int_x86.cc revision c17ebe866beb50eb6da1e6a47555cb4731467f3b
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
30                                int reg1, int base, int offset, ThrowKind kind) {
31  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32                    current_dalvik_offset_, reg1, base, offset);
33  OpRegMem(kOpCmp, reg1, base, offset);
34  LIR* branch = OpCondBranch(c_code, tgt);
35  // Remember branch target - will process later
36  throw_launchpads_.Insert(tgt);
37  return branch;
38}
39
40/*
41 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44                                int base, int offset, int check_value, ThrowKind kind) {
45  LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46                    current_dalvik_offset_, base, check_value, 0);
47  NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48  LIR* branch = OpCondBranch(c_code, tgt);
49  // Remember branch target - will process later
50  throw_launchpads_.Insert(tgt);
51  return branch;
52}
53
54/*
55 * Compare two 64-bit values
56 *    x = y     return  0
57 *    x < y     return -1
58 *    x > y     return  1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
61                            RegLocation rl_src2) {
62  FlushAllRegs();
63  LockCallTemps();  // Prepare for explicit register usage
64  LoadValueDirectWideFixed(rl_src1, r0, r1);
65  LoadValueDirectWideFixed(rl_src2, r2, r3);
66  // Compute (r1:r0) = (r1:r0) - (r3:r2)
67  OpRegReg(kOpSub, r0, r2);  // r0 = r0 - r2
68  OpRegReg(kOpSbc, r1, r3);  // r1 = r1 - r3 - CF
69  NewLIR2(kX86Set8R, r2, kX86CondL);  // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70  NewLIR2(kX86Movzx8RR, r2, r2);
71  OpReg(kOpNeg, r2);         // r2 = -r2
72  OpRegReg(kOpOr, r0, r1);   // r0 = high | low - sets ZF
73  NewLIR2(kX86Set8R, r0, kX86CondNz);  // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74  NewLIR2(kX86Movzx8RR, r0, r0);
75  OpRegReg(kOpOr, r0, r2);   // r0 = r0 | r2
76  RegLocation rl_result = LocCReturn();
77  StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81  switch (cond) {
82    case kCondEq: return kX86CondEq;
83    case kCondNe: return kX86CondNe;
84    case kCondCs: return kX86CondC;
85    case kCondCc: return kX86CondNc;
86    case kCondUlt: return kX86CondC;
87    case kCondUge: return kX86CondNc;
88    case kCondMi: return kX86CondS;
89    case kCondPl: return kX86CondNs;
90    case kCondVs: return kX86CondO;
91    case kCondVc: return kX86CondNo;
92    case kCondHi: return kX86CondA;
93    case kCondLs: return kX86CondBe;
94    case kCondGe: return kX86CondGe;
95    case kCondLt: return kX86CondL;
96    case kCondGt: return kX86CondG;
97    case kCondLe: return kX86CondLe;
98    case kCondAl:
99    case kCondNv: LOG(FATAL) << "Should not reach here";
100  }
101  return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
105                             LIR* target) {
106  NewLIR2(kX86Cmp32RR, src1, src2);
107  X86ConditionCode cc = X86ConditionEncoding(cond);
108  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109                        cc);
110  branch->target = target;
111  return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
115                                int check_value, LIR* target) {
116  if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117    // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118    NewLIR2(kX86Test32RR, reg, reg);
119  } else {
120    NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121  }
122  X86ConditionCode cc = X86ConditionEncoding(cond);
123  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124  branch->target = target;
125  return branch;
126}
127
128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
129  if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130    return OpFpRegCopy(r_dest, r_src);
131  LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132                    r_dest, r_src);
133  if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
134    res->flags.is_nop = true;
135  }
136  return res;
137}
138
139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
140  LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141  AppendLIR(res);
142  return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
146                               int src_lo, int src_hi) {
147  bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148  bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149  assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150  assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151  if (dest_fp) {
152    if (src_fp) {
153      OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154    } else {
155      // TODO: Prevent this from happening in the code. The result is often
156      // unused or could have been loaded more easily from memory.
157      NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
158      dest_hi = AllocTempDouble();
159      NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
160      NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
161      FreeTemp(dest_hi);
162    }
163  } else {
164    if (src_fp) {
165      NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
166      NewLIR2(kX86PsrlqRI, src_lo, 32);
167      NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
168    } else {
169      // Handle overlap
170      if (src_hi == dest_lo && src_lo == dest_hi) {
171        // Deal with cycles.
172        int temp_reg = AllocTemp();
173        OpRegCopy(temp_reg, dest_hi);
174        OpRegCopy(dest_hi, dest_lo);
175        OpRegCopy(dest_lo, temp_reg);
176        FreeTemp(temp_reg);
177      } else if (src_hi == dest_lo) {
178        OpRegCopy(dest_hi, src_hi);
179        OpRegCopy(dest_lo, src_lo);
180      } else {
181        OpRegCopy(dest_lo, src_lo);
182        OpRegCopy(dest_hi, src_hi);
183      }
184    }
185  }
186}
187
188void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
189  RegLocation rl_result;
190  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
191  RegLocation rl_dest = mir_graph_->GetDest(mir);
192  rl_src = LoadValue(rl_src, kCoreReg);
193
194  // The kMirOpSelect has two variants, one for constants and one for moves.
195  const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
196
197  if (is_constant_case) {
198    int true_val = mir->dalvikInsn.vB;
199    int false_val = mir->dalvikInsn.vC;
200    rl_result = EvalLoc(rl_dest, kCoreReg, true);
201
202    /*
203     * 1) When the true case is zero and result_reg is not same as src_reg:
204     *     xor result_reg, result_reg
205     *     cmp $0, src_reg
206     *     mov t1, $false_case
207     *     cmovnz result_reg, t1
208     * 2) When the false case is zero and result_reg is not same as src_reg:
209     *     xor result_reg, result_reg
210     *     cmp $0, src_reg
211     *     mov t1, $true_case
212     *     cmovz result_reg, t1
213     * 3) All other cases (we do compare first to set eflags):
214     *     cmp $0, src_reg
215     *     mov result_reg, $true_case
216     *     mov t1, $false_case
217     *     cmovnz result_reg, t1
218     */
219    const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.low_reg == rl_result.low_reg);
220    const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
221    const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
222    const bool catch_all_case = !(true_zero_case || false_zero_case);
223
224    if (true_zero_case || false_zero_case) {
225      OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
226    }
227
228    if (true_zero_case || false_zero_case || catch_all_case) {
229      OpRegImm(kOpCmp, rl_src.low_reg, 0);
230    }
231
232    if (catch_all_case) {
233      OpRegImm(kOpMov, rl_result.low_reg, true_val);
234    }
235
236    if (true_zero_case || false_zero_case || catch_all_case) {
237      int immediateForTemp = false_zero_case ? true_val : false_val;
238      int temp1_reg = AllocTemp();
239      OpRegImm(kOpMov, temp1_reg, immediateForTemp);
240
241      ConditionCode cc = false_zero_case ? kCondEq : kCondNe;
242      OpCondRegReg(kOpCmov, cc, rl_result.low_reg, temp1_reg);
243
244      FreeTemp(temp1_reg);
245    }
246  } else {
247    RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
248    RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
249    rl_true = LoadValue(rl_true, kCoreReg);
250    rl_false = LoadValue(rl_false, kCoreReg);
251    rl_result = EvalLoc(rl_dest, kCoreReg, true);
252
253    /*
254     * 1) When true case is already in place:
255     *     cmp $0, src_reg
256     *     cmovnz result_reg, false_reg
257     * 2) When false case is already in place:
258     *     cmp $0, src_reg
259     *     cmovz result_reg, true_reg
260     * 3) When neither cases are in place:
261     *     cmp $0, src_reg
262     *     mov result_reg, true_reg
263     *     cmovnz result_reg, false_reg
264     */
265
266    // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
267    OpRegImm(kOpCmp, rl_src.low_reg, 0);
268
269    if (rl_result.low_reg == rl_true.low_reg) {
270      OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
271    } else if (rl_result.low_reg == rl_false.low_reg) {
272      OpCondRegReg(kOpCmov, kCondEq, rl_result.low_reg, rl_true.low_reg);
273    } else {
274      OpRegCopy(rl_result.low_reg, rl_true.low_reg);
275      OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
276    }
277  }
278
279  StoreValue(rl_dest, rl_result);
280}
281
282void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
283  LIR* taken = &block_label_list_[bb->taken];
284  RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
285  RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
286  ConditionCode ccode = mir->meta.ccode;
287
288  if (rl_src1.is_const) {
289    std::swap(rl_src1, rl_src2);
290    ccode = FlipComparisonOrder(ccode);
291  }
292  if (rl_src2.is_const) {
293    // Do special compare/branch against simple const operand
294    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
295    GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
296    return;
297  }
298
299  FlushAllRegs();
300  LockCallTemps();  // Prepare for explicit register usage
301  LoadValueDirectWideFixed(rl_src1, r0, r1);
302  LoadValueDirectWideFixed(rl_src2, r2, r3);
303  // Swap operands and condition code to prevent use of zero flag.
304  if (ccode == kCondLe || ccode == kCondGt) {
305    // Compute (r3:r2) = (r3:r2) - (r1:r0)
306    OpRegReg(kOpSub, r2, r0);  // r2 = r2 - r0
307    OpRegReg(kOpSbc, r3, r1);  // r3 = r3 - r1 - CF
308  } else {
309    // Compute (r1:r0) = (r1:r0) - (r3:r2)
310    OpRegReg(kOpSub, r0, r2);  // r0 = r0 - r2
311    OpRegReg(kOpSbc, r1, r3);  // r1 = r1 - r3 - CF
312  }
313  switch (ccode) {
314    case kCondEq:
315    case kCondNe:
316      OpRegReg(kOpOr, r0, r1);  // r0 = r0 | r1
317      break;
318    case kCondLe:
319      ccode = kCondGe;
320      break;
321    case kCondGt:
322      ccode = kCondLt;
323      break;
324    case kCondLt:
325    case kCondGe:
326      break;
327    default:
328      LOG(FATAL) << "Unexpected ccode: " << ccode;
329  }
330  OpCondBranch(ccode, taken);
331}
332
333void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
334                                          int64_t val, ConditionCode ccode) {
335  int32_t val_lo = Low32Bits(val);
336  int32_t val_hi = High32Bits(val);
337  LIR* taken = &block_label_list_[bb->taken];
338  LIR* not_taken = &block_label_list_[bb->fall_through];
339  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
340  int32_t low_reg = rl_src1.low_reg;
341  int32_t high_reg = rl_src1.high_reg;
342
343  if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
344    int t_reg = AllocTemp();
345    OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
346    FreeTemp(t_reg);
347    OpCondBranch(ccode, taken);
348    return;
349  }
350
351  OpRegImm(kOpCmp, high_reg, val_hi);
352  switch (ccode) {
353    case kCondEq:
354    case kCondNe:
355      OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
356      break;
357    case kCondLt:
358      OpCondBranch(kCondLt, taken);
359      OpCondBranch(kCondGt, not_taken);
360      ccode = kCondUlt;
361      break;
362    case kCondLe:
363      OpCondBranch(kCondLt, taken);
364      OpCondBranch(kCondGt, not_taken);
365      ccode = kCondLs;
366      break;
367    case kCondGt:
368      OpCondBranch(kCondGt, taken);
369      OpCondBranch(kCondLt, not_taken);
370      ccode = kCondHi;
371      break;
372    case kCondGe:
373      OpCondBranch(kCondGt, taken);
374      OpCondBranch(kCondLt, not_taken);
375      ccode = kCondUge;
376      break;
377    default:
378      LOG(FATAL) << "Unexpected ccode: " << ccode;
379  }
380  OpCmpImmBranch(ccode, low_reg, val_lo, taken);
381}
382
383void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
384  // It does not make sense to calculate magic and shift for zero divisor.
385  DCHECK_NE(divisor, 0);
386
387  /* According to H.S.Warren's Hacker's Delight Chapter 10 and
388   * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
389   * The magic number M and shift S can be calculated in the following way:
390   * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
391   * where divisor(d) >=2.
392   * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
393   * where divisor(d) <= -2.
394   * Thus nc can be calculated like:
395   * nc = 2^31 + 2^31 % d - 1, where d >= 2
396   * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
397   *
398   * So the shift p is the smallest p satisfying
399   * 2^p > nc * (d - 2^p % d), where d >= 2
400   * 2^p > nc * (d + 2^p % d), where d <= -2.
401   *
402   * the magic number M is calcuated by
403   * M = (2^p + d - 2^p % d) / d, where d >= 2
404   * M = (2^p - d - 2^p % d) / d, where d <= -2.
405   *
406   * Notice that p is always bigger than or equal to 32, so we just return 32-p as
407   * the shift number S.
408   */
409
410  int32_t p = 31;
411  const uint32_t two31 = 0x80000000U;
412
413  // Initialize the computations.
414  uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
415  uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
416  uint32_t abs_nc = tmp - 1 - tmp % abs_d;
417  uint32_t quotient1 = two31 / abs_nc;
418  uint32_t remainder1 = two31 % abs_nc;
419  uint32_t quotient2 = two31 / abs_d;
420  uint32_t remainder2 = two31 % abs_d;
421
422  /*
423   * To avoid handling both positive and negative divisor, Hacker's Delight
424   * introduces a method to handle these 2 cases together to avoid duplication.
425   */
426  uint32_t delta;
427  do {
428    p++;
429    quotient1 = 2 * quotient1;
430    remainder1 = 2 * remainder1;
431    if (remainder1 >= abs_nc) {
432      quotient1++;
433      remainder1 = remainder1 - abs_nc;
434    }
435    quotient2 = 2 * quotient2;
436    remainder2 = 2 * remainder2;
437    if (remainder2 >= abs_d) {
438      quotient2++;
439      remainder2 = remainder2 - abs_d;
440    }
441    delta = abs_d - remainder2;
442  } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
443
444  magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
445  shift = p - 32;
446}
447
448RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
449                                     int lit, bool is_div) {
450  LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
451  return rl_dest;
452}
453
454RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
455                                     int imm, bool is_div) {
456  // Use a multiply (and fixup) to perform an int div/rem by a constant.
457
458  // We have to use fixed registers, so flush all the temps.
459  FlushAllRegs();
460  LockCallTemps();  // Prepare for explicit register usage.
461
462  // Assume that the result will be in EDX.
463  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
464                          r2, INVALID_REG, INVALID_SREG, INVALID_SREG};
465
466  // handle div/rem by 1 special case.
467  if (imm == 1) {
468    if (is_div) {
469      // x / 1 == x.
470      StoreValue(rl_result, rl_src);
471    } else {
472      // x % 1 == 0.
473      LoadConstantNoClobber(r0, 0);
474      // For this case, return the result in EAX.
475      rl_result.low_reg = r0;
476    }
477  } else if (imm == -1) {  // handle 0x80000000 / -1 special case.
478    if (is_div) {
479      LIR *minint_branch = 0;
480      LoadValueDirectFixed(rl_src, r0);
481      OpRegImm(kOpCmp, r0, 0x80000000);
482      minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
483
484      // for x != MIN_INT, x / -1 == -x.
485      NewLIR1(kX86Neg32R, r0);
486
487      LIR* branch_around = NewLIR1(kX86Jmp8, 0);
488      // The target for cmp/jmp above.
489      minint_branch->target = NewLIR0(kPseudoTargetLabel);
490      // EAX already contains the right value (0x80000000),
491      branch_around->target = NewLIR0(kPseudoTargetLabel);
492    } else {
493      // x % -1 == 0.
494      LoadConstantNoClobber(r0, 0);
495    }
496    // For this case, return the result in EAX.
497    rl_result.low_reg = r0;
498  } else {
499    CHECK(imm <= -2 || imm >= 2);
500    // Use H.S.Warren's Hacker's Delight Chapter 10 and
501    // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
502    int magic, shift;
503    CalculateMagicAndShift(imm, magic, shift);
504
505    /*
506     * For imm >= 2,
507     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
508     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
509     * For imm <= -2,
510     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
511     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
512     * We implement this algorithm in the following way:
513     * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
514     * 2. if imm > 0 and magic < 0, add numerator to EDX
515     *    if imm < 0 and magic > 0, sub numerator from EDX
516     * 3. if S !=0, SAR S bits for EDX
517     * 4. add 1 to EDX if EDX < 0
518     * 5. Thus, EDX is the quotient
519     */
520
521    // Numerator into EAX.
522    int numerator_reg = -1;
523    if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
524      // We will need the value later.
525      if (rl_src.location == kLocPhysReg) {
526        // We can use it directly.
527        DCHECK(rl_src.low_reg != r0 && rl_src.low_reg != r2);
528        numerator_reg = rl_src.low_reg;
529      } else {
530        LoadValueDirectFixed(rl_src, r1);
531        numerator_reg = r1;
532      }
533      OpRegCopy(r0, numerator_reg);
534    } else {
535      // Only need this once.  Just put it into EAX.
536      LoadValueDirectFixed(rl_src, r0);
537    }
538
539    // EDX = magic.
540    LoadConstantNoClobber(r2, magic);
541
542    // EDX:EAX = magic & dividend.
543    NewLIR1(kX86Imul32DaR, r2);
544
545    if (imm > 0 && magic < 0) {
546      // Add numerator to EDX.
547      DCHECK_NE(numerator_reg, -1);
548      NewLIR2(kX86Add32RR, r2, numerator_reg);
549    } else if (imm < 0 && magic > 0) {
550      DCHECK_NE(numerator_reg, -1);
551      NewLIR2(kX86Sub32RR, r2, numerator_reg);
552    }
553
554    // Do we need the shift?
555    if (shift != 0) {
556      // Shift EDX by 'shift' bits.
557      NewLIR2(kX86Sar32RI, r2, shift);
558    }
559
560    // Add 1 to EDX if EDX < 0.
561
562    // Move EDX to EAX.
563    OpRegCopy(r0, r2);
564
565    // Move sign bit to bit 0, zeroing the rest.
566    NewLIR2(kX86Shr32RI, r2, 31);
567
568    // EDX = EDX + EAX.
569    NewLIR2(kX86Add32RR, r2, r0);
570
571    // Quotient is in EDX.
572    if (!is_div) {
573      // We need to compute the remainder.
574      // Remainder is divisor - (quotient * imm).
575      DCHECK_NE(numerator_reg, -1);
576      OpRegCopy(r0, numerator_reg);
577
578      // EAX = numerator * imm.
579      OpRegRegImm(kOpMul, r2, r2, imm);
580
581      // EDX -= EAX.
582      NewLIR2(kX86Sub32RR, r0, r2);
583
584      // For this case, return the result in EAX.
585      rl_result.low_reg = r0;
586    }
587  }
588
589  return rl_result;
590}
591
592RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
593                                  int reg_hi, bool is_div) {
594  LOG(FATAL) << "Unexpected use of GenDivRem for x86";
595  return rl_dest;
596}
597
598RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
599                                  RegLocation rl_src2, bool is_div, bool check_zero) {
600  // We have to use fixed registers, so flush all the temps.
601  FlushAllRegs();
602  LockCallTemps();  // Prepare for explicit register usage.
603
604  // Load LHS into EAX.
605  LoadValueDirectFixed(rl_src1, r0);
606
607  // Load RHS into EBX.
608  LoadValueDirectFixed(rl_src2, r1);
609
610  // Copy LHS sign bit into EDX.
611  NewLIR0(kx86Cdq32Da);
612
613  if (check_zero) {
614    // Handle division by zero case.
615    GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
616  }
617
618  // Have to catch 0x80000000/-1 case, or we will get an exception!
619  OpRegImm(kOpCmp, r1, -1);
620  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
621
622  // RHS is -1.
623  OpRegImm(kOpCmp, r0, 0x80000000);
624  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
625
626  // In 0x80000000/-1 case.
627  if (!is_div) {
628    // For DIV, EAX is already right. For REM, we need EDX 0.
629    LoadConstantNoClobber(r2, 0);
630  }
631  LIR* done = NewLIR1(kX86Jmp8, 0);
632
633  // Expected case.
634  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
635  minint_branch->target = minus_one_branch->target;
636  NewLIR1(kX86Idivmod32DaR, r1);
637  done->target = NewLIR0(kPseudoTargetLabel);
638
639  // Result is in EAX for div and EDX for rem.
640  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
641                          r0, INVALID_REG, INVALID_SREG, INVALID_SREG};
642  if (!is_div) {
643    rl_result.low_reg = r2;
644  }
645  return rl_result;
646}
647
648bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
649  DCHECK_EQ(cu_->instruction_set, kX86);
650
651  // Get the two arguments to the invoke and place them in GP registers.
652  RegLocation rl_src1 = info->args[0];
653  RegLocation rl_src2 = info->args[1];
654  rl_src1 = LoadValue(rl_src1, kCoreReg);
655  rl_src2 = LoadValue(rl_src2, kCoreReg);
656
657  RegLocation rl_dest = InlineTarget(info);
658  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
659
660  /*
661   * If the result register is the same as the second element, then we need to be careful.
662   * The reason is that the first copy will inadvertently clobber the second element with
663   * the first one thus yielding the wrong result. Thus we do a swap in that case.
664   */
665  if (rl_result.low_reg == rl_src2.low_reg) {
666    std::swap(rl_src1, rl_src2);
667  }
668
669  // Pick the first integer as min/max.
670  OpRegCopy(rl_result.low_reg, rl_src1.low_reg);
671
672  // If the integers are both in the same register, then there is nothing else to do
673  // because they are equal and we have already moved one into the result.
674  if (rl_src1.low_reg != rl_src2.low_reg) {
675    // It is possible we didn't pick correctly so do the actual comparison now.
676    OpRegReg(kOpCmp, rl_src1.low_reg, rl_src2.low_reg);
677
678    // Conditionally move the other integer into the destination register.
679    ConditionCode condition_code = is_min ? kCondGt : kCondLt;
680    OpCondRegReg(kOpCmov, condition_code, rl_result.low_reg, rl_src2.low_reg);
681  }
682
683  StoreValue(rl_dest, rl_result);
684  return true;
685}
686
687bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
688  RegLocation rl_src_address = info->args[0];  // long address
689  rl_src_address.wide = 0;  // ignore high half in info->args[1]
690  RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
691  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
692  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
693  if (size == kLong) {
694    // Unaligned access is allowed on x86.
695    LoadBaseDispWide(rl_address.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
696    StoreValueWide(rl_dest, rl_result);
697  } else {
698    DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
699    // Unaligned access is allowed on x86.
700    LoadBaseDisp(rl_address.low_reg, 0, rl_result.low_reg, size, INVALID_SREG);
701    StoreValue(rl_dest, rl_result);
702  }
703  return true;
704}
705
706bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
707  RegLocation rl_src_address = info->args[0];  // long address
708  rl_src_address.wide = 0;  // ignore high half in info->args[1]
709  RegLocation rl_src_value = info->args[2];  // [size] value
710  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
711  if (size == kLong) {
712    // Unaligned access is allowed on x86.
713    RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
714    StoreBaseDispWide(rl_address.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
715  } else {
716    DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
717    // Unaligned access is allowed on x86.
718    RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
719    StoreBaseDisp(rl_address.low_reg, 0, rl_value.low_reg, size);
720  }
721  return true;
722}
723
724void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
725  NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
726}
727
728void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
729  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
730}
731
732bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
733  DCHECK_EQ(cu_->instruction_set, kX86);
734  // Unused - RegLocation rl_src_unsafe = info->args[0];
735  RegLocation rl_src_obj = info->args[1];  // Object - known non-null
736  RegLocation rl_src_offset = info->args[2];  // long low
737  rl_src_offset.wide = 0;  // ignore high half in info->args[3]
738  RegLocation rl_src_expected = info->args[4];  // int, long or Object
739  // If is_long, high half is in info->args[5]
740  RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
741  // If is_long, high half is in info->args[7]
742
743  if (is_long) {
744    FlushAllRegs();
745    LockCallTemps();
746    LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
747    LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
748    NewLIR1(kX86Push32R, rDI);
749    MarkTemp(rDI);
750    LockTemp(rDI);
751    NewLIR1(kX86Push32R, rSI);
752    MarkTemp(rSI);
753    LockTemp(rSI);
754    const int push_offset = 4 /* push edi */ + 4 /* push esi */;
755    LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI);
756    LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI);
757    NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
758    FreeTemp(rSI);
759    UnmarkTemp(rSI);
760    NewLIR1(kX86Pop32R, rSI);
761    FreeTemp(rDI);
762    UnmarkTemp(rDI);
763    NewLIR1(kX86Pop32R, rDI);
764    FreeCallTemps();
765  } else {
766    // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
767    FlushReg(r0);
768    LockTemp(r0);
769
770    // Release store semantics, get the barrier out of the way.  TODO: revisit
771    GenMemBarrier(kStoreLoad);
772
773    RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
774    RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
775
776    if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
777      // Mark card for object assuming new value is stored.
778      FreeTemp(r0);  // Temporarily release EAX for MarkGCCard().
779      MarkGCCard(rl_new_value.low_reg, rl_object.low_reg);
780      LockTemp(r0);
781    }
782
783    RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
784    LoadValueDirect(rl_src_expected, r0);
785    NewLIR5(kX86LockCmpxchgAR, rl_object.low_reg, rl_offset.low_reg, 0, 0, rl_new_value.low_reg);
786
787    FreeTemp(r0);
788  }
789
790  // Convert ZF to boolean
791  RegLocation rl_dest = InlineTarget(info);  // boolean place for result
792  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
793  NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondZ);
794  NewLIR2(kX86Movzx8RR, rl_result.low_reg, rl_result.low_reg);
795  StoreValue(rl_dest, rl_result);
796  return true;
797}
798
799LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
800  CHECK(base_of_code_ != nullptr);
801
802  // Address the start of the method
803  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
804  LoadValueDirectFixed(rl_method, reg);
805  store_method_addr_used_ = true;
806
807  // Load the proper value from the literal area.
808  // We don't know the proper offset for the value, so pick one that will force
809  // 4 byte offset.  We will fix this up in the assembler later to have the right
810  // value.
811  LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg, reg, 256, 0, 0, target);
812  res->target = target;
813  res->flags.fixup = kFixupLoad;
814  SetMemRefType(res, true, kLiteral);
815  store_method_addr_used_ = true;
816  return res;
817}
818
819LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
820  LOG(FATAL) << "Unexpected use of OpVldm for x86";
821  return NULL;
822}
823
824LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
825  LOG(FATAL) << "Unexpected use of OpVstm for x86";
826  return NULL;
827}
828
829void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
830                                               RegLocation rl_result, int lit,
831                                               int first_bit, int second_bit) {
832  int t_reg = AllocTemp();
833  OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit);
834  OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg);
835  FreeTemp(t_reg);
836  if (first_bit != 0) {
837    OpRegRegImm(kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit);
838  }
839}
840
841void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
842  // We are not supposed to clobber either of the provided registers, so allocate
843  // a temporary to use for the check.
844  int t_reg = AllocTemp();
845
846  // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
847  OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
848
849  // In case of zero, throw ArithmeticException.
850  GenCheck(kCondEq, kThrowDivZero);
851
852  // The temp is no longer needed so free it at this time.
853  FreeTemp(t_reg);
854}
855
856// Test suspend flag, return target of taken suspend branch
857LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
858  OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
859  return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
860}
861
862// Decrement register and branch on condition
863LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
864  OpRegImm(kOpSub, reg, 1);
865  return OpCondBranch(c_code, target);
866}
867
868bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
869                                    RegLocation rl_src, RegLocation rl_dest, int lit) {
870  LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
871  return false;
872}
873
874LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
875  LOG(FATAL) << "Unexpected use of OpIT in x86";
876  return NULL;
877}
878
879void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
880  switch (val) {
881    case 0:
882      NewLIR2(kX86Xor32RR, dest, dest);
883      break;
884    case 1:
885      OpRegCopy(dest, src);
886      break;
887    default:
888      OpRegRegImm(kOpMul, dest, src, val);
889      break;
890  }
891}
892
893void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
894  LIR *m;
895  switch (val) {
896    case 0:
897      NewLIR2(kX86Xor32RR, dest, dest);
898      break;
899    case 1:
900      LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
901      break;
902    default:
903      m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
904                  displacement, val);
905      AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
906      break;
907  }
908}
909
910void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
911                            RegLocation rl_src2) {
912  if (rl_src1.is_const) {
913    std::swap(rl_src1, rl_src2);
914  }
915  // Are we multiplying by a constant?
916  if (rl_src2.is_const) {
917    // Do special compare/branch against simple const operand
918    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
919    if (val == 0) {
920      RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
921      OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
922      OpRegReg(kOpXor, rl_result.high_reg, rl_result.high_reg);
923      StoreValueWide(rl_dest, rl_result);
924      return;
925    } else if (val == 1) {
926      StoreValueWide(rl_dest, rl_src1);
927      return;
928    } else if (val == 2) {
929      GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
930      return;
931    } else if (IsPowerOfTwo(val)) {
932      int shift_amount = LowestSetBit(val);
933      if (!BadOverlap(rl_src1, rl_dest)) {
934        rl_src1 = LoadValueWide(rl_src1, kCoreReg);
935        RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
936                                                  rl_src1, shift_amount);
937        StoreValueWide(rl_dest, rl_result);
938        return;
939      }
940    }
941
942    // Okay, just bite the bullet and do it.
943    int32_t val_lo = Low32Bits(val);
944    int32_t val_hi = High32Bits(val);
945    FlushAllRegs();
946    LockCallTemps();  // Prepare for explicit register usage.
947    rl_src1 = UpdateLocWide(rl_src1);
948    bool src1_in_reg = rl_src1.location == kLocPhysReg;
949    int displacement = SRegOffset(rl_src1.s_reg_low);
950
951    // ECX <- 1H * 2L
952    // EAX <- 1L * 2H
953    if (src1_in_reg) {
954      GenImulRegImm(r1, rl_src1.high_reg, val_lo);
955      GenImulRegImm(r0, rl_src1.low_reg, val_hi);
956    } else {
957      GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
958      GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
959    }
960
961    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
962    NewLIR2(kX86Add32RR, r1, r0);
963
964    // EAX <- 2L
965    LoadConstantNoClobber(r0, val_lo);
966
967    // EDX:EAX <- 2L * 1L (double precision)
968    if (src1_in_reg) {
969      NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
970    } else {
971      LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
972      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
973                              true /* is_load */, true /* is_64bit */);
974    }
975
976    // EDX <- EDX + ECX (add high words)
977    NewLIR2(kX86Add32RR, r2, r1);
978
979    // Result is EDX:EAX
980    RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
981                             INVALID_SREG, INVALID_SREG};
982    StoreValueWide(rl_dest, rl_result);
983    return;
984  }
985
986  // Nope.  Do it the hard way
987  // Check for V*V.  We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
988  bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
989                   mir_graph_->SRegToVReg(rl_src2.s_reg_low);
990
991  FlushAllRegs();
992  LockCallTemps();  // Prepare for explicit register usage.
993  rl_src1 = UpdateLocWide(rl_src1);
994  rl_src2 = UpdateLocWide(rl_src2);
995
996  // At this point, the VRs are in their home locations.
997  bool src1_in_reg = rl_src1.location == kLocPhysReg;
998  bool src2_in_reg = rl_src2.location == kLocPhysReg;
999
1000  // ECX <- 1H
1001  if (src1_in_reg) {
1002    NewLIR2(kX86Mov32RR, r1, rl_src1.high_reg);
1003  } else {
1004    LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
1005                 kWord, GetSRegHi(rl_src1.s_reg_low));
1006  }
1007
1008  if (is_square) {
1009    // Take advantage of the fact that the values are the same.
1010    // ECX <- ECX * 2L  (1H * 2L)
1011    if (src2_in_reg) {
1012      NewLIR2(kX86Imul32RR, r1, rl_src2.low_reg);
1013    } else {
1014      int displacement = SRegOffset(rl_src2.s_reg_low);
1015      LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1016      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1017                              true /* is_load */, true /* is_64bit */);
1018    }
1019
1020    // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1021    NewLIR2(kX86Add32RR, r1, r1);
1022  } else {
1023    // EAX <- 2H
1024    if (src2_in_reg) {
1025      NewLIR2(kX86Mov32RR, r0, rl_src2.high_reg);
1026    } else {
1027      LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
1028                   kWord, GetSRegHi(rl_src2.s_reg_low));
1029    }
1030
1031    // EAX <- EAX * 1L  (2H * 1L)
1032    if (src1_in_reg) {
1033      NewLIR2(kX86Imul32RR, r0, rl_src1.low_reg);
1034    } else {
1035      int displacement = SRegOffset(rl_src1.s_reg_low);
1036      LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1037      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1038                              true /* is_load */, true /* is_64bit */);
1039    }
1040
1041    // ECX <- ECX * 2L  (1H * 2L)
1042    if (src2_in_reg) {
1043      NewLIR2(kX86Imul32RR, r1, rl_src2.low_reg);
1044    } else {
1045      int displacement = SRegOffset(rl_src2.s_reg_low);
1046      LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1047      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1048                              true /* is_load */, true /* is_64bit */);
1049    }
1050
1051    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1052    NewLIR2(kX86Add32RR, r1, r0);
1053  }
1054
1055  // EAX <- 2L
1056  if (src2_in_reg) {
1057    NewLIR2(kX86Mov32RR, r0, rl_src2.low_reg);
1058  } else {
1059    LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1060                 kWord, rl_src2.s_reg_low);
1061  }
1062
1063  // EDX:EAX <- 2L * 1L (double precision)
1064  if (src1_in_reg) {
1065    NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
1066  } else {
1067    int displacement = SRegOffset(rl_src1.s_reg_low);
1068    LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1069    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1070                            true /* is_load */, true /* is_64bit */);
1071  }
1072
1073  // EDX <- EDX + ECX (add high words)
1074  NewLIR2(kX86Add32RR, r2, r1);
1075
1076  // Result is EDX:EAX
1077  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
1078                           INVALID_SREG, INVALID_SREG};
1079  StoreValueWide(rl_dest, rl_result);
1080}
1081
1082void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1083                                   Instruction::Code op) {
1084  DCHECK_EQ(rl_dest.location, kLocPhysReg);
1085  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1086  if (rl_src.location == kLocPhysReg) {
1087    // Both operands are in registers.
1088    if (rl_dest.low_reg == rl_src.high_reg) {
1089      // The registers are the same, so we would clobber it before the use.
1090      int temp_reg = AllocTemp();
1091      OpRegCopy(temp_reg, rl_dest.low_reg);
1092      rl_src.high_reg = temp_reg;
1093    }
1094    NewLIR2(x86op, rl_dest.low_reg, rl_src.low_reg);
1095
1096    x86op = GetOpcode(op, rl_dest, rl_src, true);
1097    NewLIR2(x86op, rl_dest.high_reg, rl_src.high_reg);
1098    FreeTemp(rl_src.low_reg);
1099    FreeTemp(rl_src.high_reg);
1100    return;
1101  }
1102
1103  // RHS is in memory.
1104  DCHECK((rl_src.location == kLocDalvikFrame) ||
1105         (rl_src.location == kLocCompilerTemp));
1106  int rBase = TargetReg(kSp);
1107  int displacement = SRegOffset(rl_src.s_reg_low);
1108
1109  LIR *lir = NewLIR3(x86op, rl_dest.low_reg, rBase, displacement + LOWORD_OFFSET);
1110  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1111                          true /* is_load */, true /* is64bit */);
1112  x86op = GetOpcode(op, rl_dest, rl_src, true);
1113  lir = NewLIR3(x86op, rl_dest.high_reg, rBase, displacement + HIWORD_OFFSET);
1114  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1115                          true /* is_load */, true /* is64bit */);
1116}
1117
1118void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1119  rl_dest = UpdateLocWide(rl_dest);
1120  if (rl_dest.location == kLocPhysReg) {
1121    // Ensure we are in a register pair
1122    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1123
1124    rl_src = UpdateLocWide(rl_src);
1125    GenLongRegOrMemOp(rl_result, rl_src, op);
1126    StoreFinalValueWide(rl_dest, rl_result);
1127    return;
1128  }
1129
1130  // It wasn't in registers, so it better be in memory.
1131  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1132         (rl_dest.location == kLocCompilerTemp));
1133  rl_src = LoadValueWide(rl_src, kCoreReg);
1134
1135  // Operate directly into memory.
1136  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1137  int rBase = TargetReg(kSp);
1138  int displacement = SRegOffset(rl_dest.s_reg_low);
1139
1140  LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.low_reg);
1141  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1142                          false /* is_load */, true /* is64bit */);
1143  x86op = GetOpcode(op, rl_dest, rl_src, true);
1144  lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.high_reg);
1145  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1146                          false /* is_load */, true /* is64bit */);
1147  FreeTemp(rl_src.low_reg);
1148  FreeTemp(rl_src.high_reg);
1149}
1150
1151void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1152                              RegLocation rl_src2, Instruction::Code op,
1153                              bool is_commutative) {
1154  // Is this really a 2 operand operation?
1155  switch (op) {
1156    case Instruction::ADD_LONG_2ADDR:
1157    case Instruction::SUB_LONG_2ADDR:
1158    case Instruction::AND_LONG_2ADDR:
1159    case Instruction::OR_LONG_2ADDR:
1160    case Instruction::XOR_LONG_2ADDR:
1161      GenLongArith(rl_dest, rl_src2, op);
1162      return;
1163    default:
1164      break;
1165  }
1166
1167  if (rl_dest.location == kLocPhysReg) {
1168    RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1169
1170    // We are about to clobber the LHS, so it needs to be a temp.
1171    rl_result = ForceTempWide(rl_result);
1172
1173    // Perform the operation using the RHS.
1174    rl_src2 = UpdateLocWide(rl_src2);
1175    GenLongRegOrMemOp(rl_result, rl_src2, op);
1176
1177    // And now record that the result is in the temp.
1178    StoreFinalValueWide(rl_dest, rl_result);
1179    return;
1180  }
1181
1182  // It wasn't in registers, so it better be in memory.
1183  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1184         (rl_dest.location == kLocCompilerTemp));
1185  rl_src1 = UpdateLocWide(rl_src1);
1186  rl_src2 = UpdateLocWide(rl_src2);
1187
1188  // Get one of the source operands into temporary register.
1189  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1190  if (IsTemp(rl_src1.low_reg) && IsTemp(rl_src1.high_reg)) {
1191    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1192  } else if (is_commutative) {
1193    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1194    // We need at least one of them to be a temporary.
1195    if (!(IsTemp(rl_src2.low_reg) && IsTemp(rl_src2.high_reg))) {
1196      rl_src1 = ForceTempWide(rl_src1);
1197    }
1198    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1199  } else {
1200    // Need LHS to be the temp.
1201    rl_src1 = ForceTempWide(rl_src1);
1202    GenLongRegOrMemOp(rl_src1, rl_src2, op);
1203  }
1204
1205  StoreFinalValueWide(rl_dest, rl_src1);
1206}
1207
1208void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
1209                            RegLocation rl_src1, RegLocation rl_src2) {
1210  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1211}
1212
1213void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1214                            RegLocation rl_src1, RegLocation rl_src2) {
1215  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1216}
1217
1218void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1219                            RegLocation rl_src1, RegLocation rl_src2) {
1220  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1221}
1222
1223void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1224                           RegLocation rl_src1, RegLocation rl_src2) {
1225  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1226}
1227
1228void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1229                            RegLocation rl_src1, RegLocation rl_src2) {
1230  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1231}
1232
1233void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1234  rl_src = LoadValueWide(rl_src, kCoreReg);
1235  RegLocation rl_result = ForceTempWide(rl_src);
1236  if (rl_dest.low_reg == rl_src.high_reg) {
1237    // The registers are the same, so we would clobber it before the use.
1238    int temp_reg = AllocTemp();
1239    OpRegCopy(temp_reg, rl_result.low_reg);
1240    rl_result.high_reg = temp_reg;
1241  }
1242  OpRegReg(kOpNeg, rl_result.low_reg, rl_result.low_reg);    // rLow = -rLow
1243  OpRegImm(kOpAdc, rl_result.high_reg, 0);                   // rHigh = rHigh + CF
1244  OpRegReg(kOpNeg, rl_result.high_reg, rl_result.high_reg);  // rHigh = -rHigh
1245  StoreValueWide(rl_dest, rl_result);
1246}
1247
1248void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
1249  X86OpCode opcode = kX86Bkpt;
1250  switch (op) {
1251  case kOpCmp: opcode = kX86Cmp32RT;  break;
1252  case kOpMov: opcode = kX86Mov32RT;  break;
1253  default:
1254    LOG(FATAL) << "Bad opcode: " << op;
1255    break;
1256  }
1257  NewLIR2(opcode, r_dest, thread_offset.Int32Value());
1258}
1259
1260/*
1261 * Generate array load
1262 */
1263void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1264                             RegLocation rl_index, RegLocation rl_dest, int scale) {
1265  RegisterClass reg_class = oat_reg_class_by_size(size);
1266  int len_offset = mirror::Array::LengthOffset().Int32Value();
1267  RegLocation rl_result;
1268  rl_array = LoadValue(rl_array, kCoreReg);
1269
1270  int data_offset;
1271  if (size == kLong || size == kDouble) {
1272    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1273  } else {
1274    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1275  }
1276
1277  bool constant_index = rl_index.is_const;
1278  int32_t constant_index_value = 0;
1279  if (!constant_index) {
1280    rl_index = LoadValue(rl_index, kCoreReg);
1281  } else {
1282    constant_index_value = mir_graph_->ConstantValue(rl_index);
1283    // If index is constant, just fold it into the data offset
1284    data_offset += constant_index_value << scale;
1285    // treat as non array below
1286    rl_index.low_reg = INVALID_REG;
1287  }
1288
1289  /* null object? */
1290  GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1291
1292  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1293    if (constant_index) {
1294      GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1295                       constant_index_value, kThrowConstantArrayBounds);
1296    } else {
1297      GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1298                     len_offset, kThrowArrayBounds);
1299    }
1300  }
1301  rl_result = EvalLoc(rl_dest, reg_class, true);
1302  if ((size == kLong) || (size == kDouble)) {
1303    LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_result.low_reg,
1304                        rl_result.high_reg, size, INVALID_SREG);
1305    StoreValueWide(rl_dest, rl_result);
1306  } else {
1307    LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale,
1308                        data_offset, rl_result.low_reg, INVALID_REG, size,
1309                        INVALID_SREG);
1310    StoreValue(rl_dest, rl_result);
1311  }
1312}
1313
1314/*
1315 * Generate array store
1316 *
1317 */
1318void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1319                             RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1320  RegisterClass reg_class = oat_reg_class_by_size(size);
1321  int len_offset = mirror::Array::LengthOffset().Int32Value();
1322  int data_offset;
1323
1324  if (size == kLong || size == kDouble) {
1325    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1326  } else {
1327    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1328  }
1329
1330  rl_array = LoadValue(rl_array, kCoreReg);
1331  bool constant_index = rl_index.is_const;
1332  int32_t constant_index_value = 0;
1333  if (!constant_index) {
1334    rl_index = LoadValue(rl_index, kCoreReg);
1335  } else {
1336    // If index is constant, just fold it into the data offset
1337    constant_index_value = mir_graph_->ConstantValue(rl_index);
1338    data_offset += constant_index_value << scale;
1339    // treat as non array below
1340    rl_index.low_reg = INVALID_REG;
1341  }
1342
1343  /* null object? */
1344  GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1345
1346  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1347    if (constant_index) {
1348      GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1349                       constant_index_value, kThrowConstantArrayBounds);
1350    } else {
1351      GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1352                     len_offset, kThrowArrayBounds);
1353    }
1354  }
1355  if ((size == kLong) || (size == kDouble)) {
1356    rl_src = LoadValueWide(rl_src, reg_class);
1357  } else {
1358    rl_src = LoadValue(rl_src, reg_class);
1359  }
1360  // If the src reg can't be byte accessed, move it to a temp first.
1361  if ((size == kSignedByte || size == kUnsignedByte) && rl_src.low_reg >= 4) {
1362    int temp = AllocTemp();
1363    OpRegCopy(temp, rl_src.low_reg);
1364    StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, temp,
1365                         INVALID_REG, size, INVALID_SREG);
1366  } else {
1367    StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_src.low_reg,
1368                         rl_src.high_reg, size, INVALID_SREG);
1369  }
1370  if (card_mark) {
1371    // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
1372    if (!constant_index) {
1373      FreeTemp(rl_index.low_reg);
1374    }
1375    MarkGCCard(rl_src.low_reg, rl_array.low_reg);
1376  }
1377}
1378
1379RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1380                                          RegLocation rl_src, int shift_amount) {
1381  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1382  switch (opcode) {
1383    case Instruction::SHL_LONG:
1384    case Instruction::SHL_LONG_2ADDR:
1385      DCHECK_NE(shift_amount, 1);  // Prevent a double store from happening.
1386      if (shift_amount == 32) {
1387        OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1388        LoadConstant(rl_result.low_reg, 0);
1389      } else if (shift_amount > 31) {
1390        OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1391        FreeTemp(rl_src.high_reg);
1392        NewLIR2(kX86Sal32RI, rl_result.high_reg, shift_amount - 32);
1393        LoadConstant(rl_result.low_reg, 0);
1394      } else {
1395        OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1396        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1397        NewLIR3(kX86Shld32RRI, rl_result.high_reg, rl_result.low_reg, shift_amount);
1398        NewLIR2(kX86Sal32RI, rl_result.low_reg, shift_amount);
1399      }
1400      break;
1401    case Instruction::SHR_LONG:
1402    case Instruction::SHR_LONG_2ADDR:
1403      if (shift_amount == 32) {
1404        OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1405        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1406        NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1407      } else if (shift_amount > 31) {
1408        OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1409        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1410        NewLIR2(kX86Sar32RI, rl_result.low_reg, shift_amount - 32);
1411        NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1412      } else {
1413        OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1414        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1415        NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1416        NewLIR2(kX86Sar32RI, rl_result.high_reg, shift_amount);
1417      }
1418      break;
1419    case Instruction::USHR_LONG:
1420    case Instruction::USHR_LONG_2ADDR:
1421      if (shift_amount == 32) {
1422        OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1423        LoadConstant(rl_result.high_reg, 0);
1424      } else if (shift_amount > 31) {
1425        OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1426        NewLIR2(kX86Shr32RI, rl_result.low_reg, shift_amount - 32);
1427        LoadConstant(rl_result.high_reg, 0);
1428      } else {
1429        OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1430        OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1431        NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1432        NewLIR2(kX86Shr32RI, rl_result.high_reg, shift_amount);
1433      }
1434      break;
1435    default:
1436      LOG(FATAL) << "Unexpected case";
1437  }
1438  return rl_result;
1439}
1440
1441void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1442                                   RegLocation rl_src, RegLocation rl_shift) {
1443  // Per spec, we only care about low 6 bits of shift amount.
1444  int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1445  if (shift_amount == 0) {
1446    rl_src = LoadValueWide(rl_src, kCoreReg);
1447    StoreValueWide(rl_dest, rl_src);
1448    return;
1449  } else if (shift_amount == 1 &&
1450            (opcode ==  Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1451    // Need to handle this here to avoid calling StoreValueWide twice.
1452    GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1453    return;
1454  }
1455  if (BadOverlap(rl_src, rl_dest)) {
1456    GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1457    return;
1458  }
1459  rl_src = LoadValueWide(rl_src, kCoreReg);
1460  RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1461  StoreValueWide(rl_dest, rl_result);
1462}
1463
1464void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
1465                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1466  switch (opcode) {
1467    case Instruction::ADD_LONG:
1468    case Instruction::AND_LONG:
1469    case Instruction::OR_LONG:
1470    case Instruction::XOR_LONG:
1471      if (rl_src2.is_const) {
1472        GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1473      } else {
1474        DCHECK(rl_src1.is_const);
1475        GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1476      }
1477      break;
1478    case Instruction::SUB_LONG:
1479    case Instruction::SUB_LONG_2ADDR:
1480      if (rl_src2.is_const) {
1481        GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1482      } else {
1483        GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1484      }
1485      break;
1486    case Instruction::ADD_LONG_2ADDR:
1487    case Instruction::OR_LONG_2ADDR:
1488    case Instruction::XOR_LONG_2ADDR:
1489    case Instruction::AND_LONG_2ADDR:
1490      if (rl_src2.is_const) {
1491        GenLongImm(rl_dest, rl_src2, opcode);
1492      } else {
1493        DCHECK(rl_src1.is_const);
1494        GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1495      }
1496      break;
1497    default:
1498      // Default - bail to non-const handler.
1499      GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1500      break;
1501  }
1502}
1503
1504bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1505  switch (op) {
1506    case Instruction::AND_LONG_2ADDR:
1507    case Instruction::AND_LONG:
1508      return value == -1;
1509    case Instruction::OR_LONG:
1510    case Instruction::OR_LONG_2ADDR:
1511    case Instruction::XOR_LONG:
1512    case Instruction::XOR_LONG_2ADDR:
1513      return value == 0;
1514    default:
1515      return false;
1516  }
1517}
1518
1519X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1520                                bool is_high_op) {
1521  bool rhs_in_mem = rhs.location != kLocPhysReg;
1522  bool dest_in_mem = dest.location != kLocPhysReg;
1523  DCHECK(!rhs_in_mem || !dest_in_mem);
1524  switch (op) {
1525    case Instruction::ADD_LONG:
1526    case Instruction::ADD_LONG_2ADDR:
1527      if (dest_in_mem) {
1528        return is_high_op ? kX86Adc32MR : kX86Add32MR;
1529      } else if (rhs_in_mem) {
1530        return is_high_op ? kX86Adc32RM : kX86Add32RM;
1531      }
1532      return is_high_op ? kX86Adc32RR : kX86Add32RR;
1533    case Instruction::SUB_LONG:
1534    case Instruction::SUB_LONG_2ADDR:
1535      if (dest_in_mem) {
1536        return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1537      } else if (rhs_in_mem) {
1538        return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1539      }
1540      return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1541    case Instruction::AND_LONG_2ADDR:
1542    case Instruction::AND_LONG:
1543      if (dest_in_mem) {
1544        return kX86And32MR;
1545      }
1546      return rhs_in_mem ? kX86And32RM : kX86And32RR;
1547    case Instruction::OR_LONG:
1548    case Instruction::OR_LONG_2ADDR:
1549      if (dest_in_mem) {
1550        return kX86Or32MR;
1551      }
1552      return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1553    case Instruction::XOR_LONG:
1554    case Instruction::XOR_LONG_2ADDR:
1555      if (dest_in_mem) {
1556        return kX86Xor32MR;
1557      }
1558      return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1559    default:
1560      LOG(FATAL) << "Unexpected opcode: " << op;
1561      return kX86Add32RR;
1562  }
1563}
1564
1565X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1566                                int32_t value) {
1567  bool in_mem = loc.location != kLocPhysReg;
1568  bool byte_imm = IS_SIMM8(value);
1569  DCHECK(in_mem || !IsFpReg(loc.low_reg));
1570  switch (op) {
1571    case Instruction::ADD_LONG:
1572    case Instruction::ADD_LONG_2ADDR:
1573      if (byte_imm) {
1574        if (in_mem) {
1575          return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1576        }
1577        return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1578      }
1579      if (in_mem) {
1580        return is_high_op ? kX86Adc32MI : kX86Add32MI;
1581      }
1582      return is_high_op ? kX86Adc32RI : kX86Add32RI;
1583    case Instruction::SUB_LONG:
1584    case Instruction::SUB_LONG_2ADDR:
1585      if (byte_imm) {
1586        if (in_mem) {
1587          return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1588        }
1589        return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1590      }
1591      if (in_mem) {
1592        return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1593      }
1594      return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1595    case Instruction::AND_LONG_2ADDR:
1596    case Instruction::AND_LONG:
1597      if (byte_imm) {
1598        return in_mem ? kX86And32MI8 : kX86And32RI8;
1599      }
1600      return in_mem ? kX86And32MI : kX86And32RI;
1601    case Instruction::OR_LONG:
1602    case Instruction::OR_LONG_2ADDR:
1603      if (byte_imm) {
1604        return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1605      }
1606      return in_mem ? kX86Or32MI : kX86Or32RI;
1607    case Instruction::XOR_LONG:
1608    case Instruction::XOR_LONG_2ADDR:
1609      if (byte_imm) {
1610        return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1611      }
1612      return in_mem ? kX86Xor32MI : kX86Xor32RI;
1613    default:
1614      LOG(FATAL) << "Unexpected opcode: " << op;
1615      return kX86Add32MI;
1616  }
1617}
1618
1619void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1620  DCHECK(rl_src.is_const);
1621  int64_t val = mir_graph_->ConstantValueWide(rl_src);
1622  int32_t val_lo = Low32Bits(val);
1623  int32_t val_hi = High32Bits(val);
1624  rl_dest = UpdateLocWide(rl_dest);
1625
1626  // Can we just do this into memory?
1627  if ((rl_dest.location == kLocDalvikFrame) ||
1628      (rl_dest.location == kLocCompilerTemp)) {
1629    int rBase = TargetReg(kSp);
1630    int displacement = SRegOffset(rl_dest.s_reg_low);
1631
1632    if (!IsNoOp(op, val_lo)) {
1633      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1634      LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1635      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1636                              false /* is_load */, true /* is64bit */);
1637    }
1638    if (!IsNoOp(op, val_hi)) {
1639      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1640      LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1641      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1642                                false /* is_load */, true /* is64bit */);
1643    }
1644    return;
1645  }
1646
1647  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1648  DCHECK_EQ(rl_result.location, kLocPhysReg);
1649  DCHECK(!IsFpReg(rl_result.low_reg));
1650
1651  if (!IsNoOp(op, val_lo)) {
1652    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1653    NewLIR2(x86op, rl_result.low_reg, val_lo);
1654  }
1655  if (!IsNoOp(op, val_hi)) {
1656    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1657    NewLIR2(x86op, rl_result.high_reg, val_hi);
1658  }
1659  StoreValueWide(rl_dest, rl_result);
1660}
1661
1662void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1663                                RegLocation rl_src2, Instruction::Code op) {
1664  DCHECK(rl_src2.is_const);
1665  int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1666  int32_t val_lo = Low32Bits(val);
1667  int32_t val_hi = High32Bits(val);
1668  rl_dest = UpdateLocWide(rl_dest);
1669  rl_src1 = UpdateLocWide(rl_src1);
1670
1671  // Can we do this directly into the destination registers?
1672  if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
1673      rl_dest.low_reg == rl_src1.low_reg && rl_dest.high_reg == rl_src1.high_reg &&
1674      !IsFpReg(rl_dest.low_reg)) {
1675    if (!IsNoOp(op, val_lo)) {
1676      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1677      NewLIR2(x86op, rl_dest.low_reg, val_lo);
1678    }
1679    if (!IsNoOp(op, val_hi)) {
1680      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1681      NewLIR2(x86op, rl_dest.high_reg, val_hi);
1682    }
1683
1684    StoreFinalValueWide(rl_dest, rl_dest);
1685    return;
1686  }
1687
1688  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1689  DCHECK_EQ(rl_src1.location, kLocPhysReg);
1690
1691  // We need the values to be in a temporary
1692  RegLocation rl_result = ForceTempWide(rl_src1);
1693  if (!IsNoOp(op, val_lo)) {
1694    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1695    NewLIR2(x86op, rl_result.low_reg, val_lo);
1696  }
1697  if (!IsNoOp(op, val_hi)) {
1698    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1699    NewLIR2(x86op, rl_result.high_reg, val_hi);
1700  }
1701
1702  StoreFinalValueWide(rl_dest, rl_result);
1703}
1704
1705// For final classes there are no sub-classes to check and so we can answer the instance-of
1706// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1707void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1708                                    RegLocation rl_dest, RegLocation rl_src) {
1709  RegLocation object = LoadValue(rl_src, kCoreReg);
1710  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1711  int result_reg = rl_result.low_reg;
1712
1713  // SETcc only works with EAX..EDX.
1714  if (result_reg == object.low_reg || result_reg >= 4) {
1715    result_reg = AllocTypedTemp(false, kCoreReg);
1716    DCHECK_LT(result_reg, 4);
1717  }
1718
1719  // Assume that there is no match.
1720  LoadConstant(result_reg, 0);
1721  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL);
1722
1723  int check_class = AllocTypedTemp(false, kCoreReg);
1724
1725  // If Method* is already in a register, we can save a copy.
1726  RegLocation rl_method = mir_graph_->GetMethodLoc();
1727  int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1728    (sizeof(mirror::Class*) * type_idx);
1729
1730  if (rl_method.location == kLocPhysReg) {
1731    if (use_declaring_class) {
1732      LoadWordDisp(rl_method.low_reg,
1733                   mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1734                   check_class);
1735    } else {
1736      LoadWordDisp(rl_method.low_reg,
1737                   mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1738                   check_class);
1739      LoadWordDisp(check_class, offset_of_type, check_class);
1740    }
1741  } else {
1742    LoadCurrMethodDirect(check_class);
1743    if (use_declaring_class) {
1744      LoadWordDisp(check_class,
1745                   mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1746                   check_class);
1747    } else {
1748      LoadWordDisp(check_class,
1749                   mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1750                   check_class);
1751      LoadWordDisp(check_class, offset_of_type, check_class);
1752    }
1753  }
1754
1755  // Compare the computed class to the class in the object.
1756  DCHECK_EQ(object.location, kLocPhysReg);
1757  OpRegMem(kOpCmp, check_class, object.low_reg,
1758           mirror::Object::ClassOffset().Int32Value());
1759
1760  // Set the low byte of the result to 0 or 1 from the compare condition code.
1761  NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1762
1763  LIR* target = NewLIR0(kPseudoTargetLabel);
1764  null_branchover->target = target;
1765  FreeTemp(check_class);
1766  if (IsTemp(result_reg)) {
1767    OpRegCopy(rl_result.low_reg, result_reg);
1768    FreeTemp(result_reg);
1769  }
1770  StoreValue(rl_dest, rl_result);
1771}
1772
1773void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1774                                            bool type_known_abstract, bool use_declaring_class,
1775                                            bool can_assume_type_is_in_dex_cache,
1776                                            uint32_t type_idx, RegLocation rl_dest,
1777                                            RegLocation rl_src) {
1778  FlushAllRegs();
1779  // May generate a call - use explicit registers.
1780  LockCallTemps();
1781  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 gets current Method*.
1782  int class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*.
1783  // Reference must end up in kArg0.
1784  if (needs_access_check) {
1785    // Check we have access to type_idx and if not throw IllegalAccessError,
1786    // Caller function returns Class* in kArg0.
1787    CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1788                         type_idx, true);
1789    OpRegCopy(class_reg, TargetReg(kRet0));
1790    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1791  } else if (use_declaring_class) {
1792    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1793    LoadWordDisp(TargetReg(kArg1),
1794                 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1795  } else {
1796    // Load dex cache entry into class_reg (kArg2).
1797    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1798    LoadWordDisp(TargetReg(kArg1),
1799                 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1800    int32_t offset_of_type =
1801        mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1802        * type_idx);
1803    LoadWordDisp(class_reg, offset_of_type, class_reg);
1804    if (!can_assume_type_is_in_dex_cache) {
1805      // Need to test presence of type in dex cache at runtime.
1806      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1807      // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1808      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1809      OpRegCopy(TargetReg(kArg2), TargetReg(kRet0));  // Align usage with fast path.
1810      LoadValueDirectFixed(rl_src, TargetReg(kArg0));  /* Reload Ref. */
1811      // Rejoin code paths
1812      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1813      hop_branch->target = hop_target;
1814    }
1815  }
1816  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1817  RegLocation rl_result = GetReturn(false);
1818
1819  // SETcc only works with EAX..EDX.
1820  DCHECK_LT(rl_result.low_reg, 4);
1821
1822  // Is the class NULL?
1823  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1824
1825  /* Load object->klass_. */
1826  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1827  LoadWordDisp(TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1828  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1829  LIR* branchover = nullptr;
1830  if (type_known_final) {
1831    // Ensure top 3 bytes of result are 0.
1832    LoadConstant(rl_result.low_reg, 0);
1833    OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1834    // Set the low byte of the result to 0 or 1 from the compare condition code.
1835    NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondEq);
1836  } else {
1837    if (!type_known_abstract) {
1838      LoadConstant(rl_result.low_reg, 1);     // Assume result succeeds.
1839      branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1840    }
1841    OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1842    OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1843  }
1844  // TODO: only clobber when type isn't final?
1845  ClobberCallerSave();
1846  /* Branch targets here. */
1847  LIR* target = NewLIR0(kPseudoTargetLabel);
1848  StoreValue(rl_dest, rl_result);
1849  branch1->target = target;
1850  if (branchover != nullptr) {
1851    branchover->target = target;
1852  }
1853}
1854
1855void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1856                            RegLocation rl_lhs, RegLocation rl_rhs) {
1857  OpKind op = kOpBkpt;
1858  bool is_div_rem = false;
1859  bool unary = false;
1860  bool shift_op = false;
1861  bool is_two_addr = false;
1862  RegLocation rl_result;
1863  switch (opcode) {
1864    case Instruction::NEG_INT:
1865      op = kOpNeg;
1866      unary = true;
1867      break;
1868    case Instruction::NOT_INT:
1869      op = kOpMvn;
1870      unary = true;
1871      break;
1872    case Instruction::ADD_INT_2ADDR:
1873      is_two_addr = true;
1874      // Fallthrough
1875    case Instruction::ADD_INT:
1876      op = kOpAdd;
1877      break;
1878    case Instruction::SUB_INT_2ADDR:
1879      is_two_addr = true;
1880      // Fallthrough
1881    case Instruction::SUB_INT:
1882      op = kOpSub;
1883      break;
1884    case Instruction::MUL_INT_2ADDR:
1885      is_two_addr = true;
1886      // Fallthrough
1887    case Instruction::MUL_INT:
1888      op = kOpMul;
1889      break;
1890    case Instruction::DIV_INT_2ADDR:
1891      is_two_addr = true;
1892      // Fallthrough
1893    case Instruction::DIV_INT:
1894      op = kOpDiv;
1895      is_div_rem = true;
1896      break;
1897    /* NOTE: returns in kArg1 */
1898    case Instruction::REM_INT_2ADDR:
1899      is_two_addr = true;
1900      // Fallthrough
1901    case Instruction::REM_INT:
1902      op = kOpRem;
1903      is_div_rem = true;
1904      break;
1905    case Instruction::AND_INT_2ADDR:
1906      is_two_addr = true;
1907      // Fallthrough
1908    case Instruction::AND_INT:
1909      op = kOpAnd;
1910      break;
1911    case Instruction::OR_INT_2ADDR:
1912      is_two_addr = true;
1913      // Fallthrough
1914    case Instruction::OR_INT:
1915      op = kOpOr;
1916      break;
1917    case Instruction::XOR_INT_2ADDR:
1918      is_two_addr = true;
1919      // Fallthrough
1920    case Instruction::XOR_INT:
1921      op = kOpXor;
1922      break;
1923    case Instruction::SHL_INT_2ADDR:
1924      is_two_addr = true;
1925      // Fallthrough
1926    case Instruction::SHL_INT:
1927      shift_op = true;
1928      op = kOpLsl;
1929      break;
1930    case Instruction::SHR_INT_2ADDR:
1931      is_two_addr = true;
1932      // Fallthrough
1933    case Instruction::SHR_INT:
1934      shift_op = true;
1935      op = kOpAsr;
1936      break;
1937    case Instruction::USHR_INT_2ADDR:
1938      is_two_addr = true;
1939      // Fallthrough
1940    case Instruction::USHR_INT:
1941      shift_op = true;
1942      op = kOpLsr;
1943      break;
1944    default:
1945      LOG(FATAL) << "Invalid word arith op: " << opcode;
1946  }
1947
1948    // Can we convert to a two address instruction?
1949  if (!is_two_addr &&
1950        (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1951         mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1952      is_two_addr = true;
1953    }
1954
1955  // Get the div/rem stuff out of the way.
1956  if (is_div_rem) {
1957    rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
1958    StoreValue(rl_dest, rl_result);
1959    return;
1960  }
1961
1962  if (unary) {
1963    rl_lhs = LoadValue(rl_lhs, kCoreReg);
1964    rl_result = UpdateLoc(rl_dest);
1965    rl_result = EvalLoc(rl_dest, kCoreReg, true);
1966    OpRegReg(op, rl_result.low_reg, rl_lhs.low_reg);
1967  } else {
1968    if (shift_op) {
1969      // X86 doesn't require masking and must use ECX.
1970      int t_reg = TargetReg(kCount);  // rCX
1971      LoadValueDirectFixed(rl_rhs, t_reg);
1972      if (is_two_addr) {
1973        // Can we do this directly into memory?
1974        rl_result = UpdateLoc(rl_dest);
1975        rl_rhs = LoadValue(rl_rhs, kCoreReg);
1976        if (rl_result.location != kLocPhysReg) {
1977          // Okay, we can do this into memory
1978          OpMemReg(op, rl_result, t_reg);
1979          FreeTemp(t_reg);
1980          return;
1981        } else if (!IsFpReg(rl_result.low_reg)) {
1982          // Can do this directly into the result register
1983          OpRegReg(op, rl_result.low_reg, t_reg);
1984          FreeTemp(t_reg);
1985          StoreFinalValue(rl_dest, rl_result);
1986          return;
1987        }
1988      }
1989      // Three address form, or we can't do directly.
1990      rl_lhs = LoadValue(rl_lhs, kCoreReg);
1991      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1992      OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, t_reg);
1993      FreeTemp(t_reg);
1994    } else {
1995      // Multiply is 3 operand only (sort of).
1996      if (is_two_addr && op != kOpMul) {
1997        // Can we do this directly into memory?
1998        rl_result = UpdateLoc(rl_dest);
1999        if (rl_result.location == kLocPhysReg) {
2000          // Can we do this from memory directly?
2001          rl_rhs = UpdateLoc(rl_rhs);
2002          if (rl_rhs.location != kLocPhysReg) {
2003            OpRegMem(op, rl_result.low_reg, rl_rhs);
2004            StoreFinalValue(rl_dest, rl_result);
2005            return;
2006          } else if (!IsFpReg(rl_rhs.low_reg)) {
2007            OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
2008            StoreFinalValue(rl_dest, rl_result);
2009            return;
2010          }
2011        }
2012        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2013        if (rl_result.location != kLocPhysReg) {
2014          // Okay, we can do this into memory.
2015          OpMemReg(op, rl_result, rl_rhs.low_reg);
2016          return;
2017        } else if (!IsFpReg(rl_result.low_reg)) {
2018          // Can do this directly into the result register.
2019          OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
2020          StoreFinalValue(rl_dest, rl_result);
2021          return;
2022        } else {
2023          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2024          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2025          OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2026        }
2027      } else {
2028        // Try to use reg/memory instructions.
2029        rl_lhs = UpdateLoc(rl_lhs);
2030        rl_rhs = UpdateLoc(rl_rhs);
2031        // We can't optimize with FP registers.
2032        if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2033          // Something is difficult, so fall back to the standard case.
2034          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2035          rl_rhs = LoadValue(rl_rhs, kCoreReg);
2036          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2037          OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2038        } else {
2039          // We can optimize by moving to result and using memory operands.
2040          if (rl_rhs.location != kLocPhysReg) {
2041            // Force LHS into result.
2042            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2043            LoadValueDirect(rl_lhs, rl_result.low_reg);
2044            OpRegMem(op, rl_result.low_reg, rl_rhs);
2045          } else if (rl_lhs.location != kLocPhysReg) {
2046            // RHS is in a register; LHS is in memory.
2047            if (op != kOpSub) {
2048              // Force RHS into result and operate on memory.
2049              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2050              OpRegCopy(rl_result.low_reg, rl_rhs.low_reg);
2051              OpRegMem(op, rl_result.low_reg, rl_lhs);
2052            } else {
2053              // Subtraction isn't commutative.
2054              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2055              rl_rhs = LoadValue(rl_rhs, kCoreReg);
2056              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2057              OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2058            }
2059          } else {
2060            // Both are in registers.
2061            rl_lhs = LoadValue(rl_lhs, kCoreReg);
2062            rl_rhs = LoadValue(rl_rhs, kCoreReg);
2063            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2064            OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2065          }
2066        }
2067      }
2068    }
2069  }
2070  StoreValue(rl_dest, rl_result);
2071}
2072
2073bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2074  // If we have non-core registers, then we can't do good things.
2075  if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.low_reg)) {
2076    return false;
2077  }
2078  if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.low_reg)) {
2079    return false;
2080  }
2081
2082  // Everything will be fine :-).
2083  return true;
2084}
2085}  // namespace art
2086