int_x86.cc revision a1a7074eb8256d101f7b5d256cda26d7de6ce6ce
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
30                                int reg1, int base, int offset, ThrowKind kind) {
31  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32                    current_dalvik_offset_, reg1, base, offset);
33  OpRegMem(kOpCmp, reg1, base, offset);
34  LIR* branch = OpCondBranch(c_code, tgt);
35  // Remember branch target - will process later
36  throw_launchpads_.Insert(tgt);
37  return branch;
38}
39
40/*
41 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44                                int base, int offset, int check_value, ThrowKind kind) {
45  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46                    current_dalvik_offset_, base, check_value, 0);
47  NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48  LIR* branch = OpCondBranch(c_code, tgt);
49  // Remember branch target - will process later
50  throw_launchpads_.Insert(tgt);
51  return branch;
52}
53
54/*
55 * Compare two 64-bit values
56 *    x = y     return  0
57 *    x < y     return -1
58 *    x > y     return  1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
61                            RegLocation rl_src2) {
62  FlushAllRegs();
63  LockCallTemps();  // Prepare for explicit register usage
64  LoadValueDirectWideFixed(rl_src1, r0, r1);
65  LoadValueDirectWideFixed(rl_src2, r2, r3);
66  // Compute (r1:r0) = (r1:r0) - (r3:r2)
67  OpRegReg(kOpSub, r0, r2);  // r0 = r0 - r2
68  OpRegReg(kOpSbc, r1, r3);  // r1 = r1 - r3 - CF
69  NewLIR2(kX86Set8R, r2, kX86CondL);  // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70  NewLIR2(kX86Movzx8RR, r2, r2);
71  OpReg(kOpNeg, r2);         // r2 = -r2
72  OpRegReg(kOpOr, r0, r1);   // r0 = high | low - sets ZF
73  NewLIR2(kX86Set8R, r0, kX86CondNz);  // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74  NewLIR2(kX86Movzx8RR, r0, r0);
75  OpRegReg(kOpOr, r0, r2);   // r0 = r0 | r2
76  RegLocation rl_result = LocCReturn();
77  StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81  switch (cond) {
82    case kCondEq: return kX86CondEq;
83    case kCondNe: return kX86CondNe;
84    case kCondCs: return kX86CondC;
85    case kCondCc: return kX86CondNc;
86    case kCondUlt: return kX86CondC;
87    case kCondUge: return kX86CondNc;
88    case kCondMi: return kX86CondS;
89    case kCondPl: return kX86CondNs;
90    case kCondVs: return kX86CondO;
91    case kCondVc: return kX86CondNo;
92    case kCondHi: return kX86CondA;
93    case kCondLs: return kX86CondBe;
94    case kCondGe: return kX86CondGe;
95    case kCondLt: return kX86CondL;
96    case kCondGt: return kX86CondG;
97    case kCondLe: return kX86CondLe;
98    case kCondAl:
99    case kCondNv: LOG(FATAL) << "Should not reach here";
100  }
101  return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
105                             LIR* target) {
106  NewLIR2(kX86Cmp32RR, src1, src2);
107  X86ConditionCode cc = X86ConditionEncoding(cond);
108  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109                        cc);
110  branch->target = target;
111  return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
115                                int check_value, LIR* target) {
116  if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117    // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118    NewLIR2(kX86Test32RR, reg, reg);
119  } else {
120    NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121  }
122  X86ConditionCode cc = X86ConditionEncoding(cond);
123  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124  branch->target = target;
125  return branch;
126}
127
128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
129  if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130    return OpFpRegCopy(r_dest, r_src);
131  LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132                    r_dest, r_src);
133  if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
134    res->flags.is_nop = true;
135  }
136  return res;
137}
138
139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
140  LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141  AppendLIR(res);
142  return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
146                               int src_lo, int src_hi) {
147  bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148  bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149  assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150  assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151  if (dest_fp) {
152    if (src_fp) {
153      OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154    } else {
155      // TODO: Prevent this from happening in the code. The result is often
156      // unused or could have been loaded more easily from memory.
157      NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
158      dest_hi = AllocTempDouble();
159      NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
160      NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
161      FreeTemp(dest_hi);
162    }
163  } else {
164    if (src_fp) {
165      NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
166      NewLIR2(kX86PsrlqRI, src_lo, 32);
167      NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
168    } else {
169      // Handle overlap
170      if (src_hi == dest_lo && src_lo == dest_hi) {
171        // Deal with cycles.
172        int temp_reg = AllocTemp();
173        OpRegCopy(temp_reg, dest_hi);
174        OpRegCopy(dest_hi, dest_lo);
175        OpRegCopy(dest_lo, temp_reg);
176        FreeTemp(temp_reg);
177      } else if (src_hi == dest_lo) {
178        OpRegCopy(dest_hi, src_hi);
179        OpRegCopy(dest_lo, src_lo);
180      } else {
181        OpRegCopy(dest_lo, src_lo);
182        OpRegCopy(dest_hi, src_hi);
183      }
184    }
185  }
186}
187
188void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
189  RegLocation rl_result;
190  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
191  RegLocation rl_dest = mir_graph_->GetDest(mir);
192  rl_src = LoadValue(rl_src, kCoreReg);
193  ConditionCode ccode = mir->meta.ccode;
194
195  // The kMirOpSelect has two variants, one for constants and one for moves.
196  const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
197
198  if (is_constant_case) {
199    int true_val = mir->dalvikInsn.vB;
200    int false_val = mir->dalvikInsn.vC;
201    rl_result = EvalLoc(rl_dest, kCoreReg, true);
202
203    /*
204     * For ccode == kCondEq:
205     *
206     * 1) When the true case is zero and result_reg is not same as src_reg:
207     *     xor result_reg, result_reg
208     *     cmp $0, src_reg
209     *     mov t1, $false_case
210     *     cmovnz result_reg, t1
211     * 2) When the false case is zero and result_reg is not same as src_reg:
212     *     xor result_reg, result_reg
213     *     cmp $0, src_reg
214     *     mov t1, $true_case
215     *     cmovz result_reg, t1
216     * 3) All other cases (we do compare first to set eflags):
217     *     cmp $0, src_reg
218     *     mov result_reg, $false_case
219     *     mov t1, $true_case
220     *     cmovz result_reg, t1
221     */
222    const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.reg.GetReg() == rl_result.reg.GetReg());
223    const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
224    const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
225    const bool catch_all_case = !(true_zero_case || false_zero_case);
226
227    if (true_zero_case || false_zero_case) {
228      OpRegReg(kOpXor, rl_result.reg.GetReg(), rl_result.reg.GetReg());
229    }
230
231    if (true_zero_case || false_zero_case || catch_all_case) {
232      OpRegImm(kOpCmp, rl_src.reg.GetReg(), 0);
233    }
234
235    if (catch_all_case) {
236      OpRegImm(kOpMov, rl_result.reg.GetReg(), false_val);
237    }
238
239    if (true_zero_case || false_zero_case || catch_all_case) {
240      ConditionCode cc = true_zero_case ? NegateComparison(ccode) : ccode;
241      int immediateForTemp = true_zero_case ? false_val : true_val;
242      int temp1_reg = AllocTemp();
243      OpRegImm(kOpMov, temp1_reg, immediateForTemp);
244
245      OpCondRegReg(kOpCmov, cc, rl_result.reg.GetReg(), temp1_reg);
246
247      FreeTemp(temp1_reg);
248    }
249  } else {
250    RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
251    RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
252    rl_true = LoadValue(rl_true, kCoreReg);
253    rl_false = LoadValue(rl_false, kCoreReg);
254    rl_result = EvalLoc(rl_dest, kCoreReg, true);
255
256    /*
257     * For ccode == kCondEq:
258     *
259     * 1) When true case is already in place:
260     *     cmp $0, src_reg
261     *     cmovnz result_reg, false_reg
262     * 2) When false case is already in place:
263     *     cmp $0, src_reg
264     *     cmovz result_reg, true_reg
265     * 3) When neither cases are in place:
266     *     cmp $0, src_reg
267     *     mov result_reg, false_reg
268     *     cmovz result_reg, true_reg
269     */
270
271    // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
272    OpRegImm(kOpCmp, rl_src.reg.GetReg(), 0);
273
274    if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
275      OpCondRegReg(kOpCmov, NegateComparison(ccode), rl_result.reg.GetReg(), rl_false.reg.GetReg());
276    } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
277      OpCondRegReg(kOpCmov, ccode, rl_result.reg.GetReg(), rl_true.reg.GetReg());
278    } else {
279      OpRegCopy(rl_result.reg.GetReg(), rl_false.reg.GetReg());
280      OpCondRegReg(kOpCmov, ccode, rl_result.reg.GetReg(), rl_true.reg.GetReg());
281    }
282  }
283
284  StoreValue(rl_dest, rl_result);
285}
286
287void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
288  LIR* taken = &block_label_list_[bb->taken];
289  RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
290  RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
291  ConditionCode ccode = mir->meta.ccode;
292
293  if (rl_src1.is_const) {
294    std::swap(rl_src1, rl_src2);
295    ccode = FlipComparisonOrder(ccode);
296  }
297  if (rl_src2.is_const) {
298    // Do special compare/branch against simple const operand
299    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
300    GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
301    return;
302  }
303
304  FlushAllRegs();
305  LockCallTemps();  // Prepare for explicit register usage
306  LoadValueDirectWideFixed(rl_src1, r0, r1);
307  LoadValueDirectWideFixed(rl_src2, r2, r3);
308  // Swap operands and condition code to prevent use of zero flag.
309  if (ccode == kCondLe || ccode == kCondGt) {
310    // Compute (r3:r2) = (r3:r2) - (r1:r0)
311    OpRegReg(kOpSub, r2, r0);  // r2 = r2 - r0
312    OpRegReg(kOpSbc, r3, r1);  // r3 = r3 - r1 - CF
313  } else {
314    // Compute (r1:r0) = (r1:r0) - (r3:r2)
315    OpRegReg(kOpSub, r0, r2);  // r0 = r0 - r2
316    OpRegReg(kOpSbc, r1, r3);  // r1 = r1 - r3 - CF
317  }
318  switch (ccode) {
319    case kCondEq:
320    case kCondNe:
321      OpRegReg(kOpOr, r0, r1);  // r0 = r0 | r1
322      break;
323    case kCondLe:
324      ccode = kCondGe;
325      break;
326    case kCondGt:
327      ccode = kCondLt;
328      break;
329    case kCondLt:
330    case kCondGe:
331      break;
332    default:
333      LOG(FATAL) << "Unexpected ccode: " << ccode;
334  }
335  OpCondBranch(ccode, taken);
336}
337
338void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
339                                          int64_t val, ConditionCode ccode) {
340  int32_t val_lo = Low32Bits(val);
341  int32_t val_hi = High32Bits(val);
342  LIR* taken = &block_label_list_[bb->taken];
343  LIR* not_taken = &block_label_list_[bb->fall_through];
344  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
345  int32_t low_reg = rl_src1.reg.GetReg();
346  int32_t high_reg = rl_src1.reg.GetHighReg();
347
348  if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
349    int t_reg = AllocTemp();
350    OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
351    FreeTemp(t_reg);
352    OpCondBranch(ccode, taken);
353    return;
354  }
355
356  OpRegImm(kOpCmp, high_reg, val_hi);
357  switch (ccode) {
358    case kCondEq:
359    case kCondNe:
360      OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
361      break;
362    case kCondLt:
363      OpCondBranch(kCondLt, taken);
364      OpCondBranch(kCondGt, not_taken);
365      ccode = kCondUlt;
366      break;
367    case kCondLe:
368      OpCondBranch(kCondLt, taken);
369      OpCondBranch(kCondGt, not_taken);
370      ccode = kCondLs;
371      break;
372    case kCondGt:
373      OpCondBranch(kCondGt, taken);
374      OpCondBranch(kCondLt, not_taken);
375      ccode = kCondHi;
376      break;
377    case kCondGe:
378      OpCondBranch(kCondGt, taken);
379      OpCondBranch(kCondLt, not_taken);
380      ccode = kCondUge;
381      break;
382    default:
383      LOG(FATAL) << "Unexpected ccode: " << ccode;
384  }
385  OpCmpImmBranch(ccode, low_reg, val_lo, taken);
386}
387
388void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
389  // It does not make sense to calculate magic and shift for zero divisor.
390  DCHECK_NE(divisor, 0);
391
392  /* According to H.S.Warren's Hacker's Delight Chapter 10 and
393   * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
394   * The magic number M and shift S can be calculated in the following way:
395   * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
396   * where divisor(d) >=2.
397   * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
398   * where divisor(d) <= -2.
399   * Thus nc can be calculated like:
400   * nc = 2^31 + 2^31 % d - 1, where d >= 2
401   * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
402   *
403   * So the shift p is the smallest p satisfying
404   * 2^p > nc * (d - 2^p % d), where d >= 2
405   * 2^p > nc * (d + 2^p % d), where d <= -2.
406   *
407   * the magic number M is calcuated by
408   * M = (2^p + d - 2^p % d) / d, where d >= 2
409   * M = (2^p - d - 2^p % d) / d, where d <= -2.
410   *
411   * Notice that p is always bigger than or equal to 32, so we just return 32-p as
412   * the shift number S.
413   */
414
415  int32_t p = 31;
416  const uint32_t two31 = 0x80000000U;
417
418  // Initialize the computations.
419  uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
420  uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
421  uint32_t abs_nc = tmp - 1 - tmp % abs_d;
422  uint32_t quotient1 = two31 / abs_nc;
423  uint32_t remainder1 = two31 % abs_nc;
424  uint32_t quotient2 = two31 / abs_d;
425  uint32_t remainder2 = two31 % abs_d;
426
427  /*
428   * To avoid handling both positive and negative divisor, Hacker's Delight
429   * introduces a method to handle these 2 cases together to avoid duplication.
430   */
431  uint32_t delta;
432  do {
433    p++;
434    quotient1 = 2 * quotient1;
435    remainder1 = 2 * remainder1;
436    if (remainder1 >= abs_nc) {
437      quotient1++;
438      remainder1 = remainder1 - abs_nc;
439    }
440    quotient2 = 2 * quotient2;
441    remainder2 = 2 * remainder2;
442    if (remainder2 >= abs_d) {
443      quotient2++;
444      remainder2 = remainder2 - abs_d;
445    }
446    delta = abs_d - remainder2;
447  } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
448
449  magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
450  shift = p - 32;
451}
452
453RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
454                                     int lit, bool is_div) {
455  LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
456  return rl_dest;
457}
458
459RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
460                                     int imm, bool is_div) {
461  // Use a multiply (and fixup) to perform an int div/rem by a constant.
462
463  // We have to use fixed registers, so flush all the temps.
464  FlushAllRegs();
465  LockCallTemps();  // Prepare for explicit register usage.
466
467  // Assume that the result will be in EDX.
468  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
469                           RegStorage(RegStorage::k32BitSolo, r2), INVALID_SREG, INVALID_SREG};
470
471  // handle div/rem by 1 special case.
472  if (imm == 1) {
473    if (is_div) {
474      // x / 1 == x.
475      StoreValue(rl_result, rl_src);
476    } else {
477      // x % 1 == 0.
478      LoadConstantNoClobber(r0, 0);
479      // For this case, return the result in EAX.
480      rl_result.reg.SetReg(r0);
481    }
482  } else if (imm == -1) {  // handle 0x80000000 / -1 special case.
483    if (is_div) {
484      LIR *minint_branch = 0;
485      LoadValueDirectFixed(rl_src, r0);
486      OpRegImm(kOpCmp, r0, 0x80000000);
487      minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
488
489      // for x != MIN_INT, x / -1 == -x.
490      NewLIR1(kX86Neg32R, r0);
491
492      LIR* branch_around = NewLIR1(kX86Jmp8, 0);
493      // The target for cmp/jmp above.
494      minint_branch->target = NewLIR0(kPseudoTargetLabel);
495      // EAX already contains the right value (0x80000000),
496      branch_around->target = NewLIR0(kPseudoTargetLabel);
497    } else {
498      // x % -1 == 0.
499      LoadConstantNoClobber(r0, 0);
500    }
501    // For this case, return the result in EAX.
502    rl_result.reg.SetReg(r0);
503  } else {
504    CHECK(imm <= -2 || imm >= 2);
505    // Use H.S.Warren's Hacker's Delight Chapter 10 and
506    // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
507    int magic, shift;
508    CalculateMagicAndShift(imm, magic, shift);
509
510    /*
511     * For imm >= 2,
512     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
513     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
514     * For imm <= -2,
515     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
516     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
517     * We implement this algorithm in the following way:
518     * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
519     * 2. if imm > 0 and magic < 0, add numerator to EDX
520     *    if imm < 0 and magic > 0, sub numerator from EDX
521     * 3. if S !=0, SAR S bits for EDX
522     * 4. add 1 to EDX if EDX < 0
523     * 5. Thus, EDX is the quotient
524     */
525
526    // Numerator into EAX.
527    int numerator_reg = -1;
528    if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
529      // We will need the value later.
530      if (rl_src.location == kLocPhysReg) {
531        // We can use it directly.
532        DCHECK(rl_src.reg.GetReg() != r0 && rl_src.reg.GetReg() != r2);
533        numerator_reg = rl_src.reg.GetReg();
534      } else {
535        LoadValueDirectFixed(rl_src, r1);
536        numerator_reg = r1;
537      }
538      OpRegCopy(r0, numerator_reg);
539    } else {
540      // Only need this once.  Just put it into EAX.
541      LoadValueDirectFixed(rl_src, r0);
542    }
543
544    // EDX = magic.
545    LoadConstantNoClobber(r2, magic);
546
547    // EDX:EAX = magic & dividend.
548    NewLIR1(kX86Imul32DaR, r2);
549
550    if (imm > 0 && magic < 0) {
551      // Add numerator to EDX.
552      DCHECK_NE(numerator_reg, -1);
553      NewLIR2(kX86Add32RR, r2, numerator_reg);
554    } else if (imm < 0 && magic > 0) {
555      DCHECK_NE(numerator_reg, -1);
556      NewLIR2(kX86Sub32RR, r2, numerator_reg);
557    }
558
559    // Do we need the shift?
560    if (shift != 0) {
561      // Shift EDX by 'shift' bits.
562      NewLIR2(kX86Sar32RI, r2, shift);
563    }
564
565    // Add 1 to EDX if EDX < 0.
566
567    // Move EDX to EAX.
568    OpRegCopy(r0, r2);
569
570    // Move sign bit to bit 0, zeroing the rest.
571    NewLIR2(kX86Shr32RI, r2, 31);
572
573    // EDX = EDX + EAX.
574    NewLIR2(kX86Add32RR, r2, r0);
575
576    // Quotient is in EDX.
577    if (!is_div) {
578      // We need to compute the remainder.
579      // Remainder is divisor - (quotient * imm).
580      DCHECK_NE(numerator_reg, -1);
581      OpRegCopy(r0, numerator_reg);
582
583      // EAX = numerator * imm.
584      OpRegRegImm(kOpMul, r2, r2, imm);
585
586      // EDX -= EAX.
587      NewLIR2(kX86Sub32RR, r0, r2);
588
589      // For this case, return the result in EAX.
590      rl_result.reg.SetReg(r0);
591    }
592  }
593
594  return rl_result;
595}
596
597RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
598                                  int reg_hi, bool is_div) {
599  LOG(FATAL) << "Unexpected use of GenDivRem for x86";
600  return rl_dest;
601}
602
603RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
604                                  RegLocation rl_src2, bool is_div, bool check_zero) {
605  // We have to use fixed registers, so flush all the temps.
606  FlushAllRegs();
607  LockCallTemps();  // Prepare for explicit register usage.
608
609  // Load LHS into EAX.
610  LoadValueDirectFixed(rl_src1, r0);
611
612  // Load RHS into EBX.
613  LoadValueDirectFixed(rl_src2, r1);
614
615  // Copy LHS sign bit into EDX.
616  NewLIR0(kx86Cdq32Da);
617
618  if (check_zero) {
619    // Handle division by zero case.
620    GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
621  }
622
623  // Have to catch 0x80000000/-1 case, or we will get an exception!
624  OpRegImm(kOpCmp, r1, -1);
625  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
626
627  // RHS is -1.
628  OpRegImm(kOpCmp, r0, 0x80000000);
629  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
630
631  // In 0x80000000/-1 case.
632  if (!is_div) {
633    // For DIV, EAX is already right. For REM, we need EDX 0.
634    LoadConstantNoClobber(r2, 0);
635  }
636  LIR* done = NewLIR1(kX86Jmp8, 0);
637
638  // Expected case.
639  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
640  minint_branch->target = minus_one_branch->target;
641  NewLIR1(kX86Idivmod32DaR, r1);
642  done->target = NewLIR0(kPseudoTargetLabel);
643
644  // Result is in EAX for div and EDX for rem.
645  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
646                           RegStorage(RegStorage::k32BitSolo, r0), INVALID_SREG, INVALID_SREG};
647  if (!is_div) {
648    rl_result.reg.SetReg(r2);
649  }
650  return rl_result;
651}
652
653bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
654  DCHECK_EQ(cu_->instruction_set, kX86);
655
656  // Get the two arguments to the invoke and place them in GP registers.
657  RegLocation rl_src1 = info->args[0];
658  RegLocation rl_src2 = info->args[1];
659  rl_src1 = LoadValue(rl_src1, kCoreReg);
660  rl_src2 = LoadValue(rl_src2, kCoreReg);
661
662  RegLocation rl_dest = InlineTarget(info);
663  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
664
665  /*
666   * If the result register is the same as the second element, then we need to be careful.
667   * The reason is that the first copy will inadvertently clobber the second element with
668   * the first one thus yielding the wrong result. Thus we do a swap in that case.
669   */
670  if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
671    std::swap(rl_src1, rl_src2);
672  }
673
674  // Pick the first integer as min/max.
675  OpRegCopy(rl_result.reg.GetReg(), rl_src1.reg.GetReg());
676
677  // If the integers are both in the same register, then there is nothing else to do
678  // because they are equal and we have already moved one into the result.
679  if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
680    // It is possible we didn't pick correctly so do the actual comparison now.
681    OpRegReg(kOpCmp, rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
682
683    // Conditionally move the other integer into the destination register.
684    ConditionCode condition_code = is_min ? kCondGt : kCondLt;
685    OpCondRegReg(kOpCmov, condition_code, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
686  }
687
688  StoreValue(rl_dest, rl_result);
689  return true;
690}
691
692bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
693  RegLocation rl_src_address = info->args[0];  // long address
694  rl_src_address.wide = 0;  // ignore high half in info->args[1]
695  RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
696  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
697  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
698  if (size == kLong) {
699    // Unaligned access is allowed on x86.
700    LoadBaseDispWide(rl_address.reg.GetReg(), 0, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), INVALID_SREG);
701    StoreValueWide(rl_dest, rl_result);
702  } else {
703    DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
704    // Unaligned access is allowed on x86.
705    LoadBaseDisp(rl_address.reg.GetReg(), 0, rl_result.reg.GetReg(), size, INVALID_SREG);
706    StoreValue(rl_dest, rl_result);
707  }
708  return true;
709}
710
711bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
712  RegLocation rl_src_address = info->args[0];  // long address
713  rl_src_address.wide = 0;  // ignore high half in info->args[1]
714  RegLocation rl_src_value = info->args[2];  // [size] value
715  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
716  if (size == kLong) {
717    // Unaligned access is allowed on x86.
718    RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
719    StoreBaseDispWide(rl_address.reg.GetReg(), 0, rl_value.reg.GetReg(), rl_value.reg.GetHighReg());
720  } else {
721    DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
722    // Unaligned access is allowed on x86.
723    RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
724    StoreBaseDisp(rl_address.reg.GetReg(), 0, rl_value.reg.GetReg(), size);
725  }
726  return true;
727}
728
729void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
730  NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
731}
732
733void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
734  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
735}
736
737bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
738  DCHECK_EQ(cu_->instruction_set, kX86);
739  // Unused - RegLocation rl_src_unsafe = info->args[0];
740  RegLocation rl_src_obj = info->args[1];  // Object - known non-null
741  RegLocation rl_src_offset = info->args[2];  // long low
742  rl_src_offset.wide = 0;  // ignore high half in info->args[3]
743  RegLocation rl_src_expected = info->args[4];  // int, long or Object
744  // If is_long, high half is in info->args[5]
745  RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
746  // If is_long, high half is in info->args[7]
747
748  if (is_long) {
749    FlushAllRegs();
750    LockCallTemps();
751    LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
752    LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
753    NewLIR1(kX86Push32R, rDI);
754    MarkTemp(rDI);
755    LockTemp(rDI);
756    NewLIR1(kX86Push32R, rSI);
757    MarkTemp(rSI);
758    LockTemp(rSI);
759    const int push_offset = 4 /* push edi */ + 4 /* push esi */;
760    LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI);
761    LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI);
762    NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
763    FreeTemp(rSI);
764    UnmarkTemp(rSI);
765    NewLIR1(kX86Pop32R, rSI);
766    FreeTemp(rDI);
767    UnmarkTemp(rDI);
768    NewLIR1(kX86Pop32R, rDI);
769    FreeCallTemps();
770  } else {
771    // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
772    FlushReg(r0);
773    LockTemp(r0);
774
775    // Release store semantics, get the barrier out of the way.  TODO: revisit
776    GenMemBarrier(kStoreLoad);
777
778    RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
779    RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
780
781    if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
782      // Mark card for object assuming new value is stored.
783      FreeTemp(r0);  // Temporarily release EAX for MarkGCCard().
784      MarkGCCard(rl_new_value.reg.GetReg(), rl_object.reg.GetReg());
785      LockTemp(r0);
786    }
787
788    RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
789    LoadValueDirect(rl_src_expected, r0);
790    NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0, rl_new_value.reg.GetReg());
791
792    FreeTemp(r0);
793  }
794
795  // Convert ZF to boolean
796  RegLocation rl_dest = InlineTarget(info);  // boolean place for result
797  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
798  NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondZ);
799  NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
800  StoreValue(rl_dest, rl_result);
801  return true;
802}
803
804LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
805  CHECK(base_of_code_ != nullptr);
806
807  // Address the start of the method
808  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
809  LoadValueDirectFixed(rl_method, reg);
810  store_method_addr_used_ = true;
811
812  // Load the proper value from the literal area.
813  // We don't know the proper offset for the value, so pick one that will force
814  // 4 byte offset.  We will fix this up in the assembler later to have the right
815  // value.
816  LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg, reg, 256, 0, 0, target);
817  res->target = target;
818  res->flags.fixup = kFixupLoad;
819  SetMemRefType(res, true, kLiteral);
820  store_method_addr_used_ = true;
821  return res;
822}
823
824LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
825  LOG(FATAL) << "Unexpected use of OpVldm for x86";
826  return NULL;
827}
828
829LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
830  LOG(FATAL) << "Unexpected use of OpVstm for x86";
831  return NULL;
832}
833
834void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
835                                               RegLocation rl_result, int lit,
836                                               int first_bit, int second_bit) {
837  int t_reg = AllocTemp();
838  OpRegRegImm(kOpLsl, t_reg, rl_src.reg.GetReg(), second_bit - first_bit);
839  OpRegRegReg(kOpAdd, rl_result.reg.GetReg(), rl_src.reg.GetReg(), t_reg);
840  FreeTemp(t_reg);
841  if (first_bit != 0) {
842    OpRegRegImm(kOpLsl, rl_result.reg.GetReg(), rl_result.reg.GetReg(), first_bit);
843  }
844}
845
846void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
847  // We are not supposed to clobber either of the provided registers, so allocate
848  // a temporary to use for the check.
849  int t_reg = AllocTemp();
850
851  // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
852  OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
853
854  // In case of zero, throw ArithmeticException.
855  GenCheck(kCondEq, kThrowDivZero);
856
857  // The temp is no longer needed so free it at this time.
858  FreeTemp(t_reg);
859}
860
861// Test suspend flag, return target of taken suspend branch
862LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
863  OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
864  return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
865}
866
867// Decrement register and branch on condition
868LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
869  OpRegImm(kOpSub, reg, 1);
870  return OpCondBranch(c_code, target);
871}
872
873bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
874                                    RegLocation rl_src, RegLocation rl_dest, int lit) {
875  LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
876  return false;
877}
878
879LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
880  LOG(FATAL) << "Unexpected use of OpIT in x86";
881  return NULL;
882}
883
884void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
885  switch (val) {
886    case 0:
887      NewLIR2(kX86Xor32RR, dest, dest);
888      break;
889    case 1:
890      OpRegCopy(dest, src);
891      break;
892    default:
893      OpRegRegImm(kOpMul, dest, src, val);
894      break;
895  }
896}
897
898void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
899  LIR *m;
900  switch (val) {
901    case 0:
902      NewLIR2(kX86Xor32RR, dest, dest);
903      break;
904    case 1:
905      LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
906      break;
907    default:
908      m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
909                  displacement, val);
910      AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
911      break;
912  }
913}
914
915void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
916                            RegLocation rl_src2) {
917  if (rl_src1.is_const) {
918    std::swap(rl_src1, rl_src2);
919  }
920  // Are we multiplying by a constant?
921  if (rl_src2.is_const) {
922    // Do special compare/branch against simple const operand
923    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
924    if (val == 0) {
925      RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
926      OpRegReg(kOpXor, rl_result.reg.GetReg(), rl_result.reg.GetReg());
927      OpRegReg(kOpXor, rl_result.reg.GetHighReg(), rl_result.reg.GetHighReg());
928      StoreValueWide(rl_dest, rl_result);
929      return;
930    } else if (val == 1) {
931      StoreValueWide(rl_dest, rl_src1);
932      return;
933    } else if (val == 2) {
934      GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
935      return;
936    } else if (IsPowerOfTwo(val)) {
937      int shift_amount = LowestSetBit(val);
938      if (!BadOverlap(rl_src1, rl_dest)) {
939        rl_src1 = LoadValueWide(rl_src1, kCoreReg);
940        RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
941                                                  rl_src1, shift_amount);
942        StoreValueWide(rl_dest, rl_result);
943        return;
944      }
945    }
946
947    // Okay, just bite the bullet and do it.
948    int32_t val_lo = Low32Bits(val);
949    int32_t val_hi = High32Bits(val);
950    FlushAllRegs();
951    LockCallTemps();  // Prepare for explicit register usage.
952    rl_src1 = UpdateLocWide(rl_src1);
953    bool src1_in_reg = rl_src1.location == kLocPhysReg;
954    int displacement = SRegOffset(rl_src1.s_reg_low);
955
956    // ECX <- 1H * 2L
957    // EAX <- 1L * 2H
958    if (src1_in_reg) {
959      GenImulRegImm(r1, rl_src1.reg.GetHighReg(), val_lo);
960      GenImulRegImm(r0, rl_src1.reg.GetReg(), val_hi);
961    } else {
962      GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
963      GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
964    }
965
966    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
967    NewLIR2(kX86Add32RR, r1, r0);
968
969    // EAX <- 2L
970    LoadConstantNoClobber(r0, val_lo);
971
972    // EDX:EAX <- 2L * 1L (double precision)
973    if (src1_in_reg) {
974      NewLIR1(kX86Mul32DaR, rl_src1.reg.GetReg());
975    } else {
976      LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
977      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
978                              true /* is_load */, true /* is_64bit */);
979    }
980
981    // EDX <- EDX + ECX (add high words)
982    NewLIR2(kX86Add32RR, r2, r1);
983
984    // Result is EDX:EAX
985    RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
986                             RegStorage(RegStorage::k64BitPair, r0, r2),
987                             INVALID_SREG, INVALID_SREG};
988    StoreValueWide(rl_dest, rl_result);
989    return;
990  }
991
992  // Nope.  Do it the hard way
993  // Check for V*V.  We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
994  bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
995                   mir_graph_->SRegToVReg(rl_src2.s_reg_low);
996
997  FlushAllRegs();
998  LockCallTemps();  // Prepare for explicit register usage.
999  rl_src1 = UpdateLocWide(rl_src1);
1000  rl_src2 = UpdateLocWide(rl_src2);
1001
1002  // At this point, the VRs are in their home locations.
1003  bool src1_in_reg = rl_src1.location == kLocPhysReg;
1004  bool src2_in_reg = rl_src2.location == kLocPhysReg;
1005
1006  // ECX <- 1H
1007  if (src1_in_reg) {
1008    NewLIR2(kX86Mov32RR, r1, rl_src1.reg.GetHighReg());
1009  } else {
1010    LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
1011                 kWord, GetSRegHi(rl_src1.s_reg_low));
1012  }
1013
1014  if (is_square) {
1015    // Take advantage of the fact that the values are the same.
1016    // ECX <- ECX * 2L  (1H * 2L)
1017    if (src2_in_reg) {
1018      NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetReg());
1019    } else {
1020      int displacement = SRegOffset(rl_src2.s_reg_low);
1021      LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1022      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1023                              true /* is_load */, true /* is_64bit */);
1024    }
1025
1026    // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1027    NewLIR2(kX86Add32RR, r1, r1);
1028  } else {
1029    // EAX <- 2H
1030    if (src2_in_reg) {
1031      NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetHighReg());
1032    } else {
1033      LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
1034                   kWord, GetSRegHi(rl_src2.s_reg_low));
1035    }
1036
1037    // EAX <- EAX * 1L  (2H * 1L)
1038    if (src1_in_reg) {
1039      NewLIR2(kX86Imul32RR, r0, rl_src1.reg.GetReg());
1040    } else {
1041      int displacement = SRegOffset(rl_src1.s_reg_low);
1042      LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1043      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1044                              true /* is_load */, true /* is_64bit */);
1045    }
1046
1047    // ECX <- ECX * 2L  (1H * 2L)
1048    if (src2_in_reg) {
1049      NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetReg());
1050    } else {
1051      int displacement = SRegOffset(rl_src2.s_reg_low);
1052      LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1053      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1054                              true /* is_load */, true /* is_64bit */);
1055    }
1056
1057    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1058    NewLIR2(kX86Add32RR, r1, r0);
1059  }
1060
1061  // EAX <- 2L
1062  if (src2_in_reg) {
1063    NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetReg());
1064  } else {
1065    LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1066                 kWord, rl_src2.s_reg_low);
1067  }
1068
1069  // EDX:EAX <- 2L * 1L (double precision)
1070  if (src1_in_reg) {
1071    NewLIR1(kX86Mul32DaR, rl_src1.reg.GetReg());
1072  } else {
1073    int displacement = SRegOffset(rl_src1.s_reg_low);
1074    LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1075    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1076                            true /* is_load */, true /* is_64bit */);
1077  }
1078
1079  // EDX <- EDX + ECX (add high words)
1080  NewLIR2(kX86Add32RR, r2, r1);
1081
1082  // Result is EDX:EAX
1083  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
1084                           RegStorage(RegStorage::k64BitPair, r0, r2), INVALID_SREG, INVALID_SREG};
1085  StoreValueWide(rl_dest, rl_result);
1086}
1087
1088void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1089                                   Instruction::Code op) {
1090  DCHECK_EQ(rl_dest.location, kLocPhysReg);
1091  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1092  if (rl_src.location == kLocPhysReg) {
1093    // Both operands are in registers.
1094    if (rl_dest.reg.GetReg() == rl_src.reg.GetHighReg()) {
1095      // The registers are the same, so we would clobber it before the use.
1096      int temp_reg = AllocTemp();
1097      OpRegCopy(temp_reg, rl_dest.reg.GetReg());
1098      rl_src.reg.SetHighReg(temp_reg);
1099    }
1100    NewLIR2(x86op, rl_dest.reg.GetReg(), rl_src.reg.GetReg());
1101
1102    x86op = GetOpcode(op, rl_dest, rl_src, true);
1103    NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
1104    FreeTemp(rl_src.reg.GetReg());
1105    FreeTemp(rl_src.reg.GetHighReg());
1106    return;
1107  }
1108
1109  // RHS is in memory.
1110  DCHECK((rl_src.location == kLocDalvikFrame) ||
1111         (rl_src.location == kLocCompilerTemp));
1112  int rBase = TargetReg(kSp);
1113  int displacement = SRegOffset(rl_src.s_reg_low);
1114
1115  LIR *lir = NewLIR3(x86op, rl_dest.reg.GetReg(), rBase, displacement + LOWORD_OFFSET);
1116  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1117                          true /* is_load */, true /* is64bit */);
1118  x86op = GetOpcode(op, rl_dest, rl_src, true);
1119  lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), rBase, displacement + HIWORD_OFFSET);
1120  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1121                          true /* is_load */, true /* is64bit */);
1122}
1123
1124void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1125  rl_dest = UpdateLocWide(rl_dest);
1126  if (rl_dest.location == kLocPhysReg) {
1127    // Ensure we are in a register pair
1128    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1129
1130    rl_src = UpdateLocWide(rl_src);
1131    GenLongRegOrMemOp(rl_result, rl_src, op);
1132    StoreFinalValueWide(rl_dest, rl_result);
1133    return;
1134  }
1135
1136  // It wasn't in registers, so it better be in memory.
1137  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1138         (rl_dest.location == kLocCompilerTemp));
1139  rl_src = LoadValueWide(rl_src, kCoreReg);
1140
1141  // Operate directly into memory.
1142  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1143  int rBase = TargetReg(kSp);
1144  int displacement = SRegOffset(rl_dest.s_reg_low);
1145
1146  LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.reg.GetReg());
1147  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1148                          false /* is_load */, true /* is64bit */);
1149  x86op = GetOpcode(op, rl_dest, rl_src, true);
1150  lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
1151  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1152                          false /* is_load */, true /* is64bit */);
1153  FreeTemp(rl_src.reg.GetReg());
1154  FreeTemp(rl_src.reg.GetHighReg());
1155}
1156
1157void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1158                              RegLocation rl_src2, Instruction::Code op,
1159                              bool is_commutative) {
1160  // Is this really a 2 operand operation?
1161  switch (op) {
1162    case Instruction::ADD_LONG_2ADDR:
1163    case Instruction::SUB_LONG_2ADDR:
1164    case Instruction::AND_LONG_2ADDR:
1165    case Instruction::OR_LONG_2ADDR:
1166    case Instruction::XOR_LONG_2ADDR:
1167      GenLongArith(rl_dest, rl_src2, op);
1168      return;
1169    default:
1170      break;
1171  }
1172
1173  if (rl_dest.location == kLocPhysReg) {
1174    RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1175
1176    // We are about to clobber the LHS, so it needs to be a temp.
1177    rl_result = ForceTempWide(rl_result);
1178
1179    // Perform the operation using the RHS.
1180    rl_src2 = UpdateLocWide(rl_src2);
1181    GenLongRegOrMemOp(rl_result, rl_src2, op);
1182
1183    // And now record that the result is in the temp.
1184    StoreFinalValueWide(rl_dest, rl_result);
1185    return;
1186  }
1187
1188  // It wasn't in registers, so it better be in memory.
1189  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1190         (rl_dest.location == kLocCompilerTemp));
1191  rl_src1 = UpdateLocWide(rl_src1);
1192  rl_src2 = UpdateLocWide(rl_src2);
1193
1194  // Get one of the source operands into temporary register.
1195  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1196  if (IsTemp(rl_src1.reg.GetReg()) && IsTemp(rl_src1.reg.GetHighReg())) {
1197    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1198  } else if (is_commutative) {
1199    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1200    // We need at least one of them to be a temporary.
1201    if (!(IsTemp(rl_src2.reg.GetReg()) && IsTemp(rl_src2.reg.GetHighReg()))) {
1202      rl_src1 = ForceTempWide(rl_src1);
1203    }
1204    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1205  } else {
1206    // Need LHS to be the temp.
1207    rl_src1 = ForceTempWide(rl_src1);
1208    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1209  }
1210
1211  StoreFinalValueWide(rl_dest, rl_src1);
1212}
1213
1214void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
1215                            RegLocation rl_src1, RegLocation rl_src2) {
1216  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1217}
1218
1219void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1220                            RegLocation rl_src1, RegLocation rl_src2) {
1221  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1222}
1223
1224void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1225                            RegLocation rl_src1, RegLocation rl_src2) {
1226  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1227}
1228
1229void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1230                           RegLocation rl_src1, RegLocation rl_src2) {
1231  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1232}
1233
1234void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1235                            RegLocation rl_src1, RegLocation rl_src2) {
1236  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1237}
1238
1239void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1240  rl_src = LoadValueWide(rl_src, kCoreReg);
1241  RegLocation rl_result = ForceTempWide(rl_src);
1242  if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
1243      ((rl_dest.reg.GetReg() == rl_src.reg.GetHighReg()))) {
1244    // The registers are the same, so we would clobber it before the use.
1245    int temp_reg = AllocTemp();
1246    OpRegCopy(temp_reg, rl_result.reg.GetReg());
1247    rl_result.reg.SetHighReg(temp_reg);
1248  }
1249  OpRegReg(kOpNeg, rl_result.reg.GetReg(), rl_result.reg.GetReg());    // rLow = -rLow
1250  OpRegImm(kOpAdc, rl_result.reg.GetHighReg(), 0);                   // rHigh = rHigh + CF
1251  OpRegReg(kOpNeg, rl_result.reg.GetHighReg(), rl_result.reg.GetHighReg());  // rHigh = -rHigh
1252  StoreValueWide(rl_dest, rl_result);
1253}
1254
1255void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
1256  X86OpCode opcode = kX86Bkpt;
1257  switch (op) {
1258  case kOpCmp: opcode = kX86Cmp32RT;  break;
1259  case kOpMov: opcode = kX86Mov32RT;  break;
1260  default:
1261    LOG(FATAL) << "Bad opcode: " << op;
1262    break;
1263  }
1264  NewLIR2(opcode, r_dest, thread_offset.Int32Value());
1265}
1266
1267/*
1268 * Generate array load
1269 */
1270void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1271                             RegLocation rl_index, RegLocation rl_dest, int scale) {
1272  RegisterClass reg_class = oat_reg_class_by_size(size);
1273  int len_offset = mirror::Array::LengthOffset().Int32Value();
1274  RegLocation rl_result;
1275  rl_array = LoadValue(rl_array, kCoreReg);
1276
1277  int data_offset;
1278  if (size == kLong || size == kDouble) {
1279    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1280  } else {
1281    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1282  }
1283
1284  bool constant_index = rl_index.is_const;
1285  int32_t constant_index_value = 0;
1286  if (!constant_index) {
1287    rl_index = LoadValue(rl_index, kCoreReg);
1288  } else {
1289    constant_index_value = mir_graph_->ConstantValue(rl_index);
1290    // If index is constant, just fold it into the data offset
1291    data_offset += constant_index_value << scale;
1292    // treat as non array below
1293    rl_index.reg = RegStorage(RegStorage::k32BitSolo, INVALID_REG);
1294  }
1295
1296  /* null object? */
1297  GenNullCheck(rl_array.s_reg_low, rl_array.reg.GetReg(), opt_flags);
1298
1299  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1300    if (constant_index) {
1301      GenMemImmedCheck(kCondLs, rl_array.reg.GetReg(), len_offset,
1302                       constant_index_value, kThrowConstantArrayBounds);
1303    } else {
1304      GenRegMemCheck(kCondUge, rl_index.reg.GetReg(), rl_array.reg.GetReg(),
1305                     len_offset, kThrowArrayBounds);
1306    }
1307  }
1308  rl_result = EvalLoc(rl_dest, reg_class, true);
1309  if ((size == kLong) || (size == kDouble)) {
1310    LoadBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, rl_result.reg.GetReg(),
1311                        rl_result.reg.GetHighReg(), size, INVALID_SREG);
1312    StoreValueWide(rl_dest, rl_result);
1313  } else {
1314    LoadBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale,
1315                        data_offset, rl_result.reg.GetReg(), INVALID_REG, size,
1316                        INVALID_SREG);
1317    StoreValue(rl_dest, rl_result);
1318  }
1319}
1320
1321/*
1322 * Generate array store
1323 *
1324 */
1325void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1326                             RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1327  RegisterClass reg_class = oat_reg_class_by_size(size);
1328  int len_offset = mirror::Array::LengthOffset().Int32Value();
1329  int data_offset;
1330
1331  if (size == kLong || size == kDouble) {
1332    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1333  } else {
1334    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1335  }
1336
1337  rl_array = LoadValue(rl_array, kCoreReg);
1338  bool constant_index = rl_index.is_const;
1339  int32_t constant_index_value = 0;
1340  if (!constant_index) {
1341    rl_index = LoadValue(rl_index, kCoreReg);
1342  } else {
1343    // If index is constant, just fold it into the data offset
1344    constant_index_value = mir_graph_->ConstantValue(rl_index);
1345    data_offset += constant_index_value << scale;
1346    // treat as non array below
1347    rl_index.reg = RegStorage(RegStorage::k32BitSolo, INVALID_REG);
1348  }
1349
1350  /* null object? */
1351  GenNullCheck(rl_array.s_reg_low, rl_array.reg.GetReg(), opt_flags);
1352
1353  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1354    if (constant_index) {
1355      GenMemImmedCheck(kCondLs, rl_array.reg.GetReg(), len_offset,
1356                       constant_index_value, kThrowConstantArrayBounds);
1357    } else {
1358      GenRegMemCheck(kCondUge, rl_index.reg.GetReg(), rl_array.reg.GetReg(),
1359                     len_offset, kThrowArrayBounds);
1360    }
1361  }
1362  if ((size == kLong) || (size == kDouble)) {
1363    rl_src = LoadValueWide(rl_src, reg_class);
1364  } else {
1365    rl_src = LoadValue(rl_src, reg_class);
1366  }
1367  // If the src reg can't be byte accessed, move it to a temp first.
1368  if ((size == kSignedByte || size == kUnsignedByte) && rl_src.reg.GetReg() >= 4) {
1369    int temp = AllocTemp();
1370    OpRegCopy(temp, rl_src.reg.GetReg());
1371    StoreBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, temp,
1372                         INVALID_REG, size, INVALID_SREG);
1373  } else {
1374    StoreBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, rl_src.reg.GetReg(),
1375                         rl_src.wide ? rl_src.reg.GetHighReg() : INVALID_REG, size, INVALID_SREG);
1376  }
1377  if (card_mark) {
1378    // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
1379    if (!constant_index) {
1380      FreeTemp(rl_index.reg.GetReg());
1381    }
1382    MarkGCCard(rl_src.reg.GetReg(), rl_array.reg.GetReg());
1383  }
1384}
1385
1386RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1387                                          RegLocation rl_src, int shift_amount) {
1388  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1389  switch (opcode) {
1390    case Instruction::SHL_LONG:
1391    case Instruction::SHL_LONG_2ADDR:
1392      DCHECK_NE(shift_amount, 1);  // Prevent a double store from happening.
1393      if (shift_amount == 32) {
1394        OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetReg());
1395        LoadConstant(rl_result.reg.GetReg(), 0);
1396      } else if (shift_amount > 31) {
1397        OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetReg());
1398        FreeTemp(rl_src.reg.GetHighReg());
1399        NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
1400        LoadConstant(rl_result.reg.GetReg(), 0);
1401      } else {
1402        OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1403        OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1404        NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetReg(), shift_amount);
1405        NewLIR2(kX86Sal32RI, rl_result.reg.GetReg(), shift_amount);
1406      }
1407      break;
1408    case Instruction::SHR_LONG:
1409    case Instruction::SHR_LONG_2ADDR:
1410      if (shift_amount == 32) {
1411        OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1412        OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1413        NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1414      } else if (shift_amount > 31) {
1415        OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1416        OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1417        NewLIR2(kX86Sar32RI, rl_result.reg.GetReg(), shift_amount - 32);
1418        NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1419      } else {
1420        OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1421        OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1422        NewLIR3(kX86Shrd32RRI, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), shift_amount);
1423        NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
1424      }
1425      break;
1426    case Instruction::USHR_LONG:
1427    case Instruction::USHR_LONG_2ADDR:
1428      if (shift_amount == 32) {
1429        OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1430        LoadConstant(rl_result.reg.GetHighReg(), 0);
1431      } else if (shift_amount > 31) {
1432        OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1433        NewLIR2(kX86Shr32RI, rl_result.reg.GetReg(), shift_amount - 32);
1434        LoadConstant(rl_result.reg.GetHighReg(), 0);
1435      } else {
1436        OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1437        OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1438        NewLIR3(kX86Shrd32RRI, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), shift_amount);
1439        NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
1440      }
1441      break;
1442    default:
1443      LOG(FATAL) << "Unexpected case";
1444  }
1445  return rl_result;
1446}
1447
1448void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1449                                   RegLocation rl_src, RegLocation rl_shift) {
1450  // Per spec, we only care about low 6 bits of shift amount.
1451  int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1452  if (shift_amount == 0) {
1453    rl_src = LoadValueWide(rl_src, kCoreReg);
1454    StoreValueWide(rl_dest, rl_src);
1455    return;
1456  } else if (shift_amount == 1 &&
1457            (opcode ==  Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1458    // Need to handle this here to avoid calling StoreValueWide twice.
1459    GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1460    return;
1461  }
1462  if (BadOverlap(rl_src, rl_dest)) {
1463    GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1464    return;
1465  }
1466  rl_src = LoadValueWide(rl_src, kCoreReg);
1467  RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1468  StoreValueWide(rl_dest, rl_result);
1469}
1470
1471void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
1472                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1473  switch (opcode) {
1474    case Instruction::ADD_LONG:
1475    case Instruction::AND_LONG:
1476    case Instruction::OR_LONG:
1477    case Instruction::XOR_LONG:
1478      if (rl_src2.is_const) {
1479        GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1480      } else {
1481        DCHECK(rl_src1.is_const);
1482        GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1483      }
1484      break;
1485    case Instruction::SUB_LONG:
1486    case Instruction::SUB_LONG_2ADDR:
1487      if (rl_src2.is_const) {
1488        GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1489      } else {
1490        GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1491      }
1492      break;
1493    case Instruction::ADD_LONG_2ADDR:
1494    case Instruction::OR_LONG_2ADDR:
1495    case Instruction::XOR_LONG_2ADDR:
1496    case Instruction::AND_LONG_2ADDR:
1497      if (rl_src2.is_const) {
1498        GenLongImm(rl_dest, rl_src2, opcode);
1499      } else {
1500        DCHECK(rl_src1.is_const);
1501        GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1502      }
1503      break;
1504    default:
1505      // Default - bail to non-const handler.
1506      GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1507      break;
1508  }
1509}
1510
1511bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1512  switch (op) {
1513    case Instruction::AND_LONG_2ADDR:
1514    case Instruction::AND_LONG:
1515      return value == -1;
1516    case Instruction::OR_LONG:
1517    case Instruction::OR_LONG_2ADDR:
1518    case Instruction::XOR_LONG:
1519    case Instruction::XOR_LONG_2ADDR:
1520      return value == 0;
1521    default:
1522      return false;
1523  }
1524}
1525
1526X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1527                                bool is_high_op) {
1528  bool rhs_in_mem = rhs.location != kLocPhysReg;
1529  bool dest_in_mem = dest.location != kLocPhysReg;
1530  DCHECK(!rhs_in_mem || !dest_in_mem);
1531  switch (op) {
1532    case Instruction::ADD_LONG:
1533    case Instruction::ADD_LONG_2ADDR:
1534      if (dest_in_mem) {
1535        return is_high_op ? kX86Adc32MR : kX86Add32MR;
1536      } else if (rhs_in_mem) {
1537        return is_high_op ? kX86Adc32RM : kX86Add32RM;
1538      }
1539      return is_high_op ? kX86Adc32RR : kX86Add32RR;
1540    case Instruction::SUB_LONG:
1541    case Instruction::SUB_LONG_2ADDR:
1542      if (dest_in_mem) {
1543        return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1544      } else if (rhs_in_mem) {
1545        return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1546      }
1547      return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1548    case Instruction::AND_LONG_2ADDR:
1549    case Instruction::AND_LONG:
1550      if (dest_in_mem) {
1551        return kX86And32MR;
1552      }
1553      return rhs_in_mem ? kX86And32RM : kX86And32RR;
1554    case Instruction::OR_LONG:
1555    case Instruction::OR_LONG_2ADDR:
1556      if (dest_in_mem) {
1557        return kX86Or32MR;
1558      }
1559      return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1560    case Instruction::XOR_LONG:
1561    case Instruction::XOR_LONG_2ADDR:
1562      if (dest_in_mem) {
1563        return kX86Xor32MR;
1564      }
1565      return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1566    default:
1567      LOG(FATAL) << "Unexpected opcode: " << op;
1568      return kX86Add32RR;
1569  }
1570}
1571
1572X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1573                                int32_t value) {
1574  bool in_mem = loc.location != kLocPhysReg;
1575  bool byte_imm = IS_SIMM8(value);
1576  DCHECK(in_mem || !IsFpReg(loc.reg.GetReg()));
1577  switch (op) {
1578    case Instruction::ADD_LONG:
1579    case Instruction::ADD_LONG_2ADDR:
1580      if (byte_imm) {
1581        if (in_mem) {
1582          return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1583        }
1584        return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1585      }
1586      if (in_mem) {
1587        return is_high_op ? kX86Adc32MI : kX86Add32MI;
1588      }
1589      return is_high_op ? kX86Adc32RI : kX86Add32RI;
1590    case Instruction::SUB_LONG:
1591    case Instruction::SUB_LONG_2ADDR:
1592      if (byte_imm) {
1593        if (in_mem) {
1594          return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1595        }
1596        return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1597      }
1598      if (in_mem) {
1599        return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1600      }
1601      return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1602    case Instruction::AND_LONG_2ADDR:
1603    case Instruction::AND_LONG:
1604      if (byte_imm) {
1605        return in_mem ? kX86And32MI8 : kX86And32RI8;
1606      }
1607      return in_mem ? kX86And32MI : kX86And32RI;
1608    case Instruction::OR_LONG:
1609    case Instruction::OR_LONG_2ADDR:
1610      if (byte_imm) {
1611        return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1612      }
1613      return in_mem ? kX86Or32MI : kX86Or32RI;
1614    case Instruction::XOR_LONG:
1615    case Instruction::XOR_LONG_2ADDR:
1616      if (byte_imm) {
1617        return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1618      }
1619      return in_mem ? kX86Xor32MI : kX86Xor32RI;
1620    default:
1621      LOG(FATAL) << "Unexpected opcode: " << op;
1622      return kX86Add32MI;
1623  }
1624}
1625
1626void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1627  DCHECK(rl_src.is_const);
1628  int64_t val = mir_graph_->ConstantValueWide(rl_src);
1629  int32_t val_lo = Low32Bits(val);
1630  int32_t val_hi = High32Bits(val);
1631  rl_dest = UpdateLocWide(rl_dest);
1632
1633  // Can we just do this into memory?
1634  if ((rl_dest.location == kLocDalvikFrame) ||
1635      (rl_dest.location == kLocCompilerTemp)) {
1636    int rBase = TargetReg(kSp);
1637    int displacement = SRegOffset(rl_dest.s_reg_low);
1638
1639    if (!IsNoOp(op, val_lo)) {
1640      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1641      LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1642      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1643                              false /* is_load */, true /* is64bit */);
1644    }
1645    if (!IsNoOp(op, val_hi)) {
1646      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1647      LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1648      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1649                                false /* is_load */, true /* is64bit */);
1650    }
1651    return;
1652  }
1653
1654  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1655  DCHECK_EQ(rl_result.location, kLocPhysReg);
1656  DCHECK(!IsFpReg(rl_result.reg.GetReg()));
1657
1658  if (!IsNoOp(op, val_lo)) {
1659    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1660    NewLIR2(x86op, rl_result.reg.GetReg(), val_lo);
1661  }
1662  if (!IsNoOp(op, val_hi)) {
1663    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1664    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
1665  }
1666  StoreValueWide(rl_dest, rl_result);
1667}
1668
1669void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1670                                RegLocation rl_src2, Instruction::Code op) {
1671  DCHECK(rl_src2.is_const);
1672  int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1673  int32_t val_lo = Low32Bits(val);
1674  int32_t val_hi = High32Bits(val);
1675  rl_dest = UpdateLocWide(rl_dest);
1676  rl_src1 = UpdateLocWide(rl_src1);
1677
1678  // Can we do this directly into the destination registers?
1679  if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
1680      rl_dest.reg.GetReg() == rl_src1.reg.GetReg() && rl_dest.reg.GetHighReg() == rl_src1.reg.GetHighReg() &&
1681      !IsFpReg(rl_dest.reg.GetReg())) {
1682    if (!IsNoOp(op, val_lo)) {
1683      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1684      NewLIR2(x86op, rl_dest.reg.GetReg(), val_lo);
1685    }
1686    if (!IsNoOp(op, val_hi)) {
1687      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1688      NewLIR2(x86op, rl_dest.reg.GetHighReg(), val_hi);
1689    }
1690
1691    StoreFinalValueWide(rl_dest, rl_dest);
1692    return;
1693  }
1694
1695  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1696  DCHECK_EQ(rl_src1.location, kLocPhysReg);
1697
1698  // We need the values to be in a temporary
1699  RegLocation rl_result = ForceTempWide(rl_src1);
1700  if (!IsNoOp(op, val_lo)) {
1701    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1702    NewLIR2(x86op, rl_result.reg.GetReg(), val_lo);
1703  }
1704  if (!IsNoOp(op, val_hi)) {
1705    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1706    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
1707  }
1708
1709  StoreFinalValueWide(rl_dest, rl_result);
1710}
1711
1712// For final classes there are no sub-classes to check and so we can answer the instance-of
1713// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1714void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1715                                    RegLocation rl_dest, RegLocation rl_src) {
1716  RegLocation object = LoadValue(rl_src, kCoreReg);
1717  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1718  int result_reg = rl_result.reg.GetReg();
1719
1720  // SETcc only works with EAX..EDX.
1721  if (result_reg == object.reg.GetReg() || result_reg >= 4) {
1722    result_reg = AllocTypedTemp(false, kCoreReg);
1723    DCHECK_LT(result_reg, 4);
1724  }
1725
1726  // Assume that there is no match.
1727  LoadConstant(result_reg, 0);
1728  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg.GetReg(), 0, NULL);
1729
1730  int check_class = AllocTypedTemp(false, kCoreReg);
1731
1732  // If Method* is already in a register, we can save a copy.
1733  RegLocation rl_method = mir_graph_->GetMethodLoc();
1734  int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1735    (sizeof(mirror::Class*) * type_idx);
1736
1737  if (rl_method.location == kLocPhysReg) {
1738    if (use_declaring_class) {
1739      LoadWordDisp(rl_method.reg.GetReg(),
1740                   mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1741                   check_class);
1742    } else {
1743      LoadWordDisp(rl_method.reg.GetReg(),
1744                   mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1745                   check_class);
1746      LoadWordDisp(check_class, offset_of_type, check_class);
1747    }
1748  } else {
1749    LoadCurrMethodDirect(check_class);
1750    if (use_declaring_class) {
1751      LoadWordDisp(check_class,
1752                   mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1753                   check_class);
1754    } else {
1755      LoadWordDisp(check_class,
1756                   mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1757                   check_class);
1758      LoadWordDisp(check_class, offset_of_type, check_class);
1759    }
1760  }
1761
1762  // Compare the computed class to the class in the object.
1763  DCHECK_EQ(object.location, kLocPhysReg);
1764  OpRegMem(kOpCmp, check_class, object.reg.GetReg(),
1765           mirror::Object::ClassOffset().Int32Value());
1766
1767  // Set the low byte of the result to 0 or 1 from the compare condition code.
1768  NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1769
1770  LIR* target = NewLIR0(kPseudoTargetLabel);
1771  null_branchover->target = target;
1772  FreeTemp(check_class);
1773  if (IsTemp(result_reg)) {
1774    OpRegCopy(rl_result.reg.GetReg(), result_reg);
1775    FreeTemp(result_reg);
1776  }
1777  StoreValue(rl_dest, rl_result);
1778}
1779
1780void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1781                                            bool type_known_abstract, bool use_declaring_class,
1782                                            bool can_assume_type_is_in_dex_cache,
1783                                            uint32_t type_idx, RegLocation rl_dest,
1784                                            RegLocation rl_src) {
1785  FlushAllRegs();
1786  // May generate a call - use explicit registers.
1787  LockCallTemps();
1788  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 gets current Method*.
1789  int class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*.
1790  // Reference must end up in kArg0.
1791  if (needs_access_check) {
1792    // Check we have access to type_idx and if not throw IllegalAccessError,
1793    // Caller function returns Class* in kArg0.
1794    CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1795                         type_idx, true);
1796    OpRegCopy(class_reg, TargetReg(kRet0));
1797    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1798  } else if (use_declaring_class) {
1799    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1800    LoadWordDisp(TargetReg(kArg1),
1801                 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1802  } else {
1803    // Load dex cache entry into class_reg (kArg2).
1804    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1805    LoadWordDisp(TargetReg(kArg1),
1806                 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1807    int32_t offset_of_type =
1808        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1809        * type_idx);
1810    LoadWordDisp(class_reg, offset_of_type, class_reg);
1811    if (!can_assume_type_is_in_dex_cache) {
1812      // Need to test presence of type in dex cache at runtime.
1813      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1814      // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1815      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1816      OpRegCopy(TargetReg(kArg2), TargetReg(kRet0));  // Align usage with fast path.
1817      LoadValueDirectFixed(rl_src, TargetReg(kArg0));  /* Reload Ref. */
1818      // Rejoin code paths
1819      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1820      hop_branch->target = hop_target;
1821    }
1822  }
1823  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1824  RegLocation rl_result = GetReturn(false);
1825
1826  // SETcc only works with EAX..EDX.
1827  DCHECK_LT(rl_result.reg.GetReg(), 4);
1828
1829  // Is the class NULL?
1830  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1831
1832  /* Load object->klass_. */
1833  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1834  LoadWordDisp(TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1835  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1836  LIR* branchover = nullptr;
1837  if (type_known_final) {
1838    // Ensure top 3 bytes of result are 0.
1839    LoadConstant(rl_result.reg.GetReg(), 0);
1840    OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1841    // Set the low byte of the result to 0 or 1 from the compare condition code.
1842    NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondEq);
1843  } else {
1844    if (!type_known_abstract) {
1845      LoadConstant(rl_result.reg.GetReg(), 1);     // Assume result succeeds.
1846      branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1847    }
1848    OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1849    OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1850  }
1851  // TODO: only clobber when type isn't final?
1852  ClobberCallerSave();
1853  /* Branch targets here. */
1854  LIR* target = NewLIR0(kPseudoTargetLabel);
1855  StoreValue(rl_dest, rl_result);
1856  branch1->target = target;
1857  if (branchover != nullptr) {
1858    branchover->target = target;
1859  }
1860}
1861
1862void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1863                            RegLocation rl_lhs, RegLocation rl_rhs) {
1864  OpKind op = kOpBkpt;
1865  bool is_div_rem = false;
1866  bool unary = false;
1867  bool shift_op = false;
1868  bool is_two_addr = false;
1869  RegLocation rl_result;
1870  switch (opcode) {
1871    case Instruction::NEG_INT:
1872      op = kOpNeg;
1873      unary = true;
1874      break;
1875    case Instruction::NOT_INT:
1876      op = kOpMvn;
1877      unary = true;
1878      break;
1879    case Instruction::ADD_INT_2ADDR:
1880      is_two_addr = true;
1881      // Fallthrough
1882    case Instruction::ADD_INT:
1883      op = kOpAdd;
1884      break;
1885    case Instruction::SUB_INT_2ADDR:
1886      is_two_addr = true;
1887      // Fallthrough
1888    case Instruction::SUB_INT:
1889      op = kOpSub;
1890      break;
1891    case Instruction::MUL_INT_2ADDR:
1892      is_two_addr = true;
1893      // Fallthrough
1894    case Instruction::MUL_INT:
1895      op = kOpMul;
1896      break;
1897    case Instruction::DIV_INT_2ADDR:
1898      is_two_addr = true;
1899      // Fallthrough
1900    case Instruction::DIV_INT:
1901      op = kOpDiv;
1902      is_div_rem = true;
1903      break;
1904    /* NOTE: returns in kArg1 */
1905    case Instruction::REM_INT_2ADDR:
1906      is_two_addr = true;
1907      // Fallthrough
1908    case Instruction::REM_INT:
1909      op = kOpRem;
1910      is_div_rem = true;
1911      break;
1912    case Instruction::AND_INT_2ADDR:
1913      is_two_addr = true;
1914      // Fallthrough
1915    case Instruction::AND_INT:
1916      op = kOpAnd;
1917      break;
1918    case Instruction::OR_INT_2ADDR:
1919      is_two_addr = true;
1920      // Fallthrough
1921    case Instruction::OR_INT:
1922      op = kOpOr;
1923      break;
1924    case Instruction::XOR_INT_2ADDR:
1925      is_two_addr = true;
1926      // Fallthrough
1927    case Instruction::XOR_INT:
1928      op = kOpXor;
1929      break;
1930    case Instruction::SHL_INT_2ADDR:
1931      is_two_addr = true;
1932      // Fallthrough
1933    case Instruction::SHL_INT:
1934      shift_op = true;
1935      op = kOpLsl;
1936      break;
1937    case Instruction::SHR_INT_2ADDR:
1938      is_two_addr = true;
1939      // Fallthrough
1940    case Instruction::SHR_INT:
1941      shift_op = true;
1942      op = kOpAsr;
1943      break;
1944    case Instruction::USHR_INT_2ADDR:
1945      is_two_addr = true;
1946      // Fallthrough
1947    case Instruction::USHR_INT:
1948      shift_op = true;
1949      op = kOpLsr;
1950      break;
1951    default:
1952      LOG(FATAL) << "Invalid word arith op: " << opcode;
1953  }
1954
1955    // Can we convert to a two address instruction?
1956  if (!is_two_addr &&
1957        (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1958         mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1959      is_two_addr = true;
1960    }
1961
1962  // Get the div/rem stuff out of the way.
1963  if (is_div_rem) {
1964    rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
1965    StoreValue(rl_dest, rl_result);
1966    return;
1967  }
1968
1969  if (unary) {
1970    rl_lhs = LoadValue(rl_lhs, kCoreReg);
1971    rl_result = UpdateLoc(rl_dest);
1972    rl_result = EvalLoc(rl_dest, kCoreReg, true);
1973    OpRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg());
1974  } else {
1975    if (shift_op) {
1976      // X86 doesn't require masking and must use ECX.
1977      int t_reg = TargetReg(kCount);  // rCX
1978      LoadValueDirectFixed(rl_rhs, t_reg);
1979      if (is_two_addr) {
1980        // Can we do this directly into memory?
1981        rl_result = UpdateLoc(rl_dest);
1982        rl_rhs = LoadValue(rl_rhs, kCoreReg);
1983        if (rl_result.location != kLocPhysReg) {
1984          // Okay, we can do this into memory
1985          OpMemReg(op, rl_result, t_reg);
1986          FreeTemp(t_reg);
1987          return;
1988        } else if (!IsFpReg(rl_result.reg.GetReg())) {
1989          // Can do this directly into the result register
1990          OpRegReg(op, rl_result.reg.GetReg(), t_reg);
1991          FreeTemp(t_reg);
1992          StoreFinalValue(rl_dest, rl_result);
1993          return;
1994        }
1995      }
1996      // Three address form, or we can't do directly.
1997      rl_lhs = LoadValue(rl_lhs, kCoreReg);
1998      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1999      OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), t_reg);
2000      FreeTemp(t_reg);
2001    } else {
2002      // Multiply is 3 operand only (sort of).
2003      if (is_two_addr && op != kOpMul) {
2004        // Can we do this directly into memory?
2005        rl_result = UpdateLoc(rl_dest);
2006        if (rl_result.location == kLocPhysReg) {
2007          // Can we do this from memory directly?
2008          rl_rhs = UpdateLoc(rl_rhs);
2009          if (rl_rhs.location != kLocPhysReg) {
2010            OpRegMem(op, rl_result.reg.GetReg(), rl_rhs);
2011            StoreFinalValue(rl_dest, rl_result);
2012            return;
2013          } else if (!IsFpReg(rl_rhs.reg.GetReg())) {
2014            OpRegReg(op, rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
2015            StoreFinalValue(rl_dest, rl_result);
2016            return;
2017          }
2018        }
2019        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2020        if (rl_result.location != kLocPhysReg) {
2021          // Okay, we can do this into memory.
2022          OpMemReg(op, rl_result, rl_rhs.reg.GetReg());
2023          return;
2024        } else if (!IsFpReg(rl_result.reg.GetReg())) {
2025          // Can do this directly into the result register.
2026          OpRegReg(op, rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
2027          StoreFinalValue(rl_dest, rl_result);
2028          return;
2029        } else {
2030          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2031          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2032          OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
2033        }
2034      } else {
2035        // Try to use reg/memory instructions.
2036        rl_lhs = UpdateLoc(rl_lhs);
2037        rl_rhs = UpdateLoc(rl_rhs);
2038        // We can't optimize with FP registers.
2039        if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2040          // Something is difficult, so fall back to the standard case.
2041          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2042          rl_rhs = LoadValue(rl_rhs, kCoreReg);
2043          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2044          OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
2045        } else {
2046          // We can optimize by moving to result and using memory operands.
2047          if (rl_rhs.location != kLocPhysReg) {
2048            // Force LHS into result.
2049            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2050            LoadValueDirect(rl_lhs, rl_result.reg.GetReg());
2051            OpRegMem(op, rl_result.reg.GetReg(), rl_rhs);
2052          } else if (rl_lhs.location != kLocPhysReg) {
2053            // RHS is in a register; LHS is in memory.
2054            if (op != kOpSub) {
2055              // Force RHS into result and operate on memory.
2056              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2057              OpRegCopy(rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
2058              OpRegMem(op, rl_result.reg.GetReg(), rl_lhs);
2059            } else {
2060              // Subtraction isn't commutative.
2061              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2062              rl_rhs = LoadValue(rl_rhs, kCoreReg);
2063              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2064              OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
2065            }
2066          } else {
2067            // Both are in registers.
2068            rl_lhs = LoadValue(rl_lhs, kCoreReg);
2069            rl_rhs = LoadValue(rl_rhs, kCoreReg);
2070            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2071            OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
2072          }
2073        }
2074      }
2075    }
2076  }
2077  StoreValue(rl_dest, rl_result);
2078}
2079
2080bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2081  // If we have non-core registers, then we can't do good things.
2082  if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.reg.GetReg())) {
2083    return false;
2084  }
2085  if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.reg.GetReg())) {
2086    return false;
2087  }
2088
2089  // Everything will be fine :-).
2090  return true;
2091}
2092}  // namespace art
2093