int_x86.cc revision de68676b24f61a55adc0b22fe828f036a5925c41
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Compare two 64-bit values
28 *    x = y     return  0
29 *    x < y     return -1
30 *    x > y     return  1
31 */
32void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
33                            RegLocation rl_src2) {
34  if (Gen64Bit()) {
35    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
36    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
37    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
38    RegStorage temp_reg = AllocTemp();
39    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
40    NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondG);   // result = (src1 > src2) ? 1 : 0
41    NewLIR2(kX86Set8R, temp_reg.GetReg(), kX86CondL);  // temp = (src1 >= src2) ? 0 : 1
42    NewLIR2(kX86Sub8RR, rl_result.reg.GetReg(), temp_reg.GetReg());
43    NewLIR2(kX86Movsx8qRR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
44
45    StoreValue(rl_dest, rl_result);
46    FreeTemp(temp_reg);
47    return;
48  }
49
50  FlushAllRegs();
51  LockCallTemps();  // Prepare for explicit register usage
52  RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
53  RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_r2, rs_r3);
54  LoadValueDirectWideFixed(rl_src1, r_tmp1);
55  LoadValueDirectWideFixed(rl_src2, r_tmp2);
56  // Compute (r1:r0) = (r1:r0) - (r3:r2)
57  OpRegReg(kOpSub, rs_r0, rs_r2);  // r0 = r0 - r2
58  OpRegReg(kOpSbc, rs_r1, rs_r3);  // r1 = r1 - r3 - CF
59  NewLIR2(kX86Set8R, rs_r2.GetReg(), kX86CondL);  // r2 = (r1:r0) < (r3:r2) ? 1 : 0
60  NewLIR2(kX86Movzx8RR, rs_r2.GetReg(), rs_r2.GetReg());
61  OpReg(kOpNeg, rs_r2);         // r2 = -r2
62  OpRegReg(kOpOr, rs_r0, rs_r1);   // r0 = high | low - sets ZF
63  NewLIR2(kX86Set8R, rs_r0.GetReg(), kX86CondNz);  // r0 = (r1:r0) != (r3:r2) ? 1 : 0
64  NewLIR2(kX86Movzx8RR, r0, r0);
65  OpRegReg(kOpOr, rs_r0, rs_r2);   // r0 = r0 | r2
66  RegLocation rl_result = LocCReturn();
67  StoreValue(rl_dest, rl_result);
68}
69
70X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
71  switch (cond) {
72    case kCondEq: return kX86CondEq;
73    case kCondNe: return kX86CondNe;
74    case kCondCs: return kX86CondC;
75    case kCondCc: return kX86CondNc;
76    case kCondUlt: return kX86CondC;
77    case kCondUge: return kX86CondNc;
78    case kCondMi: return kX86CondS;
79    case kCondPl: return kX86CondNs;
80    case kCondVs: return kX86CondO;
81    case kCondVc: return kX86CondNo;
82    case kCondHi: return kX86CondA;
83    case kCondLs: return kX86CondBe;
84    case kCondGe: return kX86CondGe;
85    case kCondLt: return kX86CondL;
86    case kCondGt: return kX86CondG;
87    case kCondLe: return kX86CondLe;
88    case kCondAl:
89    case kCondNv: LOG(FATAL) << "Should not reach here";
90  }
91  return kX86CondO;
92}
93
94LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
95  NewLIR2(kX86Cmp32RR, src1.GetReg(), src2.GetReg());
96  X86ConditionCode cc = X86ConditionEncoding(cond);
97  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
98                        cc);
99  branch->target = target;
100  return branch;
101}
102
103LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg,
104                                int check_value, LIR* target) {
105  if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
106    // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
107    NewLIR2(kX86Test32RR, reg.GetReg(), reg.GetReg());
108  } else {
109    NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg.GetReg(), check_value);
110  }
111  X86ConditionCode cc = X86ConditionEncoding(cond);
112  LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
113  branch->target = target;
114  return branch;
115}
116
117LIR* X86Mir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
118  // If src or dest is a pair, we'll be using low reg.
119  if (r_dest.IsPair()) {
120    r_dest = r_dest.GetLow();
121  }
122  if (r_src.IsPair()) {
123    r_src = r_src.GetLow();
124  }
125  if (r_dest.IsFloat() || r_src.IsFloat())
126    return OpFpRegCopy(r_dest, r_src);
127  LIR* res = RawLIR(current_dalvik_offset_, r_dest.Is64Bit() ? kX86Mov64RR : kX86Mov32RR,
128                    r_dest.GetReg(), r_src.GetReg());
129  if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
130    res->flags.is_nop = true;
131  }
132  return res;
133}
134
135void X86Mir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
136  if (r_dest != r_src) {
137    LIR *res = OpRegCopyNoInsert(r_dest, r_src);
138    AppendLIR(res);
139  }
140}
141
142void X86Mir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
143  if (r_dest != r_src) {
144    bool dest_fp = r_dest.IsFloat();
145    bool src_fp = r_src.IsFloat();
146    if (dest_fp) {
147      if (src_fp) {
148        OpRegCopy(r_dest, r_src);
149      } else {
150        // TODO: Prevent this from happening in the code. The result is often
151        // unused or could have been loaded more easily from memory.
152        if (!r_src.IsPair()) {
153          DCHECK(!r_dest.IsPair());
154          NewLIR2(kX86MovqxrRR, r_dest.GetReg(), r_src.GetReg());
155        } else {
156          NewLIR2(kX86MovdxrRR, r_dest.GetReg(), r_src.GetLowReg());
157          RegStorage r_tmp = AllocTempDouble();
158          NewLIR2(kX86MovdxrRR, r_tmp.GetReg(), r_src.GetHighReg());
159          NewLIR2(kX86PunpckldqRR, r_dest.GetReg(), r_tmp.GetReg());
160          FreeTemp(r_tmp);
161        }
162      }
163    } else {
164      if (src_fp) {
165        if (!r_dest.IsPair()) {
166          DCHECK(!r_src.IsPair());
167          NewLIR2(kX86MovqrxRR, r_dest.GetReg(), r_src.GetReg());
168        } else {
169          NewLIR2(kX86MovdrxRR, r_dest.GetLowReg(), r_src.GetReg());
170          RegStorage temp_reg = AllocTempDouble();
171          NewLIR2(kX86MovsdRR, temp_reg.GetReg(), r_src.GetReg());
172          NewLIR2(kX86PsrlqRI, temp_reg.GetReg(), 32);
173          NewLIR2(kX86MovdrxRR, r_dest.GetHighReg(), temp_reg.GetReg());
174        }
175      } else {
176        DCHECK_EQ(r_dest.IsPair(), r_src.IsPair());
177        if (!r_src.IsPair()) {
178          // Just copy the register directly.
179          OpRegCopy(r_dest, r_src);
180        } else {
181          // Handle overlap
182          if (r_src.GetHighReg() == r_dest.GetLowReg() &&
183              r_src.GetLowReg() == r_dest.GetHighReg()) {
184            // Deal with cycles.
185            RegStorage temp_reg = AllocTemp();
186            OpRegCopy(temp_reg, r_dest.GetHigh());
187            OpRegCopy(r_dest.GetHigh(), r_dest.GetLow());
188            OpRegCopy(r_dest.GetLow(), temp_reg);
189            FreeTemp(temp_reg);
190          } else if (r_src.GetHighReg() == r_dest.GetLowReg()) {
191            OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
192            OpRegCopy(r_dest.GetLow(), r_src.GetLow());
193          } else {
194            OpRegCopy(r_dest.GetLow(), r_src.GetLow());
195            OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
196          }
197        }
198      }
199    }
200  }
201}
202
203void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
204  RegLocation rl_result;
205  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
206  RegLocation rl_dest = mir_graph_->GetDest(mir);
207  // Avoid using float regs here.
208  RegisterClass src_reg_class = rl_src.ref ? kRefReg : kCoreReg;
209  RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg;
210  rl_src = LoadValue(rl_src, src_reg_class);
211  ConditionCode ccode = mir->meta.ccode;
212
213  // The kMirOpSelect has two variants, one for constants and one for moves.
214  const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
215
216  if (is_constant_case) {
217    int true_val = mir->dalvikInsn.vB;
218    int false_val = mir->dalvikInsn.vC;
219    rl_result = EvalLoc(rl_dest, result_reg_class, true);
220
221    /*
222     * For ccode == kCondEq:
223     *
224     * 1) When the true case is zero and result_reg is not same as src_reg:
225     *     xor result_reg, result_reg
226     *     cmp $0, src_reg
227     *     mov t1, $false_case
228     *     cmovnz result_reg, t1
229     * 2) When the false case is zero and result_reg is not same as src_reg:
230     *     xor result_reg, result_reg
231     *     cmp $0, src_reg
232     *     mov t1, $true_case
233     *     cmovz result_reg, t1
234     * 3) All other cases (we do compare first to set eflags):
235     *     cmp $0, src_reg
236     *     mov result_reg, $false_case
237     *     mov t1, $true_case
238     *     cmovz result_reg, t1
239     */
240    // FIXME: depending on how you use registers you could get a false != mismatch when dealing
241    // with different views of the same underlying physical resource (i.e. solo32 vs. solo64).
242    const bool result_reg_same_as_src =
243        (rl_src.location == kLocPhysReg && rl_src.reg.GetReg() == rl_result.reg.GetReg());
244    const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
245    const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
246    const bool catch_all_case = !(true_zero_case || false_zero_case);
247
248    if (true_zero_case || false_zero_case) {
249      OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
250    }
251
252    if (true_zero_case || false_zero_case || catch_all_case) {
253      OpRegImm(kOpCmp, rl_src.reg, 0);
254    }
255
256    if (catch_all_case) {
257      OpRegImm(kOpMov, rl_result.reg, false_val);
258    }
259
260    if (true_zero_case || false_zero_case || catch_all_case) {
261      ConditionCode cc = true_zero_case ? NegateComparison(ccode) : ccode;
262      int immediateForTemp = true_zero_case ? false_val : true_val;
263      RegStorage temp1_reg = AllocTypedTemp(false, result_reg_class);
264      OpRegImm(kOpMov, temp1_reg, immediateForTemp);
265
266      OpCondRegReg(kOpCmov, cc, rl_result.reg, temp1_reg);
267
268      FreeTemp(temp1_reg);
269    }
270  } else {
271    RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
272    RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
273    rl_true = LoadValue(rl_true, result_reg_class);
274    rl_false = LoadValue(rl_false, result_reg_class);
275    rl_result = EvalLoc(rl_dest, result_reg_class, true);
276
277    /*
278     * For ccode == kCondEq:
279     *
280     * 1) When true case is already in place:
281     *     cmp $0, src_reg
282     *     cmovnz result_reg, false_reg
283     * 2) When false case is already in place:
284     *     cmp $0, src_reg
285     *     cmovz result_reg, true_reg
286     * 3) When neither cases are in place:
287     *     cmp $0, src_reg
288     *     mov result_reg, false_reg
289     *     cmovz result_reg, true_reg
290     */
291
292    // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
293    OpRegImm(kOpCmp, rl_src.reg, 0);
294
295    if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
296      OpCondRegReg(kOpCmov, NegateComparison(ccode), rl_result.reg, rl_false.reg);
297    } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
298      OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
299    } else {
300      OpRegCopy(rl_result.reg, rl_false.reg);
301      OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
302    }
303  }
304
305  StoreValue(rl_dest, rl_result);
306}
307
308void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
309  LIR* taken = &block_label_list_[bb->taken];
310  RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
311  RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
312  ConditionCode ccode = mir->meta.ccode;
313
314  if (rl_src1.is_const) {
315    std::swap(rl_src1, rl_src2);
316    ccode = FlipComparisonOrder(ccode);
317  }
318  if (rl_src2.is_const) {
319    // Do special compare/branch against simple const operand
320    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
321    GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
322    return;
323  }
324
325  if (Gen64Bit()) {
326    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
327    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
328
329    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
330    OpCondBranch(ccode, taken);
331    return;
332  }
333
334  FlushAllRegs();
335  LockCallTemps();  // Prepare for explicit register usage
336  RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_r0, rs_r1);
337  RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_r2, rs_r3);
338  LoadValueDirectWideFixed(rl_src1, r_tmp1);
339  LoadValueDirectWideFixed(rl_src2, r_tmp2);
340
341  // Swap operands and condition code to prevent use of zero flag.
342  if (ccode == kCondLe || ccode == kCondGt) {
343    // Compute (r3:r2) = (r3:r2) - (r1:r0)
344    OpRegReg(kOpSub, rs_r2, rs_r0);  // r2 = r2 - r0
345    OpRegReg(kOpSbc, rs_r3, rs_r1);  // r3 = r3 - r1 - CF
346  } else {
347    // Compute (r1:r0) = (r1:r0) - (r3:r2)
348    OpRegReg(kOpSub, rs_r0, rs_r2);  // r0 = r0 - r2
349    OpRegReg(kOpSbc, rs_r1, rs_r3);  // r1 = r1 - r3 - CF
350  }
351  switch (ccode) {
352    case kCondEq:
353    case kCondNe:
354      OpRegReg(kOpOr, rs_r0, rs_r1);  // r0 = r0 | r1
355      break;
356    case kCondLe:
357      ccode = kCondGe;
358      break;
359    case kCondGt:
360      ccode = kCondLt;
361      break;
362    case kCondLt:
363    case kCondGe:
364      break;
365    default:
366      LOG(FATAL) << "Unexpected ccode: " << ccode;
367  }
368  OpCondBranch(ccode, taken);
369}
370
371void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
372                                          int64_t val, ConditionCode ccode) {
373  int32_t val_lo = Low32Bits(val);
374  int32_t val_hi = High32Bits(val);
375  LIR* taken = &block_label_list_[bb->taken];
376  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
377  bool is_equality_test = ccode == kCondEq || ccode == kCondNe;
378
379  if (Gen64Bit()) {
380    if (is_equality_test && val == 0) {
381      // We can simplify of comparing for ==, != to 0.
382      NewLIR2(kX86Test64RR, rl_src1.reg.GetReg(), rl_src1.reg.GetReg());
383    } else if (is_equality_test && val_hi == 0 && val_lo > 0) {
384      OpRegImm(kOpCmp, rl_src1.reg, val_lo);
385    } else {
386      RegStorage tmp = AllocTypedTempWide(false, kCoreReg);
387      LoadConstantWide(tmp, val);
388      OpRegReg(kOpCmp, rl_src1.reg, tmp);
389      FreeTemp(tmp);
390    }
391    OpCondBranch(ccode, taken);
392    return;
393  }
394
395  if (is_equality_test && val != 0) {
396    rl_src1 = ForceTempWide(rl_src1);
397  }
398  RegStorage low_reg = rl_src1.reg.GetLow();
399  RegStorage high_reg = rl_src1.reg.GetHigh();
400
401  if (is_equality_test) {
402    // We can simplify of comparing for ==, != to 0.
403    if (val == 0) {
404      if (IsTemp(low_reg)) {
405        OpRegReg(kOpOr, low_reg, high_reg);
406        // We have now changed it; ignore the old values.
407        Clobber(rl_src1.reg);
408      } else {
409        RegStorage t_reg = AllocTemp();
410        OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
411        FreeTemp(t_reg);
412      }
413      OpCondBranch(ccode, taken);
414      return;
415    }
416
417    // Need to compute the actual value for ==, !=.
418    OpRegImm(kOpSub, low_reg, val_lo);
419    NewLIR2(kX86Sbb32RI, high_reg.GetReg(), val_hi);
420    OpRegReg(kOpOr, high_reg, low_reg);
421    Clobber(rl_src1.reg);
422  } else if (ccode == kCondLe || ccode == kCondGt) {
423    // Swap operands and condition code to prevent use of zero flag.
424    RegStorage tmp = AllocTypedTempWide(false, kCoreReg);
425    LoadConstantWide(tmp, val);
426    OpRegReg(kOpSub, tmp.GetLow(), low_reg);
427    OpRegReg(kOpSbc, tmp.GetHigh(), high_reg);
428    ccode = (ccode == kCondLe) ? kCondGe : kCondLt;
429    FreeTemp(tmp);
430  } else {
431    // We can use a compare for the low word to set CF.
432    OpRegImm(kOpCmp, low_reg, val_lo);
433    if (IsTemp(high_reg)) {
434      NewLIR2(kX86Sbb32RI, high_reg.GetReg(), val_hi);
435      // We have now changed it; ignore the old values.
436      Clobber(rl_src1.reg);
437    } else {
438      // mov temp_reg, high_reg; sbb temp_reg, high_constant
439      RegStorage t_reg = AllocTemp();
440      OpRegCopy(t_reg, high_reg);
441      NewLIR2(kX86Sbb32RI, t_reg.GetReg(), val_hi);
442      FreeTemp(t_reg);
443    }
444  }
445
446  OpCondBranch(ccode, taken);
447}
448
449void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
450  // It does not make sense to calculate magic and shift for zero divisor.
451  DCHECK_NE(divisor, 0);
452
453  /* According to H.S.Warren's Hacker's Delight Chapter 10 and
454   * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
455   * The magic number M and shift S can be calculated in the following way:
456   * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
457   * where divisor(d) >=2.
458   * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
459   * where divisor(d) <= -2.
460   * Thus nc can be calculated like:
461   * nc = 2^31 + 2^31 % d - 1, where d >= 2
462   * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
463   *
464   * So the shift p is the smallest p satisfying
465   * 2^p > nc * (d - 2^p % d), where d >= 2
466   * 2^p > nc * (d + 2^p % d), where d <= -2.
467   *
468   * the magic number M is calcuated by
469   * M = (2^p + d - 2^p % d) / d, where d >= 2
470   * M = (2^p - d - 2^p % d) / d, where d <= -2.
471   *
472   * Notice that p is always bigger than or equal to 32, so we just return 32-p as
473   * the shift number S.
474   */
475
476  int32_t p = 31;
477  const uint32_t two31 = 0x80000000U;
478
479  // Initialize the computations.
480  uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
481  uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
482  uint32_t abs_nc = tmp - 1 - tmp % abs_d;
483  uint32_t quotient1 = two31 / abs_nc;
484  uint32_t remainder1 = two31 % abs_nc;
485  uint32_t quotient2 = two31 / abs_d;
486  uint32_t remainder2 = two31 % abs_d;
487
488  /*
489   * To avoid handling both positive and negative divisor, Hacker's Delight
490   * introduces a method to handle these 2 cases together to avoid duplication.
491   */
492  uint32_t delta;
493  do {
494    p++;
495    quotient1 = 2 * quotient1;
496    remainder1 = 2 * remainder1;
497    if (remainder1 >= abs_nc) {
498      quotient1++;
499      remainder1 = remainder1 - abs_nc;
500    }
501    quotient2 = 2 * quotient2;
502    remainder2 = 2 * remainder2;
503    if (remainder2 >= abs_d) {
504      quotient2++;
505      remainder2 = remainder2 - abs_d;
506    }
507    delta = abs_d - remainder2;
508  } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
509
510  magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
511  shift = p - 32;
512}
513
514RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div) {
515  LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
516  return rl_dest;
517}
518
519RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
520                                     int imm, bool is_div) {
521  // Use a multiply (and fixup) to perform an int div/rem by a constant.
522
523  // We have to use fixed registers, so flush all the temps.
524  FlushAllRegs();
525  LockCallTemps();  // Prepare for explicit register usage.
526
527  // Assume that the result will be in EDX.
528  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_r2, INVALID_SREG, INVALID_SREG};
529
530  // handle div/rem by 1 special case.
531  if (imm == 1) {
532    if (is_div) {
533      // x / 1 == x.
534      StoreValue(rl_result, rl_src);
535    } else {
536      // x % 1 == 0.
537      LoadConstantNoClobber(rs_r0, 0);
538      // For this case, return the result in EAX.
539      rl_result.reg.SetReg(r0);
540    }
541  } else if (imm == -1) {  // handle 0x80000000 / -1 special case.
542    if (is_div) {
543      LIR *minint_branch = 0;
544      LoadValueDirectFixed(rl_src, rs_r0);
545      OpRegImm(kOpCmp, rs_r0, 0x80000000);
546      minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
547
548      // for x != MIN_INT, x / -1 == -x.
549      NewLIR1(kX86Neg32R, r0);
550
551      LIR* branch_around = NewLIR1(kX86Jmp8, 0);
552      // The target for cmp/jmp above.
553      minint_branch->target = NewLIR0(kPseudoTargetLabel);
554      // EAX already contains the right value (0x80000000),
555      branch_around->target = NewLIR0(kPseudoTargetLabel);
556    } else {
557      // x % -1 == 0.
558      LoadConstantNoClobber(rs_r0, 0);
559    }
560    // For this case, return the result in EAX.
561    rl_result.reg.SetReg(r0);
562  } else {
563    CHECK(imm <= -2 || imm >= 2);
564    // Use H.S.Warren's Hacker's Delight Chapter 10 and
565    // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
566    int magic, shift;
567    CalculateMagicAndShift(imm, magic, shift);
568
569    /*
570     * For imm >= 2,
571     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
572     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
573     * For imm <= -2,
574     *     int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
575     *     int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
576     * We implement this algorithm in the following way:
577     * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
578     * 2. if imm > 0 and magic < 0, add numerator to EDX
579     *    if imm < 0 and magic > 0, sub numerator from EDX
580     * 3. if S !=0, SAR S bits for EDX
581     * 4. add 1 to EDX if EDX < 0
582     * 5. Thus, EDX is the quotient
583     */
584
585    // Numerator into EAX.
586    RegStorage numerator_reg;
587    if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
588      // We will need the value later.
589      if (rl_src.location == kLocPhysReg) {
590        // We can use it directly.
591        DCHECK(rl_src.reg.GetReg() != rs_r0.GetReg() && rl_src.reg.GetReg() != rs_r2.GetReg());
592        numerator_reg = rl_src.reg;
593      } else {
594        numerator_reg = rs_r1;
595        LoadValueDirectFixed(rl_src, numerator_reg);
596      }
597      OpRegCopy(rs_r0, numerator_reg);
598    } else {
599      // Only need this once.  Just put it into EAX.
600      LoadValueDirectFixed(rl_src, rs_r0);
601    }
602
603    // EDX = magic.
604    LoadConstantNoClobber(rs_r2, magic);
605
606    // EDX:EAX = magic & dividend.
607    NewLIR1(kX86Imul32DaR, rs_r2.GetReg());
608
609    if (imm > 0 && magic < 0) {
610      // Add numerator to EDX.
611      DCHECK(numerator_reg.Valid());
612      NewLIR2(kX86Add32RR, rs_r2.GetReg(), numerator_reg.GetReg());
613    } else if (imm < 0 && magic > 0) {
614      DCHECK(numerator_reg.Valid());
615      NewLIR2(kX86Sub32RR, rs_r2.GetReg(), numerator_reg.GetReg());
616    }
617
618    // Do we need the shift?
619    if (shift != 0) {
620      // Shift EDX by 'shift' bits.
621      NewLIR2(kX86Sar32RI, rs_r2.GetReg(), shift);
622    }
623
624    // Add 1 to EDX if EDX < 0.
625
626    // Move EDX to EAX.
627    OpRegCopy(rs_r0, rs_r2);
628
629    // Move sign bit to bit 0, zeroing the rest.
630    NewLIR2(kX86Shr32RI, rs_r2.GetReg(), 31);
631
632    // EDX = EDX + EAX.
633    NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r0.GetReg());
634
635    // Quotient is in EDX.
636    if (!is_div) {
637      // We need to compute the remainder.
638      // Remainder is divisor - (quotient * imm).
639      DCHECK(numerator_reg.Valid());
640      OpRegCopy(rs_r0, numerator_reg);
641
642      // EAX = numerator * imm.
643      OpRegRegImm(kOpMul, rs_r2, rs_r2, imm);
644
645      // EDX -= EAX.
646      NewLIR2(kX86Sub32RR, rs_r0.GetReg(), rs_r2.GetReg());
647
648      // For this case, return the result in EAX.
649      rl_result.reg.SetReg(r0);
650    }
651  }
652
653  return rl_result;
654}
655
656RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
657                                  bool is_div) {
658  LOG(FATAL) << "Unexpected use of GenDivRem for x86";
659  return rl_dest;
660}
661
662RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
663                                  RegLocation rl_src2, bool is_div, bool check_zero) {
664  // We have to use fixed registers, so flush all the temps.
665  FlushAllRegs();
666  LockCallTemps();  // Prepare for explicit register usage.
667
668  // Load LHS into EAX.
669  LoadValueDirectFixed(rl_src1, rs_r0);
670
671  // Load RHS into EBX.
672  LoadValueDirectFixed(rl_src2, rs_r1);
673
674  // Copy LHS sign bit into EDX.
675  NewLIR0(kx86Cdq32Da);
676
677  if (check_zero) {
678    // Handle division by zero case.
679    GenDivZeroCheck(rs_r1);
680  }
681
682  // Have to catch 0x80000000/-1 case, or we will get an exception!
683  OpRegImm(kOpCmp, rs_r1, -1);
684  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
685
686  // RHS is -1.
687  OpRegImm(kOpCmp, rs_r0, 0x80000000);
688  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
689
690  // In 0x80000000/-1 case.
691  if (!is_div) {
692    // For DIV, EAX is already right. For REM, we need EDX 0.
693    LoadConstantNoClobber(rs_r2, 0);
694  }
695  LIR* done = NewLIR1(kX86Jmp8, 0);
696
697  // Expected case.
698  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
699  minint_branch->target = minus_one_branch->target;
700  NewLIR1(kX86Idivmod32DaR, rs_r1.GetReg());
701  done->target = NewLIR0(kPseudoTargetLabel);
702
703  // Result is in EAX for div and EDX for rem.
704  RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_r0, INVALID_SREG, INVALID_SREG};
705  if (!is_div) {
706    rl_result.reg.SetReg(r2);
707  }
708  return rl_result;
709}
710
711bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
712  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
713
714  // Get the two arguments to the invoke and place them in GP registers.
715  RegLocation rl_src1 = info->args[0];
716  RegLocation rl_src2 = info->args[1];
717  rl_src1 = LoadValue(rl_src1, kCoreReg);
718  rl_src2 = LoadValue(rl_src2, kCoreReg);
719
720  RegLocation rl_dest = InlineTarget(info);
721  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
722
723  /*
724   * If the result register is the same as the second element, then we need to be careful.
725   * The reason is that the first copy will inadvertently clobber the second element with
726   * the first one thus yielding the wrong result. Thus we do a swap in that case.
727   */
728  if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
729    std::swap(rl_src1, rl_src2);
730  }
731
732  // Pick the first integer as min/max.
733  OpRegCopy(rl_result.reg, rl_src1.reg);
734
735  // If the integers are both in the same register, then there is nothing else to do
736  // because they are equal and we have already moved one into the result.
737  if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
738    // It is possible we didn't pick correctly so do the actual comparison now.
739    OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
740
741    // Conditionally move the other integer into the destination register.
742    ConditionCode condition_code = is_min ? kCondGt : kCondLt;
743    OpCondRegReg(kOpCmov, condition_code, rl_result.reg, rl_src2.reg);
744  }
745
746  StoreValue(rl_dest, rl_result);
747  return true;
748}
749
750bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
751  RegLocation rl_src_address = info->args[0];  // long address
752  rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
753  RegLocation rl_dest = size == k64 ? InlineTargetWide(info) : InlineTarget(info);
754  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
755  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
756  // Unaligned access is allowed on x86.
757  LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size);
758  if (size == k64) {
759    StoreValueWide(rl_dest, rl_result);
760  } else {
761    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
762    StoreValue(rl_dest, rl_result);
763  }
764  return true;
765}
766
767bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
768  RegLocation rl_src_address = info->args[0];  // long address
769  rl_src_address = NarrowRegLoc(rl_src_address);  // ignore high half in info->args[1]
770  RegLocation rl_src_value = info->args[2];  // [size] value
771  RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
772  if (size == k64) {
773    // Unaligned access is allowed on x86.
774    RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
775    StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size);
776  } else {
777    DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
778    // Unaligned access is allowed on x86.
779    RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
780    StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size);
781  }
782  return true;
783}
784
785void X86Mir2Lir::OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset) {
786  NewLIR5(kX86Lea32RA, r_base.GetReg(), reg1.GetReg(), reg2.GetReg(), scale, offset);
787}
788
789void X86Mir2Lir::OpTlsCmp(ThreadOffset<4> offset, int val) {
790  DCHECK_EQ(kX86, cu_->instruction_set);
791  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
792}
793
794void X86Mir2Lir::OpTlsCmp(ThreadOffset<8> offset, int val) {
795  DCHECK_EQ(kX86_64, cu_->instruction_set);
796  NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
797}
798
799static bool IsInReg(X86Mir2Lir *pMir2Lir, const RegLocation &rl, RegStorage reg) {
800  return rl.reg.Valid() && rl.reg.GetReg() == reg.GetReg() && (pMir2Lir->IsLive(reg) || rl.home);
801}
802
803bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
804  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
805  // Unused - RegLocation rl_src_unsafe = info->args[0];
806  RegLocation rl_src_obj = info->args[1];  // Object - known non-null
807  RegLocation rl_src_offset = info->args[2];  // long low
808  rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
809  RegLocation rl_src_expected = info->args[4];  // int, long or Object
810  // If is_long, high half is in info->args[5]
811  RegLocation rl_src_new_value = info->args[is_long ? 6 : 5];  // int, long or Object
812  // If is_long, high half is in info->args[7]
813
814  if (is_long) {
815    // TODO: avoid unnecessary loads of SI and DI when the values are in registers.
816    // TODO: CFI support.
817    FlushAllRegs();
818    LockCallTemps();
819    RegStorage r_tmp1 = RegStorage::MakeRegPair(rs_rAX, rs_rDX);
820    RegStorage r_tmp2 = RegStorage::MakeRegPair(rs_rBX, rs_rCX);
821    LoadValueDirectWideFixed(rl_src_expected, r_tmp1);
822    LoadValueDirectWideFixed(rl_src_new_value, r_tmp2);
823    // FIXME: needs 64-bit update.
824    const bool obj_in_di = IsInReg(this, rl_src_obj, rs_rDI);
825    const bool obj_in_si = IsInReg(this, rl_src_obj, rs_rSI);
826    DCHECK(!obj_in_si || !obj_in_di);
827    const bool off_in_di = IsInReg(this, rl_src_offset, rs_rDI);
828    const bool off_in_si = IsInReg(this, rl_src_offset, rs_rSI);
829    DCHECK(!off_in_si || !off_in_di);
830    // If obj/offset is in a reg, use that reg. Otherwise, use the empty reg.
831    RegStorage rs_obj = obj_in_di ? rs_rDI : obj_in_si ? rs_rSI : !off_in_di ? rs_rDI : rs_rSI;
832    RegStorage rs_off = off_in_si ? rs_rSI : off_in_di ? rs_rDI : !obj_in_si ? rs_rSI : rs_rDI;
833    bool push_di = (!obj_in_di && !off_in_di) && (rs_obj == rs_rDI || rs_off == rs_rDI);
834    bool push_si = (!obj_in_si && !off_in_si) && (rs_obj == rs_rSI || rs_off == rs_rSI);
835    if (push_di) {
836      NewLIR1(kX86Push32R, rs_rDI.GetReg());
837      MarkTemp(rs_rDI);
838      LockTemp(rs_rDI);
839    }
840    if (push_si) {
841      NewLIR1(kX86Push32R, rs_rSI.GetReg());
842      MarkTemp(rs_rSI);
843      LockTemp(rs_rSI);
844    }
845    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
846    const size_t push_offset = (push_si ? 4u : 0u) + (push_di ? 4u : 0u);
847    if (!obj_in_si && !obj_in_di) {
848      LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rs_obj);
849      // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
850      DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
851      int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - push_offset / 4u;
852      AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
853    }
854    if (!off_in_si && !off_in_di) {
855      LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rs_off);
856      // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
857      DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
858      int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - push_offset / 4u;
859      AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
860    }
861    NewLIR4(kX86LockCmpxchg64A, rs_obj.GetReg(), rs_off.GetReg(), 0, 0);
862
863    // After a store we need to insert barrier in case of potential load. Since the
864    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
865    GenMemBarrier(kStoreLoad);
866
867
868    if (push_si) {
869      FreeTemp(rs_rSI);
870      UnmarkTemp(rs_rSI);
871      NewLIR1(kX86Pop32R, rs_rSI.GetReg());
872    }
873    if (push_di) {
874      FreeTemp(rs_rDI);
875      UnmarkTemp(rs_rDI);
876      NewLIR1(kX86Pop32R, rs_rDI.GetReg());
877    }
878    FreeCallTemps();
879  } else {
880    // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
881    FlushReg(rs_r0);
882    Clobber(rs_r0);
883    LockTemp(rs_r0);
884
885    RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
886    RegLocation rl_new_value = LoadValue(rl_src_new_value);
887
888    if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
889      // Mark card for object assuming new value is stored.
890      FreeTemp(rs_r0);  // Temporarily release EAX for MarkGCCard().
891      MarkGCCard(rl_new_value.reg, rl_object.reg);
892      LockTemp(rs_r0);
893    }
894
895    RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
896    LoadValueDirect(rl_src_expected, rs_r0);
897    NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0, rl_new_value.reg.GetReg());
898
899    // After a store we need to insert barrier in case of potential load. Since the
900    // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
901    GenMemBarrier(kStoreLoad);
902
903    FreeTemp(rs_r0);
904  }
905
906  // Convert ZF to boolean
907  RegLocation rl_dest = InlineTarget(info);  // boolean place for result
908  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
909  RegStorage result_reg = rl_result.reg;
910
911  // For 32-bit, SETcc only works with EAX..EDX.
912  if (!IsByteRegister(result_reg)) {
913    result_reg = AllocateByteRegister();
914  }
915  NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondZ);
916  NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), result_reg.GetReg());
917  if (IsTemp(result_reg)) {
918    FreeTemp(result_reg);
919  }
920  StoreValue(rl_dest, rl_result);
921  return true;
922}
923
924LIR* X86Mir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
925  CHECK(base_of_code_ != nullptr);
926
927  // Address the start of the method
928  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
929  if (rl_method.wide) {
930    LoadValueDirectWideFixed(rl_method, reg);
931  } else {
932    LoadValueDirectFixed(rl_method, reg);
933  }
934  store_method_addr_used_ = true;
935
936  // Load the proper value from the literal area.
937  // We don't know the proper offset for the value, so pick one that will force
938  // 4 byte offset.  We will fix this up in the assembler later to have the right
939  // value.
940  ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
941  LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg.GetReg(), reg.GetReg(), 256,
942                    0, 0, target);
943  res->target = target;
944  res->flags.fixup = kFixupLoad;
945  store_method_addr_used_ = true;
946  return res;
947}
948
949LIR* X86Mir2Lir::OpVldm(RegStorage r_base, int count) {
950  LOG(FATAL) << "Unexpected use of OpVldm for x86";
951  return NULL;
952}
953
954LIR* X86Mir2Lir::OpVstm(RegStorage r_base, int count) {
955  LOG(FATAL) << "Unexpected use of OpVstm for x86";
956  return NULL;
957}
958
959void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
960                                               RegLocation rl_result, int lit,
961                                               int first_bit, int second_bit) {
962  RegStorage t_reg = AllocTemp();
963  OpRegRegImm(kOpLsl, t_reg, rl_src.reg, second_bit - first_bit);
964  OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, t_reg);
965  FreeTemp(t_reg);
966  if (first_bit != 0) {
967    OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
968  }
969}
970
971void X86Mir2Lir::GenDivZeroCheckWide(RegStorage reg) {
972  if (Gen64Bit()) {
973    DCHECK(reg.Is64Bit());
974
975    NewLIR2(kX86Cmp64RI8, reg.GetReg(), 0);
976  } else {
977    DCHECK(reg.IsPair());
978
979    // We are not supposed to clobber the incoming storage, so allocate a temporary.
980    RegStorage t_reg = AllocTemp();
981    // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
982    OpRegRegReg(kOpOr, t_reg, reg.GetLow(), reg.GetHigh());
983    // The temp is no longer needed so free it at this time.
984    FreeTemp(t_reg);
985  }
986
987  // In case of zero, throw ArithmeticException.
988  GenDivZeroCheck(kCondEq);
989}
990
991void X86Mir2Lir::GenArrayBoundsCheck(RegStorage index,
992                                     RegStorage array_base,
993                                     int len_offset) {
994  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
995   public:
996    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch,
997                             RegStorage index, RegStorage array_base, int32_t len_offset)
998        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
999          index_(index), array_base_(array_base), len_offset_(len_offset) {
1000    }
1001
1002    void Compile() OVERRIDE {
1003      m2l_->ResetRegPool();
1004      m2l_->ResetDefTracking();
1005      GenerateTargetLabel(kPseudoThrowTarget);
1006
1007      RegStorage new_index = index_;
1008      // Move index out of kArg1, either directly to kArg0, or to kArg2.
1009      if (index_.GetReg() == m2l_->TargetReg(kArg1).GetReg()) {
1010        if (array_base_.GetReg() == m2l_->TargetReg(kArg0).GetReg()) {
1011          m2l_->OpRegCopy(m2l_->TargetReg(kArg2), index_);
1012          new_index = m2l_->TargetReg(kArg2);
1013        } else {
1014          m2l_->OpRegCopy(m2l_->TargetReg(kArg0), index_);
1015          new_index = m2l_->TargetReg(kArg0);
1016        }
1017      }
1018      // Load array length to kArg1.
1019      m2l_->OpRegMem(kOpMov, m2l_->TargetReg(kArg1), array_base_, len_offset_);
1020      if (cu_->target64) {
1021        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
1022                                      new_index, m2l_->TargetReg(kArg1), true);
1023      } else {
1024        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
1025                                      new_index, m2l_->TargetReg(kArg1), true);
1026      }
1027    }
1028
1029   private:
1030    const RegStorage index_;
1031    const RegStorage array_base_;
1032    const int32_t len_offset_;
1033  };
1034
1035  OpRegMem(kOpCmp, index, array_base, len_offset);
1036  LIR* branch = OpCondBranch(kCondUge, nullptr);
1037  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch,
1038                                                    index, array_base, len_offset));
1039}
1040
1041void X86Mir2Lir::GenArrayBoundsCheck(int32_t index,
1042                                     RegStorage array_base,
1043                                     int32_t len_offset) {
1044  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
1045   public:
1046    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch,
1047                             int32_t index, RegStorage array_base, int32_t len_offset)
1048        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
1049          index_(index), array_base_(array_base), len_offset_(len_offset) {
1050    }
1051
1052    void Compile() OVERRIDE {
1053      m2l_->ResetRegPool();
1054      m2l_->ResetDefTracking();
1055      GenerateTargetLabel(kPseudoThrowTarget);
1056
1057      // Load array length to kArg1.
1058      m2l_->OpRegMem(kOpMov, m2l_->TargetReg(kArg1), array_base_, len_offset_);
1059      m2l_->LoadConstant(m2l_->TargetReg(kArg0), index_);
1060      if (cu_->target64) {
1061        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(8, pThrowArrayBounds),
1062                                      m2l_->TargetReg(kArg0), m2l_->TargetReg(kArg1), true);
1063      } else {
1064        m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
1065                                      m2l_->TargetReg(kArg0), m2l_->TargetReg(kArg1), true);
1066      }
1067    }
1068
1069   private:
1070    const int32_t index_;
1071    const RegStorage array_base_;
1072    const int32_t len_offset_;
1073  };
1074
1075  NewLIR3(IS_SIMM8(index) ? kX86Cmp32MI8 : kX86Cmp32MI, array_base.GetReg(), len_offset, index);
1076  LIR* branch = OpCondBranch(kCondLs, nullptr);
1077  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch,
1078                                                    index, array_base, len_offset));
1079}
1080
1081// Test suspend flag, return target of taken suspend branch
1082LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
1083  if (cu_->target64) {
1084    OpTlsCmp(Thread::ThreadFlagsOffset<8>(), 0);
1085  } else {
1086    OpTlsCmp(Thread::ThreadFlagsOffset<4>(), 0);
1087  }
1088  return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
1089}
1090
1091// Decrement register and branch on condition
1092LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
1093  OpRegImm(kOpSub, reg, 1);
1094  return OpCondBranch(c_code, target);
1095}
1096
1097bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
1098                                    RegLocation rl_src, RegLocation rl_dest, int lit) {
1099  LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
1100  return false;
1101}
1102
1103bool X86Mir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1104  LOG(FATAL) << "Unexpected use of easyMultiply in x86";
1105  return false;
1106}
1107
1108LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
1109  LOG(FATAL) << "Unexpected use of OpIT in x86";
1110  return NULL;
1111}
1112
1113void X86Mir2Lir::OpEndIT(LIR* it) {
1114  LOG(FATAL) << "Unexpected use of OpEndIT in x86";
1115}
1116
1117void X86Mir2Lir::GenImulRegImm(RegStorage dest, RegStorage src, int val) {
1118  switch (val) {
1119    case 0:
1120      NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
1121      break;
1122    case 1:
1123      OpRegCopy(dest, src);
1124      break;
1125    default:
1126      OpRegRegImm(kOpMul, dest, src, val);
1127      break;
1128  }
1129}
1130
1131void X86Mir2Lir::GenImulMemImm(RegStorage dest, int sreg, int displacement, int val) {
1132  // All memory accesses below reference dalvik regs.
1133  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1134
1135  LIR *m;
1136  switch (val) {
1137    case 0:
1138      NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
1139      break;
1140    case 1:
1141      LoadBaseDisp(rs_rX86_SP, displacement, dest, k32);
1142      break;
1143    default:
1144      m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest.GetReg(),
1145                  rs_rX86_SP.GetReg(), displacement, val);
1146      AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
1147      break;
1148  }
1149}
1150
1151void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1152                            RegLocation rl_src2) {
1153  // All memory accesses below reference dalvik regs.
1154  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1155
1156  if (Gen64Bit()) {
1157    if (rl_src1.is_const) {
1158      std::swap(rl_src1, rl_src2);
1159    }
1160    // Are we multiplying by a constant?
1161    if (rl_src2.is_const) {
1162      int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1163      if (val == 0) {
1164        RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1165        OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
1166        StoreValueWide(rl_dest, rl_result);
1167        return;
1168      } else if (val == 1) {
1169        StoreValueWide(rl_dest, rl_src1);
1170        return;
1171      } else if (val == 2) {
1172        GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
1173        return;
1174      } else if (IsPowerOfTwo(val)) {
1175        int shift_amount = LowestSetBit(val);
1176        if (!BadOverlap(rl_src1, rl_dest)) {
1177          rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1178          RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
1179                                                    rl_src1, shift_amount);
1180          StoreValueWide(rl_dest, rl_result);
1181          return;
1182        }
1183      }
1184    }
1185    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1186    rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1187    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1188    if (rl_result.reg.GetReg() == rl_src1.reg.GetReg() &&
1189        rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
1190      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
1191    } else if (rl_result.reg.GetReg() != rl_src1.reg.GetReg() &&
1192               rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
1193      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src1.reg.GetReg());
1194    } else if (rl_result.reg.GetReg() == rl_src1.reg.GetReg() &&
1195               rl_result.reg.GetReg() != rl_src2.reg.GetReg()) {
1196      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
1197    } else {
1198      OpRegCopy(rl_result.reg, rl_src1.reg);
1199      NewLIR2(kX86Imul64RR, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
1200    }
1201    StoreValueWide(rl_dest, rl_result);
1202    return;
1203  }
1204
1205  if (rl_src1.is_const) {
1206    std::swap(rl_src1, rl_src2);
1207  }
1208  // Are we multiplying by a constant?
1209  if (rl_src2.is_const) {
1210    // Do special compare/branch against simple const operand
1211    int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1212    if (val == 0) {
1213      RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1214      OpRegReg(kOpXor, rl_result.reg.GetLow(), rl_result.reg.GetLow());
1215      OpRegReg(kOpXor, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());
1216      StoreValueWide(rl_dest, rl_result);
1217      return;
1218    } else if (val == 1) {
1219      StoreValueWide(rl_dest, rl_src1);
1220      return;
1221    } else if (val == 2) {
1222      GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
1223      return;
1224    } else if (IsPowerOfTwo(val)) {
1225      int shift_amount = LowestSetBit(val);
1226      if (!BadOverlap(rl_src1, rl_dest)) {
1227        rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1228        RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
1229                                                  rl_src1, shift_amount);
1230        StoreValueWide(rl_dest, rl_result);
1231        return;
1232      }
1233    }
1234
1235    // Okay, just bite the bullet and do it.
1236    int32_t val_lo = Low32Bits(val);
1237    int32_t val_hi = High32Bits(val);
1238    FlushAllRegs();
1239    LockCallTemps();  // Prepare for explicit register usage.
1240    rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1241    bool src1_in_reg = rl_src1.location == kLocPhysReg;
1242    int displacement = SRegOffset(rl_src1.s_reg_low);
1243
1244    // ECX <- 1H * 2L
1245    // EAX <- 1L * 2H
1246    if (src1_in_reg) {
1247      GenImulRegImm(rs_r1, rl_src1.reg.GetHigh(), val_lo);
1248      GenImulRegImm(rs_r0, rl_src1.reg.GetLow(), val_hi);
1249    } else {
1250      GenImulMemImm(rs_r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
1251      GenImulMemImm(rs_r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
1252    }
1253
1254    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1255    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r0.GetReg());
1256
1257    // EAX <- 2L
1258    LoadConstantNoClobber(rs_r0, val_lo);
1259
1260    // EDX:EAX <- 2L * 1L (double precision)
1261    if (src1_in_reg) {
1262      NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
1263    } else {
1264      LIR *m = NewLIR2(kX86Mul32DaM, rs_rX86_SP.GetReg(), displacement + LOWORD_OFFSET);
1265      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1266                              true /* is_load */, true /* is_64bit */);
1267    }
1268
1269    // EDX <- EDX + ECX (add high words)
1270    NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r1.GetReg());
1271
1272    // Result is EDX:EAX
1273    RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
1274                             RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
1275    StoreValueWide(rl_dest, rl_result);
1276    return;
1277  }
1278
1279  // Nope.  Do it the hard way
1280  // Check for V*V.  We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
1281  bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
1282                   mir_graph_->SRegToVReg(rl_src2.s_reg_low);
1283
1284  FlushAllRegs();
1285  LockCallTemps();  // Prepare for explicit register usage.
1286  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1287  rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1288
1289  // At this point, the VRs are in their home locations.
1290  bool src1_in_reg = rl_src1.location == kLocPhysReg;
1291  bool src2_in_reg = rl_src2.location == kLocPhysReg;
1292
1293  // ECX <- 1H
1294  if (src1_in_reg) {
1295    NewLIR2(kX86Mov32RR, rs_r1.GetReg(), rl_src1.reg.GetHighReg());
1296  } else {
1297    LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, rs_r1, k32);
1298  }
1299
1300  if (is_square) {
1301    // Take advantage of the fact that the values are the same.
1302    // ECX <- ECX * 2L  (1H * 2L)
1303    if (src2_in_reg) {
1304      NewLIR2(kX86Imul32RR, rs_r1.GetReg(), rl_src2.reg.GetLowReg());
1305    } else {
1306      int displacement = SRegOffset(rl_src2.s_reg_low);
1307      LIR *m = NewLIR3(kX86Imul32RM, rs_r1.GetReg(), rs_rX86_SP.GetReg(),
1308                       displacement + LOWORD_OFFSET);
1309      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1310                              true /* is_load */, true /* is_64bit */);
1311    }
1312
1313    // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1314    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r1.GetReg());
1315  } else {
1316    // EAX <- 2H
1317    if (src2_in_reg) {
1318      NewLIR2(kX86Mov32RR, rs_r0.GetReg(), rl_src2.reg.GetHighReg());
1319    } else {
1320      LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, rs_r0, k32);
1321    }
1322
1323    // EAX <- EAX * 1L  (2H * 1L)
1324    if (src1_in_reg) {
1325      NewLIR2(kX86Imul32RR, rs_r0.GetReg(), rl_src1.reg.GetLowReg());
1326    } else {
1327      int displacement = SRegOffset(rl_src1.s_reg_low);
1328      LIR *m = NewLIR3(kX86Imul32RM, rs_r0.GetReg(), rs_rX86_SP.GetReg(),
1329                       displacement + LOWORD_OFFSET);
1330      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1331                              true /* is_load */, true /* is_64bit */);
1332    }
1333
1334    // ECX <- ECX * 2L  (1H * 2L)
1335    if (src2_in_reg) {
1336      NewLIR2(kX86Imul32RR, rs_r1.GetReg(), rl_src2.reg.GetLowReg());
1337    } else {
1338      int displacement = SRegOffset(rl_src2.s_reg_low);
1339      LIR *m = NewLIR3(kX86Imul32RM, rs_r1.GetReg(), rs_rX86_SP.GetReg(),
1340                       displacement + LOWORD_OFFSET);
1341      AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1342                              true /* is_load */, true /* is_64bit */);
1343    }
1344
1345    // ECX <- ECX + EAX  (2H * 1L) + (1H * 2L)
1346    NewLIR2(kX86Add32RR, rs_r1.GetReg(), rs_r0.GetReg());
1347  }
1348
1349  // EAX <- 2L
1350  if (src2_in_reg) {
1351    NewLIR2(kX86Mov32RR, rs_r0.GetReg(), rl_src2.reg.GetLowReg());
1352  } else {
1353    LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, rs_r0, k32);
1354  }
1355
1356  // EDX:EAX <- 2L * 1L (double precision)
1357  if (src1_in_reg) {
1358    NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
1359  } else {
1360    int displacement = SRegOffset(rl_src1.s_reg_low);
1361    LIR *m = NewLIR2(kX86Mul32DaM, rs_rX86_SP.GetReg(), displacement + LOWORD_OFFSET);
1362    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1363                            true /* is_load */, true /* is_64bit */);
1364  }
1365
1366  // EDX <- EDX + ECX (add high words)
1367  NewLIR2(kX86Add32RR, rs_r2.GetReg(), rs_r1.GetReg());
1368
1369  // Result is EDX:EAX
1370  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1,
1371                           RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
1372  StoreValueWide(rl_dest, rl_result);
1373}
1374
1375void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1376                                   Instruction::Code op) {
1377  DCHECK_EQ(rl_dest.location, kLocPhysReg);
1378  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1379  if (rl_src.location == kLocPhysReg) {
1380    // Both operands are in registers.
1381    // But we must ensure that rl_src is in pair
1382    if (Gen64Bit()) {
1383      NewLIR2(x86op, rl_dest.reg.GetReg(), rl_src.reg.GetReg());
1384    } else {
1385      rl_src = LoadValueWide(rl_src, kCoreReg);
1386      if (rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
1387        // The registers are the same, so we would clobber it before the use.
1388        RegStorage temp_reg = AllocTemp();
1389        OpRegCopy(temp_reg, rl_dest.reg);
1390        rl_src.reg.SetHighReg(temp_reg.GetReg());
1391      }
1392      NewLIR2(x86op, rl_dest.reg.GetLowReg(), rl_src.reg.GetLowReg());
1393
1394      x86op = GetOpcode(op, rl_dest, rl_src, true);
1395      NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
1396      FreeTemp(rl_src.reg);  // ???
1397    }
1398    return;
1399  }
1400
1401  // RHS is in memory.
1402  DCHECK((rl_src.location == kLocDalvikFrame) ||
1403         (rl_src.location == kLocCompilerTemp));
1404  int r_base = TargetReg(kSp).GetReg();
1405  int displacement = SRegOffset(rl_src.s_reg_low);
1406
1407  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1408  LIR *lir = NewLIR3(x86op, Gen64Bit() ? rl_dest.reg.GetReg() : rl_dest.reg.GetLowReg(), r_base, displacement + LOWORD_OFFSET);
1409  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1410                          true /* is_load */, true /* is64bit */);
1411  if (!Gen64Bit()) {
1412    x86op = GetOpcode(op, rl_dest, rl_src, true);
1413    lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), r_base, displacement + HIWORD_OFFSET);
1414    AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1415                            true /* is_load */, true /* is64bit */);
1416  }
1417}
1418
1419void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1420  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
1421  if (rl_dest.location == kLocPhysReg) {
1422    // Ensure we are in a register pair
1423    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1424
1425    rl_src = UpdateLocWideTyped(rl_src, kCoreReg);
1426    GenLongRegOrMemOp(rl_result, rl_src, op);
1427    StoreFinalValueWide(rl_dest, rl_result);
1428    return;
1429  }
1430
1431  // It wasn't in registers, so it better be in memory.
1432  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1433         (rl_dest.location == kLocCompilerTemp));
1434  rl_src = LoadValueWide(rl_src, kCoreReg);
1435
1436  // Operate directly into memory.
1437  X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1438  int r_base = TargetReg(kSp).GetReg();
1439  int displacement = SRegOffset(rl_dest.s_reg_low);
1440
1441  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1442  LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET,
1443                     Gen64Bit() ? rl_src.reg.GetReg() : rl_src.reg.GetLowReg());
1444  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1445                          true /* is_load */, true /* is64bit */);
1446  AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1447                          false /* is_load */, true /* is64bit */);
1448  if (!Gen64Bit()) {
1449    x86op = GetOpcode(op, rl_dest, rl_src, true);
1450    lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
1451    AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1452                            true /* is_load */, true /* is64bit */);
1453    AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1454                            false /* is_load */, true /* is64bit */);
1455  }
1456  FreeTemp(rl_src.reg);
1457}
1458
1459void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1460                              RegLocation rl_src2, Instruction::Code op,
1461                              bool is_commutative) {
1462  // Is this really a 2 operand operation?
1463  switch (op) {
1464    case Instruction::ADD_LONG_2ADDR:
1465    case Instruction::SUB_LONG_2ADDR:
1466    case Instruction::AND_LONG_2ADDR:
1467    case Instruction::OR_LONG_2ADDR:
1468    case Instruction::XOR_LONG_2ADDR:
1469      if (GenerateTwoOperandInstructions()) {
1470        GenLongArith(rl_dest, rl_src2, op);
1471        return;
1472      }
1473      break;
1474
1475    default:
1476      break;
1477  }
1478
1479  if (rl_dest.location == kLocPhysReg) {
1480    RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1481
1482    // We are about to clobber the LHS, so it needs to be a temp.
1483    rl_result = ForceTempWide(rl_result);
1484
1485    // Perform the operation using the RHS.
1486    rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1487    GenLongRegOrMemOp(rl_result, rl_src2, op);
1488
1489    // And now record that the result is in the temp.
1490    StoreFinalValueWide(rl_dest, rl_result);
1491    return;
1492  }
1493
1494  // It wasn't in registers, so it better be in memory.
1495  DCHECK((rl_dest.location == kLocDalvikFrame) ||
1496         (rl_dest.location == kLocCompilerTemp));
1497  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
1498  rl_src2 = UpdateLocWideTyped(rl_src2, kCoreReg);
1499
1500  // Get one of the source operands into temporary register.
1501  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1502  if (Gen64Bit()) {
1503    if (IsTemp(rl_src1.reg)) {
1504      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1505    } else if (is_commutative) {
1506      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1507      // We need at least one of them to be a temporary.
1508      if (!IsTemp(rl_src2.reg)) {
1509        rl_src1 = ForceTempWide(rl_src1);
1510        GenLongRegOrMemOp(rl_src1, rl_src2, op);
1511      } else {
1512        GenLongRegOrMemOp(rl_src2, rl_src1, op);
1513        StoreFinalValueWide(rl_dest, rl_src2);
1514        return;
1515      }
1516    } else {
1517      // Need LHS to be the temp.
1518      rl_src1 = ForceTempWide(rl_src1);
1519      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1520    }
1521  } else {
1522    if (IsTemp(rl_src1.reg.GetLow()) && IsTemp(rl_src1.reg.GetHigh())) {
1523      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1524    } else if (is_commutative) {
1525      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1526      // We need at least one of them to be a temporary.
1527      if (!(IsTemp(rl_src2.reg.GetLow()) && IsTemp(rl_src2.reg.GetHigh()))) {
1528        rl_src1 = ForceTempWide(rl_src1);
1529        GenLongRegOrMemOp(rl_src1, rl_src2, op);
1530      } else {
1531        GenLongRegOrMemOp(rl_src2, rl_src1, op);
1532        StoreFinalValueWide(rl_dest, rl_src2);
1533        return;
1534      }
1535    } else {
1536      // Need LHS to be the temp.
1537      rl_src1 = ForceTempWide(rl_src1);
1538      GenLongRegOrMemOp(rl_src1, rl_src2, op);
1539    }
1540  }
1541
1542  StoreFinalValueWide(rl_dest, rl_src1);
1543}
1544
1545void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
1546                            RegLocation rl_src1, RegLocation rl_src2) {
1547  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1548}
1549
1550void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1551                            RegLocation rl_src1, RegLocation rl_src2) {
1552  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1553}
1554
1555void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1556                            RegLocation rl_src1, RegLocation rl_src2) {
1557  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1558}
1559
1560void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1561                           RegLocation rl_src1, RegLocation rl_src2) {
1562  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1563}
1564
1565void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1566                            RegLocation rl_src1, RegLocation rl_src2) {
1567  GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1568}
1569
1570void X86Mir2Lir::GenNotLong(RegLocation rl_dest, RegLocation rl_src) {
1571  if (Gen64Bit()) {
1572    rl_src = LoadValueWide(rl_src, kCoreReg);
1573    RegLocation rl_result;
1574    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1575    OpRegCopy(rl_result.reg, rl_src.reg);
1576    OpReg(kOpNot, rl_result.reg);
1577    StoreValueWide(rl_dest, rl_result);
1578  } else {
1579    LOG(FATAL) << "Unexpected use GenNotLong()";
1580  }
1581}
1582
1583void X86Mir2Lir::GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
1584                           RegLocation rl_src2, bool is_div) {
1585  if (!Gen64Bit()) {
1586    LOG(FATAL) << "Unexpected use GenDivRemLong()";
1587    return;
1588  }
1589
1590  // We have to use fixed registers, so flush all the temps.
1591  FlushAllRegs();
1592  LockCallTemps();  // Prepare for explicit register usage.
1593
1594  // Load LHS into RAX.
1595  LoadValueDirectWideFixed(rl_src1, rs_r0q);
1596
1597  // Load RHS into RCX.
1598  LoadValueDirectWideFixed(rl_src2, rs_r1q);
1599
1600  // Copy LHS sign bit into RDX.
1601  NewLIR0(kx86Cqo64Da);
1602
1603  // Handle division by zero case.
1604  GenDivZeroCheckWide(rs_r1q);
1605
1606  // Have to catch 0x8000000000000000/-1 case, or we will get an exception!
1607  NewLIR2(kX86Cmp64RI8, rs_r1q.GetReg(), -1);
1608  LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
1609
1610  // RHS is -1.
1611  LoadConstantWide(rs_r6q, 0x8000000000000000);
1612  NewLIR2(kX86Cmp64RR, rs_r0q.GetReg(), rs_r6q.GetReg());
1613  LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
1614
1615  // In 0x8000000000000000/-1 case.
1616  if (!is_div) {
1617    // For DIV, RAX is already right. For REM, we need RDX 0.
1618    NewLIR2(kX86Xor64RR, rs_r2q.GetReg(), rs_r2q.GetReg());
1619  }
1620  LIR* done = NewLIR1(kX86Jmp8, 0);
1621
1622  // Expected case.
1623  minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
1624  minint_branch->target = minus_one_branch->target;
1625  NewLIR1(kX86Idivmod64DaR, rs_r1q.GetReg());
1626  done->target = NewLIR0(kPseudoTargetLabel);
1627
1628  // Result is in RAX for div and RDX for rem.
1629  RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, rs_r0q, INVALID_SREG, INVALID_SREG};
1630  if (!is_div) {
1631    rl_result.reg.SetReg(r2q);
1632  }
1633
1634  StoreValueWide(rl_dest, rl_result);
1635}
1636
1637void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1638  rl_src = LoadValueWide(rl_src, kCoreReg);
1639  RegLocation rl_result;
1640  if (Gen64Bit()) {
1641    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1642    OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1643  } else {
1644    rl_result = ForceTempWide(rl_src);
1645    if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
1646        ((rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()))) {
1647      // The registers are the same, so we would clobber it before the use.
1648      RegStorage temp_reg = AllocTemp();
1649      OpRegCopy(temp_reg, rl_result.reg);
1650      rl_result.reg.SetHighReg(temp_reg.GetReg());
1651    }
1652    OpRegReg(kOpNeg, rl_result.reg.GetLow(), rl_result.reg.GetLow());    // rLow = -rLow
1653    OpRegImm(kOpAdc, rl_result.reg.GetHigh(), 0);                   // rHigh = rHigh + CF
1654    OpRegReg(kOpNeg, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());  // rHigh = -rHigh
1655  }
1656  StoreValueWide(rl_dest, rl_result);
1657}
1658
1659void X86Mir2Lir::OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset) {
1660  DCHECK_EQ(kX86, cu_->instruction_set);
1661  X86OpCode opcode = kX86Bkpt;
1662  switch (op) {
1663  case kOpCmp: opcode = kX86Cmp32RT;  break;
1664  case kOpMov: opcode = kX86Mov32RT;  break;
1665  default:
1666    LOG(FATAL) << "Bad opcode: " << op;
1667    break;
1668  }
1669  NewLIR2(opcode, r_dest.GetReg(), thread_offset.Int32Value());
1670}
1671
1672void X86Mir2Lir::OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset) {
1673  DCHECK_EQ(kX86_64, cu_->instruction_set);
1674  X86OpCode opcode = kX86Bkpt;
1675  if (Gen64Bit() && r_dest.Is64BitSolo()) {
1676    switch (op) {
1677    case kOpCmp: opcode = kX86Cmp64RT;  break;
1678    case kOpMov: opcode = kX86Mov64RT;  break;
1679    default:
1680      LOG(FATAL) << "Bad opcode(OpRegThreadMem 64): " << op;
1681      break;
1682    }
1683  } else {
1684    switch (op) {
1685    case kOpCmp: opcode = kX86Cmp32RT;  break;
1686    case kOpMov: opcode = kX86Mov32RT;  break;
1687    default:
1688      LOG(FATAL) << "Bad opcode: " << op;
1689      break;
1690    }
1691  }
1692  NewLIR2(opcode, r_dest.GetReg(), thread_offset.Int32Value());
1693}
1694
1695/*
1696 * Generate array load
1697 */
1698void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1699                             RegLocation rl_index, RegLocation rl_dest, int scale) {
1700  RegisterClass reg_class = RegClassBySize(size);
1701  int len_offset = mirror::Array::LengthOffset().Int32Value();
1702  RegLocation rl_result;
1703  rl_array = LoadValue(rl_array, kRefReg);
1704
1705  int data_offset;
1706  if (size == k64 || size == kDouble) {
1707    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1708  } else {
1709    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1710  }
1711
1712  bool constant_index = rl_index.is_const;
1713  int32_t constant_index_value = 0;
1714  if (!constant_index) {
1715    rl_index = LoadValue(rl_index, kCoreReg);
1716  } else {
1717    constant_index_value = mir_graph_->ConstantValue(rl_index);
1718    // If index is constant, just fold it into the data offset
1719    data_offset += constant_index_value << scale;
1720    // treat as non array below
1721    rl_index.reg = RegStorage::InvalidReg();
1722  }
1723
1724  /* null object? */
1725  GenNullCheck(rl_array.reg, opt_flags);
1726
1727  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1728    if (constant_index) {
1729      GenArrayBoundsCheck(constant_index_value, rl_array.reg, len_offset);
1730    } else {
1731      GenArrayBoundsCheck(rl_index.reg, rl_array.reg, len_offset);
1732    }
1733  }
1734  rl_result = EvalLoc(rl_dest, reg_class, true);
1735  LoadBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_result.reg, size);
1736  if ((size == k64) || (size == kDouble)) {
1737    StoreValueWide(rl_dest, rl_result);
1738  } else {
1739    StoreValue(rl_dest, rl_result);
1740  }
1741}
1742
1743/*
1744 * Generate array store
1745 *
1746 */
1747void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1748                             RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1749  RegisterClass reg_class = RegClassBySize(size);
1750  int len_offset = mirror::Array::LengthOffset().Int32Value();
1751  int data_offset;
1752
1753  if (size == k64 || size == kDouble) {
1754    data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1755  } else {
1756    data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1757  }
1758
1759  rl_array = LoadValue(rl_array, kRefReg);
1760  bool constant_index = rl_index.is_const;
1761  int32_t constant_index_value = 0;
1762  if (!constant_index) {
1763    rl_index = LoadValue(rl_index, kCoreReg);
1764  } else {
1765    // If index is constant, just fold it into the data offset
1766    constant_index_value = mir_graph_->ConstantValue(rl_index);
1767    data_offset += constant_index_value << scale;
1768    // treat as non array below
1769    rl_index.reg = RegStorage::InvalidReg();
1770  }
1771
1772  /* null object? */
1773  GenNullCheck(rl_array.reg, opt_flags);
1774
1775  if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
1776    if (constant_index) {
1777      GenArrayBoundsCheck(constant_index_value, rl_array.reg, len_offset);
1778    } else {
1779      GenArrayBoundsCheck(rl_index.reg, rl_array.reg, len_offset);
1780    }
1781  }
1782  if ((size == k64) || (size == kDouble)) {
1783    rl_src = LoadValueWide(rl_src, reg_class);
1784  } else {
1785    rl_src = LoadValue(rl_src, reg_class);
1786  }
1787  // If the src reg can't be byte accessed, move it to a temp first.
1788  if ((size == kSignedByte || size == kUnsignedByte) && !IsByteRegister(rl_src.reg)) {
1789    RegStorage temp = AllocTemp();
1790    OpRegCopy(temp, rl_src.reg);
1791    StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, temp, size);
1792  } else {
1793    StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_src.reg, size);
1794  }
1795  if (card_mark) {
1796    // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
1797    if (!constant_index) {
1798      FreeTemp(rl_index.reg);
1799    }
1800    MarkGCCard(rl_src.reg, rl_array.reg);
1801  }
1802}
1803
1804RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1805                                          RegLocation rl_src, int shift_amount) {
1806  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1807  if (Gen64Bit()) {
1808    OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1809    switch (opcode) {
1810      case Instruction::SHL_LONG:
1811      case Instruction::SHL_LONG_2ADDR:
1812        op = kOpLsl;
1813        break;
1814      case Instruction::SHR_LONG:
1815      case Instruction::SHR_LONG_2ADDR:
1816        op = kOpAsr;
1817        break;
1818      case Instruction::USHR_LONG:
1819      case Instruction::USHR_LONG_2ADDR:
1820        op = kOpLsr;
1821        break;
1822      default:
1823        LOG(FATAL) << "Unexpected case";
1824    }
1825    OpRegRegImm(op, rl_result.reg, rl_src.reg, shift_amount);
1826  } else {
1827    switch (opcode) {
1828      case Instruction::SHL_LONG:
1829      case Instruction::SHL_LONG_2ADDR:
1830        DCHECK_NE(shift_amount, 1);  // Prevent a double store from happening.
1831        if (shift_amount == 32) {
1832          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1833          LoadConstant(rl_result.reg.GetLow(), 0);
1834        } else if (shift_amount > 31) {
1835          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1836          NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
1837          LoadConstant(rl_result.reg.GetLow(), 0);
1838        } else {
1839          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetLow());
1840          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1841          NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetLowReg(),
1842                  shift_amount);
1843          NewLIR2(kX86Sal32RI, rl_result.reg.GetLowReg(), shift_amount);
1844        }
1845        break;
1846      case Instruction::SHR_LONG:
1847      case Instruction::SHR_LONG_2ADDR:
1848        if (shift_amount == 32) {
1849          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1850          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1851          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1852        } else if (shift_amount > 31) {
1853          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1854          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1855          NewLIR2(kX86Sar32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
1856          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
1857        } else {
1858          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetLow());
1859          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1860          NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(),
1861                  shift_amount);
1862          NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
1863        }
1864        break;
1865      case Instruction::USHR_LONG:
1866      case Instruction::USHR_LONG_2ADDR:
1867        if (shift_amount == 32) {
1868          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1869          LoadConstant(rl_result.reg.GetHigh(), 0);
1870        } else if (shift_amount > 31) {
1871          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1872          NewLIR2(kX86Shr32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
1873          LoadConstant(rl_result.reg.GetHigh(), 0);
1874        } else {
1875          OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetLow());
1876          OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1877          NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(),
1878                  shift_amount);
1879          NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
1880        }
1881        break;
1882      default:
1883        LOG(FATAL) << "Unexpected case";
1884    }
1885  }
1886  return rl_result;
1887}
1888
1889void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1890                                   RegLocation rl_src, RegLocation rl_shift) {
1891  // Per spec, we only care about low 6 bits of shift amount.
1892  int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1893  if (shift_amount == 0) {
1894    rl_src = LoadValueWide(rl_src, kCoreReg);
1895    StoreValueWide(rl_dest, rl_src);
1896    return;
1897  } else if (shift_amount == 1 &&
1898            (opcode ==  Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1899    // Need to handle this here to avoid calling StoreValueWide twice.
1900    GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1901    return;
1902  }
1903  if (BadOverlap(rl_src, rl_dest)) {
1904    GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1905    return;
1906  }
1907  rl_src = LoadValueWide(rl_src, kCoreReg);
1908  RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1909  StoreValueWide(rl_dest, rl_result);
1910}
1911
1912void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
1913                                   RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1914  bool isConstSuccess = false;
1915  switch (opcode) {
1916    case Instruction::ADD_LONG:
1917    case Instruction::AND_LONG:
1918    case Instruction::OR_LONG:
1919    case Instruction::XOR_LONG:
1920      if (rl_src2.is_const) {
1921        isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1922      } else {
1923        DCHECK(rl_src1.is_const);
1924        isConstSuccess = GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1925      }
1926      break;
1927    case Instruction::SUB_LONG:
1928    case Instruction::SUB_LONG_2ADDR:
1929      if (rl_src2.is_const) {
1930        isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1931      } else {
1932        GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1933        isConstSuccess = true;
1934      }
1935      break;
1936    case Instruction::ADD_LONG_2ADDR:
1937    case Instruction::OR_LONG_2ADDR:
1938    case Instruction::XOR_LONG_2ADDR:
1939    case Instruction::AND_LONG_2ADDR:
1940      if (rl_src2.is_const) {
1941        if (GenerateTwoOperandInstructions()) {
1942          isConstSuccess = GenLongImm(rl_dest, rl_src2, opcode);
1943        } else {
1944          isConstSuccess = GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1945        }
1946      } else {
1947        DCHECK(rl_src1.is_const);
1948        isConstSuccess = GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1949      }
1950      break;
1951    default:
1952      isConstSuccess = false;
1953      break;
1954  }
1955
1956  if (!isConstSuccess) {
1957    // Default - bail to non-const handler.
1958    GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1959  }
1960}
1961
1962bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1963  switch (op) {
1964    case Instruction::AND_LONG_2ADDR:
1965    case Instruction::AND_LONG:
1966      return value == -1;
1967    case Instruction::OR_LONG:
1968    case Instruction::OR_LONG_2ADDR:
1969    case Instruction::XOR_LONG:
1970    case Instruction::XOR_LONG_2ADDR:
1971      return value == 0;
1972    default:
1973      return false;
1974  }
1975}
1976
1977X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1978                                bool is_high_op) {
1979  bool rhs_in_mem = rhs.location != kLocPhysReg;
1980  bool dest_in_mem = dest.location != kLocPhysReg;
1981  bool is64Bit = Gen64Bit();
1982  DCHECK(!rhs_in_mem || !dest_in_mem);
1983  switch (op) {
1984    case Instruction::ADD_LONG:
1985    case Instruction::ADD_LONG_2ADDR:
1986      if (dest_in_mem) {
1987        return is64Bit ? kX86Add64MR : is_high_op ? kX86Adc32MR : kX86Add32MR;
1988      } else if (rhs_in_mem) {
1989        return is64Bit ? kX86Add64RM : is_high_op ? kX86Adc32RM : kX86Add32RM;
1990      }
1991      return is64Bit ? kX86Add64RR : is_high_op ? kX86Adc32RR : kX86Add32RR;
1992    case Instruction::SUB_LONG:
1993    case Instruction::SUB_LONG_2ADDR:
1994      if (dest_in_mem) {
1995        return is64Bit ? kX86Sub64MR : is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1996      } else if (rhs_in_mem) {
1997        return is64Bit ? kX86Sub64RM : is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1998      }
1999      return is64Bit ? kX86Sub64RR : is_high_op ? kX86Sbb32RR : kX86Sub32RR;
2000    case Instruction::AND_LONG_2ADDR:
2001    case Instruction::AND_LONG:
2002      if (dest_in_mem) {
2003        return is64Bit ? kX86And64MR : kX86And32MR;
2004      }
2005      if (is64Bit) {
2006        return rhs_in_mem ? kX86And64RM : kX86And64RR;
2007      }
2008      return rhs_in_mem ? kX86And32RM : kX86And32RR;
2009    case Instruction::OR_LONG:
2010    case Instruction::OR_LONG_2ADDR:
2011      if (dest_in_mem) {
2012        return is64Bit ? kX86Or64MR : kX86Or32MR;
2013      }
2014      if (is64Bit) {
2015        return rhs_in_mem ? kX86Or64RM : kX86Or64RR;
2016      }
2017      return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
2018    case Instruction::XOR_LONG:
2019    case Instruction::XOR_LONG_2ADDR:
2020      if (dest_in_mem) {
2021        return is64Bit ? kX86Xor64MR : kX86Xor32MR;
2022      }
2023      if (is64Bit) {
2024        return rhs_in_mem ? kX86Xor64RM : kX86Xor64RR;
2025      }
2026      return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
2027    default:
2028      LOG(FATAL) << "Unexpected opcode: " << op;
2029      return kX86Add32RR;
2030  }
2031}
2032
2033X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
2034                                int32_t value) {
2035  bool in_mem = loc.location != kLocPhysReg;
2036  bool is64Bit = Gen64Bit();
2037  bool byte_imm = IS_SIMM8(value);
2038  DCHECK(in_mem || !loc.reg.IsFloat());
2039  switch (op) {
2040    case Instruction::ADD_LONG:
2041    case Instruction::ADD_LONG_2ADDR:
2042      if (byte_imm) {
2043        if (in_mem) {
2044          return is64Bit ? kX86Add64MI8 : is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
2045        }
2046        return is64Bit ? kX86Add64RI8 : is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
2047      }
2048      if (in_mem) {
2049        return is64Bit ? kX86Add64MI : is_high_op ? kX86Adc32MI : kX86Add32MI;
2050      }
2051      return is64Bit ? kX86Add64RI : is_high_op ? kX86Adc32RI : kX86Add32RI;
2052    case Instruction::SUB_LONG:
2053    case Instruction::SUB_LONG_2ADDR:
2054      if (byte_imm) {
2055        if (in_mem) {
2056          return is64Bit ? kX86Sub64MI8 : is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
2057        }
2058        return is64Bit ? kX86Sub64RI8 : is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
2059      }
2060      if (in_mem) {
2061        return is64Bit ? kX86Sub64MI : is_high_op ? kX86Sbb32MI : kX86Sub32MI;
2062      }
2063      return is64Bit ? kX86Sub64RI : is_high_op ? kX86Sbb32RI : kX86Sub32RI;
2064    case Instruction::AND_LONG_2ADDR:
2065    case Instruction::AND_LONG:
2066      if (byte_imm) {
2067        if (is64Bit) {
2068          return in_mem ? kX86And64MI8 : kX86And64RI8;
2069        }
2070        return in_mem ? kX86And32MI8 : kX86And32RI8;
2071      }
2072      if (is64Bit) {
2073        return in_mem ? kX86And64MI : kX86And64RI;
2074      }
2075      return in_mem ? kX86And32MI : kX86And32RI;
2076    case Instruction::OR_LONG:
2077    case Instruction::OR_LONG_2ADDR:
2078      if (byte_imm) {
2079        if (is64Bit) {
2080          return in_mem ? kX86Or64MI8 : kX86Or64RI8;
2081        }
2082        return in_mem ? kX86Or32MI8 : kX86Or32RI8;
2083      }
2084      if (is64Bit) {
2085        return in_mem ? kX86Or64MI : kX86Or64RI;
2086      }
2087      return in_mem ? kX86Or32MI : kX86Or32RI;
2088    case Instruction::XOR_LONG:
2089    case Instruction::XOR_LONG_2ADDR:
2090      if (byte_imm) {
2091        if (is64Bit) {
2092          return in_mem ? kX86Xor64MI8 : kX86Xor64RI8;
2093        }
2094        return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
2095      }
2096      if (is64Bit) {
2097        return in_mem ? kX86Xor64MI : kX86Xor64RI;
2098      }
2099      return in_mem ? kX86Xor32MI : kX86Xor32RI;
2100    default:
2101      LOG(FATAL) << "Unexpected opcode: " << op;
2102      return kX86Add32MI;
2103  }
2104}
2105
2106bool X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
2107  DCHECK(rl_src.is_const);
2108  int64_t val = mir_graph_->ConstantValueWide(rl_src);
2109
2110  if (Gen64Bit()) {
2111    // We can do with imm only if it fits 32 bit
2112    if (val != (static_cast<int64_t>(static_cast<int32_t>(val)))) {
2113      return false;
2114    }
2115
2116    rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2117
2118    if ((rl_dest.location == kLocDalvikFrame) ||
2119        (rl_dest.location == kLocCompilerTemp)) {
2120      int r_base = TargetReg(kSp).GetReg();
2121      int displacement = SRegOffset(rl_dest.s_reg_low);
2122
2123      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2124      X86OpCode x86op = GetOpcode(op, rl_dest, false, val);
2125      LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, val);
2126      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2127                              true /* is_load */, true /* is64bit */);
2128      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2129                              false /* is_load */, true /* is64bit */);
2130      return true;
2131    }
2132
2133    RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2134    DCHECK_EQ(rl_result.location, kLocPhysReg);
2135    DCHECK(!rl_result.reg.IsFloat());
2136
2137    X86OpCode x86op = GetOpcode(op, rl_result, false, val);
2138    NewLIR2(x86op, rl_result.reg.GetReg(), val);
2139
2140    StoreValueWide(rl_dest, rl_result);
2141    return true;
2142  }
2143
2144  int32_t val_lo = Low32Bits(val);
2145  int32_t val_hi = High32Bits(val);
2146  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2147
2148  // Can we just do this into memory?
2149  if ((rl_dest.location == kLocDalvikFrame) ||
2150      (rl_dest.location == kLocCompilerTemp)) {
2151    int r_base = TargetReg(kSp).GetReg();
2152    int displacement = SRegOffset(rl_dest.s_reg_low);
2153
2154    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2155    if (!IsNoOp(op, val_lo)) {
2156      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
2157      LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, val_lo);
2158      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2159                              true /* is_load */, true /* is64bit */);
2160      AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
2161                              false /* is_load */, true /* is64bit */);
2162    }
2163    if (!IsNoOp(op, val_hi)) {
2164      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
2165      LIR *lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, val_hi);
2166      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
2167                                true /* is_load */, true /* is64bit */);
2168      AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
2169                                false /* is_load */, true /* is64bit */);
2170    }
2171    return true;
2172  }
2173
2174  RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2175  DCHECK_EQ(rl_result.location, kLocPhysReg);
2176  DCHECK(!rl_result.reg.IsFloat());
2177
2178  if (!IsNoOp(op, val_lo)) {
2179    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
2180    NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
2181  }
2182  if (!IsNoOp(op, val_hi)) {
2183    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
2184    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
2185  }
2186  StoreValueWide(rl_dest, rl_result);
2187  return true;
2188}
2189
2190bool X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
2191                                RegLocation rl_src2, Instruction::Code op) {
2192  DCHECK(rl_src2.is_const);
2193  int64_t val = mir_graph_->ConstantValueWide(rl_src2);
2194
2195  if (Gen64Bit()) {
2196    // We can do with imm only if it fits 32 bit
2197    if (val != (static_cast<int64_t>(static_cast<int32_t>(val)))) {
2198      return false;
2199    }
2200    if (rl_dest.location == kLocPhysReg &&
2201        rl_src1.location == kLocPhysReg && !rl_dest.reg.IsFloat()) {
2202      X86OpCode x86op = GetOpcode(op, rl_dest, false, val);
2203      OpRegCopy(rl_dest.reg, rl_src1.reg);
2204      NewLIR2(x86op, rl_dest.reg.GetReg(), val);
2205      StoreFinalValueWide(rl_dest, rl_dest);
2206      return true;
2207    }
2208
2209    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2210    // We need the values to be in a temporary
2211    RegLocation rl_result = ForceTempWide(rl_src1);
2212
2213    X86OpCode x86op = GetOpcode(op, rl_result, false, val);
2214    NewLIR2(x86op, rl_result.reg.GetReg(), val);
2215
2216    StoreFinalValueWide(rl_dest, rl_result);
2217    return true;
2218  }
2219
2220  int32_t val_lo = Low32Bits(val);
2221  int32_t val_hi = High32Bits(val);
2222  rl_dest = UpdateLocWideTyped(rl_dest, kCoreReg);
2223  rl_src1 = UpdateLocWideTyped(rl_src1, kCoreReg);
2224
2225  // Can we do this directly into the destination registers?
2226  if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
2227      rl_dest.reg.GetLowReg() == rl_src1.reg.GetLowReg() &&
2228      rl_dest.reg.GetHighReg() == rl_src1.reg.GetHighReg() && !rl_dest.reg.IsFloat()) {
2229    if (!IsNoOp(op, val_lo)) {
2230      X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
2231      NewLIR2(x86op, rl_dest.reg.GetLowReg(), val_lo);
2232    }
2233    if (!IsNoOp(op, val_hi)) {
2234      X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
2235      NewLIR2(x86op, rl_dest.reg.GetHighReg(), val_hi);
2236    }
2237
2238    StoreFinalValueWide(rl_dest, rl_dest);
2239    return true;
2240  }
2241
2242  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2243  DCHECK_EQ(rl_src1.location, kLocPhysReg);
2244
2245  // We need the values to be in a temporary
2246  RegLocation rl_result = ForceTempWide(rl_src1);
2247  if (!IsNoOp(op, val_lo)) {
2248    X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
2249    NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
2250  }
2251  if (!IsNoOp(op, val_hi)) {
2252    X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
2253    NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
2254  }
2255
2256  StoreFinalValueWide(rl_dest, rl_result);
2257  return true;
2258}
2259
2260// For final classes there are no sub-classes to check and so we can answer the instance-of
2261// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
2262void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
2263                                    RegLocation rl_dest, RegLocation rl_src) {
2264  RegLocation object = LoadValue(rl_src, kRefReg);
2265  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2266  RegStorage result_reg = rl_result.reg;
2267
2268  // For 32-bit, SETcc only works with EAX..EDX.
2269  if (result_reg == object.reg || !IsByteRegister(result_reg)) {
2270    result_reg = AllocateByteRegister();
2271  }
2272
2273  // Assume that there is no match.
2274  LoadConstant(result_reg, 0);
2275  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
2276
2277  // We will use this register to compare to memory below.
2278  // References are 32 bit in memory, and 64 bit in registers (in 64 bit mode).
2279  // For this reason, force allocation of a 32 bit register to use, so that the
2280  // compare to memory will be done using a 32 bit comparision.
2281  // The LoadRefDisp(s) below will work normally, even in 64 bit mode.
2282  RegStorage check_class = AllocTemp();
2283
2284  // If Method* is already in a register, we can save a copy.
2285  RegLocation rl_method = mir_graph_->GetMethodLoc();
2286  int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::HeapReference<mirror::Class*>)).Int32Value() +
2287    (sizeof(mirror::HeapReference<mirror::Class*>) * type_idx);
2288
2289  if (rl_method.location == kLocPhysReg) {
2290    if (use_declaring_class) {
2291      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2292                   check_class);
2293    } else {
2294      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2295                   check_class);
2296      LoadRefDisp(check_class, offset_of_type, check_class);
2297    }
2298  } else {
2299    LoadCurrMethodDirect(check_class);
2300    if (use_declaring_class) {
2301      LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2302                   check_class);
2303    } else {
2304      LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2305                   check_class);
2306      LoadRefDisp(check_class, offset_of_type, check_class);
2307    }
2308  }
2309
2310  // Compare the computed class to the class in the object.
2311  DCHECK_EQ(object.location, kLocPhysReg);
2312  OpRegMem(kOpCmp, check_class, object.reg, mirror::Object::ClassOffset().Int32Value());
2313
2314  // Set the low byte of the result to 0 or 1 from the compare condition code.
2315  NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondEq);
2316
2317  LIR* target = NewLIR0(kPseudoTargetLabel);
2318  null_branchover->target = target;
2319  FreeTemp(check_class);
2320  if (IsTemp(result_reg)) {
2321    OpRegCopy(rl_result.reg, result_reg);
2322    FreeTemp(result_reg);
2323  }
2324  StoreValue(rl_dest, rl_result);
2325}
2326
2327void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
2328                                            bool type_known_abstract, bool use_declaring_class,
2329                                            bool can_assume_type_is_in_dex_cache,
2330                                            uint32_t type_idx, RegLocation rl_dest,
2331                                            RegLocation rl_src) {
2332  FlushAllRegs();
2333  // May generate a call - use explicit registers.
2334  LockCallTemps();
2335  LoadCurrMethodDirect(TargetReg(kArg1));  // kArg1 gets current Method*.
2336  RegStorage class_reg = TargetReg(kArg2);  // kArg2 will hold the Class*.
2337  // Reference must end up in kArg0.
2338  if (needs_access_check) {
2339    // Check we have access to type_idx and if not throw IllegalAccessError,
2340    // Caller function returns Class* in kArg0.
2341    if (cu_->target64) {
2342      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeTypeAndVerifyAccess),
2343                           type_idx, true);
2344    } else {
2345      CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
2346                           type_idx, true);
2347    }
2348    OpRegCopy(class_reg, TargetReg(kRet0));
2349    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
2350  } else if (use_declaring_class) {
2351    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
2352    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
2353                 class_reg);
2354  } else {
2355    // Load dex cache entry into class_reg (kArg2).
2356    LoadValueDirectFixed(rl_src, TargetReg(kArg0));
2357    LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
2358                 class_reg);
2359    int32_t offset_of_type =
2360        mirror::Array::DataOffset(sizeof(mirror::HeapReference<mirror::Class*>)).Int32Value() +
2361        (sizeof(mirror::HeapReference<mirror::Class*>) * type_idx);
2362    LoadRefDisp(class_reg, offset_of_type, class_reg);
2363    if (!can_assume_type_is_in_dex_cache) {
2364      // Need to test presence of type in dex cache at runtime.
2365      LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
2366      // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
2367      if (cu_->target64) {
2368        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(8, pInitializeType), type_idx, true);
2369      } else {
2370        CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx, true);
2371      }
2372      OpRegCopy(TargetReg(kArg2), TargetReg(kRet0));  // Align usage with fast path.
2373      LoadValueDirectFixed(rl_src, TargetReg(kArg0));  /* Reload Ref. */
2374      // Rejoin code paths
2375      LIR* hop_target = NewLIR0(kPseudoTargetLabel);
2376      hop_branch->target = hop_target;
2377    }
2378  }
2379  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
2380  RegLocation rl_result = GetReturn(kRefReg);
2381
2382  // On x86-64 kArg0 is not EAX, so we have to copy ref from kArg0 to EAX.
2383  if (Gen64Bit()) {
2384    OpRegCopy(rl_result.reg, TargetReg(kArg0));
2385  }
2386
2387  // For 32-bit, SETcc only works with EAX..EDX.
2388  DCHECK_LT(rl_result.reg.GetRegNum(), 4);
2389
2390  // Is the class NULL?
2391  LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
2392
2393  /* Load object->klass_. */
2394  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
2395  LoadRefDisp(TargetReg(kArg0),  mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
2396  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
2397  LIR* branchover = nullptr;
2398  if (type_known_final) {
2399    // Ensure top 3 bytes of result are 0.
2400    LoadConstant(rl_result.reg, 0);
2401    OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
2402    // Set the low byte of the result to 0 or 1 from the compare condition code.
2403    NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondEq);
2404  } else {
2405    if (!type_known_abstract) {
2406      LoadConstant(rl_result.reg, 1);     // Assume result succeeds.
2407      branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
2408    }
2409    OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
2410    if (cu_->target64) {
2411      OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(8, pInstanceofNonTrivial));
2412    } else {
2413      OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
2414    }
2415  }
2416  // TODO: only clobber when type isn't final?
2417  ClobberCallerSave();
2418  /* Branch targets here. */
2419  LIR* target = NewLIR0(kPseudoTargetLabel);
2420  StoreValue(rl_dest, rl_result);
2421  branch1->target = target;
2422  if (branchover != nullptr) {
2423    branchover->target = target;
2424  }
2425}
2426
2427void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
2428                            RegLocation rl_lhs, RegLocation rl_rhs) {
2429  OpKind op = kOpBkpt;
2430  bool is_div_rem = false;
2431  bool unary = false;
2432  bool shift_op = false;
2433  bool is_two_addr = false;
2434  RegLocation rl_result;
2435  switch (opcode) {
2436    case Instruction::NEG_INT:
2437      op = kOpNeg;
2438      unary = true;
2439      break;
2440    case Instruction::NOT_INT:
2441      op = kOpMvn;
2442      unary = true;
2443      break;
2444    case Instruction::ADD_INT_2ADDR:
2445      is_two_addr = true;
2446      // Fallthrough
2447    case Instruction::ADD_INT:
2448      op = kOpAdd;
2449      break;
2450    case Instruction::SUB_INT_2ADDR:
2451      is_two_addr = true;
2452      // Fallthrough
2453    case Instruction::SUB_INT:
2454      op = kOpSub;
2455      break;
2456    case Instruction::MUL_INT_2ADDR:
2457      is_two_addr = true;
2458      // Fallthrough
2459    case Instruction::MUL_INT:
2460      op = kOpMul;
2461      break;
2462    case Instruction::DIV_INT_2ADDR:
2463      is_two_addr = true;
2464      // Fallthrough
2465    case Instruction::DIV_INT:
2466      op = kOpDiv;
2467      is_div_rem = true;
2468      break;
2469    /* NOTE: returns in kArg1 */
2470    case Instruction::REM_INT_2ADDR:
2471      is_two_addr = true;
2472      // Fallthrough
2473    case Instruction::REM_INT:
2474      op = kOpRem;
2475      is_div_rem = true;
2476      break;
2477    case Instruction::AND_INT_2ADDR:
2478      is_two_addr = true;
2479      // Fallthrough
2480    case Instruction::AND_INT:
2481      op = kOpAnd;
2482      break;
2483    case Instruction::OR_INT_2ADDR:
2484      is_two_addr = true;
2485      // Fallthrough
2486    case Instruction::OR_INT:
2487      op = kOpOr;
2488      break;
2489    case Instruction::XOR_INT_2ADDR:
2490      is_two_addr = true;
2491      // Fallthrough
2492    case Instruction::XOR_INT:
2493      op = kOpXor;
2494      break;
2495    case Instruction::SHL_INT_2ADDR:
2496      is_two_addr = true;
2497      // Fallthrough
2498    case Instruction::SHL_INT:
2499      shift_op = true;
2500      op = kOpLsl;
2501      break;
2502    case Instruction::SHR_INT_2ADDR:
2503      is_two_addr = true;
2504      // Fallthrough
2505    case Instruction::SHR_INT:
2506      shift_op = true;
2507      op = kOpAsr;
2508      break;
2509    case Instruction::USHR_INT_2ADDR:
2510      is_two_addr = true;
2511      // Fallthrough
2512    case Instruction::USHR_INT:
2513      shift_op = true;
2514      op = kOpLsr;
2515      break;
2516    default:
2517      LOG(FATAL) << "Invalid word arith op: " << opcode;
2518  }
2519
2520  // Can we convert to a two address instruction?
2521  if (!is_two_addr &&
2522        (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
2523         mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
2524    is_two_addr = true;
2525  }
2526
2527  if (!GenerateTwoOperandInstructions()) {
2528    is_two_addr = false;
2529  }
2530
2531  // Get the div/rem stuff out of the way.
2532  if (is_div_rem) {
2533    rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
2534    StoreValue(rl_dest, rl_result);
2535    return;
2536  }
2537
2538  // If we generate any memory access below, it will reference a dalvik reg.
2539  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2540
2541  if (unary) {
2542    rl_lhs = LoadValue(rl_lhs, kCoreReg);
2543    rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2544    rl_result = EvalLoc(rl_dest, kCoreReg, true);
2545    OpRegReg(op, rl_result.reg, rl_lhs.reg);
2546  } else {
2547    if (shift_op) {
2548      // X86 doesn't require masking and must use ECX.
2549      RegStorage t_reg = TargetReg(kCount);  // rCX
2550      LoadValueDirectFixed(rl_rhs, t_reg);
2551      if (is_two_addr) {
2552        // Can we do this directly into memory?
2553        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2554        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2555        if (rl_result.location != kLocPhysReg) {
2556          // Okay, we can do this into memory
2557          OpMemReg(op, rl_result, t_reg.GetReg());
2558          FreeTemp(t_reg);
2559          return;
2560        } else if (!rl_result.reg.IsFloat()) {
2561          // Can do this directly into the result register
2562          OpRegReg(op, rl_result.reg, t_reg);
2563          FreeTemp(t_reg);
2564          StoreFinalValue(rl_dest, rl_result);
2565          return;
2566        }
2567      }
2568      // Three address form, or we can't do directly.
2569      rl_lhs = LoadValue(rl_lhs, kCoreReg);
2570      rl_result = EvalLoc(rl_dest, kCoreReg, true);
2571      OpRegRegReg(op, rl_result.reg, rl_lhs.reg, t_reg);
2572      FreeTemp(t_reg);
2573    } else {
2574      // Multiply is 3 operand only (sort of).
2575      if (is_two_addr && op != kOpMul) {
2576        // Can we do this directly into memory?
2577        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2578        if (rl_result.location == kLocPhysReg) {
2579          // Ensure res is in a core reg
2580          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2581          // Can we do this from memory directly?
2582          rl_rhs = UpdateLocTyped(rl_rhs, kCoreReg);
2583          if (rl_rhs.location != kLocPhysReg) {
2584            OpRegMem(op, rl_result.reg, rl_rhs);
2585            StoreFinalValue(rl_dest, rl_result);
2586            return;
2587          } else if (!rl_rhs.reg.IsFloat()) {
2588            OpRegReg(op, rl_result.reg, rl_rhs.reg);
2589            StoreFinalValue(rl_dest, rl_result);
2590            return;
2591          }
2592        }
2593        rl_rhs = LoadValue(rl_rhs, kCoreReg);
2594        // It might happen rl_rhs and rl_dest are the same VR
2595        // in this case rl_dest is in reg after LoadValue while
2596        // rl_result is not updated yet, so do this
2597        rl_result = UpdateLocTyped(rl_dest, kCoreReg);
2598        if (rl_result.location != kLocPhysReg) {
2599          // Okay, we can do this into memory.
2600          OpMemReg(op, rl_result, rl_rhs.reg.GetReg());
2601          return;
2602        } else if (!rl_result.reg.IsFloat()) {
2603          // Can do this directly into the result register.
2604          OpRegReg(op, rl_result.reg, rl_rhs.reg);
2605          StoreFinalValue(rl_dest, rl_result);
2606          return;
2607        } else {
2608          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2609          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2610          OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2611        }
2612      } else {
2613        // Try to use reg/memory instructions.
2614        rl_lhs = UpdateLocTyped(rl_lhs, kCoreReg);
2615        rl_rhs = UpdateLocTyped(rl_rhs, kCoreReg);
2616        // We can't optimize with FP registers.
2617        if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2618          // Something is difficult, so fall back to the standard case.
2619          rl_lhs = LoadValue(rl_lhs, kCoreReg);
2620          rl_rhs = LoadValue(rl_rhs, kCoreReg);
2621          rl_result = EvalLoc(rl_dest, kCoreReg, true);
2622          OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2623        } else {
2624          // We can optimize by moving to result and using memory operands.
2625          if (rl_rhs.location != kLocPhysReg) {
2626            // Force LHS into result.
2627            // We should be careful with order here
2628            // If rl_dest and rl_lhs points to the same VR we should load first
2629            // If the are different we should find a register first for dest
2630            if (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
2631                mir_graph_->SRegToVReg(rl_lhs.s_reg_low)) {
2632              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2633              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2634              // No-op if these are the same.
2635              OpRegCopy(rl_result.reg, rl_lhs.reg);
2636            } else {
2637              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2638              LoadValueDirect(rl_lhs, rl_result.reg);
2639            }
2640            OpRegMem(op, rl_result.reg, rl_rhs);
2641          } else if (rl_lhs.location != kLocPhysReg) {
2642            // RHS is in a register; LHS is in memory.
2643            if (op != kOpSub) {
2644              // Force RHS into result and operate on memory.
2645              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2646              OpRegCopy(rl_result.reg, rl_rhs.reg);
2647              OpRegMem(op, rl_result.reg, rl_lhs);
2648            } else {
2649              // Subtraction isn't commutative.
2650              rl_lhs = LoadValue(rl_lhs, kCoreReg);
2651              rl_rhs = LoadValue(rl_rhs, kCoreReg);
2652              rl_result = EvalLoc(rl_dest, kCoreReg, true);
2653              OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2654            }
2655          } else {
2656            // Both are in registers.
2657            rl_lhs = LoadValue(rl_lhs, kCoreReg);
2658            rl_rhs = LoadValue(rl_rhs, kCoreReg);
2659            rl_result = EvalLoc(rl_dest, kCoreReg, true);
2660            OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
2661          }
2662        }
2663      }
2664    }
2665  }
2666  StoreValue(rl_dest, rl_result);
2667}
2668
2669bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2670  // If we have non-core registers, then we can't do good things.
2671  if (rl_lhs.location == kLocPhysReg && rl_lhs.reg.IsFloat()) {
2672    return false;
2673  }
2674  if (rl_rhs.location == kLocPhysReg && rl_rhs.reg.IsFloat()) {
2675    return false;
2676  }
2677
2678  // Everything will be fine :-).
2679  return true;
2680}
2681
2682void X86Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
2683  if (!Gen64Bit()) {
2684    Mir2Lir::GenIntToLong(rl_dest, rl_src);
2685    return;
2686  }
2687  rl_src = UpdateLoc(rl_src);
2688  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2689  if (rl_src.location == kLocPhysReg) {
2690    NewLIR2(kX86MovsxdRR, rl_result.reg.GetReg(), rl_src.reg.GetReg());
2691  } else {
2692    int displacement = SRegOffset(rl_src.s_reg_low);
2693    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2694    LIR *m = NewLIR3(kX86MovsxdRM, rl_result.reg.GetReg(), rs_rX86_SP.GetReg(),
2695                     displacement + LOWORD_OFFSET);
2696    AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
2697                            true /* is_load */, true /* is_64bit */);
2698  }
2699  StoreValueWide(rl_dest, rl_result);
2700}
2701
2702void X86Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
2703                        RegLocation rl_src1, RegLocation rl_shift) {
2704  if (!Gen64Bit()) {
2705    Mir2Lir::GenShiftOpLong(opcode, rl_dest, rl_src1, rl_shift);
2706    return;
2707  }
2708
2709  bool is_two_addr = false;
2710  OpKind op = kOpBkpt;
2711  RegLocation rl_result;
2712
2713  switch (opcode) {
2714    case Instruction::SHL_LONG_2ADDR:
2715      is_two_addr = true;
2716      // Fallthrough
2717    case Instruction::SHL_LONG:
2718      op = kOpLsl;
2719      break;
2720    case Instruction::SHR_LONG_2ADDR:
2721      is_two_addr = true;
2722      // Fallthrough
2723    case Instruction::SHR_LONG:
2724      op = kOpAsr;
2725      break;
2726    case Instruction::USHR_LONG_2ADDR:
2727      is_two_addr = true;
2728      // Fallthrough
2729    case Instruction::USHR_LONG:
2730      op = kOpLsr;
2731      break;
2732    default:
2733      op = kOpBkpt;
2734  }
2735
2736  // X86 doesn't require masking and must use ECX.
2737  RegStorage t_reg = TargetReg(kCount);  // rCX
2738  LoadValueDirectFixed(rl_shift, t_reg);
2739  if (is_two_addr) {
2740    // Can we do this directly into memory?
2741    rl_result = UpdateLocWideTyped(rl_dest, kCoreReg);
2742    if (rl_result.location != kLocPhysReg) {
2743      // Okay, we can do this into memory
2744      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2745      OpMemReg(op, rl_result, t_reg.GetReg());
2746    } else if (!rl_result.reg.IsFloat()) {
2747      // Can do this directly into the result register
2748      OpRegReg(op, rl_result.reg, t_reg);
2749      StoreFinalValueWide(rl_dest, rl_result);
2750    }
2751  } else {
2752    // Three address form, or we can't do directly.
2753    rl_src1 = LoadValueWide(rl_src1, kCoreReg);
2754    rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2755    OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
2756    StoreFinalValueWide(rl_dest, rl_result);
2757  }
2758
2759  FreeTemp(t_reg);
2760}
2761
2762}  // namespace art
2763