int_x86.cc revision d8191d000413504b33702e0f52e1e8e522a47ec0
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Compare two 64-bit values
28 *    x = y     return  0
29 *    x < y     return -1
30 *    x > y     return  1
31 */
32void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
33                            RegLocation rl_src2) {
34  if (Gen64Bit()) {
35    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
36    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
37    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
38    OpRegReg(kOpXor, rl_result.reg, rl_result.reg);  // result = 0
39    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
40    NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondNe);  // result = (src1 != src2) ? 1 : result
41    RegStorage temp_reg = AllocTemp();
42    OpRegReg(kOpNeg, temp_reg, rl_result.reg);
43    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
44    // result = (src1 < src2) ? -result : result
45    OpCondRegReg(kOpCmov, kCondLt, rl_result.reg, temp_reg);
46    StoreValue(rl_dest, rl_result);
47    FreeTemp(temp_reg);
48    return;
49  }
50
51  FlushAllRegs();
52  LockCallTemps();  // Prepare for explicit register usage
53  RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
54  RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_r2, rs_r3);
55  LoadValueDirectWideFixed(rl_src1, r_tmp1);
56  LoadValueDirectWideFixed(rl_src2, r_tmp2);
57  // Compute (r1:r0) = (r1:r0) - (r3:r2)
58  OpRegReg(kOpSub, rs_r0, rs_r2);  // r0 = r0 - r2
59  OpRegReg(kOpSbc, rs_r1, rs_r3);  // r1 = r1 - r3 - CF
60  NewLIR2(kX86Set8R, rs_r2.GetReg(), kX86CondL);  // r2 = (r1:r0) < (r3:r2) ? 1 : 0
61  NewLIR2(kX86Movzx8RR, rs_r2.GetReg(), rs_r2.GetReg());
62  OpReg(kOpNeg, rs_r2);         // r2 = -r2
63  OpRegReg(kOpOr, rs_r0, rs_r1);   // r0 = high | low - sets ZF
64  NewLIR2(kX86Set8R, rs_r0.GetReg(), kX86CondNz);  // r0 = (r1:r0) != (r3:r2) ? 1 : 0
65  NewLIR2(kX86Movzx8RR, r0, r0);
66  OpRegReg(kOpOr, rs_r0, rs_r2);   // r0 = r0 | r2
67  RegLocation rl_result = LocCReturn();
68  StoreValue(rl_dest, rl_result);
69}
70
71X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
72  switch (cond) {
73    case kCondEq: return kX86CondEq;
74    case kCondNe: return kX86CondNe;
75    case kCondCs: return kX86CondC;
76    case kCondCc: return kX86CondNc;
77    case kCondUlt: return kX86CondC;
78    case kCondUge: return kX86CondNc;
79    case kCondMi: return kX86CondS;
80    case kCondPl: return kX86CondNs;
81    case kCondVs: return kX86CondO;
82    case kCondVc: return kX86CondNo;
83    case kCondHi: return kX86CondA;
84    case kCondLs: return kX86CondBe;
85    case kCondGe: return kX86CondGe;
86    case kCondLt: return kX86CondL;
87    case kCondGt: return kX86CondG;
88    case kCondLe: return kX86CondLe;
89    case kCondAl:
90    case kCondNv: LOG(FATAL) << "Should not reach here";
91  }
92  return kX86CondO;
93}
94
95LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
96  NewLIR2(kX86Cmp32RR, src1.GetReg(), src2.GetReg());
97  X86ConditionCode cc = X86ConditionEncoding(cond);
98  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
99                        cc);
100  branch->target = target;
101  return branch;
102}
103
104LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg,
105                                int check_value, LIR* target) {
106  if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
107    // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
108    NewLIR2(kX86Test32RR, reg.GetReg(), reg.GetReg());
109  } else {
110    NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg.GetReg(), check_value);
111  }
112  X86ConditionCode cc = X86ConditionEncoding(cond);
113  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
114  branch->target = target;
115  return branch;
116}
117
118LIR* X86Mir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
119  // If src or dest is a pair, we'll be using low reg.
120  if (r_dest.IsPair()) {
121    r_dest = r_dest.GetLow();
122  }
123  if (r_src.IsPair()) {
124    r_src = r_src.GetLow();
125  }
126  if (r_dest.IsFloat() || r_src.IsFloat())
127    return OpFpRegCopy(r_dest, r_src);
128  LIR* res = RawLIR(current_dalvik_offset_, r_dest.Is64Bit() ? kX86Mov64RR : kX86Mov32RR,
129                    r_dest.GetReg(), r_src.GetReg());
130  if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
131    res->flags.is_nop = true;
132  }
133  return res;
134}
135
136void X86Mir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
137  if (r_dest != r_src) {
138    LIR *res = OpRegCopyNoInsert(r_dest, r_src);
139    AppendLIR(res);
140  }
141}
142
143void X86Mir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
144  if (r_dest != r_src) {
145    bool dest_fp = r_dest.IsFloat();
146    bool src_fp = r_src.IsFloat();
147    if (dest_fp) {
148      if (src_fp) {
149        OpRegCopy(r_dest, r_src);
150      } else {
151        // TODO: Prevent this from happening in the code. The result is often
152        // unused or could have been loaded more easily from memory.
153        if (!r_src.IsPair()) {
154          DCHECK(!r_dest.IsPair());
155          NewLIR2(kX86MovqxrRR, r_dest.GetReg(), r_src.GetReg());
156        } else {
157          NewLIR2(kX86MovdxrRR, r_dest.GetReg(), r_src.GetLowReg());
158          RegStorage r_tmp = AllocTempDouble();
159          NewLIR2(kX86MovdxrRR, r_tmp.GetReg(), r_src.GetHighReg());
160          NewLIR2(kX86PunpckldqRR, r_dest.GetReg(), r_tmp.GetReg());
161          FreeTemp(r_tmp);
162        }
163      }
164    } else {
165      if (src_fp) {
166        if (!r_dest.IsPair()) {
167          DCHECK(!r_src.IsPair());
168          NewLIR2(kX86MovqrxRR, r_dest.GetReg(), r_src.GetReg());
169        } else {
170          NewLIR2(kX86MovdrxRR, r_dest.GetLowReg(), r_src.GetReg());
171          RegStorage temp_reg = AllocTempDouble();
172          NewLIR2(kX86MovsdRR, temp_reg.GetReg(), r_src.GetReg());
173          NewLIR2(kX86PsrlqRI, temp_reg.GetReg(), 32);
174          NewLIR2(kX86MovdrxRR, r_dest.GetHighReg(), temp_reg.GetReg());
175        }
176      } else {
177        DCHECK_EQ(r_dest.IsPair(), r_src.IsPair());
178        if (!r_src.IsPair()) {
179          // Just copy the register directly.
180          OpRegCopy(r_dest, r_src);
181        } else {
182          // Handle overlap
183          if (r_src.GetHighReg() == r_dest.GetLowReg() &&
184              r_src.GetLowReg() == r_dest.GetHighReg()) {
185            // Deal with cycles.
186            RegStorage temp_reg = AllocTemp();
187            OpRegCopy(temp_reg, r_dest.GetHigh());
188            OpRegCopy(r_dest.GetHigh(), r_dest.GetLow());
189            OpRegCopy(r_dest.GetLow(), temp_reg);
190            FreeTemp(temp_reg);
191          } else if (r_src.GetHighReg() == r_dest.GetLowReg()) {
192            OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
193            OpRegCopy(r_dest.GetLow(), r_src.GetLow());
194          } else {
195            OpRegCopy(r_dest.GetLow(), r_src.GetLow());
196            OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
197          }
198        }
199      }
200    }
201  }
202}
203
204void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
205  RegLocation rl_result;
206  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
207  RegLocation rl_dest = mir_graph_->GetDest(mir);
208  // Avoid using float regs here.
209  RegisterClass src_reg_class = rl_src.ref ? kRefReg : kCoreReg;
210  RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg;
211  rl_src = LoadValue(rl_src, src_reg_class);
212  ConditionCode ccode = mir->meta.ccode;
213
214  // The kMirOpSelect has two variants, one for constants and one for moves.
215  const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
216
217  if (is_constant_case) {
218    int true_val = mir->dalvikInsn.vB;
219    int false_val = mir->dalvikInsn.vC;
220    rl_result = EvalLoc(rl_dest, result_reg_class, true);
221
222    /*
223     * For ccode == kCondEq:
224     *
225     * 1) When the true case is zero and result_reg is not same as src_reg:
226     *     xor result_reg, result_reg
227     *     cmp $0, src_reg
228     *     mov t1, $false_case
229     *     cmovnz result_reg, t1
230     * 2) When the false case is zero and result_reg is not same as src_reg:
231     *     xor result_reg, result_reg
232     *     cmp $0, src_reg
233     *     mov t1, $true_case
234     *     cmovz result_reg, t1
235     * 3) All other cases (we do compare first to set eflags):
236     *     cmp $0, src_reg
237     *     mov result_reg, $false_case
238     *     mov t1, $true_case
239     *     cmovz result_reg, t1
240     */
241    // FIXME: depending on how you use registers you could get a false != mismatch when dealing
242    // with different views of the same underlying physical resource (i.e. solo32 vs. solo64).
243    const bool result_reg_same_as_src =
244        (rl_src.location == kLocPhysReg && rl_src.reg.GetReg() == rl_result.reg.GetReg());
245    const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
246    const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
247    const bool catch_all_case = !(true_zero_case || false_zero_case);
248
249    if (true_zero_case || false_zero_case) {
250      OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
251    }
252
253    if (true_zero_case || false_zero_case || catch_all_case) {
254      OpRegImm(kOpCmp, rl_src.reg, 0);
255    }
256
257    if (catch_all_case) {
258      OpRegImm(kOpMov, rl_result.reg, false_val);
259    }
260
261    if (true_zero_case || false_zero_case || catch_all_case) {
262      ConditionCode cc = true_zero_case ? NegateComparison(ccode) : ccode;
263      int immediateForTemp = true_zero_case ? false_val : true_val;
264      RegStorage temp1_reg = AllocTypedTemp(false, result_reg_class);
265      OpRegImm(kOpMov, temp1_reg, immediateForTemp);
266
267      OpCondRegReg(kOpCmov, cc, rl_result.reg, temp1_reg);
268
269      FreeTemp(temp1_reg);
270    }
271  } else {
272    RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
273    RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
274    rl_true = LoadValue(rl_true, result_reg_class);
275    rl_false = LoadValue(rl_false, result_reg_class);
276    rl_result = EvalLoc(rl_dest, result_reg_class, true);
277
278    /*
279     * For ccode == kCondEq:
280     *
281     * 1) When true case is already in place:
282     *     cmp $0, src_reg
283     *     cmovnz result_reg, false_reg
284     * 2) When false case is already in place:
285     *     cmp $0, src_reg
286     *     cmovz result_reg, true_reg
287     * 3) When neither cases are in place:
288     *     cmp $0, src_reg
289     *     mov result_reg, false_reg
290     *     cmovz result_reg, true_reg
291     */
292
293    // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
294    OpRegImm(kOpCmp, rl_src.reg, 0);
295
296    if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
297      OpCondRegReg(kOpCmov, NegateComparison(ccode), rl_result.reg, rl_false.reg);
298    } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
299      OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
300    } else {
301      OpRegCopy(rl_result.reg, rl_false.reg);
302      OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
303    }
304  }
305
306  StoreValue(rl_dest, rl_result);
307}
308
309void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
310  LIR* taken = &block_label_list_[bb->taken];
311  RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
312  RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
313  ConditionCode ccode = mir->meta.ccode;
314
315  if (rl_src1.is_const) {
316    std::swap(rl_src1, rl_src2);
317    ccode = FlipComparisonOrder(ccode);
318  }
319  if (rl_src2.is_const) {
320    // Do special compare/branch against simple const operand
321    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
322    GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
323    return;
324  }
325
326  FlushAllRegs();
327  LockCallTemps();  // Prepare for explicit register usage
328  RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
329  RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_r2, rs_r3);
330  LoadValueDirectWideFixed(rl_src1, r_tmp1);
331  LoadValueDirectWideFixed(rl_src2, r_tmp2);
332  // Swap operands and condition code to prevent use of zero flag.
333  if (ccode == kCondLe || ccode == kCondGt) {
334    // Compute (r3:r2) = (r3:r2) - (r1:r0)
335    OpRegReg(kOpSub, rs_r2, rs_r0);  // r2 = r2 - r0
336    OpRegReg(kOpSbc, rs_r3, rs_r1);  // r3 = r3 - r1 - CF
337  } else {
338    // Compute (r1:r0) = (r1:r0) - (r3:r2)
339    OpRegReg(kOpSub, rs_r0, rs_r2);  // r0 = r0 - r2
340    OpRegReg(kOpSbc, rs_r1, rs_r3);  // r1 = r1 - r3 - CF
341  }
342  switch (ccode) {
343    case kCondEq:
344    case kCondNe:
345      OpRegReg(kOpOr, rs_r0, rs_r1);  // r0 = r0 | r1
346      break;
347    case kCondLe:
348      ccode = kCondGe;
349      break;
350    case kCondGt:
351      ccode = kCondLt;
352      break;
353    case kCondLt:
354    case kCondGe:
355      break;
356    default:
357      LOG(FATAL) << "Unexpected ccode: " << ccode;
358  }
359  OpCondBranch(ccode, taken);
360}
361
362void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
363                                          int64_t val, ConditionCode ccode) {
364  int32_t val_lo = Low32Bits(val);
365  int32_t val_hi = High32Bits(val);
366  LIR* taken = &block_label_list_[bb->taken];
367  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
368  bool is_equality_test = ccode == kCondEq || ccode == kCondNe;
369  if (is_equality_test && val != 0) {
370    rl_src1 = ForceTempWide(rl_src1);
371  }
372  RegStorage low_reg = rl_src1.reg.GetLow();
373  RegStorage high_reg = rl_src1.reg.GetHigh();
374
375  if (is_equality_test) {
376    // We can simpolify of comparing for ==, != to 0.
377    if (val == 0) {
378      if (IsTemp(low_reg)) {
379        OpRegReg(kOpOr, low_reg, high_reg);
380        // We have now changed it; ignore the old values.
381        Clobber(rl_src1.reg);
382      } else {
383        RegStorage t_reg = AllocTemp();
384        OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
385        FreeTemp(t_reg);
386      }
387      OpCondBranch(ccode, taken);
388      return;
389    }
390
391    // Need to compute the actual value for ==, !=.
392    OpRegImm(kOpSub, low_reg, val_lo);
393    NewLIR2(kX86Sbb32RI, high_reg.GetReg(), val_hi);
394    OpRegReg(kOpOr, high_reg, low_reg);
395    Clobber(rl_src1.reg);
396  } else if (ccode == kCondLe || ccode == kCondGt) {
397    // Swap operands and condition code to prevent use of zero flag.
398    RegStorage tmp = AllocTypedTempWide(false, kCoreReg);
399    LoadConstantWide(tmp, val);
400    OpRegReg(kOpSub, tmp.GetLow(), low_reg);
401    OpRegReg(kOpSbc, tmp.GetHigh(), high_reg);
402    ccode = (ccode == kCondLe) ? kCondGe : kCondLt;
403    FreeTemp(tmp);
404  } else {
405    // We can use a compare for the low word to set CF.
406    OpRegImm(kOpCmp, low_reg, val_lo);
407    if (IsTemp(high_reg)) {
408      NewLIR2(kX86Sbb32RI, high_reg.GetReg(), val_hi);
409      // We have now changed it; ignore the old values.
410      Clobber(rl_src1.reg);
411    } else {
412      // mov temp_reg, high_reg; sbb temp_reg, high_constant
413      RegStorage t_reg = AllocTemp();
414      OpRegCopy(t_reg, high_reg);
415      NewLIR2(kX86Sbb32RI, t_reg.GetReg(), val_hi);
416      FreeTemp(t_reg);
417    }
418  }
419
420  OpCondBranch(ccode, taken);
421}
422
423void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
424  // It does not make sense to calculate magic and shift for zero divisor.
425  DCHECK_NE(divisor, 0);
426
427  /* According to H.S.Warren's Hacker's Delight Chapter 10 and
428   * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
429   * The magic number M and shift S can be calculated in the following way:
430   * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
431   * where divisor(d) >=2.
432   * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
433   * where divisor(d) <= -2.
434   * Thus nc can be calculated like:
435   * nc = 2^31 + 2^31 % d - 1, where d >= 2
436   * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
437   *
438   * So the shift p is the smallest p satisfying
439   * 2^p > nc * (d - 2^p % d), where d >= 2
440   * 2^p > nc * (d + 2^p % d), where d <= -2.
441   *
442   * the magic number M is calcuated by
443   * M = (2^p + d - 2^p % d) / d, where d >= 2
444   * M = (2^p - d - 2^p % d) / d, where d <= -2.
445   *
446   * Notice that p is always bigger than or equal to 32, so we just return 32-p as
447   * the shift number S.
448   */
449
450  int32_t p = 31;
451  const uint32_t two31 = 0x80000000U;
452
453  // Initialize the computations.
454  uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
455  uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
456  uint32_t abs_nc = tmp - 1 - tmp % abs_d;
457  uint32_t quotient1 = two31 / abs_nc;
458  uint32_t remainder1 = two31 % abs_nc;
459  uint32_t quotient2 = two31 / abs_d;
460  uint32_t remainder2 = two31 % abs_d;
461
462  /*
463   * To avoid handling both positive and negative divisor, Hacker's Delight
464   * introduces a method to handle these 2 cases together to avoid duplication.
465   */
466  uint32_t delta;
467  do {
468    p++;
469    quotient1 = 2 * quotient1;
470    remainder1 = 2 * remainder1;
471    if (remainder1 >= abs_nc) {
472      quotient1++;
473      remainder1 = remainder1 - abs_nc;
474    }
475    quotient2 = 2 * quotient2;
476    remainder2 = 2 * remainder2;
477    if (remainder2 >= abs_d) {
478      quotient2++;
479      remainder2 = remainder2 - abs_d;
480    }
481    delta = abs_d - remainder2;
482  } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
483
484  magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
485  shift = p - 32;
486}
487
488RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div) {
489  LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
490  return rl_dest;
491}
492
493RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
494                                     int imm, bool is_div) {
495  // Use a multiply (and fixup) to perform an int div/rem by a constant.
496
497  // We have to use fixed registers, so flush all the temps.
498  FlushAllRegs();
499  LockCallTemps();  // Prepare for explicit register usage.
500
501  // Assume that the result will be in EDX.
502  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_r2, INVALID_SREG, INVALID_SREG};
503
504  // handle div/rem by 1 special case.
505  if (imm == 1) {
506    if (is_div) {
507      // x / 1 == x.
508      StoreValue(rl_result, rl_src);
509    } else {
510      // x % 1 == 0.
511      LoadConstantNoClobber(rs_r0, 0);
512      // For this case, return the result in EAX.
513      rl_result.reg.SetReg(r0);
514    }
515  } else if (imm == -1) {  // handle 0x80000000 / -1 special case.
516    if (is_div) {
517      LIR *minint_branch = 0;
518      LoadValueDirectFixed(rl_src, rs_r0);
519      OpRegImm(kOpCmp, rs_r0, 0x80000000);
520      minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
521
522      // for x != MIN_INT, x / -1 == -x.
523      NewLIR1(kX86Neg32R, r0);
524
525      LIR* branch_around = NewLIR1(kX86Jmp8, 0);
526      // The target for cmp/jmp above.
527      minint_branch->target = NewLIR0(kPseudoTargetLabel);
528      // EAX already contains the right value (0x80000000),
529      branch_around->target = NewLIR0(kPseudoTargetLabel);
530    } else {
531      // x % -1 == 0.
532      LoadConstantNoClobber(rs_r0, 0);
533    }
534    // For this case, return the result in EAX.
535    rl_result.reg.SetReg(r0);
536  } else {
537    CHECK(imm <= -2 || imm >= 2);
538    // Use H.S.Warren's Hacker's Delight Chapter 10 and
539    // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
540    int magic, shift;
541    CalculateMagicAndShift(imm, magic, shift);
542
543    /*
544     * For imm >= 2,
545     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
546     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
547     * For imm <= -2,
548     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
549     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
550     * We implement this algorithm in the following way:
551     * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
552     * 2. if imm > 0 and magic < 0, add numerator to EDX
553     *    if imm < 0 and magic > 0, sub numerator from EDX
554     * 3. if S !=0, SAR S bits for EDX
555     * 4. add 1 to EDX if EDX < 0
556     * 5. Thus, EDX is the quotient
557     */
558
559    // Numerator into EAX.
560    RegStorage numerator_reg;
561    if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
562      // We will need the value later.
563      if (rl_src.location == kLocPhysReg) {
564        // We can use it directly.
565        DCHECK(rl_src.reg.GetReg() != rs_r0.GetReg() && rl_src.reg.GetReg() != rs_r2.GetReg());
566        numerator_reg = rl_src.reg;
567      } else {
568        numerator_reg = rs_r1;
569        LoadValueDirectFixed(rl_src, numerator_reg);
570      }
571      OpRegCopy(rs_r0, numerator_reg);
572    } else {
573      // Only need this once.  Just put it into EAX.
574      LoadValueDirectFixed(rl_src, rs_r0);
575    }
576
577    // EDX = magic.
578    LoadConstantNoClobber(rs_r2, magic);
579
580    // EDX:EAX = magic & dividend.
581    NewLIR1(kX86Imul32DaR, rs_r2.GetReg());
582
583    if (imm > 0 && magic < 0) {
584      // Add numerator to EDX.
585      DCHECK(numerator_reg.Valid());
586      NewLIR2(kX86Add32RR, rs_r2.GetReg(), numerator_reg.GetReg());
587    } else if (imm < 0 && magic > 0) {
588      DCHECK(numerator_reg.Valid());
589      NewLIR2(kX86Sub32RR, rs_r2.GetReg(), numerator_reg.GetReg());
590    }
591
592    // Do we need the shift?
593    if (shift != 0) {
594      // Shift EDX by 'shift' bits.
595      NewLIR2(kX86Sar32RI, rs_r2.GetReg(), shift);
596    }
597
598    // Add 1 to EDX if EDX < 0.
599
600    // Move EDX to EAX.
601    OpRegCopy(rs_r0, rs_r2);
602
603    // Move sign bit to bit 0, zeroing the rest.
604    NewLIR2(kX86Shr32RI, rs_r2.GetReg(), 31);
605
606    // EDX = EDX + EAX.
607    NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r0.GetReg());
608
609    // Quotient is in EDX.
610    if (!is_div) {
611      // We need to compute the remainder.
612      // Remainder is divisor - (quotient * imm).
613      DCHECK(numerator_reg.Valid());
614      OpRegCopy(rs_r0, numerator_reg);
615
616      // EAX = numerator * imm.
617      OpRegRegImm(kOpMul, rs_r2, rs_r2, imm);
618
619      // EDX -= EAX.
620      NewLIR2(kX86Sub32RR, rs_r0.GetReg(), rs_r2.GetReg());
621
622      // For this case, return the result in EAX.
623      rl_result.reg.SetReg(r0);
624    }
625  }
626
627  return rl_result;
628}
629
630RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
631                                  bool is_div) {
632  LOG(FATAL) << "Unexpected use of GenDivRem for x86";
633  return rl_dest;
634}
635
636RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
637                                  RegLocation rl_src2, bool is_div, bool check_zero) {
638  // We have to use fixed registers, so flush all the temps.
639  FlushAllRegs();
640  LockCallTemps();  // Prepare for explicit register usage.
641
642  // Load LHS into EAX.
643  LoadValueDirectFixed(rl_src1, rs_r0);
644
645  // Load RHS into EBX.
646  LoadValueDirectFixed(rl_src2, rs_r1);
647
648  // Copy LHS sign bit into EDX.
649  NewLIR0(kx86Cdq32Da);
650
651  if (check_zero) {
652    // Handle division by zero case.
653    GenDivZeroCheck(rs_r1);
654  }
655
656  // Have to catch 0x80000000/-1 case, or we will get an exception!
657  OpRegImm(kOpCmp, rs_r1, -1);
658  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
659
660  // RHS is -1.
661  OpRegImm(kOpCmp, rs_r0, 0x80000000);
662  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
663
664  // In 0x80000000/-1 case.
665  if (!is_div) {
666    // For DIV, EAX is already right. For REM, we need EDX 0.
667    LoadConstantNoClobber(rs_r2, 0);
668  }
669  LIR* done = NewLIR1(kX86Jmp8, 0);
670
671  // Expected case.
672  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
673  minint_branch->target = minus_one_branch->target;
674  NewLIR1(kX86Idivmod32DaR, rs_r1.GetReg());
675  done->target = NewLIR0(kPseudoTargetLabel);
676
677  // Result is in EAX for div and EDX for rem.
678  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_r0, INVALID_SREG, INVALID_SREG};
679  if (!is_div) {
680    rl_result.reg.SetReg(r2);
681  }
682  return rl_result;
683}
684
685bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
686  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
687
688  // Get the two arguments to the invoke and place them in GP registers.
689  RegLocation rl_src1 = info->args[0];
690  RegLocation rl_src2 = info->args[1];
691  rl_src1 = LoadValue(rl_src1, kCoreReg);
692  rl_src2 = LoadValue(rl_src2, kCoreReg);
693
694  RegLocation rl_dest = InlineTarget(info);
695  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
696
697  /*
698   * If the result register is the same as the second element, then we need to be careful.
699   * The reason is that the first copy will inadvertently clobber the second element with
700   * the first one thus yielding the wrong result. Thus we do a swap in that case.
701   */
702  if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
703    std::swap(rl_src1, rl_src2);
704  }
705
706  // Pick the first integer as min/max.
707  OpRegCopy(rl_result.reg, rl_src1.reg);
708
709  // If the integers are both in the same register, then there is nothing else to do
710  // because they are equal and we have already moved one into the result.
711  if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
712    // It is possible we didn't pick correctly so do the actual comparison now.
713    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
714
715    // Conditionally move the other integer into the destination register.
716    ConditionCode condition_code = is_min ? kCondGt : kCondLt;
717    OpCondRegReg(kOpCmov, condition_code, rl_result.reg, rl_src2.reg);
718  }
719
720  StoreValue(rl_dest, rl_result);
721  return true;
722}
723
724bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
725  RegLocation rl_src_address = info->args[0];  // long address
726  rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
727  RegLocation rl_dest = size == k64 ? InlineTargetWide(info) : InlineTarget(info);
728  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
729  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
730  // Unaligned access is allowed on x86.
731  LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size);
732  if (size == k64) {
733    StoreValueWide(rl_dest, rl_result);
734  } else {
735    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
736    StoreValue(rl_dest, rl_result);
737  }
738  return true;
739}
740
741bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
742  RegLocation rl_src_address = info->args[0];  // long address
743  rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
744  RegLocation rl_src_value = info->args[2];  // [size] value
745  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
746  if (size == k64) {
747    // Unaligned access is allowed on x86.
748    RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
749    StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size);
750  } else {
751    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
752    // Unaligned access is allowed on x86.
753    RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
754    StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size);
755  }
756  return true;
757}
758
759void X86Mir2Lir::OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset) {
760  NewLIR5(kX86Lea32RA, r_base.GetReg(), reg1.GetReg(), reg2.GetReg(), scale, offset);
761}
762
763void X86Mir2Lir::OpTlsCmp(ThreadOffset<4> offset, int val) {
764  DCHECK_EQ(kX86, cu_->instruction_set);
765  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
766}
767
768void X86Mir2Lir::OpTlsCmp(ThreadOffset<8> offset, int val) {
769  DCHECK_EQ(kX86_64, cu_->instruction_set);
770  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
771}
772
773static bool IsInReg(X86Mir2Lir *pMir2Lir, const RegLocation &rl, RegStorage reg) {
774  return rl.reg.Valid() && rl.reg.GetReg() == reg.GetReg() && (pMir2Lir->IsLive(reg) || rl.home);
775}
776
777bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
778  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
779  // Unused - RegLocation rl_src_unsafe = info->args[0];
780  RegLocation rl_src_obj = info->args[1];  // Object - known non-null
781  RegLocation rl_src_offset = info->args[2];  // long low
782  rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
783  RegLocation rl_src_expected = info->args[4];  // int, long or Object
784  // If is_long, high half is in info->args[5]
785  RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
786  // If is_long, high half is in info->args[7]
787
788  if (is_long) {
789    // TODO: avoid unnecessary loads of SI and DI when the values are in registers.
790    // TODO: CFI support.
791    FlushAllRegs();
792    LockCallTemps();
793    RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_rAX, rs_rDX);
794    RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_rBX, rs_rCX);
795    LoadValueDirectWideFixed(rl_src_expected, r_tmp1);
796    LoadValueDirectWideFixed(rl_src_new_value, r_tmp2);
797    NewLIR1(kX86Push32R, rs_rDI.GetReg());
798    MarkTemp(rs_rDI);
799    LockTemp(rs_rDI);
800    NewLIR1(kX86Push32R, rs_rSI.GetReg());
801    MarkTemp(rs_rSI);
802    LockTemp(rs_rSI);
803    const int push_offset = 4 /* push edi */ + 4 /* push esi */;
804    int srcObjSp = IsInReg(this, rl_src_obj, rs_rSI) ? 0
805                : (IsInReg(this, rl_src_obj, rs_rDI) ? 4
806                : (SRegOffset(rl_src_obj.s_reg_low) + push_offset));
807    // FIXME: needs 64-bit update.
808    LoadWordDisp(TargetReg(kSp), srcObjSp, rs_rDI);
809    int srcOffsetSp = IsInReg(this, rl_src_offset, rs_rSI) ? 0
810                   : (IsInReg(this, rl_src_offset, rs_rDI) ? 4
811                   : (SRegOffset(rl_src_offset.s_reg_low) + push_offset));
812    LoadWordDisp(TargetReg(kSp), srcOffsetSp, rs_rSI);
813    NewLIR4(kX86LockCmpxchg64A, rs_rDI.GetReg(), rs_rSI.GetReg(), 0, 0);
814
815    // After a store we need to insert barrier in case of potential load. Since the
816    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
817    GenMemBarrier(kStoreLoad);
818
819    FreeTemp(rs_rSI);
820    UnmarkTemp(rs_rSI);
821    NewLIR1(kX86Pop32R, rs_rSI.GetReg());
822    FreeTemp(rs_rDI);
823    UnmarkTemp(rs_rDI);
824    NewLIR1(kX86Pop32R, rs_rDI.GetReg());
825    FreeCallTemps();
826  } else {
827    // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
828    FlushReg(rs_r0);
829    Clobber(rs_r0);
830    LockTemp(rs_r0);
831
832    RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
833    RegLocation rl_new_value = LoadValue(rl_src_new_value);
834
835    if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
836      // Mark card for object assuming new value is stored.
837      FreeTemp(rs_r0);  // Temporarily release EAX for MarkGCCard().
838      MarkGCCard(rl_new_value.reg, rl_object.reg);
839      LockTemp(rs_r0);
840    }
841
842    RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
843    LoadValueDirect(rl_src_expected, rs_r0);
844    NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0, rl_new_value.reg.GetReg());
845
846    // After a store we need to insert barrier in case of potential load. Since the
847    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
848    GenMemBarrier(kStoreLoad);
849
850    FreeTemp(rs_r0);
851  }
852
853  // Convert ZF to boolean
854  RegLocation rl_dest = InlineTarget(info);  // boolean place for result
855  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
856  RegStorage result_reg = rl_result.reg;
857
858  // SETcc only works with EAX..EDX.
859  if (result_reg.GetRegNum() >= rs_rX86_SP.GetRegNum()) {
860    result_reg = AllocateByteRegister();
861    DCHECK_LT(result_reg.GetRegNum(), rs_rX86_SP.GetRegNum());
862  }
863  NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondZ);
864  NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), result_reg.GetReg());
865  if (IsTemp(result_reg)) {
866    FreeTemp(result_reg);
867  }
868  StoreValue(rl_dest, rl_result);
869  return true;
870}
871
872LIR* X86Mir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
873  CHECK(base_of_code_ != nullptr);
874
875  // Address the start of the method
876  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
877  if (rl_method.wide) {
878    LoadValueDirectWideFixed(rl_method, reg);
879  } else {
880    LoadValueDirectFixed(rl_method, reg);
881  }
882  store_method_addr_used_ = true;
883
884  // Load the proper value from the literal area.
885  // We don't know the proper offset for the value, so pick one that will force
886  // 4 byte offset.  We will fix this up in the assembler later to have the right
887  // value.
888  LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg.GetReg(), reg.GetReg(), 256,
889                    0, 0, target);
890  res->target = target;
891  res->flags.fixup = kFixupLoad;
892  SetMemRefType(res, true, kLiteral);
893  store_method_addr_used_ = true;
894  return res;
895}
896
897LIR* X86Mir2Lir::OpVldm(RegStorage r_base, int count) {
898  LOG(FATAL) << "Unexpected use of OpVldm for x86";
899  return NULL;
900}
901
902LIR* X86Mir2Lir::OpVstm(RegStorage r_base, int count) {
903  LOG(FATAL) << "Unexpected use of OpVstm for x86";
904  return NULL;
905}
906
907void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
908                                               RegLocation rl_result, int lit,
909                                               int first_bit, int second_bit) {
910  RegStorage t_reg = AllocTemp();
911  OpRegRegImm(kOpLsl, t_reg, rl_src.reg, second_bit - first_bit);
912  OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, t_reg);
913  FreeTemp(t_reg);
914  if (first_bit != 0) {
915    OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
916  }
917}
918
919void X86Mir2Lir::GenDivZeroCheckWide(RegStorage reg) {
920  if (Gen64Bit()) {
921    DCHECK(reg.Is64Bit());
922
923    NewLIR2(kX86Cmp64RI8, reg.GetReg(), 0);
924  } else {
925    DCHECK(reg.IsPair());
926
927    // We are not supposed to clobber the incoming storage, so allocate a temporary.
928    RegStorage t_reg = AllocTemp();
929    // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
930    OpRegRegReg(kOpOr, t_reg, reg.GetLow(), reg.GetHigh());
931    // The temp is no longer needed so free it at this time.
932    FreeTemp(t_reg);
933  }
934
935  // In case of zero, throw ArithmeticException.
936  GenDivZeroCheck(kCondEq);
937}
938
939void X86Mir2Lir::GenArrayBoundsCheck(RegStorage index,
940                                     RegStorage array_base,
941                                     int len_offset) {
942  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
943   public:
944    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch,
945                             RegStorage index, RegStorage array_base, int32_t len_offset)
946        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
947          index_(index), array_base_(array_base), len_offset_(len_offset) {
948    }
949
950    void Compile() OVERRIDE {
951      m2l_->ResetRegPool();
952      m2l_->ResetDefTracking();
953      GenerateTargetLabel(kPseudoThrowTarget);
954
955      RegStorage new_index = index_;
956      // Move index out of kArg1, either directly to kArg0, or to kArg2.
957      if (index_.GetReg() == m2l_->TargetReg(kArg1).GetReg()) {
958        if (array_base_.GetReg() == m2l_->TargetReg(kArg0).GetReg()) {
959          m2l_->OpRegCopy(m2l_->TargetReg(kArg2), index_);
960          new_index = m2l_->TargetReg(kArg2);
961        } else {
962          m2l_->OpRegCopy(m2l_->TargetReg(kArg0), index_);
963          new_index = m2l_->TargetReg(kArg0);
964        }
965      }
966      // Load array length to kArg1.
967      m2l_->OpRegMem(kOpMov, m2l_->TargetReg(kArg1), array_base_, len_offset_);
968      if (Is64BitInstructionSet(cu_->instruction_set)) {
969        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
970                                      new_index, m2l_->TargetReg(kArg1), true);
971      } else {
972        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
973                                      new_index, m2l_->TargetReg(kArg1), true);
974      }
975    }
976
977   private:
978    const RegStorage index_;
979    const RegStorage array_base_;
980    const int32_t len_offset_;
981  };
982
983  OpRegMem(kOpCmp, index, array_base, len_offset);
984  LIR* branch = OpCondBranch(kCondUge, nullptr);
985  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch,
986                                                    index, array_base, len_offset));
987}
988
989void X86Mir2Lir::GenArrayBoundsCheck(int32_t index,
990                                     RegStorage array_base,
991                                     int32_t len_offset) {
992  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
993   public:
994    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch,
995                             int32_t index, RegStorage array_base, int32_t len_offset)
996        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
997          index_(index), array_base_(array_base), len_offset_(len_offset) {
998    }
999
1000    void Compile() OVERRIDE {
1001      m2l_->ResetRegPool();
1002      m2l_->ResetDefTracking();
1003      GenerateTargetLabel(kPseudoThrowTarget);
1004
1005      // Load array length to kArg1.
1006      m2l_->OpRegMem(kOpMov, m2l_->TargetReg(kArg1), array_base_, len_offset_);
1007      m2l_->LoadConstant(m2l_->TargetReg(kArg0), index_);
1008      if (Is64BitInstructionSet(cu_->instruction_set)) {
1009        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
1010                                      m2l_->TargetReg(kArg0), m2l_->TargetReg(kArg1), true);
1011      } else {
1012        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
1013                                      m2l_->TargetReg(kArg0), m2l_->TargetReg(kArg1), true);
1014      }
1015    }
1016
1017   private:
1018    const int32_t index_;
1019    const RegStorage array_base_;
1020    const int32_t len_offset_;
1021  };
1022
1023  NewLIR3(IS_SIMM8(index) ? kX86Cmp32MI8 : kX86Cmp32MI, array_base.GetReg(), len_offset, index);
1024  LIR* branch = OpCondBranch(kCondLs, nullptr);
1025  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch,
1026                                                    index, array_base, len_offset));
1027}
1028
1029// Test suspend flag, return target of taken suspend branch
1030LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
1031  if (Is64BitInstructionSet(cu_->instruction_set)) {
1032    OpTlsCmp(Thread::ThreadFlagsOffset<8>(), 0);
1033  } else {
1034    OpTlsCmp(Thread::ThreadFlagsOffset<4>(), 0);
1035  }
1036  return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
1037}
1038
1039// Decrement register and branch on condition
1040LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
1041  OpRegImm(kOpSub, reg, 1);
1042  return OpCondBranch(c_code, target);
1043}
1044
1045bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1046                                    RegLocation rl_src, RegLocation rl_dest, int lit) {
1047  LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
1048  return false;
1049}
1050
1051bool X86Mir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1052  LOG(FATAL) << "Unexpected use of easyMultiply in x86";
1053  return false;
1054}
1055
1056LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
1057  LOG(FATAL) << "Unexpected use of OpIT in x86";
1058  return NULL;
1059}
1060
1061void X86Mir2Lir::OpEndIT(LIR* it) {
1062  LOG(FATAL) << "Unexpected use of OpEndIT in x86";
1063}
1064
1065void X86Mir2Lir::GenImulRegImm(RegStorage dest, RegStorage src, int val) {
1066  switch (val) {
1067    case 0:
1068      NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
1069      break;
1070    case 1:
1071      OpRegCopy(dest, src);
1072      break;
1073    default:
1074      OpRegRegImm(kOpMul, dest, src, val);
1075      break;
1076  }
1077}
1078
1079void X86Mir2Lir::GenImulMemImm(RegStorage dest, int sreg, int displacement, int val) {
1080  LIR *m;
1081  switch (val) {
1082    case 0:
1083      NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
1084      break;
1085    case 1:
1086      LoadBaseDisp(rs_rX86_SP, displacement, dest, k32);
1087      break;
1088    default:
1089      m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest.GetReg(),
1090                  rs_rX86_SP.GetReg(), displacement, val);
1091      AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
1092      break;
1093  }
1094}
1095
1096void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1097                            RegLocation rl_src2) {
1098  if (Gen64Bit()) {
1099    if (rl_src1.is_const) {
1100      std::swap(rl_src1, rl_src2);
1101    }
1102    // Are we multiplying by a constant?
1103    if (rl_src2.is_const) {
1104      int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1105      if (val == 0) {
1106        RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1107        OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
1108        StoreValueWide(rl_dest, rl_result);
1109        return;
1110      } else if (val == 1) {
1111        StoreValueWide(rl_dest, rl_src1);
1112        return;
1113      } else if (val == 2) {
1114        GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
1115        return;
1116      } else if (IsPowerOfTwo(val)) {
1117        int shift_amount = LowestSetBit(val);
1118        if (!BadOverlap(rl_src1, rl_dest)) {
1119          rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1120          RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
1121                                                    rl_src1, shift_amount);
1122          StoreValueWide(rl_dest, rl_result);
1123          return;
1124        }
1125      }
1126      // Falltrhough to handle.
1127    }
1128    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1129    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1130    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1131    if (rl_result.reg.GetReg() == rl_src1.reg.GetReg() &&
1132        rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
1133      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
1134    } else if (rl_result.reg.GetReg() != rl_src1.reg.GetReg() &&
1135               rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
1136      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src1.reg.GetReg());
1137    } else if (rl_result.reg.GetReg() == rl_src1.reg.GetReg() &&
1138               rl_result.reg.GetReg() != rl_src2.reg.GetReg()) {
1139      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
1140    } else {
1141      OpRegCopy(rl_result.reg, rl_src1.reg);
1142      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
1143    }
1144    StoreValueWide(rl_dest, rl_result);
1145    return;
1146  }
1147
1148  if (rl_src1.is_const) {
1149    std::swap(rl_src1, rl_src2);
1150  }
1151  // Are we multiplying by a constant?
1152  if (rl_src2.is_const) {
1153    // Do special compare/branch against simple const operand
1154    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1155    if (val == 0) {
1156      RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1157      OpRegReg(kOpXor, rl_result.reg.GetLow(), rl_result.reg.GetLow());
1158      OpRegReg(kOpXor, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());
1159      StoreValueWide(rl_dest, rl_result);
1160      return;
1161    } else if (val == 1) {
1162      StoreValueWide(rl_dest, rl_src1);
1163      return;
1164    } else if (val == 2) {
1165      GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
1166      return;
1167    } else if (IsPowerOfTwo(val)) {
1168      int shift_amount = LowestSetBit(val);
1169      if (!BadOverlap(rl_src1, rl_dest)) {
1170        rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1171        RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
1172                                                  rl_src1, shift_amount);
1173        StoreValueWide(rl_dest, rl_result);
1174        return;
1175      }
1176    }
1177
1178    // Okay, just bite the bullet and do it.
1179    int32_t val_lo = Low32Bits(val);
1180    int32_t val_hi = High32Bits(val);
1181    FlushAllRegs();
1182    LockCallTemps();  // Prepare for explicit register usage.
1183    rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1184    bool src1_in_reg = rl_src1.location == kLocPhysReg;
1185    int displacement = SRegOffset(rl_src1.s_reg_low);
1186
1187    // ECX <- 1H * 2L
1188    // EAX <- 1L * 2H
1189    if (src1_in_reg) {
1190      GenImulRegImm(rs_r1, rl_src1.reg.GetHigh(), val_lo);
1191      GenImulRegImm(rs_r0, rl_src1.reg.GetLow(), val_hi);
1192    } else {
1193      GenImulMemImm(rs_r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
1194      GenImulMemImm(rs_r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
1195    }
1196
1197    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1198    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r0.GetReg());
1199
1200    // EAX <- 2L
1201    LoadConstantNoClobber(rs_r0, val_lo);
1202
1203    // EDX:EAX <- 2L * 1L (double precision)
1204    if (src1_in_reg) {
1205      NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
1206    } else {
1207      LIR *m = NewLIR2(kX86Mul32DaM, rs_rX86_SP.GetReg(), displacement + LOWORD_OFFSET);
1208      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1209                              true /* is_load */, true /* is_64bit */);
1210    }
1211
1212    // EDX <- EDX + ECX (add high words)
1213    NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r1.GetReg());
1214
1215    // Result is EDX:EAX
1216    RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
1217                             RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
1218    StoreValueWide(rl_dest, rl_result);
1219    return;
1220  }
1221
1222  // Nope.  Do it the hard way
1223  // Check for V*V.  We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
1224  bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
1225                   mir_graph_->SRegToVReg(rl_src2.s_reg_low);
1226
1227  FlushAllRegs();
1228  LockCallTemps();  // Prepare for explicit register usage.
1229  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1230  rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1231
1232  // At this point, the VRs are in their home locations.
1233  bool src1_in_reg = rl_src1.location == kLocPhysReg;
1234  bool src2_in_reg = rl_src2.location == kLocPhysReg;
1235
1236  // ECX <- 1H
1237  if (src1_in_reg) {
1238    NewLIR2(kX86Mov32RR, rs_r1.GetReg(), rl_src1.reg.GetHighReg());
1239  } else {
1240    LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, rs_r1, k32);
1241  }
1242
1243  if (is_square) {
1244    // Take advantage of the fact that the values are the same.
1245    // ECX <- ECX * 2L  (1H * 2L)
1246    if (src2_in_reg) {
1247      NewLIR2(kX86Imul32RR, rs_r1.GetReg(), rl_src2.reg.GetLowReg());
1248    } else {
1249      int displacement = SRegOffset(rl_src2.s_reg_low);
1250      LIR *m = NewLIR3(kX86Imul32RM, rs_r1.GetReg(), rs_rX86_SP.GetReg(),
1251                       displacement + LOWORD_OFFSET);
1252      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1253                              true /* is_load */, true /* is_64bit */);
1254    }
1255
1256    // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1257    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r1.GetReg());
1258  } else {
1259    // EAX <- 2H
1260    if (src2_in_reg) {
1261      NewLIR2(kX86Mov32RR, rs_r0.GetReg(), rl_src2.reg.GetHighReg());
1262    } else {
1263      LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, rs_r0, k32);
1264    }
1265
1266    // EAX <- EAX * 1L  (2H * 1L)
1267    if (src1_in_reg) {
1268      NewLIR2(kX86Imul32RR, rs_r0.GetReg(), rl_src1.reg.GetLowReg());
1269    } else {
1270      int displacement = SRegOffset(rl_src1.s_reg_low);
1271      LIR *m = NewLIR3(kX86Imul32RM, rs_r0.GetReg(), rs_rX86_SP.GetReg(),
1272                       displacement + LOWORD_OFFSET);
1273      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1274                              true /* is_load */, true /* is_64bit */);
1275    }
1276
1277    // ECX <- ECX * 2L  (1H * 2L)
1278    if (src2_in_reg) {
1279      NewLIR2(kX86Imul32RR, rs_r1.GetReg(), rl_src2.reg.GetLowReg());
1280    } else {
1281      int displacement = SRegOffset(rl_src2.s_reg_low);
1282      LIR *m = NewLIR3(kX86Imul32RM, rs_r1.GetReg(), rs_rX86_SP.GetReg(),
1283                       displacement + LOWORD_OFFSET);
1284      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1285                              true /* is_load */, true /* is_64bit */);
1286    }
1287
1288    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1289    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r0.GetReg());
1290  }
1291
1292  // EAX <- 2L
1293  if (src2_in_reg) {
1294    NewLIR2(kX86Mov32RR, rs_r0.GetReg(), rl_src2.reg.GetLowReg());
1295  } else {
1296    LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, rs_r0, k32);
1297  }
1298
1299  // EDX:EAX <- 2L * 1L (double precision)
1300  if (src1_in_reg) {
1301    NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
1302  } else {
1303    int displacement = SRegOffset(rl_src1.s_reg_low);
1304    LIR *m = NewLIR2(kX86Mul32DaM, rs_rX86_SP.GetReg(), displacement + LOWORD_OFFSET);
1305    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1306                            true /* is_load */, true /* is_64bit */);
1307  }
1308
1309  // EDX <- EDX + ECX (add high words)
1310  NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r1.GetReg());
1311
1312  // Result is EDX:EAX
1313  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
1314                           RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
1315  StoreValueWide(rl_dest, rl_result);
1316}
1317
1318void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1319                                   Instruction::Code op) {
1320  DCHECK_EQ(rl_dest.location, kLocPhysReg);
1321  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1322  if (rl_src.location == kLocPhysReg) {
1323    // Both operands are in registers.
1324    // But we must ensure that rl_src is in pair
1325    if (Gen64Bit()) {
1326      NewLIR2(x86op, rl_dest.reg.GetReg(), rl_src.reg.GetReg());
1327    } else {
1328      rl_src = LoadValueWide(rl_src, kCoreReg);
1329      if (rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
1330        // The registers are the same, so we would clobber it before the use.
1331        RegStorage temp_reg = AllocTemp();
1332        OpRegCopy(temp_reg, rl_dest.reg);
1333        rl_src.reg.SetHighReg(temp_reg.GetReg());
1334      }
1335      NewLIR2(x86op, rl_dest.reg.GetLowReg(), rl_src.reg.GetLowReg());
1336
1337      x86op = GetOpcode(op, rl_dest, rl_src, true);
1338      NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
1339      FreeTemp(rl_src.reg);  // ???
1340    }
1341    return;
1342  }
1343
1344  // RHS is in memory.
1345  DCHECK((rl_src.location == kLocDalvikFrame) ||
1346         (rl_src.location == kLocCompilerTemp));
1347  int r_base = TargetReg(kSp).GetReg();
1348  int displacement = SRegOffset(rl_src.s_reg_low);
1349
1350  LIR *lir = NewLIR3(x86op, Gen64Bit() ? rl_dest.reg.GetReg() : rl_dest.reg.GetLowReg(), r_base, displacement + LOWORD_OFFSET);
1351  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1352                          true /* is_load */, true /* is64bit */);
1353  if (!Gen64Bit()) {
1354    x86op = GetOpcode(op, rl_dest, rl_src, true);
1355    lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), r_base, displacement + HIWORD_OFFSET);
1356  }
1357  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1358                          true /* is_load */, true /* is64bit */);
1359}
1360
1361void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1362  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
1363  if (rl_dest.location == kLocPhysReg) {
1364    // Ensure we are in a register pair
1365    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1366
1367    rl_src = UpdateLocWideTyped(rl_src, kCoreReg);
1368    GenLongRegOrMemOp(rl_result, rl_src, op);
1369    StoreFinalValueWide(rl_dest, rl_result);
1370    return;
1371  }
1372
1373  // It wasn't in registers, so it better be in memory.
1374  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1375         (rl_dest.location == kLocCompilerTemp));
1376  rl_src = LoadValueWide(rl_src, kCoreReg);
1377
1378  // Operate directly into memory.
1379  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1380  int r_base = TargetReg(kSp).GetReg();
1381  int displacement = SRegOffset(rl_dest.s_reg_low);
1382
1383  LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET,
1384                     Gen64Bit() ? rl_src.reg.GetReg() : rl_src.reg.GetLowReg());
1385  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1386                          true /* is_load */, true /* is64bit */);
1387  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1388                          false /* is_load */, true /* is64bit */);
1389  if (!Gen64Bit()) {
1390    x86op = GetOpcode(op, rl_dest, rl_src, true);
1391    lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
1392  }
1393  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1394                          true /* is_load */, true /* is64bit */);
1395  AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1396                          false /* is_load */, true /* is64bit */);
1397  FreeTemp(rl_src.reg);
1398}
1399
1400void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1401                              RegLocation rl_src2, Instruction::Code op,
1402                              bool is_commutative) {
1403  // Is this really a 2 operand operation?
1404  switch (op) {
1405    case Instruction::ADD_LONG_2ADDR:
1406    case Instruction::SUB_LONG_2ADDR:
1407    case Instruction::AND_LONG_2ADDR:
1408    case Instruction::OR_LONG_2ADDR:
1409    case Instruction::XOR_LONG_2ADDR:
1410      if (GenerateTwoOperandInstructions()) {
1411        GenLongArith(rl_dest, rl_src2, op);
1412        return;
1413      }
1414      break;
1415
1416    default:
1417      break;
1418  }
1419
1420  if (rl_dest.location == kLocPhysReg) {
1421    RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1422
1423    // We are about to clobber the LHS, so it needs to be a temp.
1424    rl_result = ForceTempWide(rl_result);
1425
1426    // Perform the operation using the RHS.
1427    rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1428    GenLongRegOrMemOp(rl_result, rl_src2, op);
1429
1430    // And now record that the result is in the temp.
1431    StoreFinalValueWide(rl_dest, rl_result);
1432    return;
1433  }
1434
1435  // It wasn't in registers, so it better be in memory.
1436  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1437         (rl_dest.location == kLocCompilerTemp));
1438  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1439  rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1440
1441  // Get one of the source operands into temporary register.
1442  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1443  if (Gen64Bit()) {
1444    if (IsTemp(rl_src1.reg)) {
1445      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1446    } else if (is_commutative) {
1447      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1448      // We need at least one of them to be a temporary.
1449      if (!IsTemp(rl_src2.reg)) {
1450        rl_src1 = ForceTempWide(rl_src1);
1451        GenLongRegOrMemOp(rl_src1, rl_src2, op);
1452      } else {
1453        GenLongRegOrMemOp(rl_src2, rl_src1, op);
1454        StoreFinalValueWide(rl_dest, rl_src2);
1455        return;
1456      }
1457    } else {
1458      // Need LHS to be the temp.
1459      rl_src1 = ForceTempWide(rl_src1);
1460      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1461    }
1462  } else {
1463    if (IsTemp(rl_src1.reg.GetLow()) && IsTemp(rl_src1.reg.GetHigh())) {
1464      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1465    } else if (is_commutative) {
1466      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1467      // We need at least one of them to be a temporary.
1468      if (!(IsTemp(rl_src2.reg.GetLow()) && IsTemp(rl_src2.reg.GetHigh()))) {
1469        rl_src1 = ForceTempWide(rl_src1);
1470        GenLongRegOrMemOp(rl_src1, rl_src2, op);
1471      } else {
1472        GenLongRegOrMemOp(rl_src2, rl_src1, op);
1473        StoreFinalValueWide(rl_dest, rl_src2);
1474        return;
1475      }
1476    } else {
1477      // Need LHS to be the temp.
1478      rl_src1 = ForceTempWide(rl_src1);
1479      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1480    }
1481  }
1482
1483  StoreFinalValueWide(rl_dest, rl_src1);
1484}
1485
1486void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
1487                            RegLocation rl_src1, RegLocation rl_src2) {
1488  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1489}
1490
1491void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1492                            RegLocation rl_src1, RegLocation rl_src2) {
1493  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1494}
1495
1496void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1497                            RegLocation rl_src1, RegLocation rl_src2) {
1498  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1499}
1500
1501void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1502                           RegLocation rl_src1, RegLocation rl_src2) {
1503  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1504}
1505
1506void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1507                            RegLocation rl_src1, RegLocation rl_src2) {
1508  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1509}
1510
1511void X86Mir2Lir::GenNotLong(RegLocation rl_dest, RegLocation rl_src) {
1512  if (Gen64Bit()) {
1513    rl_src = LoadValueWide(rl_src, kCoreReg);
1514    RegLocation rl_result;
1515    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1516    OpRegCopy(rl_result.reg, rl_src.reg);
1517    OpReg(kOpNot, rl_result.reg);
1518    StoreValueWide(rl_dest, rl_result);
1519  } else {
1520    LOG(FATAL) << "Unexpected use GenNotLong()";
1521  }
1522}
1523
1524void X86Mir2Lir::GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1525                           RegLocation rl_src2, bool is_div) {
1526  if (!Gen64Bit()) {
1527    LOG(FATAL) << "Unexpected use GenDivRemLong()";
1528    return;
1529  }
1530
1531  // We have to use fixed registers, so flush all the temps.
1532  FlushAllRegs();
1533  LockCallTemps();  // Prepare for explicit register usage.
1534
1535  // Load LHS into RAX.
1536  LoadValueDirectWideFixed(rl_src1, rs_r0q);
1537
1538  // Load RHS into RCX.
1539  LoadValueDirectWideFixed(rl_src2, rs_r1q);
1540
1541  // Copy LHS sign bit into RDX.
1542  NewLIR0(kx86Cqo64Da);
1543
1544  // Handle division by zero case.
1545  GenDivZeroCheckWide(rs_r1q);
1546
1547  // Have to catch 0x8000000000000000/-1 case, or we will get an exception!
1548  NewLIR2(kX86Cmp64RI8, rs_r1q.GetReg(), -1);
1549  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
1550
1551  // RHS is -1.
1552  LoadConstantWide(rs_r3q, 0x8000000000000000);
1553  NewLIR2(kX86Cmp64RR, rs_r0q.GetReg(), rs_r3q.GetReg());
1554  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
1555
1556  // In 0x8000000000000000/-1 case.
1557  if (!is_div) {
1558    // For DIV, RAX is already right. For REM, we need RDX 0.
1559    NewLIR2(kX86Xor64RR, rs_r2q.GetReg(), rs_r2q.GetReg());
1560  }
1561  LIR* done = NewLIR1(kX86Jmp8, 0);
1562
1563  // Expected case.
1564  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
1565  minint_branch->target = minus_one_branch->target;
1566  NewLIR1(kX86Idivmod64DaR, rs_r1q.GetReg());
1567  done->target = NewLIR0(kPseudoTargetLabel);
1568
1569  // Result is in RAX for div and RDX for rem.
1570  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, rs_r0q, INVALID_SREG, INVALID_SREG};
1571  if (!is_div) {
1572    rl_result.reg.SetReg(r2q);
1573  }
1574
1575  StoreValueWide(rl_dest, rl_result);
1576}
1577
1578void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1579  rl_src = LoadValueWide(rl_src, kCoreReg);
1580  RegLocation rl_result;
1581  if (Gen64Bit()) {
1582    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1583    OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1584  } else {
1585    rl_result = ForceTempWide(rl_src);
1586    if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
1587        ((rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()))) {
1588      // The registers are the same, so we would clobber it before the use.
1589      RegStorage temp_reg = AllocTemp();
1590      OpRegCopy(temp_reg, rl_result.reg);
1591      rl_result.reg.SetHighReg(temp_reg.GetReg());
1592    }
1593    OpRegReg(kOpNeg, rl_result.reg.GetLow(), rl_result.reg.GetLow());    // rLow = -rLow
1594    OpRegImm(kOpAdc, rl_result.reg.GetHigh(), 0);                   // rHigh = rHigh + CF
1595    OpRegReg(kOpNeg, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());  // rHigh = -rHigh
1596  }
1597  StoreValueWide(rl_dest, rl_result);
1598}
1599
1600void X86Mir2Lir::OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset) {
1601  DCHECK_EQ(kX86, cu_->instruction_set);
1602  X86OpCode opcode = kX86Bkpt;
1603  switch (op) {
1604  case kOpCmp: opcode = kX86Cmp32RT;  break;
1605  case kOpMov: opcode = kX86Mov32RT;  break;
1606  default:
1607    LOG(FATAL) << "Bad opcode: " << op;
1608    break;
1609  }
1610  NewLIR2(opcode, r_dest.GetReg(), thread_offset.Int32Value());
1611}
1612
1613void X86Mir2Lir::OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset) {
1614  DCHECK_EQ(kX86_64, cu_->instruction_set);
1615  X86OpCode opcode = kX86Bkpt;
1616  if (Gen64Bit() && r_dest.Is64BitSolo()) {
1617    switch (op) {
1618    case kOpCmp: opcode = kX86Cmp64RT;  break;
1619    case kOpMov: opcode = kX86Mov64RT;  break;
1620    default:
1621      LOG(FATAL) << "Bad opcode(OpRegThreadMem 64): " << op;
1622      break;
1623    }
1624  } else {
1625    switch (op) {
1626    case kOpCmp: opcode = kX86Cmp32RT;  break;
1627    case kOpMov: opcode = kX86Mov32RT;  break;
1628    default:
1629      LOG(FATAL) << "Bad opcode: " << op;
1630      break;
1631    }
1632  }
1633  NewLIR2(opcode, r_dest.GetReg(), thread_offset.Int32Value());
1634}
1635
1636/*
1637 * Generate array load
1638 */
1639void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1640                             RegLocation rl_index, RegLocation rl_dest, int scale) {
1641  RegisterClass reg_class = RegClassBySize(size);
1642  int len_offset = mirror::Array::LengthOffset().Int32Value();
1643  RegLocation rl_result;
1644  rl_array = LoadValue(rl_array, kRefReg);
1645
1646  int data_offset;
1647  if (size == k64 || size == kDouble) {
1648    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1649  } else {
1650    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1651  }
1652
1653  bool constant_index = rl_index.is_const;
1654  int32_t constant_index_value = 0;
1655  if (!constant_index) {
1656    rl_index = LoadValue(rl_index, kCoreReg);
1657  } else {
1658    constant_index_value = mir_graph_->ConstantValue(rl_index);
1659    // If index is constant, just fold it into the data offset
1660    data_offset += constant_index_value << scale;
1661    // treat as non array below
1662    rl_index.reg = RegStorage::InvalidReg();
1663  }
1664
1665  /* null object? */
1666  GenNullCheck(rl_array.reg, opt_flags);
1667
1668  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1669    if (constant_index) {
1670      GenArrayBoundsCheck(constant_index_value, rl_array.reg, len_offset);
1671    } else {
1672      GenArrayBoundsCheck(rl_index.reg, rl_array.reg, len_offset);
1673    }
1674  }
1675  rl_result = EvalLoc(rl_dest, reg_class, true);
1676  LoadBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_result.reg, size);
1677  if ((size == k64) || (size == kDouble)) {
1678    StoreValueWide(rl_dest, rl_result);
1679  } else {
1680    StoreValue(rl_dest, rl_result);
1681  }
1682}
1683
1684/*
1685 * Generate array store
1686 *
1687 */
1688void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1689                             RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1690  RegisterClass reg_class = RegClassBySize(size);
1691  int len_offset = mirror::Array::LengthOffset().Int32Value();
1692  int data_offset;
1693
1694  if (size == k64 || size == kDouble) {
1695    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1696  } else {
1697    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1698  }
1699
1700  rl_array = LoadValue(rl_array, kRefReg);
1701  bool constant_index = rl_index.is_const;
1702  int32_t constant_index_value = 0;
1703  if (!constant_index) {
1704    rl_index = LoadValue(rl_index, kCoreReg);
1705  } else {
1706    // If index is constant, just fold it into the data offset
1707    constant_index_value = mir_graph_->ConstantValue(rl_index);
1708    data_offset += constant_index_value << scale;
1709    // treat as non array below
1710    rl_index.reg = RegStorage::InvalidReg();
1711  }
1712
1713  /* null object? */
1714  GenNullCheck(rl_array.reg, opt_flags);
1715
1716  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1717    if (constant_index) {
1718      GenArrayBoundsCheck(constant_index_value, rl_array.reg, len_offset);
1719    } else {
1720      GenArrayBoundsCheck(rl_index.reg, rl_array.reg, len_offset);
1721    }
1722  }
1723  if ((size == k64) || (size == kDouble)) {
1724    rl_src = LoadValueWide(rl_src, reg_class);
1725  } else {
1726    rl_src = LoadValue(rl_src, reg_class);
1727  }
1728  // If the src reg can't be byte accessed, move it to a temp first.
1729  if ((size == kSignedByte || size == kUnsignedByte) &&
1730      rl_src.reg.GetRegNum() >= rs_rX86_SP.GetRegNum()) {
1731    RegStorage temp = AllocTemp();
1732    OpRegCopy(temp, rl_src.reg);
1733    StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, temp, size);
1734  } else {
1735    StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_src.reg, size);
1736  }
1737  if (card_mark) {
1738    // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
1739    if (!constant_index) {
1740      FreeTemp(rl_index.reg);
1741    }
1742    MarkGCCard(rl_src.reg, rl_array.reg);
1743  }
1744}
1745
1746RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1747                                          RegLocation rl_src, int shift_amount) {
1748  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1749  if (Gen64Bit()) {
1750    OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1751    switch (opcode) {
1752      case Instruction::SHL_LONG:
1753      case Instruction::SHL_LONG_2ADDR:
1754        op = kOpLsl;
1755        break;
1756      case Instruction::SHR_LONG:
1757      case Instruction::SHR_LONG_2ADDR:
1758        op = kOpAsr;
1759        break;
1760      case Instruction::USHR_LONG:
1761      case Instruction::USHR_LONG_2ADDR:
1762        op = kOpLsr;
1763        break;
1764      default:
1765        LOG(FATAL) << "Unexpected case";
1766    }
1767    OpRegRegImm(op, rl_result.reg, rl_src.reg, shift_amount);
1768  } else {
1769    switch (opcode) {
1770      case Instruction::SHL_LONG:
1771      case Instruction::SHL_LONG_2ADDR:
1772        DCHECK_NE(shift_amount, 1);  // Prevent a double store from happening.
1773        if (shift_amount == 32) {
1774          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1775          LoadConstant(rl_result.reg.GetLow(), 0);
1776        } else if (shift_amount > 31) {
1777          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1778          NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
1779          LoadConstant(rl_result.reg.GetLow(), 0);
1780        } else {
1781          OpRegCopy(rl_result.reg, rl_src.reg);
1782          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1783          NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetLowReg(),
1784                  shift_amount);
1785          NewLIR2(kX86Sal32RI, rl_result.reg.GetLowReg(), shift_amount);
1786        }
1787        break;
1788      case Instruction::SHR_LONG:
1789      case Instruction::SHR_LONG_2ADDR:
1790        if (shift_amount == 32) {
1791          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1792          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1793          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1794        } else if (shift_amount > 31) {
1795          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1796          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1797          NewLIR2(kX86Sar32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
1798          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1799        } else {
1800          OpRegCopy(rl_result.reg, rl_src.reg);
1801          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1802          NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(),
1803                  shift_amount);
1804          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
1805        }
1806        break;
1807      case Instruction::USHR_LONG:
1808      case Instruction::USHR_LONG_2ADDR:
1809        if (shift_amount == 32) {
1810          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1811          LoadConstant(rl_result.reg.GetHigh(), 0);
1812        } else if (shift_amount > 31) {
1813          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1814          NewLIR2(kX86Shr32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
1815          LoadConstant(rl_result.reg.GetHigh(), 0);
1816        } else {
1817          OpRegCopy(rl_result.reg, rl_src.reg);
1818          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1819          NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(),
1820                  shift_amount);
1821          NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
1822        }
1823        break;
1824      default:
1825        LOG(FATAL) << "Unexpected case";
1826    }
1827  }
1828  return rl_result;
1829}
1830
1831void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1832                                   RegLocation rl_src, RegLocation rl_shift) {
1833  // Per spec, we only care about low 6 bits of shift amount.
1834  int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1835  if (shift_amount == 0) {
1836    rl_src = LoadValueWide(rl_src, kCoreReg);
1837    StoreValueWide(rl_dest, rl_src);
1838    return;
1839  } else if (shift_amount == 1 &&
1840            (opcode ==  Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1841    // Need to handle this here to avoid calling StoreValueWide twice.
1842    GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1843    return;
1844  }
1845  if (BadOverlap(rl_src, rl_dest)) {
1846    GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1847    return;
1848  }
1849  rl_src = LoadValueWide(rl_src, kCoreReg);
1850  RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1851  StoreValueWide(rl_dest, rl_result);
1852}
1853
1854void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
1855                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1856  bool isConstSuccess = false;
1857  switch (opcode) {
1858    case Instruction::ADD_LONG:
1859    case Instruction::AND_LONG:
1860    case Instruction::OR_LONG:
1861    case Instruction::XOR_LONG:
1862      if (rl_src2.is_const) {
1863        isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1864      } else {
1865        DCHECK(rl_src1.is_const);
1866        isConstSuccess = GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1867      }
1868      break;
1869    case Instruction::SUB_LONG:
1870    case Instruction::SUB_LONG_2ADDR:
1871      if (rl_src2.is_const) {
1872        isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1873      } else {
1874        GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1875        isConstSuccess = true;
1876      }
1877      break;
1878    case Instruction::ADD_LONG_2ADDR:
1879    case Instruction::OR_LONG_2ADDR:
1880    case Instruction::XOR_LONG_2ADDR:
1881    case Instruction::AND_LONG_2ADDR:
1882      if (rl_src2.is_const) {
1883        if (GenerateTwoOperandInstructions()) {
1884          isConstSuccess = GenLongImm(rl_dest, rl_src2, opcode);
1885        } else {
1886          isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1887        }
1888      } else {
1889        DCHECK(rl_src1.is_const);
1890        isConstSuccess = GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1891      }
1892      break;
1893    default:
1894      isConstSuccess = false;
1895      break;
1896  }
1897
1898  if (!isConstSuccess) {
1899    // Default - bail to non-const handler.
1900    GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1901  }
1902}
1903
1904bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1905  switch (op) {
1906    case Instruction::AND_LONG_2ADDR:
1907    case Instruction::AND_LONG:
1908      return value == -1;
1909    case Instruction::OR_LONG:
1910    case Instruction::OR_LONG_2ADDR:
1911    case Instruction::XOR_LONG:
1912    case Instruction::XOR_LONG_2ADDR:
1913      return value == 0;
1914    default:
1915      return false;
1916  }
1917}
1918
1919X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1920                                bool is_high_op) {
1921  bool rhs_in_mem = rhs.location != kLocPhysReg;
1922  bool dest_in_mem = dest.location != kLocPhysReg;
1923  bool is64Bit = Gen64Bit();
1924  DCHECK(!rhs_in_mem || !dest_in_mem);
1925  switch (op) {
1926    case Instruction::ADD_LONG:
1927    case Instruction::ADD_LONG_2ADDR:
1928      if (dest_in_mem) {
1929        return is64Bit ? kX86Add64MR : is_high_op ? kX86Adc32MR : kX86Add32MR;
1930      } else if (rhs_in_mem) {
1931        return is64Bit ? kX86Add64RM : is_high_op ? kX86Adc32RM : kX86Add32RM;
1932      }
1933      return is64Bit ? kX86Add64RR : is_high_op ? kX86Adc32RR : kX86Add32RR;
1934    case Instruction::SUB_LONG:
1935    case Instruction::SUB_LONG_2ADDR:
1936      if (dest_in_mem) {
1937        return is64Bit ? kX86Sub64MR : is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1938      } else if (rhs_in_mem) {
1939        return is64Bit ? kX86Sub64RM : is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1940      }
1941      return is64Bit ? kX86Sub64RR : is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1942    case Instruction::AND_LONG_2ADDR:
1943    case Instruction::AND_LONG:
1944      if (dest_in_mem) {
1945        return is64Bit ? kX86And64MR : kX86And32MR;
1946      }
1947      if (is64Bit) {
1948        return rhs_in_mem ? kX86And64RM : kX86And64RR;
1949      }
1950      return rhs_in_mem ? kX86And32RM : kX86And32RR;
1951    case Instruction::OR_LONG:
1952    case Instruction::OR_LONG_2ADDR:
1953      if (dest_in_mem) {
1954        return is64Bit ? kX86Or64MR : kX86Or32MR;
1955      }
1956      if (is64Bit) {
1957        return rhs_in_mem ? kX86Or64RM : kX86Or64RR;
1958      }
1959      return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1960    case Instruction::XOR_LONG:
1961    case Instruction::XOR_LONG_2ADDR:
1962      if (dest_in_mem) {
1963        return is64Bit ? kX86Xor64MR : kX86Xor32MR;
1964      }
1965      if (is64Bit) {
1966        return rhs_in_mem ? kX86Xor64RM : kX86Xor64RR;
1967      }
1968      return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1969    default:
1970      LOG(FATAL) << "Unexpected opcode: " << op;
1971      return kX86Add32RR;
1972  }
1973}
1974
1975X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1976                                int32_t value) {
1977  bool in_mem = loc.location != kLocPhysReg;
1978  bool is64Bit = Gen64Bit();
1979  bool byte_imm = IS_SIMM8(value);
1980  DCHECK(in_mem || !loc.reg.IsFloat());
1981  switch (op) {
1982    case Instruction::ADD_LONG:
1983    case Instruction::ADD_LONG_2ADDR:
1984      if (byte_imm) {
1985        if (in_mem) {
1986          return is64Bit ? kX86Add64MI8 : is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1987        }
1988        return is64Bit ? kX86Add64RI8 : is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1989      }
1990      if (in_mem) {
1991        return is64Bit ? kX86Add64MI : is_high_op ? kX86Adc32MI : kX86Add32MI;
1992      }
1993      return is64Bit ? kX86Add64RI : is_high_op ? kX86Adc32RI : kX86Add32RI;
1994    case Instruction::SUB_LONG:
1995    case Instruction::SUB_LONG_2ADDR:
1996      if (byte_imm) {
1997        if (in_mem) {
1998          return is64Bit ? kX86Sub64MI8 : is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1999        }
2000        return is64Bit ? kX86Sub64RI8 : is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
2001      }
2002      if (in_mem) {
2003        return is64Bit ? kX86Sub64MI : is_high_op ? kX86Sbb32MI : kX86Sub32MI;
2004      }
2005      return is64Bit ? kX86Sub64RI : is_high_op ? kX86Sbb32RI : kX86Sub32RI;
2006    case Instruction::AND_LONG_2ADDR:
2007    case Instruction::AND_LONG:
2008      if (byte_imm) {
2009        if (is64Bit) {
2010          return in_mem ? kX86And64MI8 : kX86And64RI8;
2011        }
2012        return in_mem ? kX86And32MI8 : kX86And32RI8;
2013      }
2014      if (is64Bit) {
2015        return in_mem ? kX86And64MI : kX86And64RI;
2016      }
2017      return in_mem ? kX86And32MI : kX86And32RI;
2018    case Instruction::OR_LONG:
2019    case Instruction::OR_LONG_2ADDR:
2020      if (byte_imm) {
2021        if (is64Bit) {
2022          return in_mem ? kX86Or64MI8 : kX86Or64RI8;
2023        }
2024        return in_mem ? kX86Or32MI8 : kX86Or32RI8;
2025      }
2026      if (is64Bit) {
2027        return in_mem ? kX86Or64MI : kX86Or64RI;
2028      }
2029      return in_mem ? kX86Or32MI : kX86Or32RI;
2030    case Instruction::XOR_LONG:
2031    case Instruction::XOR_LONG_2ADDR:
2032      if (byte_imm) {
2033        if (is64Bit) {
2034          return in_mem ? kX86Xor64MI8 : kX86Xor64RI8;
2035        }
2036        return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
2037      }
2038      if (is64Bit) {
2039        return in_mem ? kX86Xor64MI : kX86Xor64RI;
2040      }
2041      return in_mem ? kX86Xor32MI : kX86Xor32RI;
2042    default:
2043      LOG(FATAL) << "Unexpected opcode: " << op;
2044      return kX86Add32MI;
2045  }
2046}
2047
2048bool X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
2049  DCHECK(rl_src.is_const);
2050  int64_t val = mir_graph_->ConstantValueWide(rl_src);
2051
2052  if (Gen64Bit()) {
2053    // We can do with imm only if it fits 32 bit
2054    if (val != (static_cast<int64_t>(static_cast<int32_t>(val)))) {
2055      return false;
2056    }
2057
2058    rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2059
2060    if ((rl_dest.location == kLocDalvikFrame) ||
2061        (rl_dest.location == kLocCompilerTemp)) {
2062      int r_base = TargetReg(kSp).GetReg();
2063      int displacement = SRegOffset(rl_dest.s_reg_low);
2064
2065      X86OpCode x86op = GetOpcode(op, rl_dest, false, val);
2066      LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, val);
2067      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2068                              true /* is_load */, true /* is64bit */);
2069      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2070                              false /* is_load */, true /* is64bit */);
2071      return true;
2072    }
2073
2074    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2075    DCHECK_EQ(rl_result.location, kLocPhysReg);
2076    DCHECK(!rl_result.reg.IsFloat());
2077
2078    X86OpCode x86op = GetOpcode(op, rl_result, false, val);
2079    NewLIR2(x86op, rl_result.reg.GetReg(), val);
2080
2081    StoreValueWide(rl_dest, rl_result);
2082    return true;
2083  }
2084
2085  int32_t val_lo = Low32Bits(val);
2086  int32_t val_hi = High32Bits(val);
2087  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2088
2089  // Can we just do this into memory?
2090  if ((rl_dest.location == kLocDalvikFrame) ||
2091      (rl_dest.location == kLocCompilerTemp)) {
2092    int r_base = TargetReg(kSp).GetReg();
2093    int displacement = SRegOffset(rl_dest.s_reg_low);
2094
2095    if (!IsNoOp(op, val_lo)) {
2096      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
2097      LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, val_lo);
2098      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2099                              true /* is_load */, true /* is64bit */);
2100      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2101                              false /* is_load */, true /* is64bit */);
2102    }
2103    if (!IsNoOp(op, val_hi)) {
2104      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
2105      LIR *lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, val_hi);
2106      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
2107                                true /* is_load */, true /* is64bit */);
2108      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
2109                                false /* is_load */, true /* is64bit */);
2110    }
2111    return true;
2112  }
2113
2114  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2115  DCHECK_EQ(rl_result.location, kLocPhysReg);
2116  DCHECK(!rl_result.reg.IsFloat());
2117
2118  if (!IsNoOp(op, val_lo)) {
2119    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
2120    NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
2121  }
2122  if (!IsNoOp(op, val_hi)) {
2123    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
2124    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
2125  }
2126  StoreValueWide(rl_dest, rl_result);
2127  return true;
2128}
2129
2130bool X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
2131                                RegLocation rl_src2, Instruction::Code op) {
2132  DCHECK(rl_src2.is_const);
2133  int64_t val = mir_graph_->ConstantValueWide(rl_src2);
2134
2135  if (Gen64Bit()) {
2136    // We can do with imm only if it fits 32 bit
2137    if (val != (static_cast<int64_t>(static_cast<int32_t>(val)))) {
2138      return false;
2139    }
2140    if (rl_dest.location == kLocPhysReg &&
2141        rl_src1.location == kLocPhysReg && !rl_dest.reg.IsFloat()) {
2142      X86OpCode x86op = GetOpcode(op, rl_dest, false, val);
2143      NewLIR2(x86op, rl_dest.reg.GetReg(), val);
2144      StoreFinalValueWide(rl_dest, rl_dest);
2145      return true;
2146    }
2147
2148    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2149    // We need the values to be in a temporary
2150    RegLocation rl_result = ForceTempWide(rl_src1);
2151
2152    X86OpCode x86op = GetOpcode(op, rl_result, false, val);
2153    NewLIR2(x86op, rl_result.reg.GetReg(), val);
2154
2155    StoreFinalValueWide(rl_dest, rl_result);
2156    return true;
2157  }
2158
2159  int32_t val_lo = Low32Bits(val);
2160  int32_t val_hi = High32Bits(val);
2161  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2162  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
2163
2164  // Can we do this directly into the destination registers?
2165  if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
2166      rl_dest.reg.GetLowReg() == rl_src1.reg.GetLowReg() &&
2167      rl_dest.reg.GetHighReg() == rl_src1.reg.GetHighReg() && !rl_dest.reg.IsFloat()) {
2168    if (!IsNoOp(op, val_lo)) {
2169      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
2170      NewLIR2(x86op, rl_dest.reg.GetLowReg(), val_lo);
2171    }
2172    if (!IsNoOp(op, val_hi)) {
2173      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
2174      NewLIR2(x86op, rl_dest.reg.GetHighReg(), val_hi);
2175    }
2176
2177    StoreFinalValueWide(rl_dest, rl_dest);
2178    return true;
2179  }
2180
2181  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2182  DCHECK_EQ(rl_src1.location, kLocPhysReg);
2183
2184  // We need the values to be in a temporary
2185  RegLocation rl_result = ForceTempWide(rl_src1);
2186  if (!IsNoOp(op, val_lo)) {
2187    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
2188    NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
2189  }
2190  if (!IsNoOp(op, val_hi)) {
2191    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
2192    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
2193  }
2194
2195  StoreFinalValueWide(rl_dest, rl_result);
2196  return true;
2197}
2198
2199// For final classes there are no sub-classes to check and so we can answer the instance-of
2200// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
2201void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
2202                                    RegLocation rl_dest, RegLocation rl_src) {
2203  RegLocation object = LoadValue(rl_src, kRefReg);
2204  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2205  RegStorage result_reg = rl_result.reg;
2206
2207  // SETcc only works with EAX..EDX.
2208  if (result_reg == object.reg || result_reg.GetRegNum() >= rs_rX86_SP.GetRegNum()) {
2209    result_reg = AllocateByteRegister();
2210    DCHECK_LT(result_reg.GetRegNum(), rs_rX86_SP.GetRegNum());
2211  }
2212
2213  // Assume that there is no match.
2214  LoadConstant(result_reg, 0);
2215  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
2216
2217  // We will use this register to compare to memory below.
2218  // References are 32 bit in memory, and 64 bit in registers (in 64 bit mode).
2219  // For this reason, force allocation of a 32 bit register to use, so that the
2220  // compare to memory will be done using a 32 bit comparision.
2221  // The LoadRefDisp(s) below will work normally, even in 64 bit mode.
2222  RegStorage check_class = AllocTemp();
2223
2224  // If Method* is already in a register, we can save a copy.
2225  RegLocation rl_method = mir_graph_->GetMethodLoc();
2226  int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::HeapReference<mirror::Class*>)).Int32Value() +
2227    (sizeof(mirror::HeapReference<mirror::Class*>) * type_idx);
2228
2229  if (rl_method.location == kLocPhysReg) {
2230    if (use_declaring_class) {
2231      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2232                   check_class);
2233    } else {
2234      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2235                   check_class);
2236      LoadRefDisp(check_class, offset_of_type, check_class);
2237    }
2238  } else {
2239    LoadCurrMethodDirect(check_class);
2240    if (use_declaring_class) {
2241      LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2242                   check_class);
2243    } else {
2244      LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2245                   check_class);
2246      LoadRefDisp(check_class, offset_of_type, check_class);
2247    }
2248  }
2249
2250  // Compare the computed class to the class in the object.
2251  DCHECK_EQ(object.location, kLocPhysReg);
2252  OpRegMem(kOpCmp, check_class, object.reg, mirror::Object::ClassOffset().Int32Value());
2253
2254  // Set the low byte of the result to 0 or 1 from the compare condition code.
2255  NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondEq);
2256
2257  LIR* target = NewLIR0(kPseudoTargetLabel);
2258  null_branchover->target = target;
2259  FreeTemp(check_class);
2260  if (IsTemp(result_reg)) {
2261    OpRegCopy(rl_result.reg, result_reg);
2262    FreeTemp(result_reg);
2263  }
2264  StoreValue(rl_dest, rl_result);
2265}
2266
2267void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
2268                                            bool type_known_abstract, bool use_declaring_class,
2269                                            bool can_assume_type_is_in_dex_cache,
2270                                            uint32_t type_idx, RegLocation rl_dest,
2271                                            RegLocation rl_src) {
2272  FlushAllRegs();
2273  // May generate a call - use explicit registers.
2274  LockCallTemps();
2275  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 gets current Method*.
2276  RegStorage class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*.
2277  // Reference must end up in kArg0.
2278  if (needs_access_check) {
2279    // Check we have access to type_idx and if not throw IllegalAccessError,
2280    // Caller function returns Class* in kArg0.
2281    if (Is64BitInstructionSet(cu_->instruction_set)) {
2282      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
2283                           type_idx, true);
2284    } else {
2285      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
2286                           type_idx, true);
2287    }
2288    OpRegCopy(class_reg, TargetReg(kRet0));
2289    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
2290  } else if (use_declaring_class) {
2291    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
2292    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2293                 class_reg);
2294  } else {
2295    // Load dex cache entry into class_reg (kArg2).
2296    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
2297    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2298                 class_reg);
2299    int32_t offset_of_type =
2300        mirror::Array::DataOffset(sizeof(mirror::HeapReference<mirror::Class*>)).Int32Value() +
2301        (sizeof(mirror::HeapReference<mirror::Class*>) * type_idx);
2302    LoadRefDisp(class_reg, offset_of_type, class_reg);
2303    if (!can_assume_type_is_in_dex_cache) {
2304      // Need to test presence of type in dex cache at runtime.
2305      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
2306      // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
2307      if (Is64BitInstructionSet(cu_->instruction_set)) {
2308        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx, true);
2309      } else {
2310        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx, true);
2311      }
2312      OpRegCopy(TargetReg(kArg2), TargetReg(kRet0));  // Align usage with fast path.
2313      LoadValueDirectFixed(rl_src, TargetReg(kArg0));  /* Reload Ref. */
2314      // Rejoin code paths
2315      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
2316      hop_branch->target = hop_target;
2317    }
2318  }
2319  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
2320  RegLocation rl_result = GetReturn(kRefReg);
2321
2322  // SETcc only works with EAX..EDX.
2323  DCHECK_LT(rl_result.reg.GetRegNum(), 4);
2324
2325  // Is the class NULL?
2326  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
2327
2328  /* Load object->klass_. */
2329  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
2330  LoadRefDisp(TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
2331  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
2332  LIR* branchover = nullptr;
2333  if (type_known_final) {
2334    // Ensure top 3 bytes of result are 0.
2335    LoadConstant(rl_result.reg, 0);
2336    OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
2337    // Set the low byte of the result to 0 or 1 from the compare condition code.
2338    NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondEq);
2339  } else {
2340    if (!type_known_abstract) {
2341      LoadConstant(rl_result.reg, 1);     // Assume result succeeds.
2342      branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
2343    }
2344    OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
2345    if (Is64BitInstructionSet(cu_->instruction_set)) {
2346      OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial));
2347    } else {
2348      OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
2349    }
2350  }
2351  // TODO: only clobber when type isn't final?
2352  ClobberCallerSave();
2353  /* Branch targets here. */
2354  LIR* target = NewLIR0(kPseudoTargetLabel);
2355  StoreValue(rl_dest, rl_result);
2356  branch1->target = target;
2357  if (branchover != nullptr) {
2358    branchover->target = target;
2359  }
2360}
2361
2362void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
2363                            RegLocation rl_lhs, RegLocation rl_rhs) {
2364  OpKind op = kOpBkpt;
2365  bool is_div_rem = false;
2366  bool unary = false;
2367  bool shift_op = false;
2368  bool is_two_addr = false;
2369  RegLocation rl_result;
2370  switch (opcode) {
2371    case Instruction::NEG_INT:
2372      op = kOpNeg;
2373      unary = true;
2374      break;
2375    case Instruction::NOT_INT:
2376      op = kOpMvn;
2377      unary = true;
2378      break;
2379    case Instruction::ADD_INT_2ADDR:
2380      is_two_addr = true;
2381      // Fallthrough
2382    case Instruction::ADD_INT:
2383      op = kOpAdd;
2384      break;
2385    case Instruction::SUB_INT_2ADDR:
2386      is_two_addr = true;
2387      // Fallthrough
2388    case Instruction::SUB_INT:
2389      op = kOpSub;
2390      break;
2391    case Instruction::MUL_INT_2ADDR:
2392      is_two_addr = true;
2393      // Fallthrough
2394    case Instruction::MUL_INT:
2395      op = kOpMul;
2396      break;
2397    case Instruction::DIV_INT_2ADDR:
2398      is_two_addr = true;
2399      // Fallthrough
2400    case Instruction::DIV_INT:
2401      op = kOpDiv;
2402      is_div_rem = true;
2403      break;
2404    /* NOTE: returns in kArg1 */
2405    case Instruction::REM_INT_2ADDR:
2406      is_two_addr = true;
2407      // Fallthrough
2408    case Instruction::REM_INT:
2409      op = kOpRem;
2410      is_div_rem = true;
2411      break;
2412    case Instruction::AND_INT_2ADDR:
2413      is_two_addr = true;
2414      // Fallthrough
2415    case Instruction::AND_INT:
2416      op = kOpAnd;
2417      break;
2418    case Instruction::OR_INT_2ADDR:
2419      is_two_addr = true;
2420      // Fallthrough
2421    case Instruction::OR_INT:
2422      op = kOpOr;
2423      break;
2424    case Instruction::XOR_INT_2ADDR:
2425      is_two_addr = true;
2426      // Fallthrough
2427    case Instruction::XOR_INT:
2428      op = kOpXor;
2429      break;
2430    case Instruction::SHL_INT_2ADDR:
2431      is_two_addr = true;
2432      // Fallthrough
2433    case Instruction::SHL_INT:
2434      shift_op = true;
2435      op = kOpLsl;
2436      break;
2437    case Instruction::SHR_INT_2ADDR:
2438      is_two_addr = true;
2439      // Fallthrough
2440    case Instruction::SHR_INT:
2441      shift_op = true;
2442      op = kOpAsr;
2443      break;
2444    case Instruction::USHR_INT_2ADDR:
2445      is_two_addr = true;
2446      // Fallthrough
2447    case Instruction::USHR_INT:
2448      shift_op = true;
2449      op = kOpLsr;
2450      break;
2451    default:
2452      LOG(FATAL) << "Invalid word arith op: " << opcode;
2453  }
2454
2455  // Can we convert to a two address instruction?
2456  if (!is_two_addr &&
2457        (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
2458         mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
2459    is_two_addr = true;
2460  }
2461
2462  if (!GenerateTwoOperandInstructions()) {
2463    is_two_addr = false;
2464  }
2465
2466  // Get the div/rem stuff out of the way.
2467  if (is_div_rem) {
2468    rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
2469    StoreValue(rl_dest, rl_result);
2470    return;
2471  }
2472
2473  if (unary) {
2474    rl_lhs = LoadValue(rl_lhs, kCoreReg);
2475    rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2476    rl_result = EvalLoc(rl_dest, kCoreReg, true);
2477    OpRegReg(op, rl_result.reg, rl_lhs.reg);
2478  } else {
2479    if (shift_op) {
2480      // X86 doesn't require masking and must use ECX.
2481      RegStorage t_reg = TargetReg(kCount);  // rCX
2482      LoadValueDirectFixed(rl_rhs, t_reg);
2483      if (is_two_addr) {
2484        // Can we do this directly into memory?
2485        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2486        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2487        if (rl_result.location != kLocPhysReg) {
2488          // Okay, we can do this into memory
2489          OpMemReg(op, rl_result, t_reg.GetReg());
2490          FreeTemp(t_reg);
2491          return;
2492        } else if (!rl_result.reg.IsFloat()) {
2493          // Can do this directly into the result register
2494          OpRegReg(op, rl_result.reg, t_reg);
2495          FreeTemp(t_reg);
2496          StoreFinalValue(rl_dest, rl_result);
2497          return;
2498        }
2499      }
2500      // Three address form, or we can't do directly.
2501      rl_lhs = LoadValue(rl_lhs, kCoreReg);
2502      rl_result = EvalLoc(rl_dest, kCoreReg, true);
2503      OpRegRegReg(op, rl_result.reg, rl_lhs.reg, t_reg);
2504      FreeTemp(t_reg);
2505    } else {
2506      // Multiply is 3 operand only (sort of).
2507      if (is_two_addr && op != kOpMul) {
2508        // Can we do this directly into memory?
2509        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2510        if (rl_result.location == kLocPhysReg) {
2511          // Ensure res is in a core reg
2512          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2513          // Can we do this from memory directly?
2514          rl_rhs = UpdateLocTyped(rl_rhs, kCoreReg);
2515          if (rl_rhs.location != kLocPhysReg) {
2516            OpRegMem(op, rl_result.reg, rl_rhs);
2517            StoreFinalValue(rl_dest, rl_result);
2518            return;
2519          } else if (!rl_rhs.reg.IsFloat()) {
2520            OpRegReg(op, rl_result.reg, rl_rhs.reg);
2521            StoreFinalValue(rl_dest, rl_result);
2522            return;
2523          }
2524        }
2525        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2526        // It might happen rl_rhs and rl_dest are the same VR
2527        // in this case rl_dest is in reg after LoadValue while
2528        // rl_result is not updated yet, so do this
2529        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2530        if (rl_result.location != kLocPhysReg) {
2531          // Okay, we can do this into memory.
2532          OpMemReg(op, rl_result, rl_rhs.reg.GetReg());
2533          return;
2534        } else if (!rl_result.reg.IsFloat()) {
2535          // Can do this directly into the result register.
2536          OpRegReg(op, rl_result.reg, rl_rhs.reg);
2537          StoreFinalValue(rl_dest, rl_result);
2538          return;
2539        } else {
2540          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2541          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2542          OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2543        }
2544      } else {
2545        // Try to use reg/memory instructions.
2546        rl_lhs = UpdateLocTyped(rl_lhs, kCoreReg);
2547        rl_rhs = UpdateLocTyped(rl_rhs, kCoreReg);
2548        // We can't optimize with FP registers.
2549        if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2550          // Something is difficult, so fall back to the standard case.
2551          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2552          rl_rhs = LoadValue(rl_rhs, kCoreReg);
2553          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2554          OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2555        } else {
2556          // We can optimize by moving to result and using memory operands.
2557          if (rl_rhs.location != kLocPhysReg) {
2558            // Force LHS into result.
2559            // We should be careful with order here
2560            // If rl_dest and rl_lhs points to the same VR we should load first
2561            // If the are different we should find a register first for dest
2562            if (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
2563                mir_graph_->SRegToVReg(rl_lhs.s_reg_low)) {
2564              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2565              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2566              // No-op if these are the same.
2567              OpRegCopy(rl_result.reg, rl_lhs.reg);
2568            } else {
2569              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2570              LoadValueDirect(rl_lhs, rl_result.reg);
2571            }
2572            OpRegMem(op, rl_result.reg, rl_rhs);
2573          } else if (rl_lhs.location != kLocPhysReg) {
2574            // RHS is in a register; LHS is in memory.
2575            if (op != kOpSub) {
2576              // Force RHS into result and operate on memory.
2577              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2578              OpRegCopy(rl_result.reg, rl_rhs.reg);
2579              OpRegMem(op, rl_result.reg, rl_lhs);
2580            } else {
2581              // Subtraction isn't commutative.
2582              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2583              rl_rhs = LoadValue(rl_rhs, kCoreReg);
2584              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2585              OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2586            }
2587          } else {
2588            // Both are in registers.
2589            rl_lhs = LoadValue(rl_lhs, kCoreReg);
2590            rl_rhs = LoadValue(rl_rhs, kCoreReg);
2591            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2592            OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2593          }
2594        }
2595      }
2596    }
2597  }
2598  StoreValue(rl_dest, rl_result);
2599}
2600
2601bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2602  // If we have non-core registers, then we can't do good things.
2603  if (rl_lhs.location == kLocPhysReg && rl_lhs.reg.IsFloat()) {
2604    return false;
2605  }
2606  if (rl_rhs.location == kLocPhysReg && rl_rhs.reg.IsFloat()) {
2607    return false;
2608  }
2609
2610  // Everything will be fine :-).
2611  return true;
2612}
2613
2614void X86Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
2615  if (!Gen64Bit()) {
2616    Mir2Lir::GenIntToLong(rl_dest, rl_src);
2617    return;
2618  }
2619  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2620  if (rl_src.location == kLocPhysReg) {
2621    NewLIR2(kX86MovsxdRR, rl_result.reg.GetReg(), rl_src.reg.GetReg());
2622  } else {
2623    int displacement = SRegOffset(rl_src.s_reg_low);
2624    LIR *m = NewLIR3(kX86MovsxdRM, rl_result.reg.GetReg(), rs_rX86_SP.GetReg(),
2625                     displacement + LOWORD_OFFSET);
2626    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
2627                            true /* is_load */, true /* is_64bit */);
2628  }
2629  StoreValueWide(rl_dest, rl_result);
2630}
2631
2632void X86Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
2633                        RegLocation rl_src1, RegLocation rl_shift) {
2634  if (!Gen64Bit()) {
2635    Mir2Lir::GenShiftOpLong(opcode, rl_dest, rl_src1, rl_shift);
2636    return;
2637  }
2638
2639  bool is_two_addr = false;
2640  OpKind op = kOpBkpt;
2641  RegLocation rl_result;
2642
2643  switch (opcode) {
2644    case Instruction::SHL_LONG_2ADDR:
2645      is_two_addr = true;
2646      // Fallthrough
2647    case Instruction::SHL_LONG:
2648      op = kOpLsl;
2649      break;
2650    case Instruction::SHR_LONG_2ADDR:
2651      is_two_addr = true;
2652      // Fallthrough
2653    case Instruction::SHR_LONG:
2654      op = kOpAsr;
2655      break;
2656    case Instruction::USHR_LONG_2ADDR:
2657      is_two_addr = true;
2658      // Fallthrough
2659    case Instruction::USHR_LONG:
2660      op = kOpLsr;
2661      break;
2662    default:
2663      op = kOpBkpt;
2664  }
2665
2666  // X86 doesn't require masking and must use ECX.
2667  RegStorage t_reg = TargetReg(kCount);  // rCX
2668  LoadValueDirectFixed(rl_shift, t_reg);
2669  if (is_two_addr) {
2670    // Can we do this directly into memory?
2671    rl_result = UpdateLocWideTyped(rl_dest, kCoreReg);
2672    if (rl_result.location != kLocPhysReg) {
2673      // Okay, we can do this into memory
2674      OpMemReg(op, rl_result, t_reg.GetReg());
2675    } else if (!rl_result.reg.IsFloat()) {
2676      // Can do this directly into the result register
2677      OpRegReg(op, rl_result.reg, t_reg);
2678      StoreFinalValueWide(rl_dest, rl_result);
2679    }
2680  } else {
2681    // Three address form, or we can't do directly.
2682    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2683    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2684    OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
2685    StoreFinalValueWide(rl_dest, rl_result);
2686  }
2687
2688  FreeTemp(t_reg);
2689}
2690
2691}  // namespace art
2692