAL) << "Invalid word arith op: " << opcode;
1918  }
1919
1920    // Can we convert to a two address instruction?
1921  if (!is_two_addr &&
1922        (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1923         mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1924      is_two_addr = true;
1925    }
1926
1927  // Get the div/rem stuff out of the way.
1928  if (is_div_rem) {
1929    rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
1930    StoreValue(rl_dest, rl_result);
1931    return;
1932  }
1933
1934  if (unary) {
1935    rl_lhs = LoadValue(rl_lhs, kCoreReg);
1936    rl_result = UpdateLoc(rl_dest);
1937    rl_result = EvalLoc(rl_dest, kCoreReg, true);
1938    OpRegReg(op, rl_result.low_reg, rl_lhs.low_reg);
1939  } else {
1940    if (shift_op) {
1941      // X86 doesn't require masking and must use ECX.
1942      int t_reg = TargetReg(kCount);  // rCX
1943      LoadValueDirectFixed(rl_rhs, t_reg);
1944      if (is_two_addr) {
1945        // Can we do this directly into memory?
1946        rl_result = UpdateLoc(rl_dest);
1947        rl_rhs = LoadValue(rl_rhs, kCoreReg);
1948        if (rl_result.location != kLocPhysReg) {
1949          // Okay, we can do this into memory
1950          OpMemReg(op, rl_result, t_reg);
1951          FreeTemp(t_reg);
1952          return;
1953        } else if (!IsFpReg(rl_result.low_reg)) {
1954          // Can do this directly into the result register
1955          OpRegReg(op, rl_result.low_reg, t_reg);
1956          FreeTemp(t_reg);
1957          StoreFinalValue(rl_dest, rl_result);
1958          return;
1959        }
1960      }
1961      // Three address form, or we can't do directly.
1962      rl_lhs = LoadValue(rl_lhs, kCoreReg);
1963      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1964      OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, t_reg);
1965      FreeTemp(t_reg);
1966    } else {
1967      // Multiply is 3 operand only (sort of).
1968      if (is_two_addr && op != kOpMul) {
1969        // Can we do this directly into memory?
1970        rl_result = UpdateLoc(rl_dest);
1971        if (rl_result.location == kLocPhysReg) {
1972          // Can we do this from memory directly?
1973          rl_rhs = UpdateLoc(rl_rhs);
1974          if (rl_rhs.location != kLocPhysReg) {
1975            OpRegMem(op, rl_result.low_reg, rl_rhs);
1976            StoreFinalValue(rl_dest, rl_result);
1977            return;
1978          } else if (!IsFpReg(rl_rhs.low_reg)) {
1979            OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
1980            StoreFinalValue(rl_dest, rl_result);
1981            return;
1982          }
1983        }
1984        rl_rhs = LoadValue(rl_rhs, kCoreReg);
1985        if (rl_result.location != kLocPhysReg) {
1986          // Okay, we can do this into memory.
1987          OpMemReg(op, rl_result, rl_rhs.low_reg);
1988          return;
1989        } else if (!IsFpReg(rl_result.low_reg)) {
1990          // Can do this directly into the result register.
1991          OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
1992          StoreFinalValue(rl_dest, rl_result);
1993          return;
1994        } else {
1995          rl_lhs = LoadValue(rl_lhs, kCoreReg);
1996          rl_result = EvalLoc(rl_dest, kCoreReg, true);
1997          OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
1998        }
1999      } else {
2000        // Try to use reg/memory instructions.
2001        rl_lhs = UpdateLoc(rl_lhs);
2002        rl_rhs = UpdateLoc(rl_rhs);
2003        // We can't optimize with FP registers.
2004        if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2005          // Something is difficult, so fall back to the standard case.
2006          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2007          rl_rhs = LoadValue(rl_rhs, kCoreReg);
2008          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2009          OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2010        } else {
2011          // We can optimize by moving to result and using memory operands.
2012          if (rl_rhs.location != kLocPhysReg) {
2013            // Force LHS into result.
2014            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2015            LoadValueDirect(rl_lhs, rl_result.low_reg);
2016            OpRegMem(op, rl_result.low_reg, rl_rhs);
2017          } else if (rl_lhs.location != kLocPhysReg) {
2018            // RHS is in a register; LHS is in memory.
2019            if (op != kOpSub) {
2020              // Force RHS into result and operate on memory.
2021              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2022              OpRegCopy(rl_result.low_reg, rl_rhs.low_reg);
2023              OpRegMem(op, rl_result.low_reg, rl_lhs);
2024            } else {
2025              // Subtraction isn't commutative.
2026              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2027              rl_rhs = LoadValue(rl_rhs, kCoreReg);
2028              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2029              OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2030            }
2031          } else {
2032            // Both are in registers.
2033            rl_lhs = LoadValue(rl_lhs, kCoreReg);
2034            rl_rhs = LoadValue(rl_rhs, kCoreReg);
2035            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2036            OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2037          }
2038        }
2039      }
2040    }
2041  }
2042  StoreValue(rl_dest, rl_result);
2043}
2044
2045bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2046  // If we have non-core registers, then we can't do good things.
2047  if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.low_reg)) {
2048    return false;
2049  }
2050  if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.low_reg)) {
2051    return false;
2052  }
2053
2054  // Everything will be fine :-).
2055  return true;
2056}
2057}  // namespace art
2058